
Editorial

Ten Simple Rules for the Open Development of Scientific
Software
Andreas Prlić1*, James B. Procter2

1 San Diego Supercomputer Center, University of California San Diego, La Jolla, California, United States of America, 2 School of Life Sciences Research, College of Life

Sciences, University of Dundee, Dundee, Scotland, United Kingdom

Open-source software development has

had significant impact, not only on society,

but also on scientific research. Papers

describing software published as open

source are amongst the most widely cited

publications (e.g., BLAST [1,2] and Clus-

tal-W [3]), suggesting many scientific

studies may not have been possible

without some kind of open software to

collect observations, analyze data, or

present results. It is surprising, therefore,

that so few papers are accompanied by

open software, given the benefits that this

may bring.

Publication of the source code you write

not only can increase your impact [4], but

also is essential if others are to be able to

reproduce your results. Reproducibility is

a tenet of computational science [5], and

critical for pipelines employed in data-

driven biological research. Publishing the

source for the software you created as well

as input data and results allows others to

better understand your methodology, and

why it produces, or fails to produce,

expected results. Public release might not

always be possible, perhaps due to intel-

lectual property policies at your or your

collaborators’ institutes; and it is important

to make sure you know the regulations

that apply to you. Open licensing models

can be incredibly flexible and do not

always prevent commercial software re-

lease [5].

Simply releasing the source under an

open license, however, is not sufficient if

you wish your code to remain useful

beyond its publication [6]. The sustain-

ability of software after publication is

probably the biggest problem faced by

researchers who develop it, and it is here

that participating in open development

from the outset can make the biggest

impact. Grant-based funding is often

exhausted shortly after new software is

released, and without support, in-house

maintenance of the software and the

systems it depends on becomes a struggle.

As a consequence, the software will cease

to work or become unavailable for down-

load fairly quickly [7], which may contra-

vene archival policies stipulated by your

journal or funding body. A collaborative

and open project allows you to spread the

resource and maintenance load to mini-

mize these risks, and significantly contrib-

utes to the sustainability of your software.

If you have the choice, embracing an

open approach to development has tre-

mendous benefits. It allows you to build on

the work of other scientists, and enables

others to build on your own efforts. To

make the development of open scientific

software more rewarding and the experi-

ence of using software more positive, the

following ten rules are intended to serve as

a guide for any computational scientist.

Rule 1: Don’t Reinvent the
Wheel

As in any other field, you should do

some research before starting a new

programming project to find out if aspects

of your problem have already been solved.

Many fundamental scientific algorithms

and methods have already been imple-

mented in open-source libraries, and

having the source means you can easily

evaluate if they will work in your situation.

You can also contact online communities

(see [8]) to find out about their experiences

with existing approaches, and if none are

appropriate, any new implementation you

provide will be well received, however

modest. Providing another solution to a

problem, even if technologically novel, is

only an accomplishment in engineering

and rarely suitable for publication on its

own. However, if it is useful it can benefit

everyone, even if it addresses a mundane

task. Furthermore, when there are no

existing implementations for your plat-

form, or they cannot cope with the size,

complexity, or other specifics of your data,

then new approaches may be required that

lead to new science.

Rule 2: Code Well

If you don’t know them already, learn

the basics of software development [9,10].

You don’t need to be the best software

developer in the world, but try to be

inspired by them. Study other people’s

code and learn by practice. Join an

existing open-source project. There are

plenty to choose from (most open-source

repositories have a ‘‘biology’’ or ‘‘bioinfor-

matics’’ project tag), but the ‘‘bio-*’’

projects hosted at the Open Bioinformatics

Foundation are a good place to start [11–

14]. Once you identify a weakness (and

you will!) or something that does not work

as expected, fix the issue so it works for

yourself and provide a patch back to the

original authors. Getting familiar with

other people’s code in this way is a great

way to boost your experience and learn

new techniques.

Rule 3: Be Your Own User

One of the more graphic mottos in the

open-source community is ‘‘eat your own

dog food’’. For a researcher this has two

implications. If you are developing soft-

ware of value to your field, it is important

that you demonstrate that it can address

important questions in a useful or novel

way. The second implication is that your

software should be useful to other devel-

opers, and is not simply a demonstration

of the solution. Sadly, for some scientific

Citation: Prlić A, Procter JB (2012) Ten Simple Rules for the Open Development of Scientific Software. PLoS
Comput Biol 8(12): e1002802. doi:10.1371/journal.pcbi.1002802

Published December 6, 2012

Copyright: � 2012 Prlić, Procter. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: The authors received no specific funding for writing this article.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: andreas.prlic@gmail.com

Andreas Prlić is a Software Editor for PLOS Computational Biology.

PLOS Computational Biology | www.ploscompbiol.org 1 December 2012 | Volume 8 | Issue 12 | e1002802

software articles this is often not the case,

and there are examples of software that—

whilst novel—were not developed to solve

a problem the scientists faced in a practical

situation. Problems to do with how

software is structured or functions in a

variety of situations are difficult to detect

during peer review. It is only later, when a

researcher discovers and applies the soft-

ware during their research, that these

issues hinder or obstruct progress. Avoid-

ing wasted effort of this kind is critical to

researchers, who have limited time and

require high levels of quality and repro-

ducibility from scientific source code. By

being ‘‘your own best user’’ many such

problems will be detected before they

become public.

Rule 4: Be Transparent

Scientific software, like other competi-

tive activities, is often at first developed

behind closed doors instead of out in the

open, and public release is then only

considered around the time of publication.

The first reason given for this (after any

legal constraints), is the fear of getting

scooped—that somebody else might use

the ideas to produce competing software

faster or tackle the same research problem

first. In our experience, however, open

development often results in just the

opposite. Founding or contributing new

code to open-source projects is one way for

a researcher to stake a claim in a field [15].

People with similar or related research

interests who discover the project will find

that they have more to gain from collab-

orating than from competing with the

original developers. The second reason

given for closed development is the

perhaps more serious risk that code

released prematurely may lead to incorrect

findings by others. However, examples

regularly show [16] that even prior

publication of software in a peer-reviewed

journal does not preclude the presence of

serious bugs. One consequence of trans-

parent, open development is that it allows

many eyes to evaluate the code and

recognize and fix any issues, which

reduces the likelihood of serious errors in

the final product. There are public

repositories such as Sourceforge or

GitHub that greatly facilitate this kind of

team development approach. They pro-

vide free services such as version control,

Wikis, mailing lists, and bug trackers and

support communication with your collab-

orators to share effort, document bugs,

and solve problems more quickly [17].

Several models for initiating and manag-

ing open development have also been

proposed and advocated by different

communities, such as the Apache Way

[18,19].

Rule 5: Be Simple

Science is hard enough already. If your

software is too complex to obtain and

operate or can only run on one platform,

then few people will bother to try it out,

and even fewer will use it successfully

(particularly your reviewers!). This is

doubly important for open projects, since

difficult compilation or installation pro-

cesses will raise a barrier against partici-

pation. Documentation helps a lot, in the

form of build and installation instructions,

user manuals, or even video demonstra-

tions, but simplicity is key, since potential

users will first evaluate how long it will

take to install and get something out of

your software against the time it will take

them to find another way. Employ stan-

dard package or software installation

models for as many platforms as possible.

Practically all operating systems, and

many languages (e.g., Perl, Ruby, and

Python), have standard models for creat-

ing installable software packages, which

allow you to specify any other software

your code needs to run, and make it easier

for you to distribute it [20]. If you don’t

have the time to learn how to create an

installation package yourself, then get in

contact with one of the many open-source

packaging communities (e.g., DebianMed),

and ask for help. When creating new

software, try to support standard file

formats and don’t come up with new,

custom formats. This can make your

software less appealing. Spending time to

create online documentation, sample data

files, and test cases will give others an easy

start into your codebase.

Rule 6: Don’t Be a Perfectionist

Don’t wait too long with getting the first

version of your source code out into the

public and don’t worry too much if your

first prototypes still have critical features

missing. If your idea is innovative, others

will understand the concept. Moreover, as

scientists, we are trained to constantly

assess and revise our own and each others’

hypotheses, and we should do the same for

our software. ‘‘Release early, release

often’’ is regarded as an open-source

mantra, and attributed to Linus Torvalds

by Eric Raymond [21]. It advocates the

practice of releasing as soon as new work

has been done, because your ‘‘customers’’

will quickly identify problems and new

requirements, and you will be able to fix

them more quickly if you avoid sitting on

and polishing new code for several months

before letting it into the wild. Agile

development practices [22], which have

become popular in the last decade,

embody this iterative development pro-

cess.

Rule 7: Nurture and Grow Your
Community

The biggest advantage of open devel-

opment is that it allows users and devel-

opers to freely interact and form commu-

nities, and if your software is useful, your

user base will grow. You can only do so

much by yourself, but if you form a team

(see [23]) and communicate with the

people who use your tool, then new

scientific and technical collaborations can

arise. Reciprocity is essential, however: as

a user of open source, acknowledge the

tools you are using. If you are running

your own open community, acknowledge

the contributions of each person to your

project. Make it easy for others to

contribute ideas and act on feedback.

Seeing that suggestions are being taken

seriously and acted upon can be highly

motivating and will encourage further

involvement. Try to avoid changing key

aspects of your code that other people’s

software or analysis pipelines might de-

pend on, such as file formats, command

line arguments, or application program-

ming interfaces (APIs). If you do, discuss

them online first, then document and

create demonstrations of the changes,

and assign a version number to the API.

Even better, use Semantic Versioning

(http://semver.org), which communicates

both API and software version compati-

bility between releases. Above all, avoid

confusing your users—drastic differences

between each release that introduce in-

compatibilities will win no friends.

Rule 8: Promote Your Project

In order to attract more attention to your

project, it is important to spend time

promoting it. Appearance matters, and a

clean, well-organized website that will help

your cause is not hard to achieve. Hosting

sites such as GitHub or Google code

provide standard templates for project

websites, where you only need to come up

with a name and logo. Branding is not

rocket science, but it is about habit—once

you have a name, stick with it, and use it

everywhere. Create personae for your

project on social networks that people can

connect to, and increase your presence in

online discussion forums: answer questions

on ResearchGate, Linkedin, or any of the

PLOS Computational Biology | www.ploscompbiol.org 2 December 2012 | Volume 8 | Issue 12 | e1002802

other open communities where potential

users of your software might be. Whilst

doing this, bear in mind that regardless of

how good your project is, people are more

likely to connect with your project because

of what you say and your own personal

profile. Finally, remember about more

traditional ways of communicating your

work: go to conferences where you will

meet other developers and potential users

of your software, and give as many

presentations as you can. Keep an eye out

for ad hoc developer meetups and hacka-

thons, where open-source coders get to-

gether to work on one, or many different

projects. Promotion is hard work, but

through it you will grow and strengthen

your community.

Rule 9: Find Sponsors

No matter how large the community

around your project and how efficiently it

is developed and managed, some level of

funding is essential. Scientific software can

be successfully supported through grants,

by writing applications to address new

scientific problems through the develop-

ment and use of software, or attaching

development and upkeep of software as a

deliverable on experimental grants. Grant

writing [24] is beyond the scope of the

Ten Simple Rules presented here, but it is

worth mentioning that if the rules laid out

here are being followed, an open develop-

ment community can ensure value beyond

the lifetime of an award. Open develop-

ment directly addresses the section on

sustainability in grant applications, but the

emphasis here has to be on the commu-

nity. Simply releasing code openly, with-

out support and maintenance, will not

ensure extended value; instead, you need

to explain how you will actively foster your

community of users and developers. Be-

sides grants, there are also other support

models for open source. Internship pro-

grams like the Google Summer of Code

finance students to spend a summer

working on open-source projects, and a

number of projects related to science have

benefited from them.

Rule 10: Science Counts

As scientists, the software we write is

primarily a means to advance our research

and, ultimately, achieve our scientific

goals. Whilst the development of software

for the consumption of others aligns well

with other processes of scientific advance-

ment, it is the science that ultimately

counts. Scientific software development

fulfils an immediate need, but mainte-

nance of code that is no longer relevant to

your own research is a serious time sink,

and will rarely lead to your next paper, or

secure your next grant or position. Open-

source development and maintenance is

an intensely social process, and perhaps

particularly appealing to scientists since we

tend to crave interaction with others as

knowledgeable about our fields as our-

selves. These aspects of open source make

it even more important for us as scientists

to keep an eye on the big picture, and stay

true to our scientific goals. However, if

done right, you can publish both the

science and the software for the same

project, giving credit to everyone involved.

Open-source communities ensure persis-

tence of projects by allowing project

leadership to be shared and passed to

other members. As a scientist, this offers

you the opportunity to naturally progress

to new challenges with the knowledge that

the software you created will remain

available and benefit others.

Acknowledgments

We want to thank Hilmar Lapp for his

comments and contributions to parts of the

text. Thanks to Scott Markel, Fran Lewitter,

and Spencer Bliven for their comments and

feedback.

References

1. Altschul SF, Gish W, Miller W, Myers EW,
Lipman DJ (1990) Basic local alignment search

tool. J Mol Biol 215: 403–410. http://dx.doi.org/

10.1016/S0022-2836(05)80360-2
2. Altschul SF, Madden TL, Schaffer AA, Zhang J,

Zhang Z, et al. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database

search programs. Nucleic Acids Res 25: 3389–

3402. doi:10.1093/nar/25.17.3389
3. Thompson JD, Higgins DG, Gibson TJ (1994)

CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through

sequence weighting, position-specific gap penal-
ties and weight matrix choice. Nucleic Acids Res

22: 4673–4680. doi:10.1093/nar/22.22.4673

4. Vandewalle P (2012) Code sharing is associated
with research impact in image processing. IEEE

Computing in Science & Engineering 14: 42–47.
http://rr.epfl.ch/37/.

5. Morin A, Urban J, Sliz P (2012) A quick guide to

software licensing for the scientist-programmer.
PLoS Comput Biol 8(7): e1002598. doi:10.1371/

journal.pcbi.1002598
6. Cock P (2011) Opening up NCBI BLAST?

Available: http://blastedbio.blogspot.co.uk/
2011/08/opening-up-ncbi-blast.html Accessed

27 October 2012.

7. Wren JD (2008) URL decay in MEDLINE—a 4-
year follow-up study. Bioinformatics 24(11):

1381–1385. doi:10.1093/bioinformatics/btn127
8. Dall’Olio GM, Marino J, Schubert M, Keys KL,

Stefan MI, et al. (2011) Ten simple rules for

getting help from online scientific communities.
PLoS Comput Biol7(9): e1002202. doi:10.1371/

journal.pcbi.1002202

9. Sofware Carpentry (2012) http://software-

carpentry.org/ Accessed 27 October 2012.

10. Aruliah DA, Titus Brown C, Chue Hong NP,

Davis M, Guy RT, et al. (2012) Best practices for

scientific computing. eprint arXiv:1210.0530.

Available: http://arxiv.org/abs/1210.0530. Ac-

cessed 27 October 2012.

11. Stajich JE, Block D, Boulez K, Brenner SE,

Chervitz SA, et al. (2012) The Bioperl toolkit: Perl

modules for the life sciences. Genome Res 12(10):

1611–1618. doi:10.1101/gr.361602

12. Cock PJ, Antao T, Chang JT, Chapman BA, Cox

CJ, et al. (2009) Biopython: freely available

Python tools for computational molecular biology

and bioinformatics. Bioinformatics 25(11): 1422–

1423. Epub 20 Mar 2009. doi:10.1093/bioinfor-

matics/btp163

13. Prlić A, Yates A, Bliven SE, Rose PW, Jacobsen J,

et al. (2012) BioJava: an open-source framework

for bioinformatics in 2012. Bioinformatics 28(20):

2693–2695. Epub 9 Aug 2012. doi:10.1093/

bioinformatics/bts494

14. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, et

al. (2010) BioRuby: bioinformatics software for

the Ruby programming language. Bioinformatics

26(20): 2617–2619. doi:10.1093/bioinformatics/

btq475

15. Barnes N (2012) The science code manifesto.

Available: http://sciencecodemanifesto.org/. Ac-

cessed 15 October 2012.

16. Zeeya Merali (2010) Computational science:

…error…why scientific programming does not

compute. Nature 467: 775–777. doi:10.1038/

467775a

17. Rother K, Potrzebowski W, Puton T, Rother M,

Wywial E, et al. (2012) A toolbox for developing

bioinformatics software. Brief Bioinform 13(2):

244–257. Epub 29 Jul 2011. doi:10.1093/bib/

bbr035

18. The Apache Software Foundation. The Apache

way. Available: http://incubator.apache.org/

learn/theapacheway.html. Accessed 17 October

2012.

19. Gardler R (2010) Community development at the

Apache Software Foundation. Ross Gardler’s

keynote from BOSC 2010. Available: http://

www.slideshare.net/bosc2010/gardler-bosc2010-

communitydevelopmentattheasf. Accessed 27 Oc-

tober 2012.

20. Bonnal RJ, Aerts J, Githinji G, Goto N, MacLean

D, et al. (2012) Biogem: an effective tool-based

approach for scaling up open source software

development in bioinformatics. Bioinformatics

28(7): 1035–1037. Epub 12 Feb 2012.

doi:10.1093/bioinformatics/bts080

21. Raymond ES (1999) The cathedral & the bazaar.

O’Reilly. ISBN 1-56592-724-9.

22. Kane DW, Hohman MM, Cerami EG, McCor-

mick MW, Kuhlmman KF, et al. (2006) Agile

methods in biomedical software development: a

multi-site experience report. BMC Bioinformatics

7: 273. doi:10.1186/1471-2105-7-273

23. Vicens Q, Bourne PE (2007) Ten simple rules for

a successful collaboration. PLoS Comput Biol

3(3): e44. doi:10.1371/journal.pcbi.0030044

24. Bourne PE, Chalupa LM (2006) Ten simple rules

for getting grants. PLoS Comput Biol 2(2): e12.

doi:10.1371/journal.pcbi.0020012

PLOS Computational Biology | www.ploscompbiol.org 3 December 2012 | Volume 8 | Issue 12 | e1002802

