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A APPENDIX
A.1 Proof of Lemma A.1
We first prove the following helpful lemma:

Lemma A.1. Let 𝑓 (𝑥) : R𝑚 → R be twice differentiable 𝑥 ∈ R𝑚 . If 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓 , 𝑥) is indeterminant
then so is 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(−𝑓 , 𝑥)
Proof. If 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓 , 𝑥) is indeterminant then it has both positive and negative eigenvalues. The

eigenvalues of 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(−𝑓 , 𝑥) will just be −1 times each eigenvalue of 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(𝑓 , 𝑥), hence there
will still be both positive and negative eigenvalues meaning 𝐻𝑒𝑠𝑠𝑖𝑎𝑛(−𝑓 , 𝑥) is indeterminant. □

A.2 Full Chain Rule Proof for Intervals
The correctness of the interval bounds also follows nearly identically as the proof for zonotopes,
albeit there is a single edge case whenever ∃𝑥∗ ∈ [𝑙𝑥 ,𝑢𝑥 ] : 𝑓 ′′ (𝑥∗) = 0 and 𝑓 ′ (𝑥∗) = 0 as the
Hessian test would be inconclusive (since its determinant would be 0), but unlike with zonotopes,
we cannot ensure that the gradient at 𝑥∗ is non-zero (as we did by enforcing 𝐴 ≠ 0) since there
could be 𝑥∗ such that both 𝑓 ′ (𝑥∗) = 𝑓 ′′ (𝑥∗) = 0. If the function 𝑓 is such that there is never any
shared root of both 𝑓 ′ and 𝑓 ′′, the proof is complete as this will never happen (this is the case for
exp, log,𝜎, 𝑡𝑎𝑛ℎ) but for functions like 𝑥4 or 𝑥3 it is possibility. However any such 𝑥∗ will be a root
of 𝑓 ′′ (𝑥) · 𝑦 for any value of 𝑦, hence we can call the same verified root solver with 𝐴 = 0, 𝑦 = 𝑙𝑦
to obtain the 𝑥∗ . Further, 𝑓 ′ (𝑥∗) = 𝑓 ′′ (𝑥∗) = 0 implies 𝑓 ′ (𝑥∗) · 𝑦 = 0 for all 𝑦, hence checking at
(𝑥∗, 𝑙𝑦) is sufficient, and this point is already included in the points we evaluate.

A.3 Full Product Rule Proof for Intervals
Unlike in the case of the Chain rule where some of the cases depended on ensuring the gradients
were nonzero, which had to be handled differently for zonotopes vs. intervals, the entire technique
for product rule relies only on the Hessian information which will be the same for intervals in
order to compute min(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) and max(𝑥1 · 𝑦2) + (𝑥2 · 𝑦1) since 𝐻𝑒𝑠𝑠𝑖𝑎𝑛((𝑥1 · 𝑦2) + (𝑥2 ·
𝑦1) − (𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 +𝐷𝑦2 + 𝐸)) is the same as 𝐻𝑒𝑠𝑠𝑖𝑎𝑛((𝑥1 ·𝑦2) + (𝑥2 ·𝑦1)). Thus for computing
the bounds on the zonotope error symbol and computing the precise interval lower and upper
bounds, it suffices to simply check the 24 corners.

A.4 FullQuotient Rule Proof for Zonotopes
Having proven that the 4D Hessian is indeterminant at every point, this ensures that the optimal
values must occur on the boundaries. Wewill repeat this idea for the lower dimensional subproblems
and show that when restricted to the 3 dimensional boundaries, they also do not have any interior
extrema, thus the optimal value must occur on their boundaries (the boundary of the boundaries of
the 4-cube).
We now detail the rest of the cases for the quotient rule for the Zonotope case

A.4.1 3D Subproblems.

Proof. Case 1) Fixed 𝑦2 to either 𝑙𝑦2 or 𝑢𝑦2 - we denote the fixed constant value of 𝑦2 as 𝜅𝑦2 ,
hence 𝜅𝑦2 ∈ {𝑙𝑦2 ,𝑢𝑦2 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
𝜅𝑦2
𝑥22

−𝐴

𝜕

𝜕𝑦1
=

1
𝑥2

− 𝐵
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𝜕

𝜕𝑥2
=
2𝑥1𝜅𝑦2 − 𝑦1𝑥2

𝑥32
−𝐶

If 𝜅𝑦2 = 0, then 𝜕
𝜕𝑥1

≠ 0 since by requirement 𝐴 ≠ 0, and 𝑥2 ≠ 0, thus there is no critical point
since the gradient ( 𝜕

𝜕𝑥1
, 𝜕
𝜕𝑦1

, 𝜕
𝜕𝑥2

) cannot be the all-zeros vector.
If 𝜅𝑦2 ≠ 0 then because 𝑥2 ≠ 0, 𝐴,𝐵 ≠ 0, we can ensure that 𝜕

𝜕𝑥1
≠ 0 by requiring the condition

on 𝐴,𝐵 that 𝐴
𝐵2 ≠ 𝜅𝑦2 . Since for any 𝑥2 ∈ [𝑙𝑥2 ,𝑢𝑥2 ] this guarantees that

𝜅𝑦2
𝑥2
2
−𝐴 and 1

𝑥2
− 𝐵 cannot

both be zero. Thus why we require both 𝐴
𝐵2 ≠ 𝑙𝑦2 and 𝐴

𝐵2 ≠ 𝑢𝑦2 .
Case 2) Fixed 𝑥2 to either 𝑙𝑥2 or 𝑢𝑥2 - we denote the fixed constant value of 𝑥2 as 𝜅𝑥2 . In this case

the first derivatives are:
𝜕

𝜕𝑥1
=

𝑦2
𝜅2𝑥2

−𝐴

𝜕

𝜕𝑦1
=

1
𝜅𝑥2

− 𝐵

𝜕

𝜕𝑦2
=

𝑥1
𝜅2𝑥2

− 𝐷

It sufficis to require that 1
𝐵 ≠ 𝜅𝑥2 , as this guarantees that 𝜕

𝜕𝑦1
≠ 0, thus the gradient cannot be the

all-zeros vector.
Case 3) Fixed 𝑦1 to either 𝑙𝑦1 or 𝑢𝑦1 - we denote the fixed constant value of 𝑦1 as 𝜅𝑦1 , hence

𝜅𝑦1 ∈ {𝑙𝑦1 ,𝑢𝑦1 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
−𝑦2
𝑥22

−𝐴

𝜕

𝜕𝑥2
=
2𝑥1𝑦2 − 𝜅𝑦1𝑥2

𝑥32
−𝐶

𝜕

𝜕𝑦2
=
−𝑥1
𝑥22

− 𝐷

.
For this case we will show that any hypothetical root of the above system of equations (which is

what is needed for a critical point) is necessarily a saddle point.
Case 3.1) 𝜅𝑦1 ≠ 0. If 𝜕

𝜕𝑥1
= 𝜕

𝜕𝑥2
= 𝜕

𝜕𝑦2
= 0 then any critical point will be a root of the above

system of equations, furthermore such a root (𝑥∗1 , 𝑥∗2 ,𝑦∗2) would be of the form: (−𝐷𝑥∗22, 𝑥∗2 ,−𝐴𝑥∗22),
as that would be needed to ensure that 𝜕

𝜕𝑥1
= 𝜕

𝑦2
= 0. Plugging such a hypothetical root into 𝜕

𝜕𝑥2
= 0

implies that 𝑥∗2 must also be a root of

2𝐴𝐷𝑥∗2
4 − 𝜅𝑦1𝑥

∗
2

𝑥∗2
3 −𝐶 = 0

But since 𝑥∗2 must be nonzero, then equivalently it must be a root of:

𝑥∗2
3 − 𝐶

2𝐴𝐷𝑥∗2
2 − 𝜅𝑦1

2𝐴𝐷 = 0

Furthermore the Hessian determinant is − 2(𝑥1𝑦2+𝜅𝑦1𝑥2 )
𝑥8
2

, however the Hessian has 0 in its upper
left corner, meaning the Hessian is neither positive definite nor negative definite (Sylvester’s
criteria). Thus if the Hessian determinant is non-zero, then the Hessian is necessarily indeterminant
meaning the hypothetical root would be a saddle point. Thus we simply need to show that at
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such a hypothetical root (−𝐷𝑥∗22, 𝑥∗2 ,−𝐴𝑥∗22), the Hessian determinant is non-zero. The Hessian
determinant is non-zero provided that the numerator (𝑥1𝑦2 + 𝜅𝑦1𝑥2) ≠ 0, However computing this
numerator at our hypothetical root gives:

(𝐴𝐷 (𝑥∗2)4 + 𝜅𝑦1𝑥∗2)
Which is zero if 𝑥∗2 = 0 (which is not possible) or:

𝑥∗2 =
3

√︂−𝜅𝑦1
𝐴𝐷

Thus we just need to ensure that 3
√︃ −𝜅𝑦1

𝐴𝐷 is not also a root of 𝑥∗2
3 − 𝐶

2𝐴𝐷 𝑥
∗
2
2 − 𝜅𝑦1

2𝐴𝐷 = 0. We can
ensure this by requiring that

2
3

√︂−𝜅𝑦1
𝐴𝐷

≠
−3𝜅𝑦1
2𝐶

Case 3.2) 𝜅𝑦1 = 0. In this case it is still true that any root would be of the form (−𝐷𝑥∗22, 𝑥∗2 ,−𝐴𝑥∗22),
further because 𝜅𝑦1 = 0, 𝑥∗2 must necessarily be

𝑥∗2 =
𝐶

2𝐴𝐷
However, as before the Hessian has a 0 in the upper left cornermeaning it is not positive definite or

negative definite, furthermore the determinant is− 2𝑥1𝑦2
𝑥8
2

, which at the point (−𝐷 ( 𝐶
2𝐴𝐷 )2, 𝐶

2𝐴𝐷 ,−𝐴( 𝐶
2𝐴𝐷 )2)

is non-zero meaning the Hessian is indeterminant
It is worth noting that the Reverse mode version of the quotient rule is an instance of this case.
Case 4) Fixed 𝑥1 to either 𝑙𝑥1 or 𝑢𝑥1 - we denote the fixed constant value of 𝑥1 as 𝜅𝑥1 . In this case

the first derivatives are:

𝜕

𝜕𝑦1
=

1
𝑥2

− 𝐵

𝜕

𝜕𝑥2
=
2𝜅𝑥1𝑦2 − 𝑦1𝑥2

𝑥32
−𝐶

𝜕

𝜕𝑦2
=
𝜅𝑥1
𝑥22

− 𝐷

.
If 𝜅𝑥1 = 0, then 𝜕

𝜕𝑦2
= −𝐷 and 𝐷 ≠ 0, hence it is impossible for there to be an extrema. If 𝜅𝑥1 ≠ 0,

then it suffices to require that 𝜅𝑥1 ≠ −𝐷
𝐴2 . This is because 1

𝑥2
− 𝐵 = 0 = 𝜅𝑥1

𝑥2
2
−𝐷 implies that 𝐵2 = −𝐷

𝜅𝑥1
.

Hence by the contrapositive 1
𝑥2

− 𝐵 = 0 = 𝜅𝑥1
𝑥2
2
− 𝐷 cannot have been true. □

A.4.2 2D Subproblems. Here we show that when solving for the optimal values along the boundary
of the boundary, we can still ensure that there are no interior critical points, and thus all local
extrema must occur on the boundary of the boundary of the boundary.

Proof. Case 1) Fixed 𝑥2, 𝑦2 to 𝜅𝑥2 and 𝜅𝑦2 respectively. In this case the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )
𝑥2
2

−
(𝐴𝑥1 + 𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) becomes linear in both dimensions, and the optimal values will occur
at the corner points and hence there are no interior critical points.

Case 2) Fixed𝑦1,𝑦2 to𝜅𝑦1 and𝜅𝑦2 respectively. The 2DHessian determinant in this 2D subproblem
is −4𝜅2

𝑦2
𝑥6
2

which is negative provided 𝜅𝑦2 ≠ 0. Hence if 𝜅𝑦2 ≠ 0 any interior point is a saddle. If
𝜅𝑦2 = 0 then 𝜕

𝜕𝑥1
= −𝐴 ≠ 0, hence there are no interior critical points to begin with.
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Case 3) Fixed 𝑦1, 𝑥2 to 𝜅𝑦1 and 𝜅𝑥2 respectively. In this case the 2D Hessian determinant is −1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.

Case 4) Fixed 𝑥1, 𝑦2 to 𝜅𝑥1 and 𝜅𝑦2 respectively. In this case the 2D Hessian determinant is also −1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.

Case 5) Fixed 𝑥1, 𝑥2 to 𝜅𝑥1 and 𝜅𝑥2 respectively. In this case the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )
𝑥2
2

− (𝐴𝑥1 +
𝐵𝑦1 +𝐶𝑥2 + 𝐷𝑦2 + 𝐸) becomes linear in both dimensions, and the optimal values will occur at the
corner points and hence there are no interior critical points. Case 6) Fixed 𝑥1, 𝑦1 to 𝜅𝑥1 and 𝜅𝑦1
respectively. In this case the Hessian determinant is −4𝜅2

𝑥1
𝑥6
2

which is negative provided 𝜅𝑥1 ≠ 0 hence
any interior critical point is necessarily a saddle point. If 𝜅𝑥1 = 0, then 𝜕

𝜕𝑦2
= −𝐷 ≠ 0, thus there is

no critical point to begin with. □

A.4.3 1D Subproblems.

Proof. Case 1) Fix every variable to its lower or upper bounds except 𝑥1. In this case the function
becomes linear and thus the extrema will occur at either 𝑥1 = 𝑙𝑥1 or 𝑥1 = 𝑢𝑥1

Case 2) Fix every variable to its lower or upper bounds except 𝑦1. In this case the function still is
linear. and thus the extrema will occur at either 𝑦1 = 𝑙𝑦1 or 𝑦1 = 𝑢𝑦1

Case 3) Fixed every variable to its lower or upper bounds except 𝑥2. In this case the function is not
linear hence we have to solve for critical points, however thankfully this is now only a univariate
problem. We have to solve for 𝑥2 ∈ [𝑙𝑥2 ,𝑢𝑥2 ] such that 𝜕

𝜕𝑥2
=

2𝜅𝑥1𝜅𝑦2−𝜅𝑦1𝑥2
𝑥3
2

−𝐶 = 0. Hence we must
solve the 3rd degree polynomial 𝐶𝑥32 + 𝜅𝑦1𝑥2 − 2𝜅𝑥1𝜅𝑦2 = 0. However because 𝜅𝑥1 ,𝜅𝑦1 ,𝜅𝑦2 each
could be the respective lower or upper bounds, this means we must actually solve 8 versions of this
3rd degree (univariate) polynomial. However this can still easily be done analytically, and thus we
would check if each of the 8 equations has a root in [𝑙𝑥2 ,𝑢𝑥2 ]

Case 4) Fix every variable to its lower or upper bounds except 𝑦2. In this case the function still is
linear and thus the extrema will occur at either 𝑦2 = 𝑙𝑦2 or 𝑦2 = 𝑢𝑦2 □

A.4.4 0D Subproblems. We just enumerate over all 24 corners: (𝑥1,𝑦1, 𝑥2,𝑦2) ∈ {𝑙𝑥1 ,𝑢𝑥1 }×{𝑙𝑦1 ,𝑢𝑦1 }×
{𝑙𝑥2 ,𝑢𝑥2 } × {𝑙𝑦2 ,𝑢𝑦2 }

A.5 FullQuotient Rule Proof for Intervals
We now detail the rest of the cases for the quotient rule for the Interval case

A.5.1 3D Subproblems.

Proof. Case 1) Fixed 𝑦2 to either 𝑙𝑦2 or 𝑢𝑦2 - we denote the fixed constant value of 𝑦2 as 𝜅𝑦2 ,
hence 𝜅𝑦2 ∈ {𝑙𝑦2 ,𝑢𝑦2 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
𝜅𝑦2
𝑥22

𝜕

𝜕𝑦1
=

1
𝑥2

𝜕

𝜕𝑥2
=
2𝑥1𝜅𝑦2 − 𝑦1𝑥2

𝑥32
Since the range [𝑙𝑥2 ,𝑢𝑥2 ] excludes zero, this ensures that 𝜕

𝜕𝑦1
= 1

𝑥2
is never zero
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Case 2) Fixed 𝑥2 to either 𝑙𝑥2 or 𝑢𝑥2 - we denote the fixed constant value of 𝑥2 as 𝜅𝑥2 . In this case
the first derivatives are:

𝜕

𝜕𝑥1
=

𝑦2
𝜅2𝑥2

𝜕

𝜕𝑦1
=

1
𝜅𝑥2

𝜕

𝜕𝑦2
=

𝑥1
𝜅2𝑥2

Since the range [𝑙𝑥2 ,𝑢𝑥2 ] excludes zero, this ensures 𝜅𝑥2 ≠ 0, hence 𝜕
𝜕𝑦1

= 1
𝜅𝑥2

is never zero
Case 3) Fixed 𝑦1 to either 𝑙𝑦1 or 𝑢𝑦1 - we denote the fixed constant value of 𝑦1 as 𝜅𝑦1 , hence

𝜅𝑦1 ∈ {𝑙𝑦1 ,𝑢𝑦1 }. In this case the first derivatives are:

𝜕

𝜕𝑥1
=
−𝑦2
𝑥22

𝜕

𝜕𝑥2
=
2𝑥1𝑦2 − 𝜅𝑦1𝑥2

𝑥32
𝜕

𝜕𝑦2
=
−𝑥1
𝑥22.

Case 3.1) 𝜅𝑦1 ≠ 0. Since 𝑥2 ≠ 0, the only way for 𝜕
𝜕𝑥1

= 𝜕
𝜕𝑦2

= 𝜕
𝜕𝑥2

= 0 is if 𝑥1 = 𝑦2 = 0 and 𝜅𝑦1 = 0,
hence if 𝜅 ≠ 0, then it is not possible for 𝜕

𝜕𝑥2
to be zero.

Case 3.2 𝜅𝑦1 = 0. In this case if [𝑙𝑥1 ,𝑢𝑥1 ] and [𝑙𝑦2 ,𝑢𝑦2 ] both include 0, then we could have a critical
point that the Hessian test cannot immediately rule out. However the value of the function at this
critical point is always 0, hence it suffices to add a single additional point (0) to the finite list of
points to check

Case 4) Fixed 𝑥1 to either 𝑙𝑥1 or 𝑢𝑥1 - we denote the fixed constant value of 𝑥1 as 𝜅𝑥1 . In this case
the first derivatives are:

𝜕

𝜕𝑦1
=

1
𝑥2

𝜕

𝜕𝑥2
=
2𝜅𝑥1𝑦2 − 𝑦1𝑥2

𝑥32
𝜕

𝜕𝑦2
=
𝜅𝑥1
𝑥22

Since the range [𝑙𝑥2 ,𝑢𝑥2 ] excludes zero, this ensures that 𝜕
𝜕𝑦1

= 1
𝑥2

is never zero. □

A.5.2 2D Subproblems.

Proof. Case 1) Fixed 𝑥2, 𝑦2 to 𝜅𝑥2 and 𝜅𝑦2 respectively. In this case the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )
𝑥2
2

becomes linear in both dimensions, and the optimal values (both min and max) will occur at the
corner points and hence there are no interior critical points.

Case 2) Fixed𝑦1,𝑦2 to𝜅𝑦1 and𝜅𝑦2 respectively. The 2DHessian determinant in this 2D subproblem
is −4𝜅2

𝑦2
𝑥6
2

which is negative provided 𝜅𝑦2 ≠ 0. Hence if 𝜅𝑦2 ≠ 0 any interior point is a saddle. If

𝜅𝑦2 = 0 then the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )
𝑥2
2

becomes 𝜅𝑦1
𝑥2

, hence 𝜕
𝜕𝑥2

=
−𝜅𝑦1
𝑥2
2

which is non-zero provided
𝜅𝑦1 ≠ 0. If 𝜅𝑦1 and 𝜅𝑦2 = 0, then the function is everywhere 0, which will caught when we check
corner points.
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Case 3) Fixed 𝑦1, 𝑥2 to 𝜅𝑦1 and 𝜅𝑥2 respectively. In this case the 2D Hessian determinant is −1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.

Case 4) Fixed 𝑥1, 𝑦2 to 𝜅𝑥1 and 𝜅𝑦2 respectively. In this case the 2D Hessian determinant is also −1
𝑥4
2

which is always strictly negative, hence any potential critical point would necessarily be a saddle
point and thus not a local extrema.
Case 5) Fixed 𝑥1, 𝑥2 to 𝜅𝑥1 and 𝜅𝑥2 respectively. In this case the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )

𝑥2
2

becomes
linear in both dimensions, and the optimal values will occur at the corner points and hence there
are no interior critical points.
Case 6) Fixed 𝑥1, 𝑦1 to 𝜅𝑥1 and 𝜅𝑦1 respectively. In this case the Hessian determinant is −4𝜅2

𝑥1
𝑥6
2

which is negative provided 𝜅𝑥1 ≠ 0 hence any interior critical point is necessarily a saddle point. If
𝜅𝑥1 = 0, then the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )

𝑥2
2

becomes 𝜅𝑦1
𝑥2

, hence 𝜕
𝜕𝑥2

=
−𝜅𝑦1
𝑥2
2

which is non-zero provided
𝜅𝑦1 ≠ 0. If 𝜅𝑦1 and 𝜅𝑥1 = 0, then the function is everywhere 0, which will caught when we check
corner points. □

A.5.3 1D Subproblems.

Proof. Case 1) Fix every variable to its lower or upper bounds except 𝑥1. In this case the function
becomes linear and thus the extrema will occur at either 𝑥1 = 𝑙𝑥1 or 𝑥1 = 𝑢𝑥1

Case 2) Fix every variable to its lower or upper bounds except 𝑦1. In this case the function still is
linear. and thus the extrema will occur at either 𝑦1 = 𝑙𝑦1 or 𝑦1 = 𝑢𝑦1

Case 3) Fixed every variable to its lower or upper bounds except 𝑥2. In this case the function is not
linear hence we have to solve for critical points, however thankfully this is now only a univariate
problem. We have to solve for 𝑥2 ∈ [𝑙𝑥2 ,𝑢𝑥2 ] such that 𝜕

𝜕𝑥2
=

2𝜅𝑥1𝜅𝑦2−𝜅𝑦1𝑥2
𝑥3
2

= 0. Hence we must solve

2𝜅𝑥1𝜅𝑦2 − 𝜅𝑦1𝑥2 = 0. Hence for each possible root 𝑥2 =
2𝜅𝑥1𝜅𝑦2
𝜅𝑦1

, we must check if 2𝜅𝑥1𝜅𝑦2
𝜅𝑦1

∈ [𝑙𝑥2 ,𝑢𝑥2 ],
and if so we will need to evaluate the function (𝑥2 ·𝑦1 )− (𝑥1 ·𝑦2 )

𝑥2
2

at said critical point. We keep in mind
that there are really 8 versions of this equation that we must resolve.

Case 4) Fix every variable to its lower or upper bounds except 𝑦2. In this case the function still is
linear and thus the extrema will occur at either 𝑦2 = 𝑙𝑦2 or 𝑦2 = 𝑢𝑦2 □

A.5.4 0D Subproblems. We just enumerate over all 24 corners: (𝑥1,𝑦1, 𝑥2,𝑦2) ∈ {𝑙𝑥1 ,𝑢𝑥1 }×{𝑙𝑦1 ,𝑢𝑦1 }×
{𝑙𝑥2 ,𝑢𝑥2 } × {𝑙𝑦2 ,𝑢𝑦2 }
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