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Pattern selection in reaction diffusion systems
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Turing’s theory of pattern formation has been used to describe the formation of self-organized periodic patterns
in many biological, chemical, and physical systems. However, the use of such models is hindered by our inability
to predict, in general, which pattern is obtained from a given set of model parameters. While much is known near
the onset of the spatial instability, the mechanisms underlying pattern selection and dynamics away from onset
are much less understood. Here, we provide physical insight into the dynamics of these systems. We find that
peaks in a Turing pattern behave as point sinks, the dynamics of which is determined by the diffusive fluxes
into them. As a result, peaks move toward a periodic steady-state configuration that minimizes the mass of the
diffusive species. We also show that the preferred number of peaks at the final steady state is such that this mass
is minimized. Our work presents mass minimization as a potential general principle for understanding pattern
formation in reaction diffusion systems far from onset.
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I. INTRODUCTION

Pattern formation occurs in a huge variety of natural and
living systems [1], from chemical reactions [2,3] to living
cells [4–6] to environmental patterns [7]. In systems de-
scribed by reaction diffusion (RD) equations, the formation
of spatially periodic patterns can be explained by the Tur-
ing instability, in which patterns emerge due to the presence
of two or more interacting components that diffuse (or are
transported) at different rates [8–11]. The resulting patterns
are multistable in that several different stable patterns can be
obtained from the same set of parameters, albeit, for incom-
pletely understood reasons, with different frequencies [12].

Sufficient conditions for pattern formation can be deter-
mined in the so-called Turing or linear regime, in which a
spatially uniform stable steady state becomes linearly unsta-
ble to spatial perturbations in the presence of diffusion [9].
Consider the following one-dimensional system:

∂t u = Du∂
2
x u + f (u, v), (1a)

∂tv = Dv∂
2
x v + g(u, v). (1b)

The evolution of any small perturbation from a spatially uni-
form steady state is given by its decomposition into its Fourier
modes eσkt cos(kx), where Re(σk ) is the growth rate. Then, the
uniform steady state is laterally unstable if any wave number
k has a positive growth rate Re(σk ) > 0 [see Fig. 1(a) and
the Supplemental Material [13]). For a finite domain [0, L]
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and reflective boundary conditions, the wave number k is
discrete with k = nπ

L for integer n. The unstable modes grow
exponentially in time until the nonlinear terms can no longer
be neglected. These terms saturate the exponential growth and
select different spatial states. At the onset of the instability
when a single mode nc is unstable, the naive expectation is
that the growth saturates without substantially changing the
spatial structure so that the final state is qualitatively similar
to mode nc. This saturation is described by the corresponding
amplitude equations [10,14,15]. These equations and, more
generally, the weakly nonlinear approach on which they are
based, have been extremely useful in understanding the selec-
tion and stability of different fundamental modes in a variety
of systems [10,14–18], as well as the effect of external con-
straints such as fixed boundary conditions, parameter ramps,
external forcing, template patterns, system geometry, and de-
formable or moving boundaries [19–29].

However, the approach is only valid close to onset (in the
vicinity of the bifurcation). Away from onset, where many
modes are linearly unstable [Fig. 1(a)], pattern-forming RD
systems typically still produce patterns with a well-defined
periodicity, corresponding to [in one dimension (1D)] a partic-
ular mode number n and its harmonics 2n, 3n, . . . [Fig. 1(b)].
This is despite neighboring modes n ± 1 generally having
similar growth rates, which would be expected to lead to
aperiodic patterns. The physics underlying this “exclusion
principle” [19] are in general not known.1 This is very relevant
as nonequilibrium systems in nature cannot be expected to
be close to onset. For the special case (see below) of two-
component mass-conserved models, Lyanpunov functionals
have been used to demonstrate that the only stable nontriv-
ial solution consists of a single peak or half-peak [30–33].

1See Sec. 9.1.4 of [10] for a more detailed discussion.
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(a) (b)

(c) (d)

FIG. 1. The Turing instability of reaction diffusion systems.
(a) The growth rate of different modes for the model in (2) with
default parameters and L = 4. Note that the growth rate at n = 0
is negative: the system is not generically mass conserving. (b) The
Fourier decomposition of the obtained two-peak pattern (inset).
(c) An example kymograph showing pattern development starting
from a random perturbation of the uniform state. While mode n = 7
dominates initially, the pattern coarsens down to two peaks, dom-
inated by mode n = 4. See also Fig. S1 [13]. (d) The regions of
instability of each mode on a domain of length L = 2 (the region
bounded by the y axis and the corresponding colored curve). The blue
shaded region shows the Turing space for an infinite domain (see also
Fig. S1 and the Supplemental Material [13] for further details).

Unfortunately, the construction of such functionals is chal-
lenging for reaction diffusion systems in general.

In the following, we propose a simple physical principle to
explain the dynamics, positioning, and number of peaks in a
Turing pattern far from onset. Inspired by our previous work
[12], we begin by reviewing a number of observations about
patterns on a 1D domain. As already mentioned, final patterns
away from onset still have a well-defined wavelength. With
reflective boundary conditions, the peaks are also regularly
positioned, i.e., the peaks (or valleys) of the pattern are found
at the same locations as those of some fundamental mode n.
While this regular positioning is consistent with the selection
of a particular mode, it appears, for the reasons given above,
that this is a nonlinear effect.

We will also see below that if a system is initialized with a
mispositioned pattern (and therefore far outside of the linear
regime), for example, a single mispositioned peak, then the
peak subsequently moves towards mid-domain without sub-
stantially changing its shape. This is also evident in models
that exhibit coarsening [12,34–37], which we define here as
the preference for a steady-state pattern dominated by a mode
lower than that predicted by linear stability, i.e., the mode
with greatest linear growth rate σ . In Fig. 1(c), we show the
evolution of a pattern starting from a small perturbation of
the uniform state. The pattern initially resembles mode n = 7
(three and a half peaks) consistent with the linear prediction

[Fig. 1(a)] but it subsequently coarsens, first to three peaks,
and then to two. After each coarsening event, the peaks move
towards their regularly positioned configuration so that the
final steady-state pattern consists of a peak at each quarter
position (mode 4). In two-variable mass-conserved systems,
coarsening is complete in that, irrespective of how many peaks
there are initially, the pattern eventually coarsens down to
a single peak or half-peak (monotonic) solution [30–33,38].
On a periodic domain, absolute positioning is no longer
meaningful but peaks still reposition to maintain a constant
wavelength. Finally, regular positioning is maintained even
during domain growth in which new peaks are created by
insertion or splitting [11,12,39]. Overall, these observations
indicate that the periodic positioning of peaks is an inherently
nonlinear effect and not a remnant nor direct consequence
of the dominating linear mode of the base state perturba-
tion. Thus, while a decomposition into fundamental modes
is critical to understanding the initial formation of the pat-
tern (starting from the homogeneous state), once peaks have
formed, a different description is required.

Note also that the two phases of a pattern that exist when
imposing reflective boundary conditions are not necessarily
equally preferred. We have previously studied a model in
which the pattern consisting of a single peak at mid-domain is
preferred over a half-peak at each boundary and similarly for
higher modes [12]. Thus, not only is the mode of the pattern
selected, the phase is too. However, peaks on the boundary
display different dynamics: unlike interior peaks, they do not
move but only appear or disappear. Here, we will restrict our-
selves to the study of interior peaks only as they are amenable
to comparison with point sinks and hence we will not address
the issue of phase selection. We make this explicit in the last
section by using periodic boundary conditions. In the interim,
we will use reflective boundary conditions in order to more
easily study peak movement.

In the following, we show that the peaks of a Turing pattern
behave as point sinks that move with a velocity proportional
to the diffusive flux across them. This is a consequence of
the flow of mass through the system and is responsible for
the regular positioning of peaks. By flow, we mean something
more than simply the flux through the system. In a diffusive
non-mass-conserving system, “molecules” enter the system,
diffuse, and either leave the system or are converted to another
species. This combination of diffusion and turnover results, as
we shall see, in the regular positioning of peaks due to the
concept of flux balance [40,41]. This result also explains why
the peaks in mass-conserving two-variable reaction diffusion
systems do not move: there is no flow to drive the movement.
In our analysis, we use singular perturbation methods to study
solutions consisting of well-separated spikes, a regime that
occurs in the singular limit Dv → 0 of reaction diffusion
systems (see [42] for an overview). Similar approaches have
been used to study traveling pulse and kink solutions in other
pattern-forming systems [43–48] and, more recently, to study
peak splitting [49].

We also find that the regularly positioned configuration
minimizes the total mass of the rapidly diffusing species, the
substrate of the nonlinear reaction. We then find empirically
that this “minimization principle” can be extended to predict
not only the final positions of the peaks, but also the final
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number of peaks, even in the presence of coarsening. This is
significant as the amplitude equation approach for determin-
ing the dominant mode is not applicable far from onset. Mass
minimization therefore has the potential to be an incredibly
simple yet powerful concept for understanding the behavior
of pattern-forming reaction diffusion systems.

II. MODEL

We introduce the following exploratory one-dimensional
system, inspired by our recent model of bacterial condensin
[12,50], written in terms of the variables u = u(x, t ) and v =
v(x, t ),

∂t u = Du∂
2
x u − βu(u + v)2 + γ v + cδ − δu, (2a)

∂tv = Dv∂
2
x v + βu(u + v)2 − γ v − δv, (2b)

defined over the spatial domain [−L/2, L/2], with reflective
boundary conditions, all parameters non-negative and Dv <

Du. While superficially similar to the some of the classic
Turing models such as the Brusselator [51] and Schnakenberg
[52] models, this model has some notable properties. In the
absence of diffusion, it has a single fixed point that is stable for
all parameter values. This means that the stability diagram of
the system is particularly simple. There are only two regions,
specified by a single inequality: one in which the spatially
uniform solution is stable and another in which it is Turing
unstable [Fig. 1(d)]. There are no oscillatory instabilities. Like
the Brusselator, the model has the form of a mass-conserving
Turing system with additional terms: a global source term cδ
and two depletion terms δu and δv. By writing the source term
as cδ, we can change δ, the turnover rate, while leaving the
total steady-state concentration c fixed. We obtain a mass-
conserved Turing model when δ = 0 and the limit δ → 0 is
well defined as long as we constrain the total initial mass to
be the same as the steady-state mass, i.e., C(0) = c.

The condition for a Turing instability is most easily stated
by nondimensionalizing the system and introducing the di-
mensionless parameters a = βc2

γ
, b = δ

γ
, � = γ L2

Dv
, d = Du

Dv

(see Supplemental Material [13] for details). As can be seen
in Fig. 1(d) for typically choices of the diffusivity ratio d , we
require b � 1 for patterning, i.e., the timescale of mass flow
(turnover) through the system 1/δ must be much longer than
the timescale underlying the Turing instability 1/γ .

Numerically solving the system, we found that it indeed
produces regularly positioned peaks. We also observed that,
like the model it is based on [12], it exhibits a competi-
tion instability [35–37] (also known as interrupted coarsening
[34]) in that the final dominant mode has a longer wavelength
than predicted by linear stability analysis. For our default
parameter set with L = 4 (� = 4800), linear stability predicts
[Fig. 1(a)] that the pattern consists of four peaks (or valleys)
(mode n = 8) whereas the obtained steady-state pattern most
frequently consists of two peaks (mode n = 4) [Figs. 1(b) and
S1D [13]]. While multiple peaks often form initially, con-
sistent with the linear prediction, coarsening rapidly occurs,
leaving mispositioned peaks that then move slowly towards
opposite quarter positions, while maintaining their shape
[Fig. 1(c)]. Note that this movement is only observed because
of the competition instability. It is not evident in models or

(a) (b)

(c) (d)

FIG. 2. Peak movement and regular positioning depend on flux
through the system. (a) The system is initialized with a peak away
from mid-domain. The peak subsequently moves to mid-domain.
(b) The centroid of the peak (blue line) plotted as function of sim-
ulation time. The orange dashed line is an exponential fit. Inset: (Top
right) The rate of movement obtained from fitting the centroid to
an exponential as in (b) shows a linear dependence on the turnover
rate δ. (Bottom right) Peak velocity is linear in peak position. (c) A
single peak in the mass-conserved limit δ = 0 can be positioned
anywhere on the domain. No peak movement is observed. (d) The
mass-conserved system exhibits complete coarsening. Irrespective of
how many peaks there are initially, the pattern eventually coarsens to
a single peak, the position of which depends on which peak of the
initial pattern has not coarsened. In (d) � = 19 200 (L = 10).

parameters sets for which the linear prediction holds as in that
case, the peaks are created at their steady-state positions. We
will return to this incomplete coarsening later.

To examine the movement of peaks in more detail, we
focused on the case of a single peak (n = 2), typically ob-
tained for L = 2 (� = 1200). Examining the movement of
the peak [Fig. 2(a)], we found that it moves to mid-domain
exponentially in time [Fig. 2(b)], indicating the peak velocity
is linearly proportional to its displacement from mid-domain
[Fig. 2(b), bottom inset]. This was the case whether the system
was initialized with a random perturbation of the uniform state
or with a peak preformed somewhere on the domain. That
peaks might move to respect the symmetry of the system is
perhaps, while underappreciated, not surprising though it is
relevant for understanding the periodicity and positioning of
peaks. Indeed, the rate of movement was found to be directly
proportional to the turnover rate δ [Fig. 2(b), top inset] (or
equivalently cδ the flux through the system per unit length) so
that in the mass-conserved limit δ → 0, peaks do not move
[Figs. 2(b) and 2(c)]. This is consistent with our previous
results [12]. Mass-conserving RD models exhibit a complete
coarsening process in that the final steady-state pattern is
either monomodal (periodic or reflective) or monotonic (re-
flective only) depending on the boundary conditions, as has
been proved explicitly for several models [30–33,38]. We find
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the same coarsening behavior here [Fig. 2(d)]. We only obtain
the half-peak solution for very short domains, i.e., when the
width of the interface is comparable to the domain length. If
the domain length or other parameters are chosen such that
there is initially more than one peak, then the coarsening pro-
cess results (eventually) in a single interior peak [Fig. 2(d)].
Importantly, since peaks do not move, the position of this final
peak is determined by whichever peak of the transient state
remains after coarsening, i.e., the steady-state solutions are in
general not symmetric as might naively be expected by the
boundary conditions. We tested these conclusions by initializ-
ing the system with a single preformed peak (constructed as a
translation of the non-mass-conserved steady-state solution).
We found that preformed peaks do not move and constitute
a stable solution [Fig. 2(c)]. Thus, the mass-conserved case
b = 0 with reflective boundary conditions has a continuum of
single-peak stable states, whereas there is at most one unique
single-peak solution for b > 0. This implies that regular po-
sitioning is not an intrinsic property of the system but rather
depends on b. These results are based on simulations that were
run for very long times with very low error tolerances and
are in agreement with our previous results [12]. We will also
see the same behavior when we consider point sinks in the
next section. Overall, these results demonstrate a connection
between peak movement towards the regular positioned con-
figuration and the flow (turnover) of mass through the system.

III. POINT SINKS

To explore this connection in more detail, we turn to a toy
model involving diffusion and point sinks. We consider the
steady-state diffusion equation for a variable A = A(x) over a
one-dimensional domain of length L in the presence of global
source and decay terms as well as n localized point sinks at
positions x = (x1, . . . , xn) (each with rate μ):

D
d2A

dx2
+ cδ − δA −

n∑
i=1

μLδ(x − xi )A = 0. (3)

We take the domain to be [−L/2, L/2] and impose zero-flux
boundary conditions. As before, we write the global source
term in terms of the decay rate δ and a concentration c, which
is the steady-state concentration in the absence of the point
sinks. A simpler system without the decay term and with
perfect points sinks (i.e., μ → ∞) was used by Ietswaart
et al. to model the positioning of plasmids within rod-shaped
bacterial cells [41]. They found that the gradient differential
across each sink vanishes if and only if the sinks are regularly
positioned and, therefore, if sinks were to move up the concen-
tration gradient, they would be regularly positioned. We will
extend this result to the more complicated case of (3). Note
that the presence of the decay term introduces an additional
length scale

√
D/δ into the system, namely, the distance that

a molecule of A would diffuse (in the absence of any point
sinks) before it decays. We refer to this as the length scale of
diffusion. It is small when either diffusion is slow or the decay
rate (turnover) δ is fast.

We can write the solution to (3) as

A(x) = c −
∑

i

μ′
iG(x; xi ), (4)

where G(x; xi ) is the modified Green’s function defined by

−L2

κ2
Gxx(x; xi ) + G(x; xi ) = Lδ(x − xi ),

Gx

(
±L

2
; xi

)
= 0,

1

L

∫ L
2

− L
2

G(x; xi )dx = 1 ,

(5)

where the dimensionless parameter κ = L
√

δ
D is the ratio of

the length of domain to the length scale of diffusion. The
coefficients μ′

i = μ′
i(x) are determined by the linear algebraic

conditions

μ′
i = λA(xi ), i = 1, . . . , n (6)

where we have defined a second dimensionless parameter
λ = μ

δ
, the ratio of the sink and background decay rates. The

quantities μ′
i have a simple interpretation. They are directly

related to Ji, the flux leaving the system through each sink:

Ji = Ji+ + Ji− = −D
∑

j

μ′
j[Gx(x+

i ; x j )−Gx(x−
i ; x j )] = Lδμ′

i,

where Ji = |D dA
dx | and the − and + subscripts refer to the

diffusive flux from the left and right, respectively. We also
define the flux differential across each sink as

�Ji = 1

2
(Ji+ − Ji−) (7)

= −D

2

∑
j

μ′
j[Gx(x+

i ; x j ) + Gx(x−
i ; x j )]. (8)

Note the total mass (concentration) of A in the system is
readily given by

M := 1

L

∫ L
2

− L
2

A(x)dx = c −
∑

i

μ′
i, (9)

where the second term solely describes the effect of the point
sinks.

We can now investigate what would in happen in this sys-
tem if sinks were to move up the gradient of A. As in Ietwaart
et al., we can determine the configurations for which the flux
differentials are all zero. In Appendix A, we prove that this
occurs for regularly positioned sinks xi = x̄i := (i − 1

2 ) L
n − L

2 ,
i.e.,

�Ji(x̄) = 0 for all i

and, interestingly, we also show that the regular positioned
configuration x̄ is a stationary point of the mass M, i.e.,

∂

∂xi
M(x)

∣∣∣∣
x=x̄

= 0 for all i.

Based on our numerical observations, we conclude that this
stationary point is generically a minimum (see Appendix A).

Thus, if sinks move up the concentration gradient (in the
direction of greatest flux), they will be regularly positioned
as this is the configuration for which the fluxes into each
sink from either side balance. Furthermore, this configuration
minimizes the total mass of the system. In other words, the
sinks are positioned so as to “consume” mass at the greatest
rate. This connection between regular positioning and mass

012215-4



PATTERN SELECTION IN REACTION DIFFUSION … PHYSICAL REVIEW E 103, 012215 (2021)

minimization appears to be generalizable and we have ob-
served numerically that it holds for spatial sinks, i.e., if the
delta function in (3) is replaced by a peak-shaped spatial
function such as a Gaussian function or sech2(x), then the total
mass is minimized when the sink is centered at mid-domain.

Let us consider the case of a single sink, n = 1, in more
detail. We focus on the regime κ � 1 in which the diffusive
length scale is much longer than the domain size. We expand
in κ to find first

μ′
1

c
≈ λ

λ + 1
− λ2

λ + 1

(
x2

1

L2
+ 1

12

)
κ2 + O(κ4)

and then

�J1

cδL
= −1

2

μ′
1

c

sinh(2κ x1
L )

sinh(κ )

≈ − λ

λ + 1

x1

L
+ O(κ2). (10)

Hence, if κ � 1, then the flux differential across the sink de-
pends linearly on its relative displacement from mid-domain.
For strong sinks (λ � 1), the proportionality factor is linear in
δ, just as we observed for the Turing system [Fig. 2(b)]. As κ

increases, the flux differential becomes inflected about x1 = 0
[Fig. 3(a)]. We can think of this heuristically as follows. If
the diffusive length scale is much shorter than the domain size
(κ � 1), then only particles initially created near the sink will
fall into it. Therefore, the flux differential is only significantly
nonzero close to the boundaries (or another sink). In essence,
the geometry sensing of the system breaks down. On the other
hand, when the diffusive length scale is much longer than the
domain size (κ � 1), particles can explore the entire domain
before decaying and so the flux differential across the sink
reflects its position on the domain, with the fluxes into the
sink from either side balancing at mid-domain. One can also
imagine that if strength of the sinks depended on the flux
going into them, then this regime would lead to competition
between sinks. The relevance to Turing systems will be made
clear later.

We can make sink movement explicit by specifying the
sink velocities. Given our results above, two natural choices
are to take the sink velocities as either directly proportional to
the flux differentials �Ji,

dxi

dt
= ν�Ji(x), (11)

or to the derivative of the mass M(x) with respect to the sink
positions

dxi

dt
= −n

2
νD

∂

∂xi
M(x), (12)

where ν is some parameter and the choice of prefactor is for
later convenience. For the latter choice, the system is analo-
gous to that of n overdamped particles moving in a potential
U (x)/kBT = nν

2 M(x). Note also that while the velocities in
(11) are specified in terms of local quantities, in (12), they are
specified in terms of the global quantity M(x).

In either case, the steady-state solution consists of regularly
positioned sinks as this is the configuration for which the
fluxes balance and for which the mass is at its unique mini-
mum. This holds as long as δ > 0. For δ = 0, all the velocities

(a) (b)

(c) (d)

FIG. 3. Moving point sinks are regularly positioned and their
movement depends on the diffusive length scale. (a) Flux differential
across a point sink calculated analytically as a function of sink posi-
tion x1 for two values of κ . (b) When �J is linear in x1 the sink moves
exponentially to mid-domain. The flux differential across a point sink
is linear in sink position for κ � 1. It vanishes at the middle of the
domain. (c) Mass M in system as a function of sink position for a
single point sink is plotted in blue. The mass is minimal as the sink
approaches the middle of the domain. (d) Sample trajectories of the
two-sink system. White lines are sample trajectories obtained using
(11), while the overlaid red dashed lines are trajectories obtained
using (12). The colored contour shows the total mass M as a shown as
a function of the sink positions. The minimum occurs at the steady-
state configuration (sinks at opposite quarter positions). Parameters:
D = 0.3, λ = 166.1, c = 1, L = 1, ν = 1. κ = 0.21 in (b) and (c).
In (d) L = 2.

vanish identically. Hence, all sink positions are stable in that
limit. This is the same behavior that we found in the previous
section for the mass-conserved Turing system.

If we consider sinks moving on much slower timescale than
that of diffusion, we can use the steady-state solution for A(x)
given in (4) to solve the dynamic system (11). We find, as ex-
pected, that a single sink moves exponentially to mid-domain
[Fig. 3(b)]. We also find that increasing δ, which increases the
flux through the system, leads to faster sink movement (Fig.
S2 [13]) reminiscent of the Turing system [Fig. 2(b)]. On the
other hand, if we decrease D, which decreases the diffusive
length scale without affecting the flux through the system, the
sink moves more slowly towards mid-domain (Fig. S2 [13]).
We also considered the system with two sinks and confirmed
that the steady-state solution consists of quarter-positioned
sinks, the configuration that minimizes the total mass of A
[Fig. 3(d)].

We can also use the steady-state solution of A(x) to make
explicit a correspondence between the two choices for the
sink velocities. While the steady states of the two systems
are identical, their dynamics are not in general the same.
However, we found that (Appendix B) when δ is small (or
in terms of the dimensionless parameters λ � 1, κ � 1), the
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two expressions become equivalent. This equivalence was ap-
parent even for our default parameter set: the sink trajectories
arising for either choice were almost identical [Fig. 3(d)].

IV. COMPARISON WITH THE TURING SYSTEM

The similarity between moving point sinks (Fig. 3) and the
movement of peaks in a Turing pattern (Figs. 1 and 2) is strik-
ing. It suggests that the movement and steady-state positions
of peaks in a Turing pattern may be due to a dependence of
the peak velocity on the flux differential (of the fast species
across a peak of the slow species) or due to the total mass of
the fast species acting (approximately) as a potential energy
surface. Note that in the following we restrict ourselves to
Turing patterns consisting only of interior peaks, as boundary
peaks are not amenable to a point-sink approximation (see
below). First, we introduce the following definition of the flux
differential into the peak of a single-peak Turing pattern:

�Js(t ) = Du

∫ L/2
−L/2

∂u(x,t )
∂x v(x, t )dx∫ L/2

−L/2 v(x, t )dx
. (13)

If v is proportional to a Dirac delta function, an approximation
we will use below, this expression reduces to the flux differ-
ential of u, defined similarly to (7). We note that a similar
expression has already been used to describe the flux into a
spatial sink in the context of plasmid positioning [53]. We
initialized the system with a single peak and monitored �Js

as a function of the peak position and velocity. We found
that, like for point sinks [Fig. 3(c)], the flux differential is,
away from the domain boundaries, directly proportional to the
displacement from mid-domain [Fig. 4(a)]. Thus, peaks do in-
deed move with a velocity proportional to the flux differential.

However, it is not clear how to extend the definition of
the flux differential to patterns with multiple peaks as well as
to higher dimensions in which Turing patterns can consist of
complex structures such as stripes, spirals, and hexagons. The
concept of mass minimization on the other hand is easy to
generalize. When we examined the total mass (concentration)

of u (the fast species) in the system, M = 1
L

∫ L
2

− L
2

u(x, t ) dx,

we found that it decreases monotonically as the peak moves
to mid-domain, modulo boundary effects [Fig. 4(a)]. Further,
when we initialized the system with two peaks positioned
at various locations, we found similar behavior [Fig. 4(c)]
suggesting that, for a given number of peaks, the regularly
positioned configuration minimizes the total mass of u, just
as we have proven for point sinks in the previous section.
Indeed, the trajectories show a remarkable similarity to those
of moving point sinks [Fig. 3(d)].

To explore this analytically, we considered the singular
limit Dv � Du in which the peaks in v take the form of
narrow spikes or pulses of width ε = O(

√
Dv/γ ) (Fig. S3

[13]). Away from the spike, v is approximately constant with a
value vout that is much smaller than u. This limit allows the use
of nonlinear analysis methods to study the existence, stability,
and dynamics of Turing patterns (see [42] for a review). Here,
our goal is simply to derive an approximation for u in this
limit by treating the spikes of v as Dirac delta functions as
described below.

(a) (b)

(c) (d)

FIG. 4. The mass of u is minimized at regular positions. (a) Flux
differential measured numerically using (13) for a single spike (or-
ange) is a linear function of the peak position. The mass of the fast
species M (blue) is minimized at mid-domain. See also Fig. S3 [13].
(b) The same quantities as in (a) but for the analytical expressions
from the spike approximation [(21) and M = c − ρ̂ ′

1+]. (d) Mass
minimization for two peaks. Trajectories of two peaks as they move
towards opposite quarter positions (white lines). The contours and
color bar represent the mass M interpolated from trajectories. The
mass is minimized for regular positioning. (d) Same as (c) but trajec-
tories obtained from the approximation of peaks as spikes using (22).
Parameters: L = 2 in (a) and (b), L = 4 in (c) and (d); Dv = 0.0012,
otherwise default. This gives σ = 0.0146 in (b) and σ = 0.0073
in (d).

We look for steady-state solutions consisting of n spikes
at positions x1, . . . , xn. We assume that u changes slowly
within each spike and so can be approximated by a constant
ui and within each spike ui � v. First, we introduce the inner
coordinate yi = (x − xi )/ε within each spike. We then have
the following system for the inner variable vi(y):

Dv

ε2

d2vi

dy2
i

+ βuiv
2
i − (γ + δ)vi = 0,

vi → 0 as yi → ±∞,

which gives

vi = 3

2

γ + δ

βui
sech2

(√
γ + δ

Dv

εyi

2

)
.

In the outer region, each spike is approximated by a weighted
Dirac delta function and we therefore replace the v and uv2

terms by Dirac delta functions with weights w1 and w2 given
by

wi,1 = ε

∫ ∞

−∞
vi(yi )dyi = 6

√
Dv (γ + δ)

βui
,

wi,2 = εui

∫ ∞

−∞
v2

i (yi )dyi = 6

√
Dv (γ + δ)3/2

β2ui
,
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respectively. Note that since O(wi,1) = 1 (each spike must
have finite weight), we find that O(ui ) = ε and therefore
O(vi ) = ε−1. Away from the spikes, v is taken to be a constant
vout. Therefore, from (2b) we have

βu(u + vout )
2 − (γ + δ)vout = 0 (14)

in the outer region. Given that u and vout must both scale to
leading order with a positive power of ε [due to the condition
1
L

∫ L/2
−L/2(u + v)dx = c], this equation implies that O(u3) =

O(vout ), i.e., in the spike limit vout � u in the outer region.
We obtain the outer equation for u by replacing the v terms

at the spike by weighted delta functions:

Du
d2u

dx2
−

n∑
i=1

[
β
(
2u2

i wi,1 + wi,2
) − γwi,1

]
δ(x − xi )

− δvout + cδ − δu = 0, (15)

where we used (14) to simplify the outer contribution. We can
neglect the u2

i term since O(ui ) = ε and the vout term since
O(vout ) < O(u) to arrive at

Du
d2u

dx2
+ cδ − δu −

n∑
i=1

ρ

u
Lδ(x − xi ) = 0 (16)

with ρ = 6
√

Dv

L
δ
√

γ+δ

β
. Note the inverse dependence on u in the

point-sink term (which we call an inverted sink). This form is
also obtained for other Turing systems with a uv2 nonlinearity,
such as the Schnakenberg and Brusselator models [35,54], as
we show in Appendix C and the Supplemental Material [13],
respectively.

Following the approach of the previous section, the solu-
tion to (16) is given by

u(x) = c −
∑

i

ρ ′
iG(x; xi ), (17)

where the Green’s function is defined as for point sinks but
in terms of the corresponding dimensionless parameter κ =
L
√

δ
Du

, the ratio of the length of the domain to the diffu-

sive length scale of u (henceforth, κ replaces b in the set
of dimensionless parameters of the system). The coefficients
ρ ′

i = ρ ′
i (x) are now determined by the nonlinear algebraic

system

ρ ′
i = σ

c2

u(xi )
, i = 1, . . . , n (18)

where σ = ρ

c2δ
= 6

√
b+1

a
√

�
is the second dimensionless param-

eter of (16). The inverse dependence on u(xi ) makes solving
this algebraic system challenging. For a general choice of sink
positions xi, there are n coupled quadratic equations in ρ ′

i , and
therefore up to 2n real solutions. However, this multiplicity of
solutions collapses in the spike limit σ → 0, in which the only
physical solution is2

ρ′ = cG−1ê, (19)

2In the limit σ → 0, (18) becomes ρ ′
i [c − ∑

j ρ
′
jG(xi; x j )] = 0.

Since taking any ρ ′
i = 0 gives a solution of the system without the

ith spike, these are unphysical solutions.

where Gi j = G(xi; x j ) and ê is the column vector with all unit
entries. This is precisely the same solution obtained in the per-
fect sink limit λ → ∞ of the point-sink system [Eqs. (4) and
(6)]. Thus, in the singular spike limit, steady-state solutions of
the Turing system are equivalent to that of a system of perfect
sinks, a surprising equivalence given the inverted prefactor in
(16).

We next solve the system for a single arbitrarily positioned
spike. We find two solutions corresponding to different spike
amplitudes

ρ ′
1,±
c

= 1 ± √
1 − 4σG(x1; x1)

2G(x1; x1)

and corresponding masses M1,± = c − ρ ′
±. Since we only ever

observe spikes with large amplitudes, i.e., patterns in which
almost all the mass of the system is contained within spikes,
we assume that the low amplitude solution is unphysical for
finite σ and not only in the spike limit σ → 0 (or unstable in
the context of the time-dependent system, see below). Defin-
ing the flux differential across a spike analogously to (8),

�Ji(x) = −Du

2

∑
j

ρ ′
j[Gx(x+

i ; x j ) + Gx(x−
i ; x j )], (20)

we find a linear dependence on the spike position in the regime
κ � 1,

�J1

cδL
= −1

2

ρ ′
+
c

sinh(2κ x1
L )

sinh(κ )

≈ − (1 + √
1 − 4σ )

2

x1

L
+ O(κ2), (21)

consistent with our numerical observations [Figs. 4(a) and
4(b)] and just as we found for the noninverted sinks in the
previous section [Fig. 3(c)]. Furthermore, in the spike limit
σ → 0, �J1 = cδx1 is linear in δ, consistent with our nu-
merical observations (for which σ = 0.0463) [Fig. 2(b)]. We
also find that M1+, the total mass of u, is minimized at
mid-domain [Fig. 4(b)]. However, while the mass and flux dif-
ferential displayed very similar qualitative profiles [Fig. 4(b)],
the agreement was not quantitative. In particular, the flux
differentials disagree by an order of magnitude. This is likely
because the analytic flux differential is defined at the interface
region between the inner and outer solutions, which is where
the approximation is least accurate. We will see in the next
section that our main result is unaffected by this disparity.

The observation that peaks in a Turing pattern move with
a velocity proportional to the flux differential across them
[Figs. 2(a), 2(b), 4(a), and S3] suggests that the spike approx-
imation can be extended to account for spike movement by
specifying the spike velocities as

dxi

dt
= ν�Ji(x), (22)

where ν is some unknown parameter. A similar expression
has been obtained for the Brusselator model using particular
singular limit in which the feed term is taken to zero with a
scaling of ε1/2 [55]. By the correspondence with point sinks,
this expression becomes equivalent in the spike σ → 0 and
long diffusive length scale and low-mass-flow regime κ → 0
(or equivalently δ → 0) to a description in which the mass
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M acts as potential and the sinks as overdamped particles
as in (12). Together with (18), (22) defines a differential-
algebraic system for the dynamics of n spikes. However, not
all spike configurations are stable. Based on our numerical
observations, stable solutions consist only of regularly posi-
tioned spikes of the same height (ρ ′

i = ρ ′), also referred to as
symmetric spike solutions, just as for the Turing system itself.
Consistent with this, the flux differentials of these solutions
vanish, �Ji(x̄) = 0, via the properties of the Green’s function,
just as for the point sinks of the previous section (and Ap-
pendix A).

As an example, we consider the case of two spikes. For
our parameter set the system then has up to four real solutions
for each configuration (x1, x2). In Fig. 4(d), we show sample
trajectories [of the real solution branch with the smallest mass
M; the other real solutions lead to very weak sinks and almost
uniform u(x)]. The similarity to the numerical observation
[Fig. 4(c)] and the system of point sinks in the previous section
[Fig. 3(d)] is apparent. In both cases, the steady-state solution
consists of quarter position peaks and spikes and minimizes
the mass of u.

Let us summarize our results. We have shown that the
movement and positioning of peaks in a Turing pattern is akin
to that of a system of moving point sinks. First, the regular,
periodic steady-state positions are a result of the flow (cre-
ation, diffusion, decay) of mass through the system, and not
by some dominant linear mode. The steady-state configuration
is the one for which all the flux differentials balance and this
is also the configuration that minimizes the total mass of the
fast species. We found empirically that the movement of peaks
(in the slow species) is well described by the peak velocity
being proportional to the flux differential of the fast species
across it. Furthermore, in the spike limit, this is equivalent to
the total mass of the fast species acting as a potential through
which the peaks move as overdamped particles. While this
does not imply that the mass or some other function acts as a
potential away from this limit (i.e., that �J is a conservative
vector field in general), and indeed the trajectories specified
by such a relationship are less consistent with the numerical
results, the mass is nonetheless minimal at the steady-state
configurations [Figs. 4(a) and 4(c)]. In the next section, we
will see that we can use the steady-state mass to compare the
“energy” of patterns with different numbers of peaks and in
this way predict the preferred number of peaks at steady state,
and not just their positions.

V. COMPETITION AND PATTERN SELECTION

We have seen that in the mass-conserved limit δ → 0, the
model exhibits a complete coarsening effect in which the only
stable patterns consist of a singe peak positioned somewhere
in the interior of the domain [Fig. 2(d)] or, on a short domain,
an interface. We have also seen that for small δ the model
exhibits incomplete coarsening. With our default parameters
(with L = 4), linear stability predicts that mode n = 8 (four
peaks) will dominate [Fig. 1(a)]. While this is true initially,
the pattern subsequently coarsens so that we most frequently
obtain two peaks (dominated by mode n = 4) [Figs. 1(b),
1(c), and S1D]. This coarsening effect is also referred to as
a competition instability and has previously been studied in

the context of spike solutions [35–37]. To our knowledge,
there is currently no way to determine which pattern is finally
obtained. Note that this is a narrower question than asking
which patterns are stable since Turing systems are in general
multistable.

This motivated us to explore the connection between coars-
ening and the flow rate δ in more detail. We measured the
distribution of steady-state patterns obtained for different
values of δ (through the dimensionless parameter κ) and com-
pared against the prediction of linear instability [Figs. 5(a)
and 5(b)]. We used periodic boundary conditions to avoid
peaks on the boundary that are not described by the spike
approximation. We found that for κ � 1 linearly stability
analysis correctly predicts the dominant mode at steady state.
However, for κ � 1, a coarsening process occurs and the
steady-state pattern is dominated by a lower mode than that
predicted. Given our previous observations on the role of the
diffusive length scale, we explain these results as follows.
When the diffusive length scale is longer than the domain
size, all peaks compete for u molecules created across the
domain. Whereas, when the length scale is short, peaks only
absorb molecules of u created within a distance given by the
diffusive length scale and therefore compete less or not at
all. Competition is also due to the fact that decreasing δ also
decreases the total flux through the system (cδL).

We next applied the spike approximation developed in the
previous section. We decreased Dv from the default value so
that the obtained pattern was reasonably spike-like [Fig. 5(c)]
while at the same time not resulting in a very much enlarged
Turing space (since we want to sweep over different values
of δ). We considered only symmetric, regularly positioned
spike solutions, which are the only observed steady-state so-
lutions. For n spikes, we obtain two possible values of ρ ′,
of which we take the larger ρ ′

+ (the other corresponds to
extremely weak spikes, i.e., ρ ′

− ≈ 0). This gives a solution
u(x) = c − ρ ′

+
∑

i G(x; x̄i ) with mass

M/c = 1 − n
1 + √

1 − 2κσ coth( κ
2n )

κ coth( κ
2n )

. (23)

Note that for a real solution we must have 1 > 2κσ coth( κ
2n ).

Therefore, for a given choice of parameters, there is an upper
bound on the number of spikes that a solution can contain. In
general, a solution exists for multiple values of n. However,
numerically, we observe a very narrow distribution of the
number of peaks [Figs. S1 [13] and 5(e)]. We hypothesized
that mass minimization might play a role. Indeed, when we
examined the mass M of solutions consisting of different
numbers of spikes at their respective steady-state positions,
we found that the mass is minimal for a specific number of
spikes [Fig. 5(d)]. This could also be seen by plotting the
mass as a function of κ for different values of n (Fig. S4
[13]). The value of n at the minimum decreases with κ , with
a single spike being minimal at κ → 0. The curves invert so
that as κ is increased multiple spikes produce the lowest mass.
Given that we have already shown that the mass of u(x) is
minimal at the steady state, we hypothesized that it could also
be used to compare solutions with different numbers of peaks
and therefore identify a preferred “minimum energy” state.
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(a) (b)

(c)

(e)

(d)

FIG. 5. Mass minimization predicts peak number in reaction
diffusion systems. (a) The number of peaks in the most frequent
steady-state pattern is plotted as a function of a and κ . For each
set of parameters, the most frequent pattern was obtained from five
simulations each initialized with a different random perturbation
from the uniform state. The simulations were run for long enough
to ensure the steady-state pattern was reached. (b) The number of
peaks in the mode with the greatest growth rate as predicted by linear
stability analysis is plotted as a function of a and κ . Plots (a) and
(b) are similar for κ � 1. They disagree for κ � 1, which indicates
coarsening. (c) Example of a steady-state pattern in the spiky limit.
(d) Normalized total mass M/c = 1 − nρ ′

+/c plotted as a function of
n for different values of κ . There exists a critical n for which the mass
is minimal. (e) The numerically obtained distribution of peak number
at steady state for different values of κ (color scale) overlaid with
the prediction of the dominant pattern from linear stability (green
triangles) and the prediction from mass minimization (red circles).
Mass minimization correctly predicts the number of peaks at steady
state. Data from 50 simulations for each parameter set. Parameters:
Default values as in Fig. 1 with L = 4 except (c)–(e) which use
Dv = 0.006 (to make peaks narrower). See also Figs S4 and S5 [13].

We compared the number of spikes predicted by this mass
minimization principle against the distribution of patterns ob-
tained numerically (starting from a small random perturbation
around the uniform state). We found remarkable agreement
[Fig. 5(e), red circles]. Mass minimization correctly predicts
the most frequent pattern obtained over the entire range of κ ,
including, most importantly, the regime in which coarsening

occurs. There is significant deviation only at the transition
points and close to exiting the Turing regime at high κ . In
comparison, the linear prediction only agrees for the highest
values of κ , i.e., close to onset [Fig. 5(e), green triangles].
Remarkably, the prediction was also reasonably accurate even
when the solution is not very spikelike, as for our default
parameter set (Fig. S5 [13]) and towards the boundary of
the Turing space (Fig. 2). Thus, mass minimization not only
explains where the peaks of a Turing pattern are positioned,
but also how many peaks there will be at steady state, after any
coarsening has taken place. Importantly, it does so far from
onset and hence outside the region where weakly nonlinear
approaches such as the amplitude equations are valid.

To investigate the general applicability of these results, we
performed a similar analysis of the Brusselator model (Ap-
pendix C). This model also has the form of a mass-conserved
model with additional production and decay terms and a di-
mensionless parameter b characterizing the mass flow through
the system (with b = 0 being the mass-conserved limit). How-
ever, unlike the model in (2), the Brusselator does not have
a length-scale parameter κ , rather the diffusive length scale
is infinite, as determined from the form of its outer equation
in the spike limit (Appendix C). Consistent with this, we
observed that the Brusselator exhibits coarsening across the
entire range of b [Figs. 6(a) and 6(b)]. Following the same
approach as above, we derived an expression for the total mass
M of the fast species of symmetric n-spike solutions

M = 6n(b + 1)3/2

a
√

�
+ �b

12d (b + 1)n2
. (24)

This mass is again minimized for a particular number n = nc

of spikes and we found this minimum to be an excellent pre-
dictor of the final pattern obtained after coarsening [Fig. 6(c)].

Finally, we examined a third system, the Schnakenberg
model. Unlike the previous two, this model does not have a
mass-conserved Turing system as a limit. Likely as a result
of this, we find no evidence of a dynamic coarsening insta-
bility. Nevertheless, the final steady-state pattern is often not
precisely that predicted by linear stability. Applying the spike
approximation, we found that the outer equation of this model,
and hence the expression for the mass of the fast species, has
the same form as for the Brusselator (see Supplemental Mate-
rial [13]). On comparing of the number of peaks predicted by
minimizing the mass and by linear stability analysis, we found
that while the two approaches were in broad agreement, mass
minimization was the better predictor of the obtained pattern.

While we can not exclude the possibility that mass
minimization is only predictive for patterns consisting of well-
separated peaks as studied here, the consistency of the results
over three different systems nonetheless hints at a fundamen-
tal property of Turing systems and warrants further study.

VI. DISCUSSION

One of the main challenges for the physics of pattern for-
mation is the prediction of which pattern will be obtained, not
only at onset, i.e., at entry into the parameter space giving pat-
terns, but generically for any parameter values. While linear
stability analysis can give a prediction for the dominant mode,
nonlinear effects mean that it can be inaccurate. Furthermore,
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(a) (b)

(c)

FIG. 6. Mass minimization correctly predicts the selected pattern
after coarsening in the Brusselator. (a) The number of peaks in the
most frequent steady-state pattern of the Brusselator model is plotted
as a function of model parameters a and

√
b (see Appendix C). For

each set of parameters, the most frequent pattern was obtained from
10 simulations each initialized with a different random perturbation
from the uniform state. The simulations were run for long enough
to ensure the steady-state pattern was reached. (b). The number
of peaks in the mode with the greatest growth rate as predicted
by linear stability analysis is plotted as a function of a and

√
b.

Coarsening observed over much of the range of
√

b and the disparity
with the linear stability prediction increase as b → 0. Parameters:
d = 100 with Du = 1, Dv = 0.01, and � = 15 000. (c) As Fig. 5(e),
but for the Brusselator model. The numerically obtained distribution
of the number of peaks at steady state for different values of

√
b

(color scale) is overlaid with the prediction of the dominant pattern
from linear stability (green triangles) and the prediction from min-
imization of the mass of the fast species (24) (red circles). Mass
minimization again correctly predicts the number of peaks at steady
state. Data from 500 simulations for each parameter set. Black lines
in (a) and (b) show the range of

√
b values used within the (a,

√
b)

Turing space. Parameters: d = 100, a = 3.75, � = 15 000.

as we have argued, linear analysis cannot explain the periodic
nature of final patterns nor (with reflective boundary con-
ditions) the positioning of peaks within the domain, which
occurs dynamically in several settings that are outside of the
linear regime (e.g., domain growth, coarsening, initialized
peaks). Weakly nonlinear approaches, such as the method of
amplitude equations, do exist but they are much less useful far
from onset and while a recent phase-space approach has been
introduced to study steady-state patterns in two-component
mass-conserved systems [34,56,57], we still lack a general
theory of pattern dynamics and selection far from onset.

Here, we have presented evidence that the flow of mass
through the system is responsible for movement and regular
positioning of peaks in a Turing pattern. We also showed that
the number and positions of peaks at steady state are such
that the mass of the fast species is minimized. This simple
principle correctly predicted the preferred steady-state pattern
for both our model and the Brusselator, even far from onset
and in the presence of coarsening. Our expectation is that this
will guide the development of new nonlinear approaches for
the study of pattern selection, far from onset.

The insight came from analyzing the behavior of a diffusive
system consisting of point sinks that move with a velocity
proportional to the gradient. We showed that the flow of
mass through such a system leads to sinks being positioned
symmetrically and evenly across the domain (regularly po-
sitioned), as this is the unique configuration for which the
gradient across each sink vanishes. We also showed that this
configuration uniquely minimizes the total mass in the system.
Consistent with this, we showed that in the low-mass-flow
regime, the total mass acts as a potential and the sinks as
overdamped particles.

We found that in the Turing system, peaks (of the slowly
diffusing species v) also move toward the regularly positioned
configuration with the same dynamics as point sinks and at a
rate directly proportional to the rate of mass flow through the
system. In doing so, the system minimizes the total mass of
the fast species u. In the singular limit Dv → 0, in which the
peaks of the Turing pattern become narrow pointlike spikes
[42], an analytical approximation showed that u is indeed
described by diffusion in the presence of point sinks but where
the Dirac delta function terms have a 1/u prefactor. Neverthe-
less, in the singular limit, solutions are that of a system of
perfect sinks. However, for Dv > 0 the “inverted” sink term
leads to the total mass of u having a nontrivial dependence on
the number of spikes and the rate of mass flow through the
system. As a result, there are a critical number of spikes (and
hence wavelength) that minimize the mass of u. We therefore
hypothesized that the mass of u, the fast species, could act,
at least approximately, as a multiwell potential, i.e., that it
could be used to assign an energy to patterns with different
numbers of peaks and thereby identify the preferred steady
state. In particular, we asked whether it could predict the
steady-state pattern selected after the coarsening that occurs in
our model. We found that this “mass minimization” principle
could indeed predict, almost perfectly, the obtained patterns
[Fig. 5(e)] and we confirmed this for another Turing system,
the Brusselator (Fig. 6). It also gave a better prediction of
the dominant pattern for the Schnakenberg model, which does
not exhibit coarsening (see Supplemental Material [13]). Note
that we are referring to which pattern is selected and not which
patterns are stable. While the latter has already been studied
for spike and mesa solutions (see [42] for a review), to our
knowledge much less is unknown about the former.

The two models with coarsening have a parameter δ con-
trolling the flow of mass through the system and the degree
of coarsening. In the mass-conserved limit δ = 0, they dis-
play complete coarsening down to single peak, a seemingly
generic property of two-component mass-conserved reaction
diffusion systems that has been proved explicitly for sev-
eral systems [30–33,38,58,59]. This complete coarsening is
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correctly predicted by mass minimization; in both models for
δ = 0, the mass of the fast species is minimal for a single peak.

We speculate that complete coarsening is due to the ab-
sence of mass flow through the system rather than mass
conservation per se. Consistent with this, the feed and decay
terms in our model and in the Brusselator can be replaced with
linear couplings to a sufficiently well-mixed third species, i.e.,
we can embed the open system inside a larger closed sys-
tem. The result is a three-component mass-conserved model
with the same pattern-forming behavior, including partial (not
complete) coarsening. Indeed, we previously investigated a
model with precisely this form [12]. While the entire three-
component system exhibits mass conservation, there is still
mass flow through the “subsystem” of the original two vari-
ables, the rate of which controls the degree of coarsening.

Are our results applicable to other systems? The outer
equation for u obtained in the singular limit Dv � Du [(16)]
has the same form in other systems of the substrate-depletion
type such as the Brusselator [35] (Appendix C), Schnakenberg
(supplemental text) [54], and Gray-Scott [36,60] models and
indeed all these models exhibit the same peak movement
towards the regularly positioned configuration (see Supple-
mental Material [13]). Substrate-inhibition models that have
peaks of the two species overlapping, such as that of Gierer
and Meinhardt [61], also exhibit peak movement towards reg-
ular positions. However, the outer equation of these models
have a point source term rather than a point sink [62]. The
effect of this on mass minimization remains to be tested.

Might any of our results apply outside the regime of well-
separated peaks? That is currently unclear and testing it would
require an analytical description of other solution types. We
leave this for future work. However, the following observation
suggests to us that mass minimization of the fast species may
have some broader relevance. If the final pattern is selected
according to minimizing the mass of the fast species, then that
mass must be minimizable. We can therefore ask what would
happen in a model in which the mass of the fast species is a
fixed constant at steady state? Consider the following class of
systems:

∂t u = Du∂
2
x u − f (u, v) + a − u,

∂tv = Dv∂
2
x v + f (u, v) + b

with Dv < Du and reflective or periodic boundary conditions.
Note that at steady state the mass of u is fixed. It is straightfor-
ward to show (see Supplemental Material [13]) that a system
of this form cannot admit a Turing instability for any f . This
result holds even if we replace u in the last term by any func-
tion g(u) with g′(u) > 0 at the homogeneous fixed point, and
a corresponding measure

∫
g(u)dx for the mass of u. There is

no such restriction if the decay term is placed in the equation
for v (like for the Brusselator and Schnakenberg models) or
in both equations [as in (2) and the Gray-Scott model]. Thus,
for this general class of models, a Turing instability requires
that the mass of the fast species must not be generically a
fixed constant at steady state. Equivalently stated, systems in
which mass leaves the system through only the fast species
cannot exhibit a Turing instability. While this is a requirement
for the applicability of a mass-minimization principle, the
connection, if any, between pattern selection and stability of

the base state is unclear. It may be that for some class of
models, spatial instability of the base state is equivalent to the
existence of a stable spatial solution for which the mass of the
fast species is lower. Further study is required to investigate
these questions.

A. Numerical methods

The simulations were performed on a spatial lattice x ∈
[− L

2 , L
2 ] and time domain t ∈ [0, T ], where L is the length of

the spatial domain and T the total time. The MATLAB solver
pdepe was used to solve the time-dependent equation (2).
The simulations were performed with the following default
parameters (unless explicitly stated otherwise):

Du = 0.3, Dv = 0.012, L = 2, c = 300,

β = 1.5 × 10−4, γ = 3.6, δ = 0.014.
(25)

The equivalent dimensionless parameters are

d = 25, a = 3.75, b = 0.0039, � = 1200. (26)

The simulations were run long enough so as to obtain the true
steady state. The relative and absolute tolerances in the dif-
ference between two values of iteration were set to 10−6 and
10−12, respectively. We used reflective boundary conditions

∂u

∂x

∣∣∣
x=−L/2,L/2

= ∂v

∂x

∣∣∣
x=−L/2,L/2

= 0, (27)

except for Figs. 5 and 6 and Figs. S5 and S7 [13], where we
use periodic boundary conditions

u|x=−L/2 = u|x=L/2, u′|x=−L/2 = u′|x=L/2,

v|x=−L/2 = v|x=L/2, v′|x=−L/2 = v′|x=L/2.

As the pdepe does not support such boundary conditions, we
used the package Periodic Reaction Diffusion PDE solver [63].
The initial conditions were taken to be a random perturbation
around the homogeneous steady state (drawn from a normal
distribution with standard deviation of 1%).

The differential algebraic systems (11), (12), and (22) were
solved using the ode15s solver.

B. Numerical comparisons for Fig. 4

To compare the movement of peaks in the simulations
with the analytical calculations (spike approximation), we
initialize the peaks at different positions (by translation of
the steady-state pattern) and monitor the evolution of the
system. In Fig. 4(a) (single peak), we calculate the mass of
the fast species M(t ) = ∫ L/2

−L/2 u(x, t )dx, and the flux on the
peak �Js [(13)], at each time step as the peak approaches
mid-domain. In Fig. 4(c) (two peaks), we generated the con-
tours of M by simulating the Turing system with 200 different
initial peak positions (x1, x2) (some of which are overlayed in
white) and interpolating over the trajectories. Note that it is
not clear how to define the flux differential across each peak
in the case of more than one peak. Similarly, in Fig. 4(d),
we solved the nonlinear algebraic system in (18) for differ-
ent sink positions (x1, x2). We obtain at most four different
solutions of which we take the one with the lowest total
mass M. Several analytical trajectories were obtained by solv-
ing the differential-algebraic system in MATLAB consisting of
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Eqs. (18) and (22), initialized with the solution having the
lowest mass.

APPENDIX A: POINT SINKS, FLUX BALANCE, AND
MASS MINIMIZATION

In this Appendix, we prove an important result described
in the main text. The solution to (3) is given by

A(x) = c −
∑

i

μ′
iG(x; xi ), (A1)

where the Green’s function is defined in (5) and the μ′
i =

μ′
i(x) are determined by the algebraic equations

μ′
i = λ

(
c −

∑
j

μ′
jG(xi; x j )

)
. (A2)

1. Properties of the Green’s function

The explicit form of the Green’s function is

G(x; xi ) = κ

2

cosh (κ x+xi
L ) + cosh (κ |x−xi|−L

L )

sinh (κ )
. (A3)

The derivative of G(x; xi ) with respect to x is discontinuous at
x = xi:

Gx(x; xi ) =
⎧⎨
⎩

κ2

2L
sinh(κ x+xi

L )−sinh(κ xi−x−L
L )

sinh(κ ) , − L
2 � x < xi

κ2

2L
sinh(κ x+xi

L )+sinh(κ x−xi−L
L )

sinh(κ ) , xi < x � L
2 .

Note the following property:

Gx(x+
i ; x j ) − Gx(x−

i ; x j ) = −κ2

L
δi j . (A4)

Using this, the flux differential �Ji defined in the main text
can be written as

�Ji = −D

2

∑
j

μ′
j[Gx(x+

i ; x j ) + Gx(x−
i ; x j )]

= −D
∑

j

μ′
j

[
Gx(x+

i ; x j ) + κ2

2L
δi j

]
. (A5)

We next give some properties of the Green’s function when
the sinks are regularly positioned, i.e., when they are evenly
spaced across the domain with positions

x̄i = L

n
i − L

2

(
1

n
+ 1

)
, (A6)

where x̄i is the position of ith sink and n is the total number of
sinks.

a. Property I

Evaluating the Green’s function at the sink positions for
regularly positioned sinks defines a symmetric matrix Gi j :=
G(x̄i; x̄ j ). Consider the sum of the jth column,

∑
j

Gi j = κ

2 sinh(κ )

[
n∑

j=1

cosh
(
κ

x̄i + x̄ j

L

)
+

i∑
j=1

cosh
(
κ

x̄i − x̄ j − L

L

)
+

n∑
j=i+1

cosh
(
κ

x̄ j − x̄i − L

L

)]

= κ

2 sinh(κ )

[
n∑

j=1

cosh[a(i + j − 1 − n)] +
i∑

j=1

cosh[a(i − j − n)] +
n∑

j=i+1

cosh[a( j − i − n)]

]

= κ

2
coth

( κ

2n

)
∀ i, (A7)

where a = κ
n and the last step follows from the identity

n∑
j=1

cosh[a( j + m)] = csch
(a

2

)
sinh

(an

2

)
cosh

(a

2
(2m + n + 1)

)
.

We can similarly define a matrix G+
x by evaluating the derivative of the Green’s function at regular positioning (G+

x )i j =
Gx(x̄+

i ; x̄ j ). Summing over the jth column we find

∑
j

(G+
x )i j = − κ2

2L
(A8)

in this case by using the identity
n∑

j=1

sinh[a( j + m)] = csch
(a

2

)
sinh

(an

2

)
sinh

(a

2
(2m + n + 1)

)
.

b. Property II

Since the summation of G over any of its rows or columns
is the same, the vector of 1s, ê, is an eigenvector of G.
Evaluating the defining equations for the μ′, (A2), at regular

positioning x = x̄, we obtain the matrix equation

(λG + 1)μ′(x̄) = λcê. (A9)
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Since ê is an eigenvector of λG + 1, we must have that

μ′(x̄) = C1ê,

i.e., all the μ′
i are identical at regular positioning or, in other

words, the profile of A is symmetric. We can sum over any
row and use (A7) to find

μ′
i(x̄) = λc

1 + λκ
2 coth ( κ

2n )
. (A10)

2. Regular positioning and flux balance

The flux differential across each sink is given by

�Ji = −D
∑

j

μ′
j

[
Gx(x+

i ; x j ) + κ2

2L
δi j

]
. (A11)

We evaluate this expression for regularly positioned sinks
x = x̄. First we know from (A10) that all μ′

j are identical
for regularly positioned sinks. Then, from (A8), it follows
that immediately that the flux differentials vanish at regular

positioning

�Ji(x̄) = 0 ∀ i. (A12)

We can show that this is the unique κ-independent config-
uration for which the flux differentials vanish by performing
a power series expansion of �Ji in κ . Since for any κ-
independent zero of �Ji(x) all terms in the κ expansion must
vanish independently, it suffices to show uniqueness for the κ0

term. We first expand μ′
i and G′(xi; x j ):

μ′
i = μ0i + μ2iκ

2 + · · · ,

G(xi; x j ) = G0(xi; x j ) + G2(xi; x j )κ
2 + · · · .

For the lowest order terms, we find first that G0(xi; x j ) = 1.
Inserting this into the defining equation for the μ′

i [(A2)], we
have

μ′
0i =

(
c −

∑
j

μ′
0 j

)
λ ∀ i,

which has solution

μ′
0i = μ′

0 = λc

1 + nλ
. (A13)

We then have

�Ji

δL
= − D

δL

∑
j

μ′
j

[
Gx(x+

i ; x j ) + κ2

2L
δi j

]

= −1

2

[
n∑

j=1

μ′
j

sinh(κ xi+x j

L )

sinh(κ )
+

i∑
j=1

μ′
j

sinh(κ xi−x j−L
L )

sinh(κ )
−

n∑
j=i+1

μ′
j

sinh(κ x j−xi−L
L )

sinh(κ )
+ μ′

i

]

= −μ′
0

2L

[
n∑

j=1

(xi + x j ) +
i−1∑
j=1

(xi − x j − L) −
n∑

j=i+1

(x j − xi − L)

]
+ O(κ2)

= −nμ′
0

L

[
xi − L

n
i + L

2

(
1

n
+ 1

)]
+ O(κ2). (A14)

Hence, all the flux differentials �Ji vanish for regularly
positioned sinks xi = x̄i = L

n i − L
2 ( 1

n + 1) and this is the only
configuration to do so for all κ . We assume, based on our nu-
merical observations, that there are no additional κ-dependent
states. Therefore, if we add time dependence to the system by
specifying the sink velocities as being proportional to the their
flux differential

dxi

dt
= ν�Ji(x), (A15)

then regularly positioned sinks is the unique fixed point of
the resultant dynamical system [specified by the differential-
algebraic system defined by Eqs. (A2), (A5), and (A15).

3. Regular positioning and mass minimization

The total mass (or rather concentration) of A is readily
given by integrating Eq. (A1):

M(x) = 1

L

∫ L
2

− L
2

A(x)dx = c −
n∑

i=1

μ′
i. (A16)

We would like to show that the regularly positioned configura-
tion is the unique κ-independent stationary point of M. First,
we will show that

∂

∂xm
M

∣∣∣∣
x=x̄

= − ∂

∂xm

∑
i

μ′
i

∣∣∣∣∣
x=x̄

= 0.

Using (A2) (μ′
i = λ[c − ∑

j μ
′
jG(xi; x j )]), we can evaluate

the derivative of
∑

i μ
′
i with respect to an arbitrary sink po-

sition xm:

∂

∂xm

∑
i

μ′
i = −λ

∑
i, j

μ′
jGxm (xi; x j ) − λ

∑
i, j

G(xi; x j )
∂

∂xm
μ′

j .

Evaluating this expression at regular positioning, and defining
C := ∑

j G(x̄i; x̄ j ) = κ
2 coth( κ

2n ) from (A7), we obtain

(
1

λ
+ C

)
∂

∂xm

∑
i

μ′
i

∣∣∣∣∣
x=x̄

= −
∑
i, j

μ′
jGxm (xi; x j )

∣∣∣∣∣
x=x̄

.
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We have already seen in (A10) that all the μ′
j are iden-

tical at regular positioning. Hence, we need only evaluate

∑
i, j Gxm (xi; x j )|x=x̄

. Inserting the definition of G(xi; x j ) from
(A3) we have

∑
i, j

Gxm (xi; x j )

∣∣∣∣∣
x=x̄

= κ

2 sinh(κ )

∑
i, j

∂

∂xm

[
cosh

(
κ

xi + x j

L

)
+ cosh

(
κ

|xi − x j | − L

L

)]∣∣∣∣∣
x=x̄

= κ2

2L sinh(κ )

∑
i, j

{
δmi

[
sinh

(
κ

xi + x j

L

)
+ sgn(xi − x j ) sinh

(
κ

|xi − x j | − L

L

)]

+ δm j

[
sinh

(
κ

xi + x j

L

)
− sgn(xi − x j ) sinh

(
κ

|xi − x j | − L

L

)]}∣∣∣∣
x=x̄

= κ2

L sinh(κ )

∑
i

[
sinh

(
κ

xm + xi

L

)
+ sgn(xm − xi ) sinh

(
κ

|xm − xi| − L

L

)]∣∣∣∣∣
x=x̄

= κ2

L sinh(κ )

[
n∑

i=1

sinh[a(m + i − n − 1)] +
m−1∑
i=1

sinh[a(m − i − n)] −
n∑

i=m+1

sinh[a(i − m − n)]

]

= κ2

L sinh(κ )
[− sinh(κ ) − sinh(−κ )] = 0,

where the last line follows from noting that the summations are the same as in (A8) but without the i = m term. We have therefore
shown that regular positioning is a stationary configuration of the total mass

∂

∂xm
M

∣∣∣∣
x=x̄

= 0.

To show that regular positioning is the unique κ-independent stationary point, we proceed as in the previous section and perform
a power series expansion of M:

M = M0 + M2κ
2 + · · · . (A17)

It then suffices to show uniqueness for the first nontrivial order in the expansion. For the Green’s function we have

G0(xi; x j ) = 1, G2(xi; x j ) = x2
i +x2

j −L|xi−x j |
2L2 + 1

12 .

We already saw that μ′
0i = μ′

0 = λc
1+nλ

and hence M0 is a constant. Inserting these into the equation for μ′
2i using (A2),

μ′
2i = −λ

∑
j

[μ′
2 j + μ′

0 jG2(xi; x j )], (A18)

we obtain

M2 = −
∑

i

μ′
2i = λ

1 + nλ
μ′

0

∑
i

∑
j

(
x2

i + x2
j − L|xi − x j |

2L2
+ 1

12

)
. (A19)

The derivative of M2 is then proportional to

∂

∂xm

∑
i

∑
j

[
x2

i + x2
j − L|xi − x j |

]

= ∂

∂xm

[
2n

∑
i

x2
i −

∑
i

∑
j�i

(xi − x j )L −
∑

i

∑
j>i

(x j − xi )L

]

= ∂

∂xm

[
2n

∑
i

x2
i − L

(∑
i

ixi −
∑

i

(n − i)xi −
∑

i

∑
j�i

x j +
∑

i

∑
j>i

x j

)]

= [4nxm − L(m − (n − m) − (n − m + 1) + m − 1)] = 4n
[
xm − L

n
m + L

2
+ L

2n

]
, (A20)
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which vanishes only for the regularly positioned configuration

xm = L

n
m − L

2

(
1

n
+ 1

)
.

Hence, we have shown that regularly positioned sinks are the
unique κ-independent configuration for which the total mass
M is stationary. Based on our numerical results, we assume
that this configuration is generically a minimum.

APPENDIX B: THE MASS ACTS AS A POTENTIAL AS
δ → 0

1. Dynamics of a single point sink

We consider the regime in which the timescale of gradient
formation is much faster than that of sink movement. The
profile A(x) can therefore be approximated by (A1). The flux
differential across a single sink is given by (A11):

�J1 = −Dμ′
1

[
Gx(x+

1 ; x1) + κ2

2L

]

= −Dc
λ

λG(x1; x1) + 1

[
κ2 sinh(2κx1/L)

2L sinh(κ )

]
, (B1)

where

μ′
1 = λc

λG(x1; x1) + 1
,

G(x1; x1) = κ

2

[
cosh( 2κx1

L )

sinh(κ )
+ coth(κ )

]
.

Now consider the derivative of the total mass (A16):

∂M

∂x1
= d

dx1
(c − μ′

1) = − d

dx1
μ′

1

= −c

(
λ

λG(x1; x1) + 1

)2
κ2 sinh (2κx1/L)

L sinh(κ )
. (B2)

In the regime κ � 1 we can easily see that G(x1; x1) = 1. If
sinks are also much stronger than the background decay rate,
i.e., λ � 1, then we obtain the following relation:

�J = −D

2

∂M

∂x1
.

In terms of the original dimensionful parameters, this regime
is equivalent to the low-mass-flow (turnover) regime achieved
as δ → 0. Hence, in the low-mass-flow regime the velocity of
a single point sink can be written equivalently in terms of the
derivative of total mass M as

dx1

dt
= ν�J1

= −ν
D

2

∂M

∂x1
. (B3)

In the next subsection, we generalize this relation to n arbi-
trary sinks.

2. Dynamics of n sinks

We consider again the limit κ � 1. Then, the flux differen-
tial up to lowest order in κ is given by (A14):

�Ji

cδL
= − n

L

λ

1 + nλ

[
xi − L

n
i + L

2

(
1

n
+ 1

)]
+ O(k2), (B4)

where we have used the expression for the lowest order term
of μ′ from (A13):

μ′
0 = λc

1 + nλ
.

The derivative of M up to second order in κ from (A20),

D

cδL

∂M

∂xi
=

(
λ

1 + nλ

)2
∂

∂xi

∑
i, j

G2(xi; x j ) + O(k4)

= 2n

L

(
λ

1 + nλ

)2[
xi − L

n
i + L

2

(
1

n
+ 1

)]
+O(k4),

(B5)

where we have used the second order expansion of G(xi; x j )
in κ [(A20)]. Taken together, the above equations imply that
in the low-mass-flow limit δ → 0 (κ → 0, λ → ∞)

�Ji = −1

2
nD

∂M

∂xi
. (B6)

Therefore, in that limit the dynamics of the point sinks are
equivalently specified by

dx1

dt
= −ν

n

2
D

∂M

∂xi
. (B7)

Hence, the dynamics of the system becomes akin to damped
particles moving in a potential specified by the total mass. It
should be noted that away from this limit, while the dynamics
may be different, the two prescriptions share the same station-
ary points. However, for our parameter choices we found very
good agreement between the two systems [Fig. 3(d)].

APPENDIX C: PEAK MOVEMENT AND PATTERN
SELECTION IN THE BRUSSELATOR

We present an analysis of the Brusselator model and show
numerically and analytically that most of the features of the
exploratory model in (2) still hold. The general spatial version
of the Brusselator [51] is described by the following equa-
tions:

∂u

∂t
= Du

∂2u

∂x2
− βuv2 + γ v, (C1a)

∂v

∂t
= Dv

∂2v

∂x2
+ βuv2 − γ v + cδ − δv. (C1b)

We use reflective boundary conditions at x = ± L
2 and as in (2)

write the production term in terms of the degradation rate δ.
While the Brusselator also has the form of a mass-conserving
Turing system with additional linear terms, here it is the mass
of v that is fixed at the steady state,

1

L

∫
v̄ dx = c, (C2)
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rather than the total mass. As before, we can change the
turnover δ without affecting the steady-state concentration of
v. We nondimensionalize the system by

x → x

L
, t → Dvt

L2
, u → u

c
, v → v

c

to obtain

∂u

∂t
= d

∂2u

∂x2
+ �(−auv2 + v), (C3a)

∂v

∂t
= ∂2v

∂x2
+ �(auv2 − v + b(1 − v)), (C3b)

where

� = γ L2

Dv

, d = Du

Dv

, a = βc2

γ
, b = δ

γ
.

There is a single fixed point

u0 = 1

a
, v0 = 1.

The Jacobian is given by

J(u0,v0 ) = �

[−av2
0 −2au0v0 + 1

av2
0 2au0v0 − 1 − b

]
= �

[−a −1
a 1 − b

]
.

The Jacobian (and hence the dispersion relation) becomes
independent of b for b � 1, that is when the flow of mass
through the system is low, close to the mass-conserved limit
b = 0. Hence, we can change b without significantly affecting
the linear behavior of the model. The trace and determinant of
the Jacobian are easily found to be

TrJ = �(1 − a − b),

DetJ = �2ab.

For the homogeneous fixed point to be stable in the absence
of diffusion we must have TrJ < 0 and DetJ > 0. Hence, we
require a + b > 1. The Turing condition is given by

d (1 − b) − a − 2
√

dab > 0.

We numerically solve this system, using reflective boundary
condition, by perturbing the homogeneous state as described
in numerical methods section. Like in the model of the main
text, and every Turing model we are aware of, the peaks of
a pattern are periodic and regularly positioned. Furthermore,
consistent with our results, a single peak moves exponentially
to mid-domain (Fig. S6A [13]). The rate of movement was
found to be proportional to b or, equivalently, δ, the turnover
rate and at the mass-conserved limit b = 0 no peak movement
is observed.

1. Spike limit of the Brusselator model

In this section, we develop the spike limit of the Brusselator
model [35,55]. Let us consider the dimensional form in (C1).
As in the case of our toy model we consider the limit Dv �
Du, where solutions of v consist of narrow large-amplitude
spikes of width ε = O(

√
Dv/γ ). Away from the spikes v is

a spatial constant vout. Since
∫ L/2
−L/2 v dx = c, inside the spikes

we have v � c within a spike and v = vout � c outside. We

search for steady-state solutions consisting of n spikes at po-
sitions x1, x2, . . . , xn and assume that u changes slowly within
each spike and can be approximated by a constant ui. We
introduce an inner coordinate y = ε−1(x − xi ), within each
spike. The equation for the inner variable vi(y) becomes

Dv

ε2

d2vi

dy2
i

+ βuiv
2
i − (γ + δ)vi = 0,

vi → 0 as yi → ±∞ ,

where we have neglected the constant term since vi � c. The
solution to this equation is

vi = 3

2

γ + δ

βui
sech2

(√
γ + δ

Dv

εyi

2

)
.

In the outer region the equation each spike is approximated by
a Dirac delta function

v = vout +
∑

i

wi,1δ(x − xi ), (C4)

where wi,1 is the weight

wi,1 = ε

∫ ∞

−∞
vi(yi )dyi = 6

√
Dv (γ + δ)

βui
.

The ε prefactor is the spike width. To write the outer equation
for u, we also need the weight of the uv2 term

wi,2 = εui

∫ ∞

−∞
v2

i (yi )dyi = 6

√
Dv (γ + δ)3/2

β2ui
.

Since O(wi,1) = 1 (spikes have finite weight), we find
O(uin) = ε and O(vin) = ε−1. Away from the spikes v is a
constant vout. Therefore, from (C1b) we have

βuv2
out − γ vout + cδ − δvout = 0 (C5)

in the outer region. Balancing this equation while requiring u
and vout not to diverge requires that O(u) < O(vout ). There-
fore, we can neglect the cubic term in the above equation to
obtain

vout = cδ

γ + δ
.

We obtain the outer equation for u by replacing v with
weighted delta functions

Du
d2u

dx2
−

n∑
i=1

[βwi,2 − γ + wi,1] δ(x − xi ) + cδ − δvout

− L

2
< x <

L

2
, ux

(
±L

2

)
= 0, (C6)

where we used (C5) to simplify contributions from the outer
region. Inserting the expressions for each term we arrive at

Du
d2u

dx2
− cγ δ

γ + δ
−

n∑
i=1

ρ

ui
Lδ(x − xi ) = 0 ,

−L

2
< x <

L

2
, ux

(
±L

2

)
= 0, (C7)

where ρ = 6
√

Dv

L
δ
√

γ+δ

β
. Note the above expression for vout is

consistent with the condition for the integral of v, Lvout +∑
i wi,1 = cL, and the integral of the outer equation.
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The solution to the outer equation is

u(x) = ū −
n∑

j=1

ρ̂ ′
i Ĝ(x; x j ), (C8)

where ū is a constant and the Green’s function Ĝ(x; x j ) is the
solution to

−L2Ĝxx(x; x j ) + 1 = Lδ(x − x j ), −L

2
< x <

L

2
,

Ĝx

(
±L

2

)
= 0,

1

L

∫ L
2

− L
2

Ĝ(x; x j )dx = 0 (C9)

given by

Ĝ(x; x j ) = 1

2L2
(x2 + x2

j ) − 1

2L
|x − x j | + 1

12
. (C10)

We use hats to distinguish these quantities from those of the
model in the main text. The coefficients ρ̂ ′

i = ρ̂ ′
i (x) and the

constant ū are determined by the nonlinear algebraic system

ρ̂ ′
i = σ̂

c2

u(xi )
, i = 1, . . . , n (C11)

where σ̂ = ρL2

c2Du
is a dimensionless parameter and the consis-

tency condition [obtained by integrating (C7)]∑
i

ρ̂ ′
i = cη, (C12)

where η = δ
γ+δ

γ L2

Du
is a second dimensionless parameter.

We next consider the spike limit σ̂ → 0 (Dv → 0). From
(C11) we have

ρ̂ ′
i

(
ū −

n∑
j=1

ρ̂ ′
i Ĝ(xi; x j )

)
= 0 ∀ i.

As in the model of the main text, if any ρ̂ ′
i = 0, then the result

is a solution to the system with one fewer spike. Hence, the
only physical n-spike solution is

ρ̂′ = ūĜ−1ê, (C13)

where Ĝi j = Ĝ(xi; x j ) and ê is the column vector with all unit
entries. The constant ū is determined from (C12).

2. Comparison to point sinks

Just as for the model of the main text, the solution obtained
above is identical to that of a model of perfect point sinks.
Consider the following system of (imperfect) point sinks:

D
d2A(x)

dx2
+ ĉ −

n∑
i=1

μLδ(x − xi )A(xi ) = 0 (C14)

with reflective boundary conditions at x = ± L
2 . This is similar

to that of (3) but without the background decay (δu term).
Indeed, it can be obtained from that equation by replacing c by
ĉ/δ and taking the limit δ → 0. The solution to this equation
is

A(x) = Ā −
n∑

i=1

μ̂′
iĜ(x; xi ), (C15)

where Ā is a constant and the Green’s function Ĝ(x; xi ) is the
same as that of the Brusselator [(C10)]. The coefficients μ̂′

i =
μ̂′

i(x) are determined by the linear algebraic conditions

μ̂′
i = λ̂A(xi ), i = 1, . . . , n (C16)

where we have introduced the dimensionless parameter λ̂ =
μL2

D . In the perfect sink limit λ̂ → ∞ the condition for the
μ̂′

i’s reduces to

μ̂′ = ĀĜ−1ê, (C17)

which is precisely what we obtained for the Brusselator model
in the spike limit. Thus, steady-state spike solutions of the
Brusselator are identical to solutions of a model of perfect
point sinks.

In Appendix B, for the point-sink model with background
decay, we showed a connection [(B6)] between the flux dif-
ferentials into each sink and the derivative of the total mass
M = 1

L

∫
A(x)dx. It is easily seen that the same relation holds

for the model without background decay. Replacing c by ĉ/δ
and taking the limit δ → 0, the flux differential across each
sink is found from (B4) to be

�Ji

ĉL
= − 1

L

[
xi − L

n
i + L

2

(
1

n
+ 1

)]
.

Similarly, the derivative of M from (B5) is

D

ĉL

∂M

∂xi
= 2

nL

[
xi − L

n
i + L

2

(
1

n
+ 1

)]
.

Thus,

�Ji = −1

2
nD

∂M

∂xi
. (C18)

Therefore, the dynamics of sinks moving with velocities pro-
portional to the flux differential across them is equivalent to a
system of n overdamped particles with the mass M acting as a
potential.

3. Mass minimization predicts the pattern obtained
after coarsening

In Fig. 6, we examine coarsening in the Brusselator model.
We use �, d, a, and b as dimensionless parameters and use
periodic boundary conditions to avoid patterns with peaks on
the boundary (which are not compatible with the spike ap-
proximation). In Figs. 6(a) and 6(b), we compare the number
of peaks in the dominant mode as predicted by the linear
dispersion relation and the number of peaks in the most fre-
quent pattern as obtained from the numerical simulations. We
observe a similar coarsening behavior as b (or equivalently the
turnover rate δ) is decreased, similar to the model of the main
text.

To apply our analytical approximation, we consider the
situation where spikes are symmetric (ρ̂ ′

i = ρ̂ ′
c) and regularly

positioned,

x̄i = L

n
i − L

2

(
1

n
+ 1

)
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as they are observed to be at steady state. From (C12), we then
have

ρ̂ ′
c = c

n
η. (C19)

We determine the constant ū by evaluating the solution (C8)
at each spike position ūi:

u(x̄i ) = nσ̂

η
c = ū − cη

n

n∑
j=1

Ĝ(x̄i; x̄ j ).

The sum in the above equation is independent of i since

n∑
j=1

Ĝ(x̄i; x̄ j ) = 1

12n
.

Thus, we find that the total mass M of the fast species is

M/c = 1

cL

∫ L
2

− L
2

u(x)dx = 1

cL

∫ L
2

− L
2

ū dx

= nσ̂

η
+ η

12n2
, (C20)

where we have used the Green’s function property∫ L
2

− L
2

Ĝ(x; x j ) = 0. In terms of the dimensionless parame-

ter set of the first section, the expression for the mass is

M = 6n(b+1)3/2

a
√

�
+ �b

12d (b+1)n2 . Note that just as for the model in
the main text, the mass M is minimal for a critical number
of peaks n = nc. In Fig. 6(c), we compare the distribution of
peaks of the final pattern obtained after coarsening with nc

and the linear prediction. We find that, like in the model of the
main text, nc is an excellent predictor of number of peaks in
the steady-state pattern.

4. Absence of a diffusive length scale

Note that the lack of the background decay term in
Eqs. (C7) and (C14) means that unlike for Eqs. (16) and
(3), there is no concept of a diffusive length scale in the
Brusselator or, rather, the diffusive length scale is infinite as
decay occurs only through the point sinks.

In the model of the main text, the parameter δ (or the
dimensionless parameter κ) controlled both the flow of mass
through the systems (the limit to a mass-conserved model) and
the diffusive length scale. While coarsening increases as the
system approaches the mass-conserved limit, it only occurs
when the diffusion length scale is longer (κ smaller) than
some critical threshold, as this is the point at which peaks
begin to compete with each other for the substrate, i.e., u.

In the Brusselator, since the diffusive length scale is in-
finite, peaks always compete and, as a result, coarsening is
observed at all values of δ [compare Fig. 6(c) with 5(e)].
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