
ViX: Analysis-driven Compiler for Efficient
Low-Precision Variational Inference

Ashitabh Misra, Jacob Laurel, Sasa Misailovic
University of Illinois Urbana-Champaign

Department of Computer Science
{misra8, jlaurel2, misailo}@illinois.edu

Abstract—As large quantities of stochastic data are processed
onboard tiny edge devices, these systems must constantly make
decisions under uncertainty. This challenge necessitates principled
embedded compiler support for time- and energy-efficient prob-
abilistic inference. However, compiling probabilistic inference to
run on the edge is significantly understudied, and the existing re-
search is limited to computationally expensive MCMC algorithms.
Hence, these works cannot leverage faster variational inference
algorithms which can better scale to larger data sizes that are
representative of realistic workloads in the edge setting. However,
naively writing code for differentiable inference on resource-
constrained edge devices is challenging due to the need for
expensive floating point computations. Even when using reduced
precision, a developer still faces the challenge of choosing the right
quantization scheme, as gradients can be notoriously unstable in
the face of low-precision.

To address these challenges, we propose ViX which is the first
compiler for low-precision probabilistic programming with vari-
ational inference. ViX generates optimized variational inference
code in reduced precision by automatically exploiting Bayesian
domain knowledge and analytical mathematical properties to
ensure that low-precision gradients can still be effectively used.
ViX can scale inference to much larger data-sets than previous
compilers for resource-constrained probabilistic programming
while attaining both high accuracy and significant speedup.
Our evaluation of ViX across 7 benchmarks shows that ViX-
generated code is up to 8.15× faster than performing the same
variational inference in 32-bit floating point and also up to 22.67×
faster than performing the variational inference in 64-bit double
precision, all with minimal accuracy loss. Further, on a subset of
our benchmarks, ViX can scale inference to data sizes between
16− 80× larger than the existing state-of-the-art tool Statheros.

I. INTRODUCTION

As edge and IoT computing becomes ever more pervasive,
developers are increasingly having to extract high performance
over large datasets on low-power devices with limited compute
resources. Indeed, a key challenge in TinyML has been the need
for programming systems which can optimize data-intensive
computations for heavily resource-constrained edge-devices, in
which even a floating point unit is a luxury. Generating efficient
code for those devices is complicated by the fact that (a) data
intensive computations already require specialized, domain-
specific programming frameworks, which are often not tailored
to the resource-constrained edge setting and (b) the few existing
domain specific languages optimized for edge applications are
often severely limited in their scope.

These difficulties are especially true of probabilistic pro-
gramming [8], which has emerged as a powerful domain
specific programming paradigm for expressing stochastic un-

certainty in models performing inference over data. Despite the
multitude of probabilistic programming languages, only one,
Statheros [12], has been developed for compiling low-precision
probabilistic inference procedures to tiny, resource-constrained
edge processors. Further, Statheros only supports a restricted
version of MCMC inference algorithm and has difficulty scaling
to larger datasets. Thus to make inference on a tiny edge device
accurately scale to larger data sizes that are often encountered
in applications, a different inference strategy is needed.

Variational Inference (VI) [5] has emerged as a highly
scalable approximate Bayesian inference technique that re-
formulates inference as an optimization problem. Since VI
is by design an approximate inference method, it represents
an attractive use case for fixed-point quantization since the
inferred posteriors need not be exact to begin with. However,
performing any type of gradient-based optimization in reduced
precision is quite challenging (as shown in Deep Learning [9]),
especially in the face of significant resource constraints on
the device. Furthermore, our goal of efficient, low precision
VI at the edge is complicated by another challenge. While
existing works [6] utilize fixed-point gradient optimization,
these works leverage properties of the computation’s structure
that do not always hold for probabilistic programs. The reason
is that, unlike highly structured models (e.g. neural networks),
the expressivity of probabilistic programming languages means
different programs can have drastically different model struc-
ture. Further, unlike related works targeting FPGAs [2], [6],
our setting, on a tiny, resource-constrained CPU precludes us
from leveraging expensive customizable hardware.
ViX To address these challenges, we propose ViX which is a
general probabilistic programming framework for automating
differentiable, variational inference with reduced precision. To
make differentiable inference tractable, ViX must ensure that
gradients computed in low precision do not unnecessarily
explode or underflow while still maintaining enough precision
for ensuring the gradient descent steps successfully converge.
Furthermore, ViX is able to use a custom range analysis and
leverage properties of fixed-point arithmetic in a way that is
tailored to the structure of variational inference in order to scale
to much larger datasets than any state-of-the-art probabilistic
programming language for TinyML platforms.
Evaluation We evaluate ViX on 7 benchmark probabilistic
programs. We perform this evaluation on an Arduino Due
computing platform. ViX code using fixed-point precision is

Model :== Latent+ ; Observed+ ; DistStmt+ ; Infer(M,η)
Latent :== Variable<Type>(Var)

Observed :== Constant<Type>(Var , c)
DistStmt :== Var = DistExpr | Expr

| for (int i=c1; i<c2; i++){
Var = DistExpr }

DistExpr :== beta<Type>(Expr,
| uniform<Type>(Expr, Expr)
| normal<Type>(Expr, Expr)

Expr :== Expr ⊗ Expr | Constant<Type>(c)
| Variable<Type>(Var) | sqrt<Type>(Expr)
| log<Type>(Expr) | pow<Type>(Expr)

Type :== float | double | Fixed<int,int>

Fig. 1. The Syntax of the ViX Base Language

up to 22.67× faster (geomean 11.38×) than a standard 64-
bit double precision version and up to 8.15× faster (geomean
5.08×) compared to a standard 32-bit floating-point version.
Further, we compare ViX to Statheros, a state-of-the-art MCMC
based reduced-precision probabilistic programming language
[12] to highlight how ViX is significantly better at scaling
to larger data sets. Specifically, we show how on Bayesian
regression tasks, ViX scales to 16, 000 data observations, which
is between 16-80× more observations than Statheros.

To summarize, our main contributions are (1) Fixed-point
Variational Inference of probabilistic programs: ViX is the
first system for compiling probabilistic programs to fixed-point
precision variational inference routines (2) Static Analysis:
ViX supports a new range analysis for abstractly interpreting
the ELBO and its gradient in order to ensure the selected
precision does not suffer over-flows or under-flows. (3) Eval-
uation: Our evaluation on multiple probabilistic programming
benchmarks showcases how ViX code is faster than both 32-
bit floating-point and 64-bit double precision and can scale to
much larger datasets than the existing state-of-the-art.

II. VIX PRELIMINARIES

Language Syntax and Semantics Our core language is
syntactically embedded inside of C++. The base syntax is
given in Fig. 1. The syntax allows the developer to build
the Bayesian network corresponding to the probabilistic pro-
gram. Additionally, the syntax allows the developer to specify
arithmetic expressions, which will ultimately be compiled into
computational graphs that the variational inference engine can
automatically differentiate through.

The semantic meaning of a probabilistic program is a joint
posterior distribution over all the latent variables in the pro-
gram. As shown in Fig. 1, the latent variables are syntactically
specified with the Variable<Type>(Var) command, whereas
observed data is specified with Constant<Type>(Var, c).
Variational Inference VI is an approximate inference method
that poses Bayesian inference as an optimization problem. The
basic technique is shown in Algorithm 1 which is what the
Infer statement in Fig. 1 ultimately does. In VI, one chooses
to approximate each latent variable’s posterior distribution,
p(τ |d) (where τ is the latent and d are data observations)
with an independent variational family approximation, qθ(τ),
often called the guide distribution. The guide distribution will

be chosen to have a tractable analytical density, typically a
Gaussian. Thus performing inference involves finding the best
parameters θ for the variational guide so that this posterior
approximation is as consistent with the observed data as possi-
ble. As an example, if one knows the posterior over some latent
variable is unimodal, one can choose the variational family to
be a Gaussian and optimize for the best mean. The quality of
how well the variational guide approximates the true posterior is
determined by evaluating the Evidence lower bound (ELBO),
shown in Equation 1. Maximizing the ELBO corresponds to
minimizing the KL Divergence between the true posterior and
the variational approximation.

ELBO(qθ) = E
[
log(

qθ(τ)

p(τ)p(d|τ)
)

]
(1)

In order to optimize the ELBO, one has to perform gradient
descent with respect to the parameters, which we denote as ∇θ.
The formula is given in Equation 2 as:

∇θELBO(qθ) = E
[
log

(
qθ(τ)

p(τ)p(d|τ)

)
· ∇θ log(qθ(τ))

]
(2)

ViX will automate the reduced precision evaluation of the
ELBO (and its gradient) as well as the choosing, initializing
and optimizing of the variational guide distributions. A key
challenge that arises when performing this computation in
reduced precision is ensuring the empirical evaluation of both
the ELBO and its gradients does not overflow. Thus, one of our
core contributions is a static analysis to prevent such overflows.

Algorithm 1 Generic VI Algorithm
1: Inputs: unnormalized posterior p(τ)p(d|τ), data observations d, variational guide

qθ(τ) for each latent, learning rate η, number of iterations M
2: θ ← initialize(θ)
3: for m = 1 to M do
4: g ← 1

n

∑n
i=1 log(

qθ(τi)

p(τi)p(d|τi)
) ·∇θ(log(qθ(τi)) ▷ ELBO gradient

5: θ ← θ + η · g
6: end for

Fixed-Point Arithmetic Fixed-point arithmetic precision [17]
is well-known alternative to floating-point that is particularly
useful for hardware without a native support for floating point
operations. For fixed-point precision one represents a real
number with a fixed number of integer bits I , fractional bits
F , and typically 1 bit for the sign. Hence, the numeric range
for signed fixed-point precision numbers is [−2I , 2I − 2−F].

III. COMPILATION

We now present the core of ViX’s compilation algorithm.

Algorithm 2 ViX Compilation
1: Inputs: Probabilistic Program P , wordsize w
2: G← ConvertToBN(P) ▷ Builds Bayes Net Computational Graph
3: [esmallest, ebiggest], Bounds← GetELBOBounds(G) ▷ Abstract ELBO
4: I,K, F ← ComputeScale([esmallest, ebiggest], w) ▷ Infer bit sizes
5: P ← ApplyScale(P, I,K, F) ▷ Applies the Scaling
6: P ← InitializeGuide(P, Bounds) ▷ Initialize all guide functions
7: return P

A. Abstracting the ELBO
In order to statically determine the fixed-point precision

configuration, we must perform a range analysis on the ELBO
and the ELBO’s gradient. Thus we need to abstractly compute
these two expressions over the entire possible parameter space.
This computation becomes difficult as it requires we also
abstract the gradient range. However we build upon prior work
[13], [14] that allows us to abstractly interpret the numeric
range of values computable with automatic differentiation.

For any function f : Rm → Rp (e.g. log(x) or a probability
density, p(x)) we can define its interval arithmetic lifting as
f ♯ : IRm → IRp. Likewise all primitive arithmetic oper-
ations have corresponding interval arithmetic liftings. These
liftings are how we will abstractly perform the range analysis.
To perform the range analysis on the ELBO gradient, g of
Algorithm 1 (line 4), we compute the following inside the
GetELBOBounds function of Algorithm 2 (line 3),:

[glow, gup] = log♯

(
q♯θ([τlow, τup])

p♯([τlow, τup])p♯([dlow, dup]|[τlow, τup])

)
·♯ ∇♯

θ(log
♯(q♯θ([τlow, τup]))) (3)

where [τlow, τup] represent the range of values that samples
from the variational distribution can take on and [dlow, dup]
represents the range of the observed data samples. All arith-
metic operations including the multiplications and division are
likewise performed using the interval abstract domain.

The interval abstraction of the variational guide’s likelihood
gradient, ∇♯

θ, is computed using interval automatic differenti-
ation as in [13]. We must also compute the range of the log-
likelihoods themselves not just their gradients.

Distribution Range Analysis. To abstract the range of the
likelihoods, p♯(·), we not only need to know the range of the
data or variational samples whose likelihood we are scoring
([dlow, dup] and [τlow, τup], respectively), but also the parame-
ters of each distribution in the original program which govern
p(·). Determining these parameter ranges requires knowing the
support of the distributions. To abstractly compute the range of
the support of these distributions, we follow the technique of
[12] to propagate intervals through the model for each latent
and observed variable. This technique also makes the following
assumption that for distributions like the Gaussian, while the
true support is (−∞,∞), in practice this range can be truncated
to finite bounds. Thus while not sound, this heuristic technique
gives practically useful bounds. The interval abstraction of the
support of the distributions (adapted from [12]) is given below:

1) normal♯([µl, µu], [σl, σu]) = [µl − 3σu, µl + 3σu]
2) uniform♯([al, au], [bl, bu]) = [min(al, bl),max(au, bu)]
3) beta♯([al, au], [bl, bu]) = [0, 1]

Extending the abstraction to other distributions is analogous,
one merely returns the interval of the distribution’s support or
a truncation of that support to finite bounds if the support is
unbounded. Thus for each abstracted likelihood p♯(·), we obtain
an interval range on the parameters governing it as well as an
interval range over the data values whose likelihood we score.

B. Determining Integer and Fractional Bits

The ViX compiler will save the lower and upper interval
bounds for all intermediate sub-expressions, likelihoods, and
distributions. Thus we can heuristically over-approximate the
largest range any value can take on over the course of the prob-
abilistic program execution. As a heuristic, we only abstractly
evaluate the ELBO and its gradient for a single step of VI.

We let the largest interval bound of any possible expression
or sub-expression be given as [esmallest, ebiggest]. In theory, one
would need ⌈log2(max(|esmallest|, |ebiggest|))⌉ integer bits to en-
sure no overflow. However, even if one is not able to allocate
sufficient integer bits to support this range, our analysis can
simulate this number of integer bits by using scaling.
ELBO scaling. The key way in which we can avoid using too
many integer bits is by scaling down the ELBO optimization
to a more manageable numeric range. As the goal of VI is to
optimize the ELBO, we can scale the ELBO objective by any
positive constant and the parameter θ that maximizes the ELBO
will be the same. Thus we have the following equality for any
positive real C ∈ R>0.

argmax
θ

ELBO(qθ) = argmax
θ

C · ELBO(qθ) (4)

Furthermore, because we can choose any positive constant to
divide the objective function by, we choose a power of two
(C = 2K), which allows the division to be implemented by
our compiler with fast bitshift (>>) operations.

Thus the optimization problem reduces to performing
gradient descent on 1

2K
ELBO(qθ) instead of directly on

ELBO(qθ). We can leverage this insight further, since by the
linearity of both derivatives and expectations we know that:

∇θ
1

2K
ELBO(qθ) = E

[
1

2K
· log(qθ(τ)

p(τ)p(d|τ)
) · ∇θ log(qθ(τ))

]
Thus we can scale down the intermediate sub-expressions

(log(qθ(τ)
p(τ)p(d|τ)) and ∇θ log(gθ(τ))) with a bitshift of K before

they become too large and potentially overflow. This allows us
to use less integer bits than a fully sound, conservative interval
analysis would permit. We will see in Section V that this scaling
does not significantly affect the end to end accuracy of the
inference. Programmatically, this step will be implemented by
replacing line 4 of Algorithm 1 with:

g ← 1

n

n∑
i=1

1

2K
log(

qθ(τi)

p(τi)p(d|τi)
) · ∇θ(log(qθ(τi))

Choosing K. As bitshifting the fixed-point numbers in the
evaluation of the ELBO gradient by K shifts allows us to use
less integer bits than a naive interval analysis would suggest, the
problem now becomes how to choose the right K? The idea will
be to use less integer bits than ⌈log2(max(|esmallest|, |ebiggest|))⌉,
and whatever the difference is will be K. We first define a
hyper-parameter α ∈ [0, 1]. We compute the number of integer
bits I as:

I = ⌈α · log2(max(|esmallest|, |ebiggest|))⌉ (5)

K = ⌈log2(max(|esmallest|, |ebiggest|))⌉ − I (6)

Intuitively if ⌈log2(max(|esmallest|, |ebiggest|))⌉ is the true
number of integer bits we need, we can effectively simulate that
many bits using only I integer bits, but with everything first
scaled down by K bitshifts. We lastly compute the fractional
bits as:

F = w − 1− I (7)

where w is the wordlength (e.g. 32-bit, 64-bit, etc.) and the 1
accounts for a sign bit. This entire process is performed inside
the ComputeScale function (line 4, Algorithm 2). During
this procedure, ViX first checks if the number of fractional
bits F computed in Eq. 7 is at least 8. If it is not (e.g. too
many of the bits are being allocated for integer bits), then ViX
will by default, force F to 8. This means the number of integer
bits used will be less than the value of I originally computed in
Eq. 5, i.e., the new number of integer bits will be I = w−1−8.
To account for using less than the necessary number of integer
bits, ViX will recompute the shift amount K in Eq. 6 using the
new value of I .

This shifting is critical for making reduced-precision VI scale
to larger data sets. Without these shifts, overflows occur leading
to erroneous results once the number of observed data samples
goes beyond a certain threshold as shown by the experiments
in Section V-C. The value of α is currently selected manually
by the developer, based on the properties of the program and
the data. In the future, we plan to automate this process.

C. Guide Initialization

The interval analysis is useful not only for determining
the number of integer bits to use, but also how to initial-
ize the variational guide functions’ parameters, as in the
InitializeGuide function (Algorithm 2 line 6). A sub-
stantial part of the success of VI stems from how well initialized
the guide functions are [15]. Since for each latent variable x in
the original program, we have an interval [xlower, xupper] stored
in Bounds, computed as in Section III.A that abstracts the sup-
port of that variable, we can use this information to initialize the
parameters of the guide function. We initialize each Gaussian
variational guide (which approximates the posterior over x) to
have its mean parameter set to xupper−xlower

2 . This technique helps
ensure that the guide’s support overlaps significantly with the
support of the respective latent variable’s prior which ultimately
gives better convergence. For the Gaussian variational guide
distributions we also put a lower bound on the standard
deviation parameter (in our experiments 0.1). ViX issues a
warning if the inference suggests a standard deviation lower
than this threshold. Intuitively, applications supported at this
resource-constrained level are expected to operate with some
amount of noise, and if very small variances are necessary, a
developer would need to resort to float or double.

IV. METHODOLOGY

Benchmarks. As differentiable inference is tailored to contin-
uous distributions, our benchmarks are continuous in nature.
Our benchmarks include standard probabilistic programming
benchmarks as well as Bayesian linear and polynomial regres-
sions. Additionally to study inference-in-the-loop, as defined in

TABLE I
VIX INFERRED CONFIGS: K+⟨I, F ⟩, I INTEGER AND F FRACTIONAL BITS

WITH BIT SHIFT K .

Benchmarks Bitshifting + Precision # Distributions
BetaBinomial [11] 1 + ⟨10, 21⟩ 2
Plankton [11] 2 + ⟨19, 12⟩ 2
LinReg [12] 2 + ⟨21, 10⟩ 52
PolyReg1 5 + ⟨23, 8⟩ 51
PolyReg2 2 + ⟨21, 10⟩ 52
Kalman1D [3] 3 + ⟨21, 10⟩ 502
HMM [3] 3 + ⟨22, 9⟩ 102

ProbZelus [3], we evaluate ViX on dynamic Bayesian networks,
each for a fixed number of time-steps. Inference-in-the-loop is
implemented as a straight line ViX program inside of an outer
for loop which corresponds to the number of timesteps. This
number is fixed and specified at compile-time, following the
setup of ProbZelus.

The BetaBinomial benchmark taken from [11] represents a
continualized model where the Binomial has been continualized
to a Gaussian (a requirement to run variational inference).
Plankton (also from [11]) is another continualized model
where one infers a continuous approximation of the number
of plankton in an ecosystem. The linear regression benchmark
requires inferring the slope and intercept of a line whose
points have been perturbed by Gaussian noise. PolyReg1 is
a polynomial regression model that infers a single coefficient
of a second-degree polynomial given noisy evaluations of
that polynomial. PolyReg2 is another polynomial regression
that infers two coefficients of a second-degree polynomial
given noisy evaluations. The last two benchmarks, HMM and
Kalman1D, correspond to the inference-in-the-loop setting, in
which we repeatedly perform inference over multiple timesteps.
The HMM benchmark (from [3]) corresponds to a Gaussian
prior over a Gaussian observed variable for monotonically
increasing set of data where we infer the posterior at each
timestep. Kalman1D (also from [3]) is another inference-in-
the-loop benchmark that infers a Gaussian posterior at each
timestep over noisy GPS data in one dimension.

Table I presents a comprehensive list of the benchmarks.
It also presents the ViX compiler-inferred fixed-point sizes,
including bit shifts, and the total number of distributions in
the Bayesian network encoded by the probabilistic program.
The number of distributions includes the number of latent and
observed variables. For the Bayesian regression benchmarks,
we later varied the amount of observed data the model condi-
tions on to study how low precision variational inference with
ViX scales, hence the configurations from Table I only apply
to the experiments of Sections V.A and V.B.
Implementation. We implemented ViX in C++ using expres-
sion templating and built upon the FPM library [10] for fixed-
point arithmetic. As our DSL is embedded in C++, we use
the gcc-arm toolchain to assist in generating the executables.
The underlying fixed-point implementation [10] requires a
minimum of 8 Fractional bits (F), and the same is enforced
by ViX. The maximum scaling amount (K) is set at 8, as any
higher can lead to an unacceptable loss in precision.
Experimental Setup. To evaluate the benefits of ViX, we
compare the accuracy and runtimes of variational inference in

Fig. 2. Speedup of ViX compared with 32-bit float and 64-bit double

reduced precision (ViX) against variational inference in both 32
and 64 bit floating point (baseline). To study how ViX’s reduced
precision variational inference scales beyond reduced precision
MCMC inference, we also compare against Statheros [12]. We
perform these comparisons on an Arduino Due (32-bit Atmel
SAM3X8E M3, no FPU). The comparison with Statheros is
performed on a CPU, as the Arduino itself lacks the memory
to store the number of data observations we want to study.

We experimentally measure accuracy by measuring the error
between the inferred posterior and the ground truth as follows:
we take the mean of the variational approximation of the
posterior as the point estimate of the latent, denoted as est,
and compute the error ratio relative to the ground truth value.
We obtain ground truth gt in two ways: for LinReg, PolyReg1,
PolyReg2, Kalman1D and HMM we obtain fixed data; for
BetaBinomial and Plankton we compute the mean of the poste-
rior obtained by running MCMC offline for 100,000 iterations.
For a single latent variable, the error ratio is computed as
Err = | gt−est

gt |; for multiple latent variables, we take the
geomean of the error ratios for each latent variable.
Variational Inference. For both the variational inference com-
parison between fixed-point (ViX), 32-bit floating-point and 64-
bit double precision, and the comparison against Statheros we
run the gradient descent in VI for 1500 iterations. For HMM
and Kalman1D we run VI at each time-step for 200 iterations,
because those streaming applications typically have low-latency
requirements and strict convergence is often not necessary for
initial time steps. We used the same learning rate of 0.01 for all
the benchmarks. We selected the bit-shifting hyperparameter α
to be 0.9 in our experiments for all benchmarks. We initialize
the parameters of the variational guide by setting the mean of
each Gaussian to be the center point of the interval that the
static analysis assigns to that latent variable.

V. EVALUATION

We study the following 3 research questions:

Fig. 3. Accuracy of ViX compared with 32-bit float and 64-bit double

• RQ1: Does performing Variational Inference for probabilistic
programs in fixed-point precision run faster than performing
the same inference in floating point or double precision on a
resource constrained edge device?
• RQ2: Is Variational Inference in fixed-point precision com-
parably accurate to performing the same inference in floating
point or double precision?
• RQ3: Can ViX and its incorporation of a bit shift scaling
factor allow Variational Inference in fixed-point precision to
scale to datasets larger than what the fixed-point precision
MCMC of existing work [12] supports?

A. RQ1: ViX Speed

Figure 2 presents the speedup ratios compared to 64-bit
double precision baseline (red horizontal line). The x-axis
presents each benchmark while the y-axis corresponds to the
speedup ratio (relative to double precision). The geomean of
the speedups of ViX (shown in blue) relative to 64-bit double
precision is 11.38× while the speedup of ViX compared to
32-bit floating point precision (shown in green) is 5.08×. The
raw runtimes of ViX ranged from 247ms (BetaBinomial) to
7.9s (Kalman1D) while for 32-bit floating point the times range
from 1s (BetaBinomial) to 63s (Kalman1D). Likewise, the raw
runtimes of 64-bit double precision on the Arduino ranged from
3.2s (BetaBinomial) to 125s (Kalman1D).

The speedup stems from the fact that the Arduino Due
like other resource-constrained edge-devices lacks hardware
support for floating-point operations, and instead has to rely
on software emulation which is significantly slower than fixed-
point arithmetic.

B. RQ2: ViX Accuracy

Figure 3 presents the error ratio of the inferred posterior
parameters returned by variational inference. The respective
geomean accuracies of ViX (shown in blue), 32-bit floating
point (shown in green) and 64-bit double precision (shown in
red) are 0.0064, 0.0059, 0.0042 respectively. In all cases the

TABLE II
VIX VS. STATHEROS FOR DIFFERENT DATA SIZES (LOWER IS BETTER, ×

REPRESENTS FAILURE)

Error Ratio for Observed Data Size N
Method Benchmark N=50 200 500 1000 8000 16000

ViX PolyReg1 0.003 0.016 0.007 0.014 0.006 0.022
PolyReg2 0.003 0.012 0.015 0.003 0.003 0.004
LinReg 0.013 0.020 0.002 0.005 0.021 0.068

Statheros PolyReg1 0.0010 × × × × ×
PolyReg2 0.0002 0.0003 0.0023 × × ×
LinReg 0.0091 0.0050 × × × ×

error ratios were less than 0.05 meaning all methods were able
to obtain comparably high precision. The results show that the
error ratios obtained by using reduced-precision are comparable
to those obtained with higher precision.

C. RQ3: ViX Scalability

Table II shows the results of how ViX scales to large data-
sizes compared to the previous state-of-the-art Statheros [12].
We define an inference failure to be a case where the inference
returns an unacceptably high error ratio which for our experi-
ments was taken to be 0.1. Thus all results in Table II are either
less than that threshold or just a failure (denoted via ×). For
the LinReg benchmark, while the MCMC inference performed
by Statheros can successfully handle ≤ 200 observed data
points, for ≥ 500 datapoints, Statheros’ MCMC encounters an
overflow that causes the entire computation to incur erroneous
results. In contrast, ViX can successfully scale VI to 16, 000
observed datapoints.

On the PolyReg1 benchmark, Statheros handles 50 ob-
servations but encounters runtime errors before 200 observed
datapoints. In contrast, ViX attains accurate inference for even
16, 000 observed datapoints thus ViX scales to at least 80×
more observed data points. Similarly, for PolyReg2, Statheros
can support observations over 500 datapoints but fails before
1000, while ViX successfully scales inference to 16, 000 ob-
served datapoints. Hence for PolyReg2, ViX supports at least
16× more observations than Statheros.

We attribute the unacceptable error of Statheros for larger
numbers of data observations to the fact that overflows eventu-
ally occur since there are not enough integer bits as Statheros
limits the number of integer bits to at most 19. In contrast,
because of how ViX uses the scaling factor K, we are able
to “simulate” having more integer bits than we actually use.
This step is precisely why ViX is able to scale to such large
datasets. If ViX did not support scaling, then LinReg would
become imprecise after 710, PolyReg1 after 250, and PolyReg2
after 650 observed data points.

VI. RELATED WORK

While there have been a few works on compiling proba-
bilistic programming languages for embedded systems [2], [4],
[12], the closest in spirit to ours is Statheros [12] as they are the
only other work that performs reduced precision probabilistic
programming in the resource constrained setting. However their
work only supports the MCMC inference algorithm instead of
variational inference, and their work is also severely limited
by scalability issues as we have shown. Also closely related
is ProbLP [16] which performs reduced precision inference,

however they only support exact inference and thus cannot scale
in the way ViX can.

Researchers also proposed performing variational inference
on FPGAs [1], [6], but these techniques do not target the
resource-constrained, CPU-only TinyML setting as we do.
Further, those works support Bayesian neural networks instead
of general probabilistic programs.

Lastly, while researchers have proposed static analyses for
range analysis to automatically infer fixed-point sizes [7], [12],
to the best of our knowledge none of these analyses have
to infer ranges over the derivative terms in an optimization
problem for differentiable inference the way ViX does.

VII. CONCLUSION

We proposed ViX, a probabilistic programming system that
automates the task of performing variational inference in re-
duced precision. We showed that reducing the precision allows
substantial speedups for inference time on resource constrained
hardware when compared to floating point and that this speedup
does not lead to sacrificing any accuracy. Furthermore we
showed that low-precision, resource-constrained variational in-
ference is still able to scale far beyond existing edge-computing
probabilistic inference platforms.

ACKNOWLEDGEMENTS

This research was supported in part by NSF Grants No. CCF-
1846354, CCF-1956374, CCF-200888, and a Sloan UCEM
Graduate Scholarship.

REFERENCES

[1] Hiromitsu Awano and Masanori Hashimoto. Bynqnet: Bayesian neural
network with quadratic activations for sampling-free uncertainty estima-
tion on fpga. In DATE, 2020.

[2] Subho S Banerjee et al. Acmc 2: Accelerating markov chain monte carlo
algorithms for probabilistic models. In ASPLOS, 2019.

[3] Guillaume Baudart et al. Reactive probabilistic programming. In PLDI,
2020.

[4] Guillaume Baudart et al. Jax based parallel inference for reactive
probabilistic programming. In LCTES, 2022.

[5] David M Blei et al. Variational inference: A review for statisticians.
Journal of the American statistical Association, 2017.

[6] Ruizhe Cai et al. Vibnn: Hardware acceleration of bayesian neural
networks. ACM SIGPLAN Notices, 2018.

[7] Claire Fang Fang et al. Fast, accurate static analysis for fixed-point finite-
precision effects in dsp designs. In ICCAD, 2003.

[8] Andrew Gordon et al. Probabilistic programming. In FoSE. 2014.
[9] Urs Köster et al. Flexpoint: An adaptive numerical format for efficient

training of deep neural networks. Neurips, 2017.
[10] Michael Lankamp et al. fpm library. 2020.
[11] Jacob Laurel and Sasa Misailovic. Continualization of probabilistic

programs with correction. In ESOP, 2020.
[12] Jacob Laurel, Rem Yang, Atharva Sehgal, Shubham Ugare, and Sasa

Misailovic. Statheros: Compiler for efficient low-precision probabilistic
programming. In Design Automation Conference (DAC), 2021.

[13] Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. A dual
number abstraction for static analysis of clarke jacobians. Proceedings
of the ACM on Programming Languages, (POPL), 2022.

[14] Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep
Singh, and Sasa Misailovic. A general construction for abstract inter-
pretation of higher-order automatic differentiation. (OOPSLA), 2022.

[15] Rajesh Ranganath et al. Black box variational inference. In Artificial
intelligence and statistics. PMLR, 2014.

[16] Nimish Shah et al. Problp: A framework for low-precision probabilistic
inference. In DAC, 2019.

[17] Randy Yates. Fixed-point arithmetic: An introduction. Digital Signal
Labs, 81(83):198, 2009.

