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A method has been developed to measure the similarity between materials,

focusing on specific physical properties. The information obtained can be

utilized to understand the underlying mechanisms and support the prediction of

the physical properties of materials. The method consists of three steps: variable

evaluation based on nonlinear regression, regression-based clustering, and

similarity measurement with a committee machine constructed from the

clustering results. Three data sets of well characterized crystalline materials

represented by critical atomic predicting variables are used as test beds. Herein,

the focus is on the formation energy, lattice parameter and Curie temperature of

the examined materials. Based on the information obtained on the similarities

between the materials, a hierarchical clustering technique is applied to learn the

cluster structures of the materials that facilitate interpretation of the

mechanism, and an improvement in the regression models is introduced to

predict the physical properties of the materials. The experiments show that

rational and meaningful group structures can be obtained and that the

prediction accuracy of the materials’ physical properties can be significantly

increased, confirming the rationality of the proposed similarity measure.

1. Introduction

Computational materials science encompasses a range of

methods to model materials and simulate their responses on

different length and time scales (Sumpter et al., 2015). The

majority of problems addressed by computational materials

science are related to methods that focus on two central tasks.

The first aims to predict the physical properties of materials,

and the second aims to describe and interpret the underlying

mechanisms (Liu et al., 2017; Lu et al., 2017; Ulissi et al., 2017).

In the first task of predicting physical properties, computer-

based quantum mechanics techniques (Jain et al., 2016; Kohn

& Sham, 1965; Jones & Gunnarsson, 1989; Jones, 2015) in the

form of well established first-principles calculations are

generally performed with high accuracy and are applicable to

any material, but with high computational cost. Recently, the

increase in the use of advanced machine-learning techniques

(Murphy, 2012; Hastie et al., 2009; Le et al., 2012) and the

volume of computational materials databases (Jain et al., 2013;

Saal et al., 2013) have provided new opportunities for

researchers to construct prediction models automatically

(from a huge amount of precomputed data) that predict

specific physical properties with the same level of high accu-

racy, while dramatically reducing the computational costs

(Behler & Parrinello, 2007; Snyder et al., 2012; Pilania et al.,
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2013; Fernandez et al., 2014; Smith et al., 2017). By contrast,

the second task, i.e. describing and interpreting the mechan-

isms underlying the physical properties of materials, relies

mostly on the experience, insight and even luck of the experts

involved. In fact, comprehension of multivariate data with

nonlinear correlations is typically extremely challenging, even

for experts. Thus, the utilization of data-mining and machine-

learning techniques to discover hidden structures and latent

semantics in multidimensional data (Lum et al., 2013; Land-

auer et al., 1998; Blei, 2012) of materials is promising, but only

limited work has been reported so far (Kusne et al., 2015;

Srinivasan et al., 2015; Goldsmith et al., 2017).

To apply well established machine-learning methods to

solve problems in materials science, the primitive repre-

sentation of materials must usually be converted into vectors,

in such a way that the comparison and calculations using the

new representation reflect the nature of the materials and the

underlying mechanisms of the chemical and physical

phenomena. However, real-world applications, especially for

solving the second task, often focus on physical properties of

which the mechanism is not fully understood (Rajan, 2015;

Ghiringhelli et al., 2015). In these cases, it is almost impossible

to represent the materials appropriately as vectors of features

so that comparisons using well established mathematical

calculations can reflect the similarity/dissimilarity between

them. Therefore, a true data-driven approach for solving

materials science problems still requires much further funda-

mental development.

In this study, we focus on establishing a data-driven

protocol for solving the second task of computational mater-

ials science. Focusing on a specific physical property, we aim to

develop a method to measure the similarity between materials

from the viewpoint of the underlying mechanisms that act in

these materials. The method for measuring this similarity

consists of three steps: (i) variable evaluation based on

nonlinear regression, (ii) regression-based clustering and (iii)

similarity measurement with a committee machine (Tresp,

2001; Opitz & Maclin, 1999) constructed based on the clus-

tering results. The variable evaluation (Liu & Yu, 2005; Blum

&Langley, 1997) aims to identify and remove irrelevant and

redundant variables from the data (Duangsoithong & Wind-

eatt, 2009; Almuallim & Dietterich, 1991; Biesiada & Duch,

2007). We carried out this analysis in an exhaustive manner by

testing all combinations of predicting variables to find those

variables with the potential to yield good prediction accuracy

(PA) for the target variable. The regression-based clustering

method is developed from the well known K-means clustering

method (Lloyd, 1982; MacQueen, 1967; Kanungo et al., 2002)

with major modifications for breaking down a large data set

into a set of separate smaller data sets, in each of which the

target variables can be predicted by a different linear model.

Regression-based clustering models are then constructed for

all the selected potential combinations of predicting variables,

so as to construct a committee machine that votes for the

similarity between the materials.

We evaluated the proposed protocol on three data sets of

well characterized crystalline materials represented by

appropriate predicting variables, together with their physical

properties as determined through first-principles calculations

or measured experimentally. Our experiments show that the

proposed similarity measure can derive rational and mean-

ingful material groupings and can significantly improve the

prediction accuracy (PA) of the physical properties of the

examined materials.
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Figure 1
The data flow in our proposed method to measure similarity between materials, focusing on specific target physical properties and using the MapReduce
representation language. The process consists of two subprocesses: (a) an exhaustive test for all predicting variable combinations, from which we can
select the best combinations yielding the most likely regression models, and (b) a utilization of the regression-based clustering technique to search for
partition models that can break down the data set into a set of separate smaller data sets, so that each target variable can be predicted by a different
linear model. We can obtain a prediction model with higher predictive accuracy by taking an ensemble average of the models yielded in (a). We use the
obtained partitioning models in (b) to construct a committee machine that votes for the similarity between materials.



2. Methods

We consider a data set D of p materials. Assume that a

material with index i is described by an m-dimensional

predicting variable vector xi = ðx1
i ; x2

i ; . . . ; xm
i Þ 2 R

m. The data

set D is then represented using a (p � m) matrix. The target

physical-property values of the materials are stored as a

p-dimensional target vector y = ðy1; y2 . . . ypÞ 2 R
p. The entire

data-analysis flow is shown in Fig. 1.

2.1. Kernel regression-based variable evaluation

To develop a better understanding of the processes that

generated the data, we first utilize an exhaustive search to

evaluate all variable combinations (Liu & Yu, 2005; Blum &

Langley, 1997; Kohavi & John, 1997) to identify and remove

irrelevant and redundant variables (Duangsoithong & Wind-

eatt, 2009; Almuallim & Dietterich, 1991; Biesiada & Duch,

2007). We begin by learning nonlinear functions to predict the

values of a specific physical property (target quantity) of the

materials. We apply the Gaussian kernel ridge regression

(GKR) technique (Murphy, 2012), which has recently been

applied successfully to several challenges in materials science

(Rupp, 2015; Botu & Ramprasad, 2015; Pilania et al., 2013).

For GKR, the predicted property y = f(x) at a point x is

expressed as the weighted sum of Gaussians:

f ðxÞ ¼
Xp

i¼1

ci exp
�jjxi � xjj22

2�2

� �
; ð1Þ

where p is the number of training data points, �2 is a para-

meter corresponding to the variance of the Gaussian kernel

function, and jjxi � xjj22 =
Pm

�¼0ðx
�
i � x�Þ2 is the squared L2

norm of the difference between the two m-dimensional

vectors xi and x. The coefficients ci are determined by mini-

mizing

Xp

i¼1

f xið Þ � yi

� �2
þ�

Xp

i¼1

jcij
2
2; ð2Þ

where yi is the observed physical property for material i. The

hyper-parameters � and the regularization parameter � are

selected with the help of cross-validation, i.e. by excluding

some of the materials as a validation set during the training

process and measuring the coefficient of determination R2,

which is defined (Kvalseth, 1985) as

R2
¼ 1�

Ppvld

j¼1 f xj

� �
� yj

� �2

Ppvld

j¼1 y� yj

� �2 : ð3Þ

Here, pvld is the number of validation points and y is the

average of the validation set used to compare the values

predicted for the excluded materials with the known observed

values. In this study, we use R2 as a measure of PA.

To estimate the PA accurately, we cross-validate the GKR

(Stone, 1974; Picard & Cook, 1984; Kohavi, 1995) repeatedly

using the collected data. To obtain a set of proper variable

combinations that can accurately predict the target variable,

we train the GKR models for all possible combinations of

numerical predicting variables. It should be noted that, since

we do not yet know the effect of each predicting variable on

the target quantity, all the numerical predicting variables are

normalized in the same manner in this analysis. With each

combination, we search for the regularization parameters to

maximize the PA of the corresponding GKR model. Note that

each of the selected combinations contributes a perspective on

the correlation between the target and the predicting vari-

ables. Thus, an ensemble averaging (Tresp, 2001; Dietterich,

2000; Zhang & Ma, 2012) technique can be applied to combine

all the pre-screened regression models to improve the PA.

Further, the similarity between materials regarding the

mechanisms of the chemical and physical phenomena asso-

ciated with the target quantity can be investigated more

comprehensively if we consider all the perspectives. Conse-

quently, we need to construct regression-based clustering

models for each obtained potential combination to build the

committee machine.

2.2. Regression-based clustering

In practice, a single linear model is often severely limited

for modelling real data, because the data set can be nonlinear

or the data themselves can be heterogeneous and contain

multiple subsets, each of which fits best to a different linear

model. However, in traditional data analysis, linear models are

often preferred because of their interpretability. Within a

linear model, one can intuitively understand how the

predicting variables contribute to the target variable. There-

fore, much effort has been devoted to developing subspace

segmentation techniques to deconvolute a high-dimensional

data set into a set of separate small data sets, each of which can

be approximated well by different linear subspaces by

employing principal component analysis (Fukunaga & Olsen,

1971; Vidal et al., 2015; Einbeck et al., 2008).

In this study, our primary interest is the local linearity

between the predicting variables and the target variable,

which may reflect the nature of the underlying physics around

the point of observation. Therefore, we employ a simple

strategy, in which the subspace segmentation is an integration

of a conventional clustering method and linear regression

analysis. It should be noted that the subspaces may have fewer

dimensions than the whole space. Hence, we apply sparse

linear regression analysis using L1 regularization (Tibshirani,

1996) instead of the original one.

Our proposed regression-based clustering method is based

on the well known K-means clustering method with two major

modifications. (i) The sparse linear regression model derived

from data associated with materials in a particular cluster

(group) is considered to be its common characteristic (centre).

The dissimilarities in the characteristics of each material in a

group relative to the shared (common) nature of that group

(the distance to the centre) are measured according to their

deviation from the corresponding linear regression model. (ii)

The sum of the differences of all materials in a group from the

corresponding linear regression model of another group is

used to measure the dissimilarity in the characteristics of that

group with regard to the other group. The sum of the
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dissimilarities between one group and another and that

determined in the reverse direction are used to assess the

divergence between the two groups.

After performing the variable evaluation, we assume we

have selected combinations of predicting variables that yield

nonlinear regression models of high PA. With one of the

selected combinations, m0 numerical variables are selected

from the original m numerical variables. A material in the data

set is then described by an m0-dimensional predicting variable

vector x0i = ðx1
i ; x2

i ; . . . ; xm0

i Þ 2 R
m0 , and the data are repre-

sented using a (p � m0) matrix.

Given the set D of p data points represented by m0-

dimensional numerical vectors, a natural number k � p

represents the number of clusters for a given experiment. We

assume that there are k linear regression models and that each

data point in D follows one of them. The aim is to determine

those k linear regression models accordingly, to divide D into

k non-empty disjoint clusters. Our algorithm searches for a

partition of D into k non-empty disjoint clusters

ðD1;D2; . . . ;DkÞ that minimize the overall sum of the resi-

duals between the observed and predicted values (using the

corresponding models) of the target variable. The problem can

be formulated in terms of an optimization problem as follows.

For a given experiment with cluster number k, minimize

PðW;MÞ ¼
Xk

i¼1

Xp

j¼1

wijjjyj � y
Mi
j jj; ð4Þ

subject to

8j :
Xk

i¼1

wij ¼ 1;wij 2 f0; 1g; ð5Þ

1 � k � p; 1 � i � k; 1 � j � p; ð6Þ

where yj and y
Mi
j are, respectively, the observed value and the

value predicted by model Mi (of k models) for the target

property of the material with index j, W = [wij]p�k is a partition

matrix (wij takes a value of 1 if object xj belongs to cluster Di

and 0 otherwise) and M = ðM1;M2; . . . ;MkÞ is the set of

regression models corresponding to clusters ðD1;D2; . . . ;DkÞ.

P can be optimized by iteratively solving two smaller

problems:

(i) Fix M = M̂M and solve the reduced problem P(W, M) to

find ŴW (reassign data points to the cluster of the closest

centre); and

(ii) Fix W = ŴW and solve the reduced problem P(W, M) to

find M̂M (reconstruct the linear model for each cluster).

Our regression-based clustering algorithm comprises three

steps and iterates until P(W, M) converges to some local

minimum values:

(i) The data set is appropriately partitioned into k subsets, 1

� k � p. Multiple linear regression analyses are performed

independently with the L1 regularization method (Tibshirani,

1996) on each subset to learn the set of potential candidates

for the sparse linear regression models M(0) =

fM
ð0Þ
1 ;M

ð0Þ
2 ; . . . ;M

ð0Þ
k g. This represents the initial step t = 0;

(ii) M(t) is retained and problem P(W, M(t)) is solved to

obtain W(t), by assigning data points in D to clusters based

upon models M
ðtÞ
1 ;M

ðtÞ
2 ; . . . ;M

ðtÞ
k ;

(iii) W(t) is fixed and M(t) is generated such that P(W, M(t+1))

is minimized. That is, new regression models are learned

according to the current partition in step (ii). If the conver-

gence condition or a given termination condition are fulfilled,

the result is output and the iterations are stopped. Otherwise, t

is set to t + 1 and the algorithm returns to step (ii).

The group number k is chosen considering two criteria: high

linearity between the predicting and target variables for all

members of the group, and no model representing two

different groups. The first criterion has higher priority and can

be quantitatively evaluated using the Pearson correlation

scores between the predicted and observed values for the

target variable of the data instances in each group, by applying

the corresponding linear model. The second criterion is

implemented to avoid the case in which one group with high

linearity is further divided into two subgroups that can be

represented by the same linear model. The determination of k,

therefore, can be formulated in terms of an optimization

problem as follows:

k ¼ arg min
k� p

log
1�min1� i� k R2

i;i

min1� i� k R2
i;i

þ max
1� i 6¼ j� k

R2
i;j

� 	
; ð7Þ

where R2
i,i and R2

i,j are the Pearson correlation scores between

the predicted and observed values for the target variable when

we apply the linear model Mi to data instances in clusters i and

j, respectively.

The first term in this optimization function decreases

monotonically with respect to the range of min1� i� k R2
i;i

varying from 0 to 1. When min1� i� k R2
i;i approaches 1 (the

entire cluster exhibits almost perfect linearity between the

target and predicting variables), the optimization function

drops on a log scale to emphasize the expected region. In

contrast, the optimization function increases exponentially

when min1� i� k R2
i;i approaches 0 (one of the clusters shows no

linearity between the target and predicting variables). The

second term in this optimization function is introduced to

avoid overestimation of k, in which a group with high linearity

further divides into two subgroups that can be represented by

the same linear model. It should be noted that the criterion for

determining k is also the criterion for evaluating a regression-

based clustering model. Further, cluster labels can be assigned

for a material without knowing the value of the target physical

property, using the estimated value obtained from a prediction

model, e.g. a nonlinear regression model.

2.3. Similarity measure with committee machine

A clustering model, obtained through regression-based

clustering for a particular combination of predicting variables,

represents a specific partitioning of the data set into groups in

which the linear correlations between the predicting and

target variables can be observed. Materials belonging to the

same group potentially have the same actuating mechanisms

for the target physical property. However, materials that
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actually have the same actuating mechanisms for a specific

physical property should be observed similarly in many

circumstances. Therefore, the similarity between materials,

focusing on a specific physical property, should be measured in

a multilateral manner. For this purpose, for each prescreening

of the sets of predicting variables that yield nonlinear

regression models of high PA (Section 2.1), we construct a

regression-based clustering model. A committee machine that

votes for the similarity between materials is then constructed

from all obtained clustering models. The similarity between

two materials can be measured naı̈vely using the committee

algorithm (Seung et al., 1992; Settles, 2010), by counting the

number of clustering models that partition these two materials

into the same cluster. The affinity matrix A of all pairs of

materials in the data set is then constructed as follows:

Aa;b ¼
1

jShj

X
8S2Sh

XkS

i¼1

wS
iawS

ib; ð8Þ

where Sh is the set of all prescreened combinations of

predicting variables that yield nonlinear regression models of

high PA and ks is the cluster number. Further, WS = ½wS
ij�p�kS

is

the partition matrix of the clustering models obtained through

regression-based clustering analysis using the combination of

predicting variables S (wS
ia takes a value of 1 if material a

belongs to cluster i and 0 otherwise). Using this affinity matrix,

one can easily implement a hierarchical clustering technique

(Everitt et al., 2011) to obtain a hierarchical structure of

groups of materials that have similar correlations between the

predicting and target variables.

3. Results and discussion

We applied the methods described above to a sequential

analysis for automatic extraction of physicochemical infor-

mation relating to considered materials from three available

data sets. For each data set, a brute-force examination of all

combinations of numerical predicting variables was conducted

using a nonlinear regression technique, to identify combina-

tions of predicting variables that yielded regression models of

high PA for the later analysis process. For each of the

prescreened combinations, physically meaningful patterns in

the form of material groups, as well as the linear relationships

between the selected predicting and target variables, could be

detected automatically for the materials in each group

utilizing the regression-based clustering technique. The

committee machine was then constructed from the obtained

clustering models. Subsequently, a hierarchical structure of

material groups similar to each other could be extracted using

the hierarchical clustering technique. We evaluated the

obtained results from both qualitative and quantitative

perspectives. The qualitative evaluations were based on the

rationality and interpretability of the obtained hierarchy with

reference to the domain knowledge; the quantitative evalua-

tions were performed based on the PA of the predictive

models constructed with reference to the obtained similarity

between materials.

The exhaustive search for variable selection based on

kernel regression consumes a lot of computing resources, such

as memory and CPU time, due to combinatorial explosion. We

performed our experiments using Apache Spark (Zaharia et

al., 2016) on a high-performance cluster with 256 processor

cores and 1.1 TB of RAM in total. The calculation cost

depends on various factors, such as the number of instances of

data, the number of features and the cross-validation estimate

parameters. With our system, the exhaustive search task takes

36, 41 and 28 h, respectively, to perform the first, second and

third experiments.

3.1. Experiment 1: mining the quantum calculated formation
energy data for Fm3̄m AB materials

In this experiment, we collected computational data for 239

binary AB materials from the Materials Project database (Jain

et al., 2013). The A atoms were virtually all metallic forms:

alkali, alkaline earth, transition and post-transition metals, as

well as lanthanides. The B elements, by contrast, were mostly

all metalloids and non-metallic atoms. We set the computed

formation energy Eform of each AB material as the physical

property of interest. To simplify the demonstration of our

method, we limited the collected compounds to those

possessing the same cubic structure as the Fm3m symmetry

group (i.e. the NaCl structure).

To represent each material, we used a set of 17 predicting

variables divided into three categories, as summarized in

Table 1. The first and second categories pertained to the

predicting variables of the atomic properties of the element A

and element B constituents; these included eight numerical

predicting variables: (i) atomic number (ZA, ZB); (ii) atomic

radius (rA, rB); (iii) average ionic radius (rionA, rionB); (iv)

ionization potential (IPA, IPB); (v) electronegativity (�A, �B);

(vi) number of electrons in the outer shell (neA, neB); (vii)

boiling temperature (TbA, TbB); and (viii) melting temperature

(TmA, TmB) of the corresponding single substances. The boiling

and melting temperatures were as measured under standard

conditions (0�C, 105 Pa). Information related to crystal struc-

ture is very valuable for understanding the physical properties

of materials. Therefore, we designed the third category with

structural predicting variables whose values were calculated

from the crystal structures of the materials. In this experiment,

owing to the similarities in the crystal structures of the

collected materials, we utilized only the unit-cell volume (Vcell)
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Table 1
The designed predicting variables describing the intrinsic properties of
the constituent elements and the structural properties of the materials in
the Eform prediction problem.

The A and B elements comprise the AB materials with a binary cubic structure
identical to that of the Fm3m symmetry group.

Category Predicting variables

Atomic properties of A element ZA, rionA, rA, IPA, �A, neA, TbA, TmA

Atomic properties of B element ZB, rionB, rB, IPB, �B, neB, TbB, TmB

Structural information Vcell



as the structural predicting variable. The computed Eform of

each material was set as the target variable.

A kernel regression-based variable evaluation was

performed for these data with 3 � 10-fold cross-validations.

We first examined how Eform can be predicted from the

designed predicting variables for all collected materials. We

performed a screening for all possible (217
� 1 = 131 071)

variable combinations. Hence, we found a total of 34 468

variable combinations deriving GKR models with R2 scores

exceeding 0.90 (Fig. 2). Among these, there were 139 variable

combinations deriving GKR models with R2 scores exceeding

0.96. These predicting variable combinations were then

considered as candidates for the next step of the analysis. The

highest prediction accuracy (PA) in this experiment is 0.967

(mean of absolute error, abbreviated as MAE: 0.122 eV),

obtained using the combination {Vcell, �A, neA, neB, IPA, TbA,

TmA, rB}. Moreover, we could obtain a superior PA with an R2

score of 0.972 (MAE: 0.117 eV) by taking ensemble averages

(Tresp, 2001; Dietterich, 2000; Zhang & Ma, 2012) of GKR

models, which were constructed using the 139 selected vari-

able combinations.

We performed regression-based clustering analyses for all

139 selected variable combinations with 1000 initial random-

ized states. Using evaluation criteria similar to those for

determining the number of clusters [formula (5)], the 200 best

clustering results among these trials were selected to construct

a committee machine that voted for the similarity between

materials. The obtained affinity matrix for all the Fm3m AB

materials is shown in Fig. 3(a). The similarity between each

material pair varies from 0 to 1. A cell of the affinity matrix

takes a value of 0 when the corresponding two materials are

never included in the same cluster by a regression-based

clustering model. In contrast, a cell of the affinity matrix takes

a value of 1 when the corresponding two materials always

appear in the same cluster according to every regression-based

clustering model. Using this similarity, we could roughly divide
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Figure 3
(a) The affinity matrix between the Fm3m AB materials yielded by the regression-based committee voting machine. (b) Enlarged views of highly similar
elements in the G1 and G2 regions of the affinity matrix shown with dashed lines in panel (a). (c) Confusion matrices measuring linear similarities among
materials in G1 and G2, as well as dissimilarities between models generated for materials in different groups.

Figure 2
The numbers of predicting variable combinations that yield corresponding prediction models with R2 larger than 0.90 for different problems: (a) the
prediction of Eform for the Fm3m AB materials, (b) the prediction of Lconst for the b.c.c. AB materials and (c) the prediction of magnetic phase-transition
temperature TC for the rare earth–transition metal alloys.



all the materials into two groups, as represented by the upper

left and bottom right of Fig. 3(a).

Fig. 3(b) shows enlarged views of the affinity matrix for two

groups of typical materials denoted G1 and G2. We can clearly

see that the affinities between materials within each of the two

groups, G1 and G2, exceed 0.7, showing high intra-group

similarities. In contrast, the affinities between materials in

different groups are smaller than 0.2, showing significant

dissimilarity between G1 and G2. Further detailed investiga-

tion reveals that the materials in G1 are oxides, nitrides and

carbides. The maximum common positive oxidation number of

the A elements is greater than or equal to the maximum

common negative oxidation number of the B elements for the

compounds in this group. On the other hand, the materials in

G2 are halides of alkaline metals, oxides, nitrides and carbides,

for which the maximum common positive oxidation number of

the A elements is less than or equal to the maximum common

negative oxidation number of the B elements. Further inves-

tigation shows that only seven among 24 compounds in G1

have computed electronic structures with a band gap. In

contrast, half of the compounds in G2 have computed elec-

tronic structures with a band gap. The obtained results suggest

that the bonding nature of compounds in G1 is different from

that of compounds in G2. The linearities between the target

variable and the predicting variables for the two groups are

summarized in Fig. 3(c). The diagonal plots show the corre-

lations between the observed and predicted values for the

target variables obtained using linear models of the predicting

variables for the materials in the two groups. The off-diagonal

plots show the correlations between the observed and

predicted values for the target variables obtained using the

linear models of the other groups. We could again confirm the

intra-group similarity, and the dissimilarity between different

groups, in terms of the linearity between the target and

predicting variables for the compounds in the two groups.

To evaluate the validity of the analysis process quantita-

tively, we embedded the similarity measured by the committee

machine into the regression of Eform of the Fm3m AB

materials. To predict the value of the target variable for a new

material, instead of using the entire available data set, we used

only one third of the available materials having the highest

similarity to the new material. It should again be noted that

the similarity between the materials in the data set and the

new material can be determined without knowing the value of

the target physical property, using the value predicted by

ensemble averaging of the nonlinear regression models.

Table 2 summarizes the PA in predicting Eform values of the

Fm3m materials obtained using several regression models with
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Table 2
PA values for the Eform, Lconst and TC prediction problems.

The results obtained with and without using the similarity measure (SM) information are shown for comparison.

Eform (eV) Lconst (Å) TC (K)

Prediction method Without SM With SM Without SM With SM Without SM With SM

GKR with all variables R2 0.929 0.954 0.982 0.986 0.893 0.929
MAE 0.189 0.154 0.022 0.018 78.80 58.09

GKR with the best variable combination R2 0.967 0.978 0.989 0.992 0.968 0.988
MAE 0.122 0.110 0.014 0.013 42.74 25.76

Ensemble of GKRs with top selected best variable combina-
tions

R2 0.972 0.982 0.991 0.992 0.974 0.991

MAE 0.117 0.101 0.013 0.011 37.87 24.16

Figure 4
(From left to right) Observed and predicted target variables taking ensemble averaging of 139 (Eform problem), 57 (Lconst problem) and 59 (TC problem)
best prediction models including similarity measure information. Ensemble models yield PAs with R2 scores of 0.982 (MAE: 0.101 eV) for predicting the
Eform problem, 0.992 (MAE: 0.011 Å) for predicting the Lconst problem and 0.991 (MAE: 24.16 K) for predicting the TC problem.



the designed predicting variables. The nonlinear model

obtained using ensemble averaging of the best nonlinear

regression models, having an R2 score of 0.972 (MAE:

0.117 eV), could be improved significantly to an R2 score of

0.982 (MAE: 0.101 eV) by considering the information from

the similarity measurement (Fig. 4a). Therefore, the obtained

results provide significant evidence to support our hypothesis

that the similarity measured by the committee machine

reflects the similarity in the actuating mechanisms of the target

material physical property.

3.2. Experiment 2: mining the quantum calculated lattice
parameter for body-centred cubic structure data

In this experiment, a data set of 1541 binary AB body-

centred cubic (b.c.c.) crystals with a 1:1 element ratio was

collected from Takahashi et al. (2017). We focused on the

computed lattice constant value Lconst of the crystals. The A

elements corresponded to almost all transition metals (Ag, Al,

As, Au, Co, Cr, Cu, Fe, Ga, Li, Mg, Na, Ni, Os, Pd, Pt, Rh, Ru,

Si, Ti, V, W and Zn) and the B elements corresponded to those

with atomic numbers in the ranges of 1–42, 44–57 and 72–83.

This data set included unrealistic materials such as the binary

material AgHe, which incorporates He, an element that is

known to possess a closed-shell structure and is, therefore,

unlikely to form a solid.

To describe each material, we used a combination of 17

variables that related to basic physical properties of the A and

B constituent elements, as summarized in Table 3. These

chosen properties were as follows: (i) atomic radius (rA, rB);

(ii) mass (mA, mB); (iii) atomic number (ZA, ZB); (iv) number

of electrons in the outermost shell (neA, neB); (v) atomic

orbital (‘A, ‘B); and (vi) electronegativity (�A, �B). The atomic

orbital values were converted from the categorical symbols s,

p, d, f to numerical values representing the orbitals, i.e. 0, 1, 2,

3, respectively. To embed the structure information, four more

properties were included: (vii) the density of atoms per unit

volume (�A, �B); (viii) the unit-cell density �; (ix) the differ-

ence in electronegativity d� ; and (x) the sum of the atomic

orbital B and the difference in electronegativity SumAD (see

Takahashi et al., 2017).

A kernel regression-based variable selection with 3 � 10-

fold cross-validation was performed to examine all combina-

tions of the 17 variables. From the total number of screening

variable combinations (217
� 1 = 131 071), we found 60 568

variable combinations for deriving regression models with R2

scores exceeding 0.90 (Fig. 2). Among these, there were 57

variable combinations yielding regression models with R2

scores exceeding 0.9895. The highest PA for this experiment is

0.989 (MAE: 0.014 Å), which was obtained using the combi-

nation {�, ‘A, rcovB, mA, mB, �B, neB}. We could obtain a better

PA with an R2 score of 0.991 (MAE: 0.013 Å) by taking

ensemble averaging of GKR models which derived from the

57 selected variable combinations. This result is a considerable

improvement over the maximum PA (R2 score: 0.90) of the

support vector regression technique with the feature-selection

strategy mentioned by Takahashi et al. (2017).

In the regression-based clustering analysis, the 57 selected

variable combinations, accompanied by 1000 initial random-

ized states for each combination, were used to search for the

most probable clustering results to construct the committee

machine. The affinity matrix obtained for all materials is

shown in Fig. 5(a), after rearrangement by a hierarchical

clustering algorithm (Everitt et al., 2011).

Utilizing this similarity, we could roughly

divide all materials in the data set into three

groups, G1, G2 and G3. Further investigation

revealed that most materials in G1 are

constructed from two heavy transition metals.

In contrast, the materials in G2 and G3 are

constructed from a metal and a non-metal

element, e.g. oxides and nitrides. For a given

A element, Lconst of the materials in G1

increases with the atomic number of the B

element. On the other hand, Lconst of the

materials in G2 remains constant for mate-

rials sharing the same A element. Further,

Lconst for the materials in group G3 depends

mainly on the electronegativity difference

between the constituent elements A and B.

Note that the materials in these three groups

are visualized in detail in the supporting

information. The linearities between the
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Table 3
The designed predicting variables describing the intrinsic properties of
the constituent elements and the structural properties of the materials in
the lattice parameter prediction problem.

A and B are elements of the binary AB b.c.c. materials.

Category Predicting variables

Atomic properties of metals A rcovA, mA, ZA, neA , ‘A, �A, �A

Atomic properties of metals B rcovB, mB, ZB, neB , ‘B, �B, �B

Structural and additional information �, d� , SumAD

Figure 5
(a) The similarity matrix between materials for the Lconst prediction problem yielded by the
regression-based committee voting machine. This similarity matrix can be approximated as
three disjoint groups of materials denoted G1, G2 and G3. (b) Confusion matrices measuring
linear similarities among materials in each group, as well as dissimilarities between models
generated for materials in different groups.



observed and predicting variables for these groups are shown

in Fig. 5(b).

To predict the Lconst of a new material, we applied the same

strategy as that explained in the previous experiment. Table 2

summarizes the PA values obtained in our experiments. The

nonlinear model obtained using ensemble averaging of the 57

best nonlinear regression models and having an R2 score of

0.991 (MAE: 0.013 Å) could be marginally improved to an R2

score of 0.992 (MAE: 0.011 Å) by including information from

the similarity measurement (Fig. 4b).

3.3. Experiment 3: mining the experimentally observed Curie
temperature data of rare earth–transition metal alloys

In this experiment, we collected experimental data related

to 101 binary alloys consisting of transition and rare earth

metals from the NIMS AtomWork database (Villars et al.,

2004; Xu et al., 2011), which included the crystal structures of

the alloys and their observed Curie temperatures TC.

To represent the structural and physical properties of each

binary alloy, we used a combination of 21 variables divided

into three categories, as summarized in Table 4. The first and

second categories contained predicting variables describing

the atomic properties of the transition metal elements (T) and

rare earth elements (R), respectively. The properties were as

follows: (i) atomic number (ZR, ZT); (ii) covalent radius (rcovR,

rcovT); (iii) first ionization (IPR, IPT); and (iv) electronegativity

(�R, �T). In addition, predicting variables related to the

magnetic properties were included: (v) total spin quantum

number (S3d, S4f); (vi) total orbital angular momentum

quantum number (L3d, L4f); and (vii) total angular momentum

(J3d, J4f). For R metallic elements, additional variables J4f gj

and J4f (1 � gj) were added, because of the strong spin-orbit

coupling effect. As in the two previous experiments, a third

category variable was chosen which contained values calcu-

lated from the crystal structures of the alloys reported in the

AtomWork database. The designed predicting variables

included the transition (CT) and rare earth (CR) metal

concentrations. Note that if we use the atomic percentage for

the concentration, the two quantities are not independent.

Therefore, in this work, we measured the concentrations in

units of atoms Å�3; this unit is more informative than the

atomic percentage as it contains information on the consti-

tuent atomic size. As a consequence, (CT) and (CR) were not

completely dependent on each other. Other additional struc-

ture variables were also added: the mean radius of the unit cell

between two rare earth elements rRR, between two transition

metal elements rTT, and between transition and rare earth

elements rTR. We set the experimentally observed TC as the

target variable.

A kernel regression-based variable selection analysis was

performed for these data using leave-one-out cross-validation.

Among all the examined variable combinations, (221
� 1 =

2 097 151), we found 84 870 combinations for which the

corresponding GKR models exhibited R2 scores exceeding

0.90 (Fig. 2). Among these, there were 59 variable combina-

tions yielding GKR models associated with R2 scores

exceeding 0.95. These predicting variable combinations were

selected for the next analysis step. The highest PA in this

experiment was 0.968 (MAE: 42.74 K), obtained using the

combination {CR, ZR, ZT, �T, rcovT, L3d, J3d}. We could obtain a

better PA with an R2 score of 0.974 (MAE: 37.87 K) by

applying ensemble averaging to the GKR models, which were
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Table 4
The designed predicting variables describing the intrinsic properties of
the constituent elements and the structural properties in the TC value
prediction for the rare earth–transition metal alloys problem.

Category Predicting variables

Atomic properties of
transition metals

ZT, rcovT, IPT, �T, S3d, L3d, J3d

Atomic properties of
rare earth metals

ZR, rcovR, IPR, �R, S4f , L4f , J4f , J4f gj , J4f (1 � gj)

Structural information CT, CR, rTT, rTR, rRR

Figure 6
(a) The similarity matrix between the rare earth–transition metal alloys yielded by the regression-based committee voting machine. (b) Enlarged views of
highly similar elements in the G1, G2 and G3 regions of the similarity matrix shown with dashed lines in panel (a). (c) Confusion matrices measuring
linear similarities among alloys in each group as well as dissimilarities between models generated for alloys in different groups.



derived from the selected 59 variable combinations. We

considered these variable combinations as candidates for the

next step of the analysis.

In the regression-based clustering analysis, 59 variable

combinations with 1000 initial randomized states were used to

search for the most probable clustering results to construct the

committee machine to vote for the similarity between the

alloys. The obtained affinity matrix for all the alloys is shown

in Fig. 6(a). An enlarged view of the three groups of alloys

having high similarity (denoted G1, G2 and G3) is shown in

Fig. 6(b). Further investigation revealed that G1 includes Mn-

and Co-based alloys with high TC, e.g. Mn23Pr6 (448 K),

Mn23Sm6 (450 K), Co5Pr (931 K) and Co5Nd (910 K). Other

low-TC Co-based alloys, e.g. Co2Pr (45 K) and Co2Nd (108 K),

are counted as having higher similarity to the Ni-based alloys

in G3, e.g. Ni5Nd (7 K) and Ni2Ho (16 K). In contrast, G2

includes all the Fe-based Fe17RE2 alloys, where RE represents

different rare earth metals. To confirm the value of our simi-

larity measure, Fig. 6(c) shows the linearities between the

observed and predicting variables for these groups, as well as

the dissimilarities among these groups.

In the next analysis step, we utilized the obtained similarity

measure to predict TC for a new material using the same

strategy as in the two previous experiments. The nonlinear

model obtained using ensemble averaging of the best

nonlinear regression models and having an R2 score of 0.974

(MAE: 37.87 K) could be improved significantly to attain an

R2 score of 0.991 (MAE: 24.16 K) utilizing the information

from the similarity measurement (Fig. 4c and Table 2). The

obtained results provide significant evidence to support our

hypothesis that the similarity voted for by the committee

machine indicates the similarity in the actuating mechanisms

of the TC of the binary alloys.

4. Conclusions

In this work, we have proposed a method to measure the

similarities between materials, focusing on specific physical

properties, to describe and interpret the actual mechanism

underlying a physical phenomenon in a given problem. The

proposed method consists of three steps: variable evaluation

based on nonlinear regression, regression-based clustering,

and similarity measurement with a committee machine

constructed from the clustering result. Three data sets of well

characterized crystalline materials represented by key atomic

predicting variables were used as test beds. The formation

energy, lattice parameter and Curie temperature were

considered as target physical properties of the examined

materials. Our experiments show that rational and meaningful

group structures can be obtained with the help of the

proposed approach. The similarity measure information

helped significantly increase the prediction accuracy for the

material physical properties. Through use of ensemble top

kernel ridge prediction models, the R2 score increased from

0.972 to 0.982 for the formation energy prediction problem,

and from 0.974 to 0.991 for the Curie temperature prediction

problem after utilizing the similarity information. However,

no significant improvement in the the R2 score was observed

for the lattice constant prediction problem. Thus, our results

indicate that our proposed data analysis flow can system-

atically facilitate further understanding of a given phenom-

enon by identifying similarities among materials in the

problem data set.
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