
Statheros: Compiler for Efficient Low-Precision
Probabilistic Programming

Jacob Laurel, Rem Yang, Atharva Sehgal, Shubham Ugare, Sasa Misailovic
Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract—As Edge and IoT computing devices process noisy
data or make decisions in uncertain environments, they require
frameworks for inexpensive, yet accurate probabilistic inference.
Probabilistic programming has emerged as a powerful way for
developers to write high-level programs, while abstracting away
the implementation details of inference. However, the existing
algorithms are slow and often assumed to require precise calcula-
tions. We present Statheros, the first compiler for low-level, fixed-
point approximation of probabilistic programming. Statheros
compiles programs to fixed-point inference procedures and is
able to determine the optimal fixed-point type to use. We evaluate
Statheros on 13 benchmarks and three embedded platforms. The
results show that Statheros-generated code is 11.5x (Arduino),
3.8x (PocketBeagle), and 2.2x (Raspberry Pi) faster than single-
precision floating-point computation, with minimal accuracy loss.

I. INTRODUCTION

Probabilistic Programming (PP) [6] has emerged as a power-
ful paradigm for reasoning about uncertainty, as it offers an in-
tuitive way to represent complex probability models as simple
high-level programs. Application developers can abstract away
the low-level details of how the inference, or learning, from
the data is implemented. Probabilistic languages and compilers
perform the heavy lifting to generate efficient procedures for
Bayesian inference from high-level programs. Existing PP
Languages (PPLs) are designed for powerful desktop or cloud-
scale environments. Even there, probabilistic inference is com-
putationally hard, and developers need to resort to approximate
algorithms such as Markov chain Monte Carlo (MCMC).

Running probabilistic programs on resource-constrained
systems (e.g., Edge or IoT) brings substantial challenges.
These systems may have CPUs with limited processing power,
or even lack support for floating-point calculations. This
problem is further complicated by intensive numerical compu-
tations that, if naively implemented, can cause silent numerical
overflows or underflows that hamper accuracy. Several studies
designed novel customized hardware [9], [11], [21], presented
non-scalable exact inference for restricted model classes [17],
or used approximation without language-level integration [14].
Approximating programs using portable, low-precision
numerical data types that still enable high-level probabilistic
programs to run efficiently is an intriguing problem.
Statheros. We propose Statheros, an analysis and compilation
system for fixed-point probabilistic programming. It exposes
the precision knob for program variables, and offers flexible
fixed-point numerical representations, instead of the default
floating-point representations. A fixed-point representation
stores numerical values in a specified number of integer and
fractional bits (before and after the radix point, respectively),
and fixed-point calculations use only integer operations.

Statheros presents the automatic selection of the optimal
fixed-point representation (i.e., the number of integer and frac-
tional bits for the program variables) that leads to a high level
of accuracy. We use domain information to tailor this analysis
to produce accurate results. We start from the observation that
not all overflows are created equal, and only some may impact
the accuracy of the inference. Our analysis then operates on
the two semantic objects of the program: 1) the distribution
functions and 2) the likelihood functions computed during
inference. For each of these, Statheros performs a separate
version of interval analysis to determine the optimal number
of integer and fractional bits. Our analysis enables Statheros
to use a minimal number of dynamic overflow checks during
program execution, significantly reducing runtime overhead.
Thus, the generated fixed-point code is not only fast, but also
produces results that approximate the correct values well.

We present several optimizations on the level of the model
that, informed by our analysis, improve the performance of
the generated code. These include overflow-check reduction,
PPL-level constant propagation, and memoization. Statheros’s
compiler generates the low-level C/C++ code for inference. It
implements the Metropolis-Hastings MCMC algorithm, prob-
ability distributions, and standard math library functions (e.g.,
exp, log) with all computations in fixed-point representation.
Its standard building blocks (fixed-point types, library, and
translation to C/C++) enable Statheros to produce portable
code that can run on many resource-constrained platforms.
Evaluation. We evaluate Statheros on 13 probabilistic
programs from the literature. We evaluate three popular
ARM CPU platforms – Arduino Due (with no hardware
floating-point support), PocketBeagle, and Raspberry Pi. The
evaluation shows that Statheros-generated code is 11.5x faster
(geomean) on Arduino compared to soft-floats generated
by a baseline compiler. Statheros-generated code is 3.8x
faster on PocketBeagle and 2.2x faster on Raspberry Pi than
floating-point versions running natively on these platforms.
The accuracy losses of our optimized programs are negligible.

In summary, our main contributions are: (1) Fixed-Point
PPL Compiler: Statheros is the first compiler for a PPL
with fixed-point as its data type that generates fast, accurate,
and portable code. (2) Program Analysis: We present a
novel analysis for inferring the size of optimal fixed-point
configuration, specialized to handle probability distributions
and likelihoods. (3) Optimizations: We present how the
analysis can guide several optimizations that improve
program performance. (4) Evaluation: Our evaluation on 13
benchmarks and three platforms showcases Statheros’s ability
to generate efficient, accurate, and portable code.

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

II. OVERVIEW OF STATHEROS

A. Language
As our starting high-level PPL, we work with a simple

imperative language extending from AutoPPL [20] (which is
embedded in C++). Therefore, the syntax is C-like.
Syntax. Figure 1 presents the core syntax. The language
exposes random primitives for sampling. For example,
r|=bernoulli(0.5) expresses a coin flip with a probability
of heads of 0.5. In PPLs, one may also write observe state-
ments, observe(B), for conditioning on a boolean event B.

Model ::= Param+ ; Data+ ; DistStmt+
Param ::= Param<Type>(...)

Data ::= Data<Type>(...)
DistStmt ::= Var |= DistExpr | Var |= Expr

| Var |= BExpr ? Expr : Expr
| observe(BExpr)
| for (i=c1; i<c2; i++){ Var[i] |= DistExpr }

DistExpr ::= bernoulli(Expr)
| uniform(Expr, Expr)
| normal(Expr, Expr)

BExpr ::= BExpr ⊕ BExpr | Expr � Expr | true | false
Expr ::= Expr ⊗ Expr | Var | c
Type ::= int | real | fixed<c,c> | vector<Type>
⊕∈{&&,||,...} �∈{<,<=,==,...} ⊗∈{+,-,*,...}

Fig. 1. The Syntax of the Statheros Base Language

Semantics. The semantic representation of a PP without infi-
nite loops is a joint probability distribution over its variables,
which can be encoded as a Bayesian Network (BN). Each node
xi corresponds to a distribution assignment, and dependencies
between nodes (e.g., def-use) represent conditional probability
relationships. To describe a joint probability distribution, one
takes the conditional probability of each variable xi condi-
tional on its parent nodes in the dependence graph π(xi). Thus,
the joint distribution becomes Pr(x) = Πn

i=1Pr(xi|π(xi)).
One may then use this BN in combination with the observed
data d1...m to perform inference and obtain a posterior
distribution over model parameters, denoted Pr(x|d1...m).
MCMC-based Inference. Practitioners settle for approximate
MCMC methods, which allow one to generate samples that
approach the true desired distribution. Metropolis-Hastings
is the most common MCMC inference algorithm. First, a
proposal distribution q(x) (which a PPL automatically selects)
is used to propose a new sample xp based on a current sample
xc. These are then used to score the likelihood of the observed
data di. If the proposed sample leads to a higher likelihood of
the data, it is more likely to be accepted. Therefore, the most
important step is the computation of the acceptance ratio, acc.
To avoid underflow, one typically computes its logarithm:

log(acc)=
m∑
i=1

(
log(Pr(di|xp))+log(Pr(xp))+log(q(xc|xp))

)
−

m∑
i=1

(
log(Pr(di|xc))+log(Pr(xc))+log(q(xp|xc))

) (1)

A PPL abstracts away all these details from the developer.
Although Statheros builds the structure of the Bayes Net at
compile time, the values and sizes of the data vectors used
by MCMC need not be known at compile time.

Fixed-Point Arithmetic. Fixed-point arithmetic is an
alternative to the IEEE 754 floating-point standard [1],
particularly for embedded systems [8], which allows one to
represent a real number as an integer. Formally, given a word
size w∈{8,16,32,64,...}, a fixed-point type is a tuple 〈S,N,F 〉
where S is the sign bit, N ∈N is the number of integer bits
and F =w−1−N is the number of fractional bits. This means
that all numbers that can be represented are contained in the
interval [−2N ,2N −2−F]. All standard arithmetic operations
can be implemented by using integer operations and bit shifts.
Statheros by default uses a round-to-nearest mode to round
fixed-point results to their closest representation.

B. Analysis and Compilation Algorithm

Algorithm 1 presents Statheros’s compilation procedure.
We operate on the program’s data-flow graph G that models
the dependencies between all variables. We use a combination
of static program analyses (GetDistributionIntervals,
GetLikelihoodIntervals, and SelectSize) to determine
the worst-case model and likelihood interval bounds, stored
in IM and ILL, respectively. These are then used to compute
NM and NLL, the number of integer bits for the model
and likelihood’s respective fixed-point types, as well as their
respective number of fractional bits FM and FLL. We then use
aggressive compiler transformations (AddDynamicChecks
and ConstPropAndMemoization) that allow us to improve
speed by leveraging the properties of fixed-point arithmetic.

Algorithm 1 Compilation Procedure
Inputs: Probabilistic program P , Word size w
G← Translate(P)
IM ,ILL←∅ . Initialize Data Structures
IM←GetDistributionIntervals(G)
ILL←GetLikelihoodIntervals(G,IM)
NM ,FM ,NLL,FLL←SelectSize(IM ,ILL,w)
P1←AddDynamicChecks(P,NM ,FM ,NLL,FLL)
P2←ConstPropAndMemoization(P1,G,NM ,FM ,NLL,FLL)
return P2,〈NM ,FM 〉,〈NLL,FLL〉

Translation. The syntax presented in Fig. 1 is high-level so we
first simplify the control flow and create the data-flow graph G.
Each variable corresponds to a node in this graph. We desugar
the conditional choice into a mixture distribution primitive.
We desugar all observe statements to bernoulli indicator
variables, whose argument p is the result of the Boolean
evaluation of the observed condition (e.g., bernoulli(x>y)).
Upon obtaining G, we propagate our analysis through it. After
the optimizations, Statheros generates the low-level C++ code
that can be consumed by the platform’s backend compiler.

III. DOMAIN-SPECIFIC FIXED-POINT SELECTION

Statheros employs fixed-point range analysis on both
model distributions and log-likelihoods. Our technical insight
is that existing Bayesian methods [4] for propagating intervals
can (a) be applied to the new problem of determining the
best fixed-point configuration and (b) be fully automated as a
program analysis. By deducing the interval that all variables
lie in, we can choose a configuration that will avoid overflows.

A. Propagating Intervals through Model Distributions
The first step of range analysis of any MCMC computation

is bounding the range of the samples themselves. As with
existing PPLs, we require the posterior to have the same
support as the prior, hence we only need to bound the range of
the program’s prior distributions. However, this still seems in-
tractable: even obtaining interval bounds on simple Gaussians
seems hopeless, since their support is (−∞,+∞). However,
random number generator (RNG) implementations can be
truncated after a certain point (e.g., ±6σ) [18]. Our analysis
exploits the fact that these intervals are finite in practice.

Statheros performs interval propagation on the data-flow
graph G built during Translation. We propagate data-flow
facts (each variable’s interval) through successive variables
and statements and store them in IM . To determine each
variable’s range, we perform interval analysis on its assigned
expression using GetDistributionIntervals. In IM , each
variable is mapped to an interval [a,b], where a,b∈R∪{±∞}
and a ≤ b. The interval analysis of deterministic arithmetic
expressions (e.g., x + y) is standard [7], but the interval
analysis of distributions is not. We now detail this analysis.
• Bernoulli: For r|=bernoulli(p), we know r∈{0,1},

hence IM [r]=[0,1].
• Uniform: Assume Statheros has already deduced x∈ [a,b]

and y ∈ [c, d]. For r|=uniform(x,y), we infer that
IM [r]=[min(a,c),max(b,d)]. If the analysis determines that
the expression is ill-formed, meaning min(a,c)>max(b,d),
Statheros raises an error.

• Gaussian: Assume Statheros has already deduced µ∈ [a,b]
and σ∈ [c,d]. For r|=normal(µ,σ), we infer that IM [r]=
[a − K · d, b + K · d] where K represents the maximum
number of standard deviations the RNG sampler permits.
For common RNGs, K=6, but a user can provide a different
value (or RNG), which would be used by the analysis.

We support several other common distribution classes: mixture
distributions can be bounded by taking the union of the
interval bounding each component distribution. Heavy-tailed
distributions like Cauchy are also supported by this analysis as
their RNGs still truncate the probability mass to lie within a
finite range (that is a function of the distribution’s parameters).
B. Propagating Intervals through Likelihoods

To perform the MCMC acceptance step, Statheros must
score the likelihood of proposed samples as in Eq. 1. Each
variable has a log-likelihood function through which Statheros
will statically propagate intervals (stored in ILL) via the
GetLikelihoodIntervals pass. Since these log-likelihoods
are also parameterized by sampled model values, Statheros
leverages the previously-computed distribution intervals, IM .
Likewise, for any log-likelihoods involving observed data
variables d, we simply use IM [d] = [mini(di), maxi(di)]
as their interval, provided these values are known a priori.
If they are not, we simply use the range analysis of the
observed variable’s distribution. Lastly, since a log-likelihood
is −∞ for regions outside of a distribution’s support, we
keep track of this separately and ignore it for the size

determination step as it does not influence the necessary
fixed-point size. We now detail representative cases (with
intervals not simplified for presentation):
• Bernoulli: Assume Statheros inferred p ∈ [a, b] and that

0≤a,b≤1. For r|=bernoulli(p):

ILL[r]=log([a,b])∪log(1−[a,b])

• Uniform: Assume Statheros inferred x ∈ [a, b], y∈ [c,d]
with b≤c. For r|=uniform(x,y):

ILL[r]=−log
(
[c,d]−[a,b]

)
• Gaussian: Assume Statheros inferred µ ∈ [a,b], σ ∈ [c,d],
c>0 and IM [r]=[r1,r2]. For r|=normal(µ,σ):

ILL[r]=log

(
1√

2π[c,d]

)
− 1

2

(
[r1,r2]−[a,b]

[c,d]

)2

Statheros analyzes other distributions similarly. After
bounding the range of the model’s distribution samples and
their respective log-likelihoods, the bound on the log of the
acceptance ratio log (acc) in Eq. 1 can then be determined
by standard interval arithmetic (as we can now bound all
individual terms). Sec. III-C shows how to relax this bound.
Observe Statements. A PPL, unlike conventional languages,
also supports observe statements during the log-likelihood
sum computations that condition upon Boolean predicates. If
the particular samples satisfy the predicate, the log-likelihood
sum is unchanged. However, if the predicate is violated, the
proposed sample whose likelihood was being computed is in-
stantly rejected. Since this process does not depend on the size
used, these statements can be safely ignored by the analysis.

C. Selecting Fixed-Point Representation
The next pass Statheros performs is the SelectSize pass

to select the actual fixed-point data type for both model
distributions and likelihoods. Statheros uses a separate type for
both since their respective ranges can be drastically different.
Initial Configuration. We can determine the number of inte-
ger bits for model distributions, NM , by finding the maximum
magnitude: NM = dlog2(maxvar∈Vars(|IM [var]|))e. However,
if the largest interval in IM degenerates to (−∞,+∞), then
we simply use the largest possible number of integer bits,
while still retaining 12 fractional bits. Likewise, for ILL, we
can use the conservative bound on log(acc) obtained by the
interval analysis of Eq. 1 that sums over all data points.
Minimal Configuration. Since the bound on log(acc) may
be much larger than other terms in ILL or IM , it begs the
question, does one need this guaranteed bound? The answer
is surprisingly no. We can select fewer integer bits than
the conservative static analysis would suggest and allow the
likelihood sums in the acceptance ratio to overflow, provided
the true ratio is still within the given size’s range, since fixed-
point arithmetic in two’s complement form is modular. We
only need as many integer bits as the magnitude of the largest
individual likelihood: NLL = dlog2(maxvar∈Vars(|ILL[var]|))e.
However, if an individual likelihood overflows, its negative

value wraps around and becomes positive, incorrectly regis-
tering as a high likelihood, hence why it must not overflow.
Maintaining Portability. Statheros supports multiple different
configurations for the number of integer and fractional bits.
Statheros requires at least 12 fractional bits in all cases,
as we found that using less fractional precision negatively
impacted the accuracy. Likewise, we noticed diminishing
returns of using more than 24 fractional bits. Furthermore,
though our analysis supports any amount of fractional bits,
many third-party libraries only support select sizes (e.g.,
Q16 or Q24), which may require developers to reimplement
multiple versions of standard fixed-point functions. For
simplicity in portability, we round the number of required
fractional bits, FM and FLL, to the largest multiple of
4: FM , FLL ∈ {12, 16, 20, 24} such that we still have
w−1−FM ≥NM and w−1−FLL≥NLL. All remaining bits
in w are then added to NM and NLL, respectively.

IV. DOMAIN-SPECIFIC PROGRAM OPTIMIZATIONS

Dynamic Checks. Statheros can exploit the fact that
overflows in the log-likelihood sum are permissible, provided
the end result still lies within the representable range of the
chosen fixed-point size. This follows directly from properties
of two’s complement arithmetic, described below along with
reasons why MCMC computations are a natural fit for this
arithmetic. We then simply have to check for this case at
runtime, allowing us to omit almost all checks for arithmetic
overflow, thus reducing overhead.
• Two’s Complement: When subtracting two terms in two’s
complement, as long as their difference is representable,
it does not matter if intermediate terms overflowed due to
wrap-around. Consequently, even though the two summation
terms in Eq. 1 sum over all m data observations, the
difference between the log-likelihood sums for xp (proposed
sample) and xc (current sample) is almost always inside the
representable range. The reason is, in Metropolis-Hastings,
the likelihood terms for xp and xc have similar magnitudes
due to between-sample correlation.
• Single Check: The problem of checking every arithmetic
operation now reduces to checking only if the final result is in
the representable range. Algorithm 1 adds this check with the
AddDynamicChecks function. If the two summation terms of
Eq. 1 have opposite signs, we check if the positive term minus
the max value of the likelihood type (2NLL−2−FLL) is still
greater than the negative term. This check is dynamically per-
formed in each iteration of MCMC and its overhead is negligi-
ble. If the check returns true at any iteration after burn-in, we
allow the computation to proceed but provide a warning that
the MCMC inference may not have correctly converged. This
check is also useful when the range analysis determined that
the distribution or likelihood range degenerated to (−∞,+∞),
to know if an error caused by overflow occurred (even after
using the maximum allowable number of integer bits).
Operation Optimizations. We particularly focus on reducing
the cost of integer division (which is known to be up to
5x slower than addition and multiplication). Division is an

important part of the log-likelihood computation for many
distributions (e.g., Gaussian), yet we observe that it is often
called with (1) a constant argument (e.g., Gaussian variance
is often one), or (2) successive iterations reuse the values
computed previously. We perform two optimizations:
• Constant propagation: As mentioned, many distributions
whose likelihood will be computed have constant values for
parameters, which conventional compilers cannot identify in
BNs. Our library optimization computes these values and
functions of them (e.g., the inverse of the standard deviation
in the case of a Gaussian) only once.
• Subexpression memoization: Even when distributions do
not have fully constant parameters, the same parameters
may be used for many successive likelihood calculations (for
each data point). Thus, we can memoize the subexpressions
computed in one iteration and later reuse those values,
provided they remain the same in the subsequent iteration.
We leverage this temporal approximation by checking if the
parameter is the same as in the previous function call, and if
so, returning the pre-computed value.
Library Optimizations. Our library implements efficient
functions for (1) distribution sampling, which efficiently
generate uniformly random fixed-point numbers from
uniformly random integers (which is much faster than
floating-point sampling); (2) fixed-point versions of standard
functions such as log, exp, sqrt for different fixed-point
configurations and levels of accuracy.

V. METHODOLOGY

Benchmarks. We use a diverse set of probabilistic program-
ming benchmarks used previously in the literature. We choose
benchmarks with continuous distributions and large parameters
(to observe how requiring more integer bits affects quality) as
well as BNs with only Bernoulli distributions (to see how the
number of fractional bits affects quality). GaussianStan, Gen-
derHeight, IQStan, LinReg, Plankton, and TrueSkill fall into
the former category while BetaBinomial, BurglarAlarm, Grass,
and TwoCoins fall into the latter. Altimeter and ElectricPower
are both used in embedded systems and contain categorical
distributions. SVE also represents an embedded robotics use
case and contains both triangular and mixture distributions.
The data used for inference came with each benchmark.
Implementation. To implement Statheros, we extended the
AutoPPL library [20] and its MCMC algorithm.
Inference. For each benchmark, we run 20 independent
experiments for each type and average the results. We
take 10K MCMC samples (plus 5K as burn-in) and the
posterior mean as the point estimate, est. To obtain ground
truth (gt) values, we use PSI’s exact inference [5] for
Altimeter, BetaBinomial, BurglarAlarm, ElectricPower,
GenderHeight, and Grass. For all others, we run WebPPL
[15] for 106 samples and take the mean as ground truth.
Experimental error is computed as | gt−est

gt |.
Experimental Setup. We validate Statheros’s functionality
by comparing the accuracy and runtime of our fixed-point
versions of standard probabilistic programs with both 32-bit

0.0

5.0

10.0

15.0

20.0

25.0

Sp
ee

du
p

A
lti

m
et

er

B
et

aB
in

om
ia

l

B
ur

gl
ar

A
la

rm

E
le

ct
ri

cP
ow

er

G
au

ss
ia

nS
ta

n

G
en

de
rH

ei
gh

t

G
ra

ss

IQ
St

an

L
in

R
eg

Pl
an

kt
on

SV
E

Tr
ue

Sk
ill

Tw
oC

oi
ns

G
eo

M
ea

n0.0

0.02

0.04

0.06

0.08

R
el

at
iv

e
E

rr
or

Program Version
AutoPPL-64
AutoPPL-32
Statheros

Fig. 2. Arduino Runtime and Accuracy

0.0

2.0

4.0

6.0

8.0

10.0

Sp
ee

du
p

A
lti

m
et

er

B
et

aB
in

om
ia

l

B
ur

gl
ar

A
la

rm

E
le

ct
ri

cP
ow

er

G
au

ss
ia

nS
ta

n

G
en

de
rH

ei
gh

t

G
ra

ss

IQ
St

an

L
in

R
eg

Pl
an

kt
on

SV
E

Tr
ue

Sk
ill

Tw
oC

oi
ns

G
eo

M
ea

n0.0

0.02

0.04

0.06

0.08

R
el

at
iv

e
E

rr
or

Program Version
AutoPPL-64
AutoPPL-32
Statheros

Fig. 3. PocketBeagle Runtime and Accuracy

0.0

2.0

4.0

6.0

8.0

Sp
ee

du
p

A
lti

m
et

er

B
et

aB
in

om
ia

l

B
ur

gl
ar

A
la

rm

E
le

ct
ri

cP
ow

er

G
au

ss
ia

nS
ta

n

G
en

de
rH

ei
gh

t

G
ra

ss

IQ
St

an

L
in

R
eg

Pl
an

kt
on

SV
E

Tr
ue

Sk
ill

Tw
oC

oi
ns

G
eo

M
ea

n0.0

0.02

0.04

0.06

0.08

R
el

at
iv

e
E

rr
or

Program Version
AutoPPL-64
AutoPPL-32
Statheros

Fig. 4. Raspberry Pi Runtime and Accuracy

and 64-bit floating-point versions written in AutoPPL. To
study how the embedded, resource-constrained setting affects
these factors, we perform the evaluation on the following
boards: an Arduino Due microcontroller (32-bit Atmel
SAM3X8E M3, no FPU), a PocketBeagle SBC (32-bit
Octavo OSD3358 A8, has FPU), and a Raspberry Pi 3
B+ SBC (64-bit Broadcom BCM2837 A53, has FPU).
We compile to each platform using the gcc-arm compiler
toolchain with -O3 optimizations on C++17.

VI. EVALUATION

A. Execution Time
The upper plots of Figs. 2 - 4 present the speedup ratios rel-

ative to double-precision (horizontal line). The X-axis shows
each benchmark; the Y-axis shows speedup. The bars represent
single-precision computation (AutoPPL-32) and Statheros.

For the Arduino, the geomean speedup of Statheros
compared to AutoPPL-32 and AutoPPL-64 was 11.54x
and 16.91x, respectively. Statheros’s Arduino raw runtimes
ranged from 20ms (GenderHeight) to 427ms (LinReg). The
difference stems from the lack of an FPU on the Arduino. The
software-implemented floating-point (compiled using GCC)
requires more instructions to complete arithmetic operations.
Double-precision computation is slower, due to both more
bit operations and transferring more data (each is 64-bit). In
contrast, fixed-point computation uses only integer operations.

For the PocketBeagle, the geomean speedup of Statheros
compared to AutoPPL-32 and AutoPPL-64 was 3.77x and
5.33x, respectively. Statheros’s PocketBeagle raw runtimes
ranged from 3.8ms (TwoCoins) to 98ms (LinReg). For the
Raspberry Pi, the geomean speedup of Statheros compared
to AutoPPL-32 and AutoPPL-64 was 2.15x and 3.04x,
respectively. Statheros’s Raspberry Pi raw runtimes ranged
from 5.6ms (TwoCoins) to 119ms (LinReg).

Statheros was faster than float and double on all benchmarks
on both the Arduino and PocketBeagle. For the Raspberry Pi,
Statheros offered similar speedups on all benchmarks except

TABLE I
STATHEROS CONFIGS: 〈I,F 〉, I INTEGER AND F FRACTIONAL BITS.

Benchmarks Param. Config Likelihood Config
Altimeter [16] 〈7,24〉 〈7,24〉
BetaBinomial [5] 〈7,24〉 〈19,12〉
BurglarAlarm [5] 〈7,24〉 〈7,24〉
ElectricPower [12] 〈7,24〉 〈7,24〉
GaussianStan [3] 〈11,20〉 〈19,12〉
GenderHeight [5] 〈11,20〉 〈11,20〉
Grass [5] 〈7,24〉 〈7,24〉
IQStan [3] 〈11,20〉 〈19,12〉
LinReg 〈7,24〉 〈19,12〉
Plankton [10] 〈7,24〉 〈7,24〉
SVE [6] 〈7,24〉 〈19,12〉
TrueSkill [6] 〈11,20〉 〈7,24〉
TwoCoins [5] 〈7,24〉 〈7,24〉

Plankton, SVE, and LinReg – their speedup is smaller because
the Gaussian likelihoods require expensive division operations.

B. Accuracy
The lower plots of Figs. 2 - 4 present the error of our

inferred estimates relative to ground truth.
For the Arduino, the geomean error ratios over all bench-

marks were 0.0239 (Statheros), 0.0238 (AutoPPL-32), and
0.0218 (AutoPPL-64). For the PocketBeagle and Raspberry
Pi, the geomean error ratios over all benchmarks were 0.01
for Statheros, AutoPPL-32 and AutoPPL-64 (note that the
benchmark errors have a small amount of variation due to
randomness). The PocketBeagle and Raspberry Pi have such
similar results since both use the same math library implemen-
tation that ships with the Linux kernel. In contrast, the Arduino
uses a different math library specific to embedded systems.

On all benchmarks, the accuracy of Statheros with the
inferred fixed-point sizes was comparable to both 32-bit and
64-bit floating-point AutoPPL, and in all benchmarks, the error
was less than 10%. Models with smaller values (particularly
with Bernoulli distributions) benefited from the precision
of more fractional bits. Conversely, models with larger
parameters could attain high accuracy with less precision.

To study how the inference execution itself changed
(instead of its result), we measured the MCMC acceptance

ratios. In all cases except LinReg, the difference in acceptance
ratios between AutoPPL-32, and Statheros was small, under
7%. For LinReg, the difference in acceptance ratio was
slightly larger at 22%, with Statheros being slightly more
efficient at accepting proposed samples.
Configurations. Table I presents the optimal configurations of
〈NM ,FM 〉 and 〈NLL,FLL〉 that Statheros inferred. Statheros
was able to infer a finite bound in all cases except for
BetaBinomial, GaussianStan, IQStan, and SVE. Additionally,
it was critical to use this analysis, as we previously found that
naively using standard sizes everywhere (e.g., 〈15,16〉) led to
inaccurate results. As expected, there was a strong correlation
between the model parameter values and the fixed-point pa-
rameter configuration. Many benchmarks only have 7 integer
bits for model values, but significantly more for the likelihood.
This is because for these models, the interval analysis infers
that the log-likelihood sum can be a negative number
that is large in magnitude (small probability events have
log-likelihoods approaching −∞). Likewise, a Gaussian’s σ
could be small (σ � 1), which leads to a large likelihood.
This also justifies the choice of having separate fixed-point
types for model values and likelihoods. For BetaBinomial,
GaussianStan, IQStan, and SVE, the likelihood interval degen-
erated to (−∞,+∞) in a manner that could not be ignored by
Statheros’s analysis. For these, we set the number of integer
bits for the log-likelihood to be the maximum of the possible
settings (19). Furthermore, in all cases, the dynamic check
never reported an error, meaning that all benchmarks tolerated
the approximation induced by their respective configurations.

C. Impact of Optimizations
Fully checking for overflows on every arithmetic operation

added significant overhead to inference, taking 2.74x more
time on average and 3.94x more time in total across all
13 benchmarks. By keeping only a single dynamic check
to detect when the difference of model log-likelihoods lies
outside the representable fixed-point range, Statheros adds
essentially no overhead to detect erroneous results.

Memoization improved our execution time by 61.8%
on average for the eight impacted benchmarks. LinReg
experienced the biggest improvement, taking only 18.1% of
the original execution time, because it operates on a large data
set (which makes it expensive to calculate the log-likelihood).

VII. RELATED WORK

From a language design standpoint, the majority of PP
languages are sample-observe, but none support fixed-point
computations. Probabilistic-C [13] is the closest in spirit to
ours, though they support only floating-point data types and
the code is not publicly available. Stan [3] is another popular
language that compiles to low-level code, but its inference
algorithm requires high (double) precision [2].

There is significant work in the approximate computing
literature showing the benefits of lowering precision
[19]. Though much of this work targets non-probabilistic
techniques, there have been recent developments in lowering
precision for Bayesian Inference [9], [17]. Most similar to ours

is ProbLP [17], which compiles discrete Bayesian Networks
to arithmetic circuits with user-specified precision. However,
our work allows for both discrete and continuous models
more expressive than arithmetic circuits, and our MCMC
inference is more general than ProbLP’s exact inference.

There is prior work in using low-precision for probabilistic
inference at the hardware level [9], [11], [21]. However, these
accelerators achieve gains by specializing hardware layouts for
a specific class of problems, such as logistic regression [11]
or image restoration [9]. Therefore, these architectures cannot
be applied toward arbitrary Bayesian models and are thus
not as expressive as a full-scale PPL. Our goal instead is to
support existing general purpose hardware, but we anticipate
that our results can also be useful for custom hardware.

VIII. CONCLUSION

Statheros is a language and compiler for allowing config-
urable low-precision probabilistic programming. We showed
that probabilistic programs can operate with low-precision
fixed-point computations. Our results show a significant
performance improvement over single-precision float on three
platforms – 11.5x (Arduino), 3.8x (PocketBeagle), and 2.2x
(Raspberry Pi) with virtually no accuracy losses.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants No.
1846354 and 2008883, Sloan Foundation, and a Facebook gift.

REFERENCES

[1] IEEE standard for floating-point arithmetic. ANSI/IEEE Std 754-1985.
[2] B. Carpenter. Edward vs Stan performance. In The Stan Forum, 2017.
[3] B. Carpenter et al. Stan: A probabilistic programming language. JSS’17.
[4] S. Ferson et al. Constructing probability boxes and Dempster-Shafer

structures. Technical report, Sandia National Lab., 2015.
[5] T. Gehr et al. PSI: Exact symbolic inference for probabilistic programs.

In CAV, 2016.
[6] A. Gordon et al. Probabilistic programming. In ICSE FoSE. 2014.
[7] B. Jeannet et al. Apron: A library of numerical abstract domains for

static analysis. In CAV, 2009.
[8] S. Jha et al. Synthesis of optimal fixed-point implementations of

numerical software routines. 2013.
[9] G. Ko et al. Accelerating Bayesian inference on structured graphs

using parallel Gibbs sampling. In FPL, 2019.
[10] J. Laurel et al. Continualization of probabilistic programs with

correction. In ESOP, 2020.
[11] S. Liu et al. An unbiased MCMC FPGA-based accelerator in the land

of custom precision arithmetic. IEEE Trans. on Comp., 2016.
[12] O. Mengshoel et al. Sensor validation using Bayesian networks.

i-SAIRAS, 2008.
[13] B. Paige et al. A compilation target for probabilistic programming

languages. In ICML, 2014.
[14] N. Piatkowski et al. Integer undirected graphical models for resource-

constrained systems. Neurocomputing, 2016.
[15] D. Ritchie et al. Deep amortized inference for probabilistic programs.

arXiv, 2016.
[16] J. Schumann et al. Towards real-time, on-board, hardware-supported

sensor and software health management for unmanned aerial systems.
International Journal of Prognostics and Health Management, 2015.

[17] N. Shah et al. ProbLP: A framework for low-precision probabilistic
inference. In DAC, 2019.

[18] D. Thomas et al. Gaussian random number generators. ACM Computing
Surveys (CSUR), 39(4), 2007.

[19] Q. Xu et al. Approximate computing. IEEE Design & Test, 2015.
[20] J. Yang et al. AutoPPL; https://jamesyang007.github.io/autoppl/. 2020.
[21] X. Zhang et al. Statistical robustness of Markov chain Monte Carlo

accelerators. ASPLOS, 2021.

