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A hybrid method of stitching X-ray computed tomography (CT) datasets is

proposed and the feasibility to apply the scheme in a synchrotron tomography

beamline with micrometre resolution is shown. The proposed method enables

the field of view of the system to be extended while spatial resolution and

experimental setup remain unchanged. The approach relies on taking full

tomographic datasets at different positions in a mosaic array and registering

the frames using Fourier phase correlation and a residue-based correlation. To

ensure correlation correctness, the limits for the shifts are determined from the

experimental motor position readouts. The masked correlation image is then

minimized to obtain the correct shift. The partial datasets are blended in the

sinogram space to be compatible with common CT reconstructors. The

feasibility to use the algorithm to blend the partial datasets in projection space

is also shown, creating a new single dataset, and standard reconstruction

algorithms are used to restore high-resolution slices even with a small number

of projections.

1. Introduction

Since the introduction of imaging detectors, from everyday

cellphone pictures to high-resolution satellite topographies,

many applications use information panoramas to increase the

field of view (FOV) of their equipment. This is especially true

when it is needed to image large objects compared with the

experiment resolution (Miller, 2006; Ma et al., 2007).

One field of study that relies on area detectors is X-ray

imaging. In conventional X-ray images the apparent pixel

size is directly proportional to the FOV and the geometry of

the experiment. Contrast is generated by X-rays propagating

through the sample, and the intensity measured at the detector

is proportional to the integral of the sample refraction index

(Als-Nielsen & McMorrow, 2011). This makes X-ray images

suitable for volumetric reconstruction through an inverse

transform. The solution is exactly given by the Radon trans-

form and has been discussed extensively by Deans (2007).

A technique that can acquire a dataset for the inverse

Radon reconstruction is called computed tomography (CT)

and relies on acquiring sample projections at different angles.

One of the main difficulties with the FOV limitation is that

conventional CT reconstruction algorithms rely on having

datasets with finite support (equivalent to having the whole

sample contained within the FOV in every projection). This

may not be a problem when the sample is sufficiently small or

can be cut to fit the FOV. However, in many cases the whole

sample presents useful information but cannot be physically

damaged. Solving this problem can be difficult since increasing

the size of the initial data makes the inversion more complex

and inaccurate (Hansen, 1992).
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Many methods have been proposed to extend the FOV in

tomography without losing pixel resolution. A comparison of

several methods has been given by Kyrieleis et al. (2009).

Every variation of extended FOV methods relies on accurate

knowledge of the sample position in every frame of the

complete dataset; this can be calculated after the experiment

or ensured in the data acquisition.

The simplest approach is to move the sample along the

rotation axis. Since the reconstruction is done along the axis

perpendicular to the rotation, this approach does not interfere

with the final reconstruction quality. Nevertheless, this solu-

tion requires a stretched sample form. Since the sample

translation does not affect the reconstruction algorithm, one

could find the overlap area after reconstruction.

A more complicated approach is moving the rotation axis in

relation to the camera axis. This translation perpendicular to

the camera makes the reconstruction sensitive to the accuracy

of the registration and the quality of frame merging. With

motor control, one can have a rough approximation of the

shift between two images. If the final image pixel size is of the

order of the translation motor resolution, this approximation

is satisfactory and experiment misalignments will not interfere.

When pixel size is smaller than motor resolution it is necessary

to correlate the dataset’s position in the mosaic grid to

reconstruct the image.

Image panorama relies on finding the relative geometric

transformation (shift, rotation and magnification) between

two images and using the result to merge the images into a

new image. Other artifacts such as different illumination and

object motion cannot be easily corrected, as discussed by

Brown (1992). Such a procedure is often called image regis-

tration.

Although the process can be simple for extending the FOV

of a single radiography, our approach proposes to merge

whole partial tomogram datasets in a manner compatible with

normal workstation and tomography setups. Two assumptions

are made in order to make the process feasible and avoid

reconstruction artifacts. The first one is that every partial

dataset has images taken at the same rotation angle. The

second is that for different datasets the rotation axis and

image magnification are the same. Other approaches have

already been in use on other beamlines for microtomography

using TomoPy (Gürsoy et al., 2014) and transmission X-ray

microscopy with TXM Wizard (Liu et al., 2012).

Fig. 1(a) shows the definition of the mathematical axes used

in this manuscript. Radiographies have axes x1; x2 and

reconstructions will have axes y1; y2. Fig. 1(b) shows that there

may be two types of misalignment in our approach. One is

between the partial datasets rotations axis and the other is

between the final dataset axis and the camera axis. In order to

ensure a good reconstruction it is necessary to align all partial

datasets axes with the rotation axis. The main problem with

this misalignment is defining the reconstruction paths. Normal

reconstruction uses the saved data axis and does not calculate

non-linear paths.

For the ideal case where all the experimental assumptions

are satisfied, i.e. there is no rotation between measurements,

the problem is simplified to finding the translation between

two images. A brute-force algorithm can be used to test every

possible transformation and minimize the residue of the

overlapping area. This approach may be possible if the

registration presents few degrees of freedom (such as simple

translation). For registrations with more degrees of freedom

(such as rotation and magnification), the computational

complexity of the problem can be unsolvable. This is due to

the fact that the brute-force algorithm may be computation-

ally unfeasible. The difference between images may not be just

geometrical but also include different noise and background

levels, which makes the brute-force method even less accurate.

For the generic case, finding the correlation between two

images can be done using image marks (Pulli et al., 2012;

Szeliski, 2006) and other techniques, such as the Fourier phase

correlation method (Foroosh et al., 2002). For radiographies

where there is not enough information to register images,

another approach is the use of fiducial markers (Lemieux &

Jagoe, 1994).

This article presents a novel way to correlate images in the

radiography space and stitch in either radiography or sino-

gram space. This method expands the FOV of X-ray tomo-

graphy experiments without needing to save the whole data

into a new dataset. Projection correlation can be performed

using the brute-force and cross-correlation algorithms
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Figure 1
(a) Imaging plane I represented by axis x = ðx1; x2Þ and slice plane S
represented by axis y = ð y1; y2Þ. (b) Representation of two images taken
in a Cartesian axis (on the imaging plane I ) that is different from the
camera axis.



presented in x2. Three challenging samples were measured in

order to test our approach, as described in x3, and the results

can be found in x4. In x5 the obtained results and further

reconstruction ideas are discussed, and x6 contains a summary.

2. Standard correlation method

Let f : U � R2 ! R and h: V � R2 ! R be two-dimensional

functions that represent distinct images as pictured in Fig. 2.

Here, the domains U and V are such that U [ V will represent

the domain of the resulting stitched area. Referring to Fig. 2,

U and V are typically defined as

U ¼ ½�1; a� � R; V ¼ ½a;1� � R;

where x = a indicates the point where we assume that f and h

correlate. We use the convention U [ V � ½�1; 1� � ½0; 1�.

The main idea of the process is to translate function h in such

a way that at the boundary x1 = a we obtain an optimal

correlation. This means that, for every reasonably small �> 0,

we look for a displacement x = c 2 R2 such that

f ðxÞ ¼ Tc ½h�ðxÞ; for all x1 � a
�� ��<�; x2 2 R; ð1Þ

where Tc is the translation operator

Tc ½h�ðxÞ ¼ hðxþ cÞ: ð2Þ

Here, we look for a displacement c that minimizes the quad-

ratic residual

qðcÞ ¼

Z
½a��;a��R

�
f ðxÞ � Tc ½h�ðxÞ

�2
dx: ð3Þ

Operator Tc is easily implemented using the Fourier transform

through shifting property. In the computational framework,

where functions fh; f g are represented by image matrices

H;F 2 Rn�n we are looking for a vector c 2 R2 such that the

extended matrix P,

P ¼
�

F;Tc H
�
2 Rn�2n; ð4Þ

is not discontinuous at the boundary of images H and F,

respectively. Matrix P represents the stitched image. Here, Tc

indicates the translation in pixels units, in any of the four

possible directions. This operator is easily computed using the

fast Fourier transform. With the above notation, we search for

integers ð j; kÞ such that

kFð: ;N: nÞ � Tð j;kÞHð: ; 1: NÞk2
F ð5Þ

is minimized, where k . . . kF is the Frobenius norm (Golub &

Van Loan, 2012). Constant N in the above equation is the

discrete equivalent of the parameter � defined in (1), and can

be given as a user input. In fact, before running the stitching

process, it is visually easy to approximately define a number of

columns to search the optimal shift.

2.1. Phase correlation method

The method used for the mosaic reconstruction of whole

datasets must be robust and fast for large images with different

noise and illumination. Then, it is logical to use a less sensitive

technique to find the registration between images. Also, using

fiducial markers or image characteristics is not straightforward

for most of the samples. A correlation method that suits the

problem is to find the actual Fourier phase correlation and

extract the shift from it. Although the phase correlation

method (PCM) provides satisfactory results for some images,

it sometimes generates the wrong shift (Preibisch et al., 2009).

The Fourier transform F : f ðxÞ 7!F½ f �ðwÞ can be used in

Fourier cross-correlation image processing (f.c.c.). Indeed, the

f.c.c. output, r = rðxÞ, of two images f = f ðxÞ and h = hðxÞ (see

Fig. 2) is given by

rðxÞ ¼ F�1 F½h�ðwÞ F ½ f
��ðwÞ

F ½h�ðwÞ F ½ f ��ðwÞ
�� ��
" #

ðxÞ; ð6Þ

with � standing for the complex conjugate and j . . . j for the

absolute value. The maximum of this correlation image gives

the absolute value of the linear translation that maximizes the

correlation of the two images, i.e.

c ¼ argmax
x2R2

rðxÞ: ð7Þ

PCM gives the argument of the shift vector between two

datasets. As described by Preibisch et al. (2009), each PCM

maximum gives four possible shifts for two-dimensional

images and a subsequent pixelwise

comparison of the overlap sectors finds

the correct shift. Due to X-ray image

noise and low contrast there are many

local maxima in the cross-correlation

image and the global maxima may not

represent the true shift vector.

2.2. Hybrid correlation method

To make the correlation problem

between complex images more feasible,

we propose to use the rough approx-

imation of the experimental motor shifts

to create a correlation mask. The

pixelwise multiplication of the correla-

tion image and the mask makes it easy
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Figure 2
Representation of the brute-force registration approach on the imaging plane. For a given
translation vector c 2 R2, function hðxþ cÞ correlates with f within the square jx1 � aj<�; see text
for details.



to find the correct shift. This mask can be used both for the

brute-force and PCM algorithms. The a priori knowledge of

the experiment geometry withdraws the need to test every

possible shift, since the shifted image’s relative motion is

known.

In the current approach the final translation vector c is

chosen by calculating the translation on every pair and

removing the outliers and finding the mean. This approach is

specially important when the sample goes out of the partial

tomogram (on the lateral edges of the mosaic). Calculating

the translation for every pair in a tomogram may be too

demanding, so the proposed code also allows the number of

samples to be reduced (i.e. calculate the pair for some given

projections).

The calculated maps can be used for cone-beam geometry

if the camera is shifted instead of the sample. That way the

sample position in the cone is unchanged and the geometrical

corrections can be made later at the mosaic reconstruction of

each frame, and CT reconstruction algorithms of the Feld-

kamp–Davis–Kreuss (Feldkamp et al., 1984) family can be

used. The proposed method increases the accuracy of the

registration and decreases the computational load of finding

the correct PCM shift.

3. Materials and methods

The experiment was carried out at the IMX beamline at the

Brazilian Synchrotron Light Source and three challenging

samples were measured in order to test the approach:

(i) The first sample was a Rosary seed (Abrus precatorius)

of size�5 mm� 5 mm. It was first measured and stitched only

with seven partial radiographs to show the artifacts that

appear if there is no flat- and dark-field correction. The

tomography approach was carried out with two partial data-

sets and the displacement vector c was found with both the

brute-force approach and PCM.

(ii) The algorithm was tested with vertical filling in the

partial datasets and the sample was a wood-fibre cylinder of

radius 1 mm. It also consisted of two partial datasets that were

acquired in a full rotation (of 1000 angles) and later broken

into two partial datasets of 500 angles.

(iii) The approach was tested with a very large lateral

mosaic array of a fire beetle (Pyrophorus noctilucus), using six

partial datasets with 1000 angles.

The main reason for the sample choices was the challenge to

apply the procedure using different types of materials and

applications.

Every projection was acquired using a pco.2000 camera

(http://www.pco.de/sensitive-cameras/pco2000/) coupled to a

scintillator without binning (2048 � 2048 pixels with 16-bit

unsigned integer values). Data processing was carried out with

a 32-bit floating-point precision in order to keep the numerical

error small. The calculated pixel size for the final images was

1 mm and the sample-to-detector distance was kept constant

during the measurement of each dataset. This distance was

optimized in order to obtain good phase-contrast conditions

(Nesterets et al., 2005).

The proposed experimental approach relied on four sepa-

rate steps: (a) acquiring datasets in a mosaic array; (b) finding

the registration between datasets; (c) merging the datasets

into a new single mosaic dataset; (d) reconstructing the new

dataset.

Data acquisition was carried out in the same way as for a

normal tomography experiment but the data were taken with

only a part of the full dataset. As long as all the datasets

combined ensure that the sample is contained within the new

extended FOV, the tomographic reconstruction is possible.

Images for correction of dark current and illumination struc-

ture (dark and flat images) were taken for every partial

dataset in order to correct the frames before the final mosaic

reconstruction (Als-Nielsen & McMorrow, 2011).

In the proposed scheme, image registration is performed by

finding the relative phase between subsequent radiographs.

Even though the sample translation stage may have a high

resolution, the exact translation between frames cannot be

taken with sub-pixel precision. In our experiment the vector c

is constant along every mosaic reconstruction and it is possible

to merge the final sinograms instead of the projections. In the

case where the shift c is not constant along the partial datasets,

stitching the sinograms would be a very challenging approach

and projections should be merged instead.

The same approach was used in a full rotation tomography

with the rotation axis shifted from the centre. The datasets for

the mosaic reconstruction were obtained by separating the

first and second half rotations, flipping the second one and

using these as separate datasets for the proposed approach. To

ensure compatibility with the already functional reconstruc-

tion algorithms and programs, the partial datasets were also

rewritten into a complete dataset. This makes the partial

acquisition and mosaic reconstruction invisible to the final

dataset. There is no need to correct the pixel size with respect

to experiment geometry in an experiment where the path of

the X-rays through the sample is perpendicular to the camera

axis. This means that overlapping pixels present the same

information about the sample and no complex minimization is

necessary to ensure the continuity of information in the final

mosaic reconstruction. We found that the pixelwise mean of

the overlapping area gives a good result in the final recon-

struction (Als-Nielsen & McMorrow, 2011).

The reconstructions were carried out after processing the

new sinograms with a centre correction and ring reduction

(Miqueles et al., 2014a) algorithms. The reconstruction was

performed using a normal filtered backprojection (FBP)

approach. According to the Nyquist sampling criterion, the

optimal number of angles, N�, for a given number of elements

in the reconstruction direction (rays), Nrays, is given by (Kak et

al., 2002)

N� ¼
�

2
Nrays: ð8Þ

To reconstruct our test samples with the appropriate number

of projections according to equation (8) would make the

experiment time unfeasible. Also, data storage and processing

would be challenging for normal computers. One solution for
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this is to perform the mosaic tomography with fewer projec-

tions and reconstruct the data with an iterative algorithm

(Miqueles et al., 2014b; Miqueles & Helou, 2014; Sidky et al.,

2010; Wen & Chan, 2012; Beck & Teboulle, 2009).

4. Results

Three samples were measured in order to validate and test the

algorithm under challenging experimental conditions. Table 1

presents results obtained from these three experiments, which

will be described next. It is important to note that, due to the

nature of the experiments, it is natural to lose some slices at

the top and bottom of the frame. In the third experiment

shown below, we present intentionally lost slices, in order to

state clearly the displacement vector c discussed in x2.

4.1. Experiment I: rosary seed

We begin by presenting the restored mosaic image without

flat and dark corrections. Such an approach carries periodical

artifacts, as shown in Fig. 3. The highlighted regions (marked

by rectangles) appearing in Fig. 3 illustrate the presence of

periodical artifacts and illumination differences due to the

beam intensity distribution in the camera.

Using proper flat and dark corrections for each partial

dataset, it is easy to notice the effect of the background

correction, as shown in Fig. 4. Now, each partial frame has a

background close to zero and pixel values corresponding to

positive absorption information of the sample.

Using the partial images of Fig. 4 and the proposed hybrid

registration method, we found that the images had a transla-

tion c = (21231) pixels. Fig. 5 shows the map found using the

PCM method and the brute-force residue map, described in x2.

The expanded images correspond to the area after application

of the mask. The results were the same for both methods but

the computational time was significantly smaller for PCM

since it relies on the fast Fourier transform and fewer opera-

tions. Fig. 6 shows the mosaic reconstruction of the partial

projections in Fig. 4.

The reconstruction of the dataset was carried out with a

normal FBP algorithm and one slice can be seen in Fig. 7. It is

important to observe that no stitching artifacts or periodical

artifacts are observed in this reconstruction. The final size of

research papers

690 R. F. C. Vescovi et al. � Mosaic tomography J. Synchrotron Rad. (2017). 24, 686–694

Figure 3
Mosaic reconstruction of a rosary seed without flat and dark correction.
The insets shows the presence of periodical artifacts and different
illumination between the images.

Figure 4
Partial radiographies of the rosary seed (with flat and dark correction).

Figure 5
(Left) PCM correlation image and (right) correlation residue image
(using the brute-force algorithm). The insets show the area of the mask
and the local minima found.

Table 1
Sample experiment description.

Sample
Number
of datasets

Number
of angles c Final frame

Incomplete
slices

Seed 2 500 (21231) 2050 � 3279 12
Wood 2 500 (8863) 2056 � 2911 12
Beetle 6 1000 (121845) 2111 � 11279 140



each restored projection was 2050 � 3279 (slices � rays) with

1 mm � 1 mm pixel size. The reconstructed mosaic dataset

generated sinograms with 3279 � 500 (rays � angles) pixels.

This number is below the Nyquist limit (Chesler et al., 1977)

and analytical methods are not suitable for inversion of the

slices.

The last result is sinogram registration instead of radio-

graphs. In theory, if there are no displacements along the axis

of the device, sinogram registration is equivalent to image

registration of the frames. With noisy data and with several

tiny displacements in the device, this is no longer true. Fig. 8

shows partial sinograms of the reconstructed slice of Fig. 7.

Since the shift vector c has a component along the x2 axis (the

slice axis, see Fig. 1) it would be impossible to find the correct

sinogram pair (a) and (b) without calculating c in the frames

first. The partial sinograms in Fig. 8 differ in the slice number

by cy. For comparison, Fig. 8(c) depicts the resulting stitched

sinogram of parts (a) and (b).

4.2. Experiment II: wood fiber

Samples that generate quasi-periodical structures in radio-

graphs are challenging to correlate. Fig. 9 shows the restored

frame for a toothpick sample, acquired with a full rotation and

later reconstructed using the mosaic approach. The final

restored dataset was 2911� 2056� 500 (rays� slice� angle).

As described in Table 1, some slices were lost after mosaic

reconstruction. Although imperceptible in Fig. 9, there is a

blank space at the bottom that shows the displacement

vector c. Removing the broken slices we finally perform the

reconstruction, which is presented in Fig. 10 with resolution

2911 � 2911. No stitching marks or reconstruction artifacts

can be seen in the reconstructed image.

4.2.1. Experiment III: beetle. A beetle (Cetonia Aurata) of

size �1 cm was exposed to the imaging device. Measurements

were made with six partial datasets to ensure that the algo-

rithm was able to work with larger mosaic grids. Each dataset

was gathered with 1000 angles and resulted in a final volume

with dimensions 11279 � 2111 � 1000 pixels. Every single

sinogram has 11279 � 1000 resolution (rays � angles),

resulting in a final reconstruction slice of 11279� 11279 pixels.
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Figure 6
Mosaic reconstruction of the rosary seed radiographies (depicted in Fig. 4
(with flat and dark correction). This image has dimensions 2050 � 3279
(slices � rays).

Figure 7
Reconstruction of a single slice using the stitched 3D volume, as in Fig. 3,
for a sinogram with 3279 rays and 500 angles. The standard FBP was
applied to the sinogram to obtain this reconstructed image.

Figure 8
Truncated sinograms (a) and (b) giving rise to a complete sinogram (c), after a stitching process using the PCM method with pointing vector c in
equation (7). The dashed red line shows the same ray on each sinogram.



Since this experiment was performed with a long lateral

translation, the final component cy was 60 = 5� 12 pixels. This

shift leads to several incomplete parts and a challenge to

correlate the partial images. Figs. 11 and 12 show the mosaic

reconstruction of one frame, using our approach and using

FIJI MosaicJ (Schindelin et al., 2012), respectively. The black

areas presented at the top and bottom of those images show

the areas that do not present measured information and have

to be discarded. It is important to notice that, even though the

FIJI approach finds the best solution with angles between the

partial datasets, it is not suitable for CT reconstruction. The

angle between the datasets makes the correct reconstruction

axis impossible to find, as described in the theory section.

Fig. 13 shows a slice of the final reconstructed image

obtained using the proposed approach. The size of each

reconstruction is 11279 � 11279 pixels. An image with such

dimensions presents a computational challenge in terms of

reading and writing to normal hard disks. Currently, there are

new methods able to reconstruct large data and the bottleneck
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Figure 9
Mosaic reconstruction of a toothpick using only two datasets. This frame
has dimensions 2911 � 2056 (rays � slices). The displacement vector c
generates an empty space that cannot be seen in the image.

Figure 10
Slice reconstruction of the toothpick using the restored dataset of Fig. 9.
Reconstructed image with dimensions 2911 � 2911.

Figure 11
Mosaic reconstruction of a beetle insect radiograph using six datasets.
This image is intentionally displayed out of scale, since the horizontal axis
is five times larger than the vertical one.

Figure 12
Mosaic reconstruction of a beetle insect radiograph using six datasets
with FIJI MosaicJ (Schindelin et al., 2012). The figure clearly shows a
curvature, which does not favour a reconstruction scheme. The image is
intentionally displayed out of scale, similar to Fig. 11.

Figure 13
Tomographic reconstruction of the beetle insect with dimensions 11279�
11279 pixels. Streak artifacts are clearly visible in this reconstruction due
to the small number of angles.



for large image reconstructions is the backprojection, as

described by Miqueles & Helou (2014). The reconstructed

image in Fig. 13 presents strong streak artifacts due to a small

number of angles. In fact, the FBP algorithm is not the best

reconstruction scheme for this large dataset. Iterative techni-

ques certainly provide better results, but iteration with such a

large sinogram is still a challenge.

5. Discussion

The proposed method presents a reliable way to extend the

FOV of CT without needing to change the experimental setup.

For a small increase in the FOV it was found that the method

can find the shift of the sample axis in full rotation tomography

acquisition. Then, this shift can be incorporated into other

reconstruction routines or used to blend the dataset from two

separate partial datasets.

Samples bigger than the FOV were imaged without losing

pixel resolution or generating artifacts in the final recon-

struction. It is not the purpose of this paper to discuss the

amount of data generated, but it will be a challenge to handle

large images for the computer process: storage ! recon-

struction ! visualization. As data expand far from the rota-

tion axis, even a very small angle within the camera can make

the volume slicing obtain information from several slices. This

problem would require realigning the whole data block in the

memory before reconstruction and such an algorithm is not

available yet.

In this article, all the slices were reconstructed using a

standard FBP algorithm. As pointed out earlier, this is not

the best reconstruction strategy for our tomographic setup.

Indeed, since there are many missing angles, a constrained

total-variation reconstructed image f � would certainly provide

better results, i.e.

f � ¼ argmin
�

TVð f Þ; f 2 S
�
; ð9Þ

with TV being the total variation operator (Velikina et al.,

2007) and S the set of all two-dimensional mappings satisfying

a consistency condition. A set S is determined by the Fourier

slice theorem (Deans, 2007), i.e.

S ¼
�

f 2 U:F½ f �ð�k cos �i; �k sin �iÞ ¼ F½ g �ð�k; �iÞ
�
:

In the above equation, g is a sinogram image, typically

obtained from a conventional imaging device, while fð�k; �iÞg

is a polar grid in the frequency domain. In the approach used

in this manuscript, the sinogram g comes from stitching of the

3D volume in such a way that a gridding algorithm (Schom-

berg & Timmer, 1995) or conventional FBP can be used to

recover the slice. For future applications of our stitching

strategy, an ideal image reconstruction algorithm has to deal

independently with each dataset and also with the pointing

vector c defined in equation (7). With such an approach, it will

not be necessary to store new datasets, and each part of the

slice can be reconstructed independently, using a strategy like

equation (9). Indeed, the memory needed to handle the

reconstruction process grows linearly with the number of

datasets used in the stitching part.

Fig. 14 illustrates a Fourier representation of two projec-

tions of a sample (at the same angle), e.g. S1ð�Þ and S2ð�Þ,
giving rise to an incomplete frequency polar domain. Each

acquisition comes from truncated sinograms, such as the ones

shown in Fig. 8. In this manuscript, prior stitching is done so

that S1 [ S2 is a new dataset and the frequency domain is

numerically dense so that a reconstruction scheme can be

applied. Further reconstruction strategies as described by

Miao et al. (2010) can also be applied to this problem.

In this sense other acquisition–reconstruction methods can

be designed to ensure the Fourier space density and solve the

missing wedge problem (Arslan et al., 2006) that would arise if

the sample could not achieve a full rotation in the proposed

scheme.

6. Conclusion

We have shown that it is possible to find a more reliable

correlation between partial tomographic datasets using exis-

tent methods and experimental information and generate

a new sinogram without needing to save a new dataset.

Our methodology was compared with commercial software

(Schindelin et al., 2012), providing similar results. Using our

approach it would be possible to extend the FOV without

having to test the correctness of the mosaic reconstruction. It

also does not need any change in the experimental setup for

synchrotron tomography and is independent of the recon-

struction algorithm. Hence, any reconstruction scheme that is

already in use can take advantage of the hybrid mosaic

approach to image samples larger than the camera FOV.

Although increasing the size of CT data leads to several

difficulties in reconstruction, it was shown that the normal

FBP reconstruction can give coherent results as a first-order

approximation of the solution.
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Figure 14
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