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We present a novel abstraction for bounding the Clarke Jacobian of a Lipschitz continuous, but not necessarily

differentiable function over a local input region. To do so, we leverage a novel abstract domain built upon dual

numbers, adapted to soundly over-approximate all first derivatives needed to compute the Clarke Jacobian. We

formally prove that our novel forward-mode dual interval evaluation produces a sound, interval domain-based

over-approximation of the true Clarke Jacobian for a given input region.

Due to the generality of our formalism, we can compute and analyze interval Clarke Jacobians for a broader

class of functions than previous works supported – specifically, arbitrary compositions of neural networks

with Lipschitz, but non-differentiable perturbations. We implement our technique in a tool called DeepJ and

evaluate it on multiple deep neural networks and non-differentiable input perturbations to showcase both

the generality and scalability of our analysis. Concretely, we can obtain interval Clarke Jacobians to analyze

Lipschitz robustness and local optimization landscapes of both fully-connected and convolutional neural

networks for rotational, contrast variation, and haze perturbations, as well as their compositions.
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1 INTRODUCTION
Recent years have seen growing adoption of machine learning (ML) models in several safety

critical domains, including autonomous driving [Bojarski et al. 2016] and healthcare [Esteva

et al. 2019]. The first derivatives specified via the Jacobian matrix are the backbone of many

prominent learning paradigms and are used in all facets of the machine learning pipeline, from

training to testing. Automatic Differentiation (AD), and more broadly, Differentiable Programming,

have been developed to offer a principled, language-based method of compositionally computing

derivatives. However, the needs of ML researchers have rapidly outpaced formal development

on the programming languages side. For instance, ML techniques regularly must differentiate
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through functions that may have points of non-differentiability, such as the commonly used ReLU

activation in neural networks, which is not differentiable at 0. In practice, for such a situation,

existing AD frameworks just return any arbitrary number in the interval [0, 1]. While such an

ad-hoc approach may suffice in many practical scenarios, for critical domains requiring formal

certification of properties defined over the first derivatives, this lack of rigor is troubling. To resolve

this limitation, programming language researchers have begun using generalizations of the Jacobian

for describing AD semantics [Sherman et al. 2021], such as the Clarke Generalized Jacobian [Clarke

1990] for non-smooth, but Lipschitz continuous functions.

However, these developments still cannot provide the desired formal guarantees for practical

verification tasks, such as obtaining formal bounds on the Lipschitz constant (which measures

how rapidly a function’s output changes) of the composition of a non-differentiable perturbation

and a differentiable network within an input region. Lipschitz constants can be used as a metric

to compare the stability and smoothness of the output of neural networks prior to deployment,

as a network with a smaller constant is often preferable [Lin et al. 2019]. Formal bounds on the

Lipschitz constant can also be used during training to learn classifiers that are certifiably robust

to adversarial perturbations [Tsuzuku et al. 2018], robust to quantizations [Lin et al. 2019], or to

improve interpretability by making network explanations themselves more robust [Alvarez-Melis

and Jaakkola 2018]. Further, analyzing the Lipschitz constant has direct applications in algorithmic

fairness [Dwork et al. 2012] and differential privacy [Dwork et al. 2006], where fairness and privacy

are established by certifying a small Lipschitz constant. Beyond using the Jacobian for formally

bounding Lipschitz constants, a Jacobian analysis can also be used to formally reason about the

local geometry of ML models [Zhang et al. 2019], which has applications in explainability, e.g., why

a network works well for certain inputs but not for others.

Challenges. We focus on designing a static analysis that can formally reason about not only Jacobians

of functions that are differentiable (e.g., tanh), but can also handle non-differentiable behavior due

to functions like ReLU and the branching that can arise in differentiable programs. Furthermore, we

must also handle high-dimensional computational graphs with arbitrary arithmetic (instead of, e.g.,

solely neural networks that avoid non-scalar multiplication and division). Simultaneously handling

all of these requires a theoretical formalism that is beyond the scope of the existing works [Edalat

and Maleki 2017; Jordan and Dimakis 2020; Mangal et al. 2020; Zhang et al. 2019]. One of the

main difficulties arises from the fact that generalized notions of Jacobians do not always obey the

same rules as classical Jacobians. For example, the Clarke Jacobian cannot simply be computed by

concatenating partial Clarke derivatives into a matrix [Clarke 1990; Khan and Barton 2013]. In this

same light, we want our desired generality to also come with compositionality: we want to be able to

combine different functions together instead of restricting ourselves to a non-compositional analysis

limited to a specific, fixed type of function (e.g., a DNN) or input perturbation. More practically, we

want this analysis to be scalable and fully end-to-end, specifically for real-world problems such

as analyzing Lipschitz robustness with respect to multiple input perturbations. This has proven

challenging, as most formalisms that aim for broad theoretical generality cannot scale beyond toy

examples [Di Gianantonio and Edalat 2013], do not have implementations [Edalat and Lieutier

2004; Edalat et al. 2013; Edalat and Maleki 2017, 2018], or lack end-to-end integration with specific

analyses for practical problems. Moreover, the Lipschitz robustness analyses that go beyond toy

examples, such as RecurJac [Zhang et al. 2019] and ProLip [Mangal et al. 2020], are either tailored for

handling fully-connected architectures (like RecurJac) and therefore cannot immediately analyze

the state-of-the-art convolutional architectures, or are heavily restricted in the activation functions

supported (like ProLip). These issues substantially limit the practical applicability of these tools.
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This Work. To address these challenges, we propose DeepJ, a forward-mode interval abstraction

built atop dual numbers (the canonical number system used for implementing forward-mode AD).

A dual number 𝑎 +𝑏𝜖 has two components: the real part 𝑎 and the dual part 𝑏, which in applications

will correspond to a function’s derivative at 𝑎.

The analysis is adapted to compute an interval over-approximation of the Clarke Jacobian. Our

key insight is that formalizing the static analysis on top of dual numbers as a forward-mode

analysis represents a general solution suitable for reasoning about Clarke derivatives, which can

simultaneously offer both an intuitive and scalable implementation. Hence, we reduce the problem

of bounding a Clarke Jacobian in a local region to the problem of bounding results of dual number

arithmetic and functions. Forward-mode analysis can be particularly useful for multiple practical

problems, such as analyzing Lipschitz robustness with respect to individual input perturbations

or their compositions. These problems have small input dimension, for which a forward-mode

analysis requires fewer passes than a reverse-mode analysis.

DeepJ analyzes a first-order core (without unbounded loops or recursion) of the language

proposed by Sherman et al. [2021], which we extend with conditional branch expressions and

also show necessary conditions for the well-definedness of the Clarke Jacobian of these branches

(Section 4). We then recursively define an interval-domain abstraction of the Clarke Jacobian

for sets of points and prove this over-approximation sound (Section 5). Next, we show how to

equivalently compute this interval Clarke Jacobian in a forward pass using a novel, interval-domain

abstraction of dual numbers (Section 6). Finally, we demonstrate how DeepJ leverages the interval

over-approximation of the Clarke Jacobian for multiple practical uses in a fully end-to-end and

scalable manner, namely analyzing Lipschitz robustness and local optimization geometry of large

neural networks in the face of non-smooth input perturbations (Section 8). DeepJ’s implementation

also optionally offers floating-point soundness [Miné 2004], i.e., its result can capture all possible

outputs under different roundingmodes and under different orders of computations of floating-point

operations. This guarantee is not possible with any other existing method.

The novelty in our work lies in the fact that we are the first to formalize a static analysis that is

simultaneously (a) defined for the more general Clarke Jacobian, thus supporting both differentiable

and non-differentiable, but still Lipschitz functions, (b) extends to all arithmetic operations and is

defined for branching beyond justmin andmax, (c) is fully compositional by leveraging an interval

abstraction of forward-mode dual numbers, and (d) is integrated in a fully end-to-end manner for

practical tasks that no prior work could tackle.

Results. We implement DeepJ and evaluate it on two tasks:

• Lipschitz Robustness: Certifies bounds on the local Lipschitz constant of a given input region.

• Local Optimization Landscape: Uses the Clarke Jacobian to analyze a function’s local geometry

in a specified input region to determine the absence of stationary points.

We apply DeepJ to neural networks with both fully-connected and convolutional layers that

are trained on the CIFAR10 [Krizhevsky et al. 2009] and MNIST [LeCun et al. 1998] datasets. For

each of our analyses, we compose the neural networks with three perturbation functions: haze
(which models images as foggy), contrast variation (which accentuates the differences between

bright and dark pixels), and rotation (which rotates the image by a specified angle 𝜃 with bilinear

interpolation). Analyzing the Jacobian of a network with respect to these perturbations is out of

reach of the existing techniques.

For each perturbation, DeepJ is able to leverage its fully localized analysis, which computes

Clarke Jacobians solely for the specified input region, to obtain local Lipschitz constants that can

be up to several orders of magnitude smaller than a baseline analysis based on Gouk et al. [2021]

(which multiplies a network’s global Lipschitz constant by the perturbation’s local Lipschitz
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constant instead of being fully localized). DeepJ can also extend the analysis to compositions of

multiple perturbations. Furthermore, the localized Jacobian analysis can certify the absence of

stationary points in a network’s optimization landscape. DeepJ’s parallel CPU-based implementation

is efficient: it can precisely analyze 100 CIFAR10 images on our largest convolutional network

containing > 62K neurons within a median time of 15 seconds each for haze and contrast variations,

and under 1.4 minutes for rotation. It can also compute precise results for 10 CIFAR10 images on

the same network within a median time of 9 seconds for contrast variation composed with haze,

and under 51 seconds for contrast variation or haze composed with rotation. Our largest network

has the same architecture as the one commonly handled by state-of-the-art CPU-based robustness

verifiers [Singh et al. 2018, 2019; Urban and Miné 2021]. The differences in the computed constants

between the DeepJ versions with and without sound floating-point rounding are negligible, with

2.8-4.1x execution time overhead of the sound version.

Contributions. The paper makes the following main contributions:

(1) A new dual number-based interval abstraction for analyzing Clarke Jacobians. Our domain

soundly over-approximates the Clarke Generalized Jacobian of locally Lipschitz and piecewise

differentiable functions, allowing it to soundly handle functions like max, ReLU, and limited

branches. Furthermore, as our abstraction is defined for sets of points, we can analyze local

properties of locally Lipschitz functions beyond the scope of prior work.

(2) A novel Clarke Jacobian analysis and Lipschitz certification of neural networks composed

with non-differentiable perturbations.

(3) A scalable, optionally floating-point sound, implementation of our method which supports

both convolutional and fully-connected neural networks.

(4) An extensive evaluation against multiple perturbation types on several deep neural networks,

showing that DeepJ can (a) achieve orders of magnitude tighter bounds on local Lipschitz

constants compared to a baseline analysis and (b) certify the absence of stationary points

within a given input region.

DeepJ is available at https://github.com/uiuc-arc/DeepJ. Our implementation exploits CPU-level

parallelism. We believe that DeepJ can be easily parallelized over GPUs to boost the scalability

to even larger architectures, such as those considered by GPU-based verifiers [Müller et al. 2021].

The GPU extension of DeepJ may help train networks to be robust to semantic non-differentiable

perturbations like rotation and contrast variation, which is beyond the reach of existing robust

training methods [Balunović et al. 2019; Mirman et al. 2018, 2019; Zhang et al. 2021, 2020].

2 OVERVIEW
In this section, we start with a small illustrative example that showcases a real-world use of our

abstraction for a scenario not handled by any prior work.

Running Example: Contrast Variation Perturbation. We consider the simple fully-connected network

shown in Fig. 1. For simplicity, the network takes two inputs in the input layer, and we assume

the network has been fully trained. The network contains a single hidden layer and all activation

functions in both the hidden and output layers are tanh (with no biases). Most importantly, we

compose the network with a perturbation function modeling contrast variation. We are interested

in knowing precisely how sensitive the network’s outputs are to inputs that are perturbed by

contrast variation, which often arises when the image passed to a network was obtained with

a fixed aperture lens [Paterson et al. 2021]. Hence, instead of passing input image pixels 𝑥1 and

𝑥2 directly into the input layer, we pass their perturbed values, 𝑥 ′
1
and 𝑥 ′

2
. The contrast variation
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𝑥 ′
1

𝑥 ′
2

max

(
0,min

(
1,

𝑥𝑖−0.5·𝛼
1−𝛼

))𝑥1

𝑥2

𝛼

1

-1

1

1

1

-1

1

1

Input Layer

Contrast Variation
Perturbation

Hidden Layer Output Layer

tanh tanh

Fig. 1. Composition of a Neural Network with the Contrast Variation Perturbation

perturbation for a pixel 𝑥𝑖 is given in Paterson et al. [2021] as

𝑥 ′𝑖 = max

(
0,min

(
1,
𝑥𝑖 − 0.5 · 𝛼

1 − 𝛼

))
(1)

where 𝛼 specifies the amount of contrast variation. We apply this perturbation to every input pixel

(there are only two in this example). We can thus think of the perturbation as a function of the

perturbation parameter 𝛼 .

Jacobian Analysis. We will measure the sensitivity of the network with respect to the perturbation

by computing the Jacobian of the composition of the network with the perturbation. This allows us

to analyze how sensitive and robust the network’s outputs are with respect to a change in 𝛼 in some

local region. For this example, the local region we are interested in is when 𝛼 ∈[0, 0.1]. This allows
us to analyze what happens when the amount of perturbation ranges from none up to a modest

amount. Because of the combination of both non-differentiable (max and min) and differentiable

(tanh) functions, as well as the division in the perturbation function, computing a Jacobian for the

composition of the network and the perturbation is beyond the capabilities of existing frameworks.

Abstract Domain. To perform the analysis, we need to compute bounds on the Jacobian of the

composition of the network and the perturbation. However, this is complicated by the fact that

(a) we cannot settle for the derivatives at a single point (as standard automatic differentiation

gives) and instead need a bound on the derivatives for an entire input region, (b) max and min are

Lipschitz, but not differentiable, thus we need a more general notion of differentiation that works

for such functions, and (c) the analysis cannot be restricted to only neural networks, since it needs

to be able to compositionally handle arbitrary combinations of functions. As mentioned, prior work

cannot address these challenges, thus our solution necessitates a novel abstract domain. The full

formalism is described in Sections 5 and 6.

Our abstract domain associates to each variable an interval bounding the variable itself and an

interval bounding that variable’s Clarke derivative via a dual interval of the form [𝑎, 𝑏] + [𝑐, 𝑑]𝜖 ,
where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R ∪ {±∞}, 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑 . We will call [𝑎, 𝑏] the real part and [𝑐, 𝑑] the dual
part. Dual intervals are an adapted interval-domain abstraction of the canonical dual numbers of

forward-mode automatic differentiation. The key benefit of this approach is that we can leverage

an existing numerical system to track derivatives instead of relying on non-extensible, ad-hoc

approaches as in Edalat et al. [2013]; Mangal et al. [2020]; Zhang et al. [2019]. However, a naive

adaptation is not sufficient, as one still has to contend with non-differentiable functions such as

max. Furthermore, all primitive operations must be reinterpreted for dual interval arithmetic.

Abstract Interpretation of the Perturbation and Network. We now step through the abstract interpre-

tation of the composition of the neural network and the contrast variation perturbation, which
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𝑥′
1

𝑥′
2

𝑓3

𝑓4

𝑓5

𝑓6

max(0,min(1, 𝑥𝑖−0.5·𝛼
1−𝛼 ))

𝑥1

𝑥2

𝛼

[1, 1] + [0, 0]𝜖

[-1, -1] + [0, 0]𝜖

[1, 1] + [0, 0]𝜖

[1, 1
] +

[0, 0
]𝜖

[1, 1] + [0, 0]𝜖

[-1, -1] + [0, 0]𝜖

[1,
1] + [0,

0]𝜖

[1, 1
] +

[0, 0
]𝜖

𝑥′
1
=[0.9, 1] + [0, 0.62]𝜖

max(0, [0.9, 1]+[0, 0.62]𝜖)

𝑥′
2
=[0.15, 0.22] + [-0.43, -0.25]𝜖

max(0, [0.15, 0.22] + [-0.43, -0.25]𝜖)

[0.95, 0.95]+[0, 0]𝜖

[0.2, 0.2]+[0, 0]𝜖

[0, 0.1]+[1, 1]𝜖

tanh( [1.05, 1.22]+[-0.43, 0.37]𝜖)
𝑓3 =[0.78, 0.84] + [-0.17, 0.14]𝜖

tanh( [0.67, 0.85] + [0.25, 1.05]𝜖)
𝑓4 =[0.59, 0.69] + [0.13, 0.68]𝜖

tanh( [1.37, 1.53] + [-0.04, 0.83]𝜖)
𝑓5 =[0.88, 0.91]+[-0.01, 0.19] 𝜖

tanh( [0.09, 0.25] + [-0.85, 0.01]𝜖)
𝑓6 =[0.09, 0.24]+[-0.84, 0.012]𝜖

min(1, 𝑥1−0.5·𝛼
1−𝛼 )

=[0.9, 1]+[0, 0.62]𝜖

min(1, 𝑥2−0.5·𝛼
1−𝛼 )

=[0.15, 0.22] + [-0.43, -0.25]𝜖

Fig. 2. The Dual Interval Abstraction of the Neural Network and Perturbation Function from Fig. 1

is detailed in Fig. 2. As every term in the abstract domain must be a dual interval, to perform the

analysis, we first must lift the constant edge weights𝑤𝑖 to dual intervals of the form [𝑤𝑖 ,𝑤𝑖 ]+ [0, 0]𝜖 ,
as shown in Fig. 2. Upon lifting all constants and edge weights to the abstract domain, we start from

the inputs 𝑥1, 𝑥2 and the perturbation parameter 𝛼 . As our goal is to compute the sensitivity solely

with respect to 𝛼 , we set its dual part to [1, 1]𝜖 . This means that we treat 𝑥1 and 𝑥2 as constant;

since we do not need to compute derivatives with respect to 𝑥1 and 𝑥2, the analysis sets their dual

part to [0, 0]𝜖 . Furthermore, as 𝑥1 and 𝑥2 are pixel values of some fixed image, their real parts are

just the degenerate interval of their pixel intensities: [0.95, 0.95] and [0.2, 0.2], respectively.
We begin by propagating the dual interval inputs through the contrast variation perturbation

function in Eq. 1. This requires that all arithmetic operations (+,−, ·, /) and function primitives (min

and max) be redefined for dual intervals. Section 6 presents a full formalization of dual intervals.

For each pixel 𝑥𝑖 , we first compute
𝑥𝑖−0.5·𝛼

1−𝛼 inside the min function. Though not shown in the

function, the constants 0.5 and 1 are actually interpreted as the dual intervals [0.5, 0.5] + [0, 0]𝜖 and
[1, 1] + [0, 0]𝜖 , respectively. The numerator 𝑥1−0.5 ·𝛼 abstractly evaluates to [0.9, 0.95] + [-0.5, -0.5]𝜖
and likewise 𝑥2 − 0.5 · 𝛼 evaluates to [0.15, 0.2] + [-0.5, -0.5]𝜖 . These follow from the rules of dual

interval arithmetic: scaling by a constant scales a term’s real and dual part, and dual interval

addition between terms adds their respective real and dual components. Therefore, we have

implicitly encoded the notion of linearity of the derivative.

To compute the entire quotient for each variable, we next perform dual interval division (described

in Section 6.1). The terms
𝑥1−0.5·𝛼

1−𝛼 and
𝑥2−0.5·𝛼

1−𝛼 ultimately evaluate to [0.9, 1.05]+[0.4, 0.62]𝜖 and
[0.15, 0.22] + [-0.43, -0.25]𝜖 , respectively. Dual interval division implicitly encodes the quotient

rule of differentiation.

Non-Differentiable Functions. Upon computing
𝑥1−0.5·𝛼

1−𝛼 and
𝑥2−0.5·𝛼

1−𝛼 , we now must take the min of

each with [1, 1] + [0, 0]𝜖 . This is highly challenging as min is not differentiable. To resolve this, we

must use a more general notion of differentiation, specifically the Clarke Jacobian [Clarke 1990],

which has also recently emerged in the programming languages literature [Di Gianantonio and

Edalat 2013; Sherman et al. 2021]. The Clarke Jacobian can compute a generalized derivative for

non-differentiable, but Lipschitz functions like min, max, ReLU, abs, and even functions defined

by conditional branching statements (provided one proves such functions are continuous and

piecewise differentiable). The Clarke Jacobian does so by returning a convex set of points as the
“derivative” instead of just a single point. To perform the Clarke differentiation through the min

function, one takes the standard derivative of whichever of the min function’s two arguments
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attains the minimum. The caveat is that if both arguments attain the minimum, one must take

the convex hull of both arguments’ derivatives. However, this becomes even more difficult for the

interval domain, as due to the inherent uncertainty, when two intervals overlap, it is possible that

either could attain the minimum. Thus, if the real parts of two dual intervals overlap, our analysis

must take the convex hull of their respective dual parts.

Recall that for 𝑥1 we must take the min of [1, 1] + [0, 0]𝜖 and 𝑥1−0.5·𝛼
1−𝛼 =[0.9, 1.05]+[0.4, 0.62]𝜖 . In

this case, the real parts overlap, so we must take the convex hull (denoted by co) of their respective
dual parts: [0, 0] and [0.4, 0.62], as shown in Eq. 2.

min

(
1,
𝑥1 − 0.5 · 𝛼

1 − 𝛼

)
= min( [1, 1] + [0, 0]𝜖, [0.9, 1.05]+[0.4, 0.62]𝜖)

= min( [1, 1], [0.9, 1.05]) + co( [0, 0], [0.4, 0.62])𝜖
= [0.9, 1]+[0, 0.62]𝜖

(2)

For 𝑥2, when computing the min of [1, 1] + [0, 0]𝜖 and 𝑥2−0.5·𝛼
1−𝛼 =[0.15, 0.22] + [-0.43, -0.25]𝜖 , the

real parts do not intersect, thus the result is exactly just [0.15, 0.22] + [-0.43, -0.25]𝜖 .
Finally, as the contrast variation perturbation is also composed with the max function, we must

repeat the same procedure, albeit with max instead of min. For 𝑥1 and 𝑥2, we compute:

𝑥 ′
1
= max( [0, 0] + [0, 0]𝜖, [0.9, 1]+[0, 0.62]𝜖) = [0.9, 1] + [0, 0.62]𝜖

𝑥 ′
2
= max( [0, 0] + [0, 0]𝜖, [0.15, 0.22] + [-0.43, -0.25]𝜖) = [0.15, 0.22] + [-0.43, -0.25]𝜖

Propagation through the Network. Upon computing the perturbed inputs 𝑥 ′
1
and 𝑥 ′

2
, we propagate

their abstracted values through the network itself. For simplicity in presentation, we give each

network node a fresh variable name (𝑓3-𝑓6). To compute the value of 𝑓3, we first multiply 𝑥 ′
1
and 𝑥 ′

2

by the corresponding edge weights using dual interval multiplication and sum incoming terms,

resulting in the dual interval [1.05, 1.22]+[-0.43, 0.37]𝜖 . Then, we apply the dual interval lifting

of tanh to the argument [1.05, 1.22]+[-0.43, 0.37]𝜖 . The dual interval lifting of tanh applies the

interval lifting of tanh (where tanh( [𝑎, 𝑏]) = [tanh(𝑎), tanh(𝑏)]) to the real part of its argument,

then applies the interval lifting of the closed-form derivative (1 − tanh
2

) to the dual part.

𝑓3 = tanh( [1.05, 1.22]+[-0.43, 0.37]𝜖) = tanh( [1.05, 1.22]) +
(
(1 − tanh

2 ( [1.05, 1.22])) · [-0.43, 0.37]
)
𝜖

= [0.78, 0.84] + [-0.17, 0.14]𝜖

The dual part of the result is also multiplied by the dual part of the input ([-0.43, 0.37]), implicitly

encoding the chain rule. In this example, 𝑓3 evaluates to [0.78, 0.84] + [-0.17, 0.14]𝜖 .
Likewise for 𝑓4, the input to the tanh function is the sum of 𝑥 ′

1
and 𝑥 ′

2
scaled by the edge weights,

which is just [0.67, 0.85] + [0.25, 1.05]𝜖 . Hence, 𝑓4 evaluates to [0.59, 0.69] + [0.13, 0.68]𝜖 . As our
analysis is fully compositional, we easily repeat this procedure for the subsequent (final) layer. Mul-

tiplying 𝑓3 and 𝑓4 by their respective edge weights, then passing these values to the tanh activations,

allows us to determine that 𝑓5 =[0.88, 0.91]+[-0.01, 0.19] 𝜖 and 𝑓6 =[0.09, 0.24]+[-0.84, 0.012]𝜖 .

Interval Clarke Jacobian. Upon computing the outputs 𝑓5 and 𝑓6, we take their dual parts as the

Interval Clarke Jacobian. This is because we show in Section 6.3 that abstractly evaluating func-

tions with dual intervals is equivalent to computing the Interval Clarke Jacobian, which in turn

soundly over-approximates the true Clarke Jacobian. Since we are modeling the composition of the

network and the perturbation as a function of only 𝛼 (while holding all other inputs fixed), the

Interval Clarke Jacobian is a 2 × 1 interval matrix, as the network has 2 outputs. In this case, it is

[[-0.01, 0.19],[-0.84, 0.012]]𝑇 .
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Practical Applications. Upon computing this over-approximation of the Clarke Jacobian, we can use

it for several practical applications. For instance, we can compute the local Lipschitz constant in the

region 𝛼 ∈ [0, 0.1] by taking the maximum norm of the Interval Clarke Jacobian, which intuitively

gives us a point summary of the network’s sensitivity to perturbations by 𝛼 in this local region.

For this example, the Lipschitz constant (with respect to the ℓ∞-norm) evaluates to 0.84.

We can also use the over-approximation of the Clarke Jacobian to analyze the local landscape

of the composition of the network and the perturbation for stationary points. If a point is a local

extremum, then the Clarke Jacobian at that point contains 0. Therefore, if any entry of the Interval

Clarke Jacobian does not contain 0, it certifies that no point in the input range is a local extremum.

In this example, as both entries contain 0, the analysis determines that the input region 𝛼 ∈ [0, 0.1]
could still contain a local extremum.

3 PRELIMINARIES
We define all the mathematical preliminaries needed to describe automatic differentiation, as well

as the Clarke Jacobian. We start with the definition of the standard Jacobian.

Definition 3.1. The Jacobian of a function 𝑓 : R𝑚 → R𝑛 differentiable at a point x0 ∈ R𝑚 is

J(𝑓 , x0) =

𝜕𝑓1
𝜕𝑥1

|𝑥=x0 ...
𝜕𝑓1
𝜕𝑥𝑚

|𝑥=x0
... ... ...

𝜕𝑓𝑛
𝜕𝑥1

|𝑥=x0 ...
𝜕𝑓𝑛
𝜕𝑥𝑚

|𝑥=x0


When𝑚 = 𝑛 = 1, the Jacobian is merely the classical derivative: J(𝑓 , x0) = 𝑑𝑓

𝑑𝑥
|𝑥=x0 .

Dual Numbers. The question then arises, how do we automatically compute this Jacobian? The

most popular method is via Automatic Differentiation, or AD. AD has two modes: reverse and

forward. The former recursively evaluates derivatives of sub-expressions, and can be thought

of as a generalization of backpropagation. We focus on the latter, as forward-mode automatic

differentiation is much easier to implement and excels when the function’s input dimension is

small (as will be in our use cases). To implement forward-mode automatic differentiation, one may

overload all primitive arithmetic operations to work on dual numbers, which we now describe.

Definition 3.2. Dual numbers are numbers of the form 𝑎 + 𝑏𝜖 , where 𝑎, 𝑏 ∈ R and 𝜖 is a symbolic

variable (akin to 𝑖 for imaginary numbers). We denote the set of all dual numbers asD. Dual number

arithmetic is given by the following rules:

(𝑎 + 𝑏𝜖) + (𝑐 + 𝑑𝜖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝜖

(𝑎 + 𝑏𝜖) · (𝑐 + 𝑑𝜖) = (𝑎𝑐) + (𝑎𝑑 + 𝑏𝑐)𝜖

(𝑎 + 𝑏𝜖)/(𝑐 + 𝑑𝜖) =
(𝑎
𝑐

)
+
(𝑏𝑐 − 𝑎𝑑

𝑐2

)
𝜖

The above arithmetic rules for dual numbers implicitly encode linearity, the product rule, and

the quotient rule in the computation of their dual part. To access the real part of a dual number, we

write fst(𝑎+𝑏𝜖) = 𝑎, and likewise the dual part is accessed by snd(𝑎+𝑏𝜖) = 𝑏. For any differentiable
function 𝑓 : R→ R, we use the standard lifting of 𝑓 to dual numbers 𝑓 : D→ D given as

𝑓 (𝑎 + 𝑏𝜖) = 𝑓 (𝑎) + (𝑓 ′(𝑎) · 𝑏)𝜖

Therefore, the dual part of a dual number corresponds to the value of the function’s derivative

evaluated at the real part, 𝑎. Further, multiplying the derivative 𝑓 ′(𝑎) by the existing dual part 𝑏

implicitly encodes the chain rule of calculus.
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3.1 Lipschitz Continuity
We subsequently show how to extend the previous concepts to non-differentiable but locally

Lipschitz functions. Hence, we first define the local Lipschitz property.

Definition 3.3. A function 𝑓 : R𝑚 → R𝑛 is locally Lipschitz on 𝑋 ⊆ R𝑚 if there exists a positive

constant 𝐾𝛼,𝛽 ∈ R>0 such that for any 𝑥1, 𝑥2 ∈ 𝑋 we have

∥ 𝑓 (𝑥1) − 𝑓 (𝑥2)∥𝛽 ≤ 𝐾𝛼,𝛽 ∥𝑥1 − 𝑥2∥𝛼
where ∥ · ∥𝛼 and ∥ · ∥𝛽 are arbitrary 𝑝-norms over R𝑚 and R𝑛 , respectively. Furthermore, if for a

given point 𝑥0 ∈ R𝑚 , there exists a positive real 𝛿 > 0 such that 𝑓 is locally Lipschitz within a ball

of radius 𝛿 centered at 𝑥0, we say 𝑓 is Lipschitz near 𝑥0.

Lipschitz Constant. The constant 𝐾𝛼,𝛽
is called the (local) Lipschitz constant, which provides a

formal bound on how much a function’s output can change (measured by the ∥ · ∥𝛽 norm) given a

change in input (measured by the ∥ · ∥𝛼 norm). The constant can easily be obtained once one has

the Jacobian J. For a Lipschitz function 𝑓 : R𝑚 → R𝑛 that is differentiable, one can compute the

local Lipschitz constant on a region 𝑋 by taking the maximum dual norm of the Jacobian over 𝑋 :

𝐾𝛼,𝛽 = sup

𝑥 ∈𝑋
∥J(𝑓 , 𝑥)∥𝛼,𝛽

where the dual norm of any matrix 𝑀 ∈ R𝑛×𝑚 is given as ∥𝑀 ∥𝛼,𝛽 = sup∥𝑣 ∥𝛼 ≤1 ∥𝑀𝑣 ∥𝛽 . For com-

mon values of 𝛼 and 𝛽 , there is a closed-form expression for ∥𝑀 ∥𝛼,𝛽 . For instance, ∥𝑀 ∥1,1 =

max1≤ 𝑗≤𝑚 (∑𝑛
𝑖=1 |𝑀𝑖, 𝑗 |), thus we simply take the norm of the Jacobian (over all points in 𝑋 ) that

has the maximum absolute column sum.

3.2 Clarke Generalized Jacobian
However, the following question arises: what if we need to compute the derivative at a point where

it is not defined, such as ReLU(𝑥) at 𝑥 = 0? Can one extend Jacobians (and methods to compute

them) to non-differentiable functions? We follow recent work by Sherman et al. [2021] and employ

the notion of the Clarke Generalized Jacobian [Clarke 1990] for this extension. Intuitively, this

generalizes the notion of a Jacobian to non-differentiable, but still Lipschitz-continuous functions.

Convexity. The Clarke Jacobian of a function 𝑓 : R𝑚 → R𝑛 evaluates to a convex set of 𝑛 ×𝑚
matrices, hence we define the following operators. Let Co(R𝑛×𝑚) denote all convex sets of 𝑛 ×𝑚
real matrices. Further, let co : P(R𝑛×𝑚) → Co(R𝑛×𝑚) be the convex hull operator, which given a

set of matrices, takes their convex hull. We can now define the Clarke Generalized Jacobian.

Definition 3.4. (Clarke Thm. 2.5.1 [Clarke 1990]) Let 𝑓 : R𝑚 → R𝑛 be a function that is locally

Lipschitz at x0 ∈ R𝑚 , where the set of non-differentiable points of 𝑓 has Lebesgue measure 0 (we

denote that set as 𝑆 ⊂ R𝑚). The Clarke Generalized Jacobian of 𝑓 at the point x0 is denoted with

the following signature 𝜕𝑐 : (R𝑚 → R𝑛) × R𝑚 → Co(R𝑛×𝑚), and is given as:

𝜕𝑐 (𝑓 , x0) = co{ lim
𝑗→∞

J(𝑓 , x𝑗 ) : lim
𝑗→∞

x𝑗 = x0 𝑎𝑛𝑑 x𝑗 ∉ 𝑆 for all 𝑗 ∈ N} (3)

We first detail this definition when x0 is a point of non-differentiability of 𝑓 . Intuitively, since

we cannot compute the actual Jacobian J at a point of non-differentiability, we instead take any

sequence of points that converges to that point of non-differentiability, such that the Jacobian is

defined for all points in that sequence; we then compute what the Jacobians evaluated at those

points in the sequence converge to. The Clarke Jacobian is then just the convex hull over all such

sequences’ respective limiting Jacobians. Thus, we obtain a convex set of matrices. When the

function is differentiable at the point x0, this limit reduces to exactly the standard Jacobian at
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𝑓 ::= 𝑓1 × 𝑓2

| 𝑓1 + 𝑓2

| 𝑓1 · 𝑓2
| 1/𝑓1
| 𝐶1 ◦ 𝑓1

| 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2

| 𝑥𝑖

| 𝑐 ∈ R

𝐶1
::= sin(𝑥) | cos(𝑥)
| 𝑒𝑥 | log(𝑥) | sqrt(𝑥)
| 𝜎 (𝑥) | tanh(𝑥)

Γ ⊢ 𝑐 : R𝑚 → R Γ ⊢ 𝑥𝑖 : R𝑚 → R

Γ ⊢ 𝑓1 : R
𝑚 → R𝑛 Γ ⊢ 𝑓2 : R

𝑚 → R𝑝

Γ ⊢ 𝑓1 × 𝑓2 : R
𝑚 → R𝑛+𝑝

Γ ⊢ 𝑓1 : R
𝑚 → R Γ ⊢ 𝑓2 : R

𝑚 → R
Γ ⊢ 𝑓1 + 𝑓2 : R

𝑚 → R

Γ ⊢ 𝑓1 : R
𝑚 → R Γ ⊢ 𝑓2 : R

𝑚 → R
Γ ⊢ 𝑓1 · 𝑓2 : R𝑚 → R

Γ ⊢ 𝑓1 : R
𝑚 → R

Γ ⊢ 1/𝑓1 : R𝑚 → R
Γ ⊢ 𝑓1 : R

𝑚 → R
Γ ⊢ 𝐶1 ◦ 𝑓1 : R

𝑚 → R

Γ ⊢ 𝑓0 : R
𝑚 → R Γ ⊢ 𝑓1 : R

𝑚 → R𝑛 Γ ⊢ 𝑓2 : R
𝑚 → R𝑛

Γ ⊢ 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 : R
𝑚 → R𝑛

Fig. 3. Locally Lipschitz Function Syntax and Typing Rules

x0 (and the convex hull becomes superfluous), hence 𝜕𝑐 (𝑓 , x0) will be a singleton set containing

exactly J(𝑓 , x0).

Example 3.5. Let 𝑓 (𝑥) = ReLU(𝑥). Then 𝜕𝑐 (𝑓 , 0) = co{0, 1} = [0, 1].

4 LANGUAGE SYNTAX AND SEMANTICS
We describe our differentiable programming language, which is based upon 𝜆𝑆 [Sherman et al. 2021]

but with additional branching primitives. Our language is first-order and purely functional (no

side-effects), yet expressive enough to encode neural networks and locally Lipschitz perturbations.

4.1 Syntax
Figure 3 presents the syntax of the language. DeepJ syntactically supports standard arithmetic

operations, differentiable function primitives, and limited branching for encoding Lipschitz but

non-differentiable functions likemin andmax. One can encode neural networks in DeepJ; however,

instead of encoding them as a series of edge-weight matrix multiplications, our syntax constructs

them inductively via compositions: ◦, Cartesian products:×, and branching (e.g., for ReLU networks).

Arithmetic Operations. We support all of the key arithmetic primitives: addition, multiplication,

and division. While syntactically speaking, these are only defined for functions of a single output

variable, one can easily encode multi-variable versions (e.g., vector addition) by also making use of

the Cartesian product, ×, where (𝑓1 × 𝑓2) (𝑥) = (𝑓1 (𝑥), 𝑓2 (𝑥)). For example, (𝑓1 × 𝑓2) + (𝑓3 × 𝑓4) =
(𝑓1 + 𝑓3) × (𝑓2 + 𝑓4).

Differentiable Functions. Syntactically, we support as primitives all the standard primitive differen-

tiable functions (e.g., 𝑒𝑥 , sin(𝑥), tanh(𝑥), etc.). Hence, we denote these as 𝐶1
because each function

is 𝐶1
-smooth, meaning the function is continuous and differentiable everywhere on its domain,

and the first derivative is also continuous everywhere on its domain.

Non-differentiable, Lipschitz Functions. We support a branching primitive, 𝑓0 > 0 ? 𝑓1 : 𝑓2, to

implement Lipschitz, but not necessarily differentiable functions such as abs, ReLU, min, and max
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𝜕𝑐 :

((
R𝑚 → R𝑛

)
× R𝑚

)
→ Co

(
R𝑛×𝑚

)
𝜕𝑐 (𝑓1 × 𝑓2, x0) ⊆

[
𝜕𝑐 (𝑓1, x0)
𝜕𝑐 (𝑓2, x0)

]
if 𝑓1 & 𝑓2 Lipschitz near x0, else ⊤

𝜕𝑐 (𝑓1 + 𝑓2, x0) ⊆ 𝜕𝑐 (𝑓1, x0) +𝑐
𝜕𝑐 (𝑓2, x0)

if 𝑓1 & 𝑓2 Lipschitz near x0, else ⊤

𝜕𝑐 (𝑓1 · 𝑓2, x0) ⊆ 𝑓1 (x0) ·𝑐 𝜕𝑐 (𝑓2, x0) +𝑐
𝑓2 (x0) ·𝑐 𝜕𝑐 (𝑓1, x0)

if 𝑓1 & 𝑓2 Lipschitz near x0, else ⊤

𝜕𝑐 (1/𝑓1, x0) ⊆ −𝜕𝑐 (𝑓1, x0) /𝑐 𝑓1 (x0)2
if 𝑓1 Lipschitz near x0 and 𝑓1 (x0) ≠ 0, else ⊤

𝜕𝑐 (𝐶1 ◦ 𝑓1, x0) = J(𝐶1, 𝑓1 (x0)) ·𝑐 𝜕𝑐 (𝑓1, x0)
if 𝑓1 Lipschitz near x0 and 𝐶1

differentiable at 𝑓1 (x0), else ⊤

𝜕𝑐 (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x0) ⊆


𝜕𝑐 (𝑓1, x0) if 𝑓0 (x0) > 𝑐
𝜕𝑐 (𝑓2, x0) if 𝑓0 (x0) < 𝑐
co

(
𝜕𝑐 (𝑓1, x0), 𝜕𝑐 (𝑓2, x0)

)
otherwise

if 𝑓1 & 𝑓2 Lipschitz near x0 and
𝑓1, 𝑓2 agree on {𝑥 : 𝑓0 (𝑥) = 𝑐}, else ⊤

𝜕𝑐 (𝑥𝑖 , x0) = {e𝑖 }
provided 𝑖 ∈ {1, ...,𝑚}

𝜕𝑐 (𝑐, x0) = {0}

Fig. 4. Clarke Jacobian Rules

(and by extension max-pooling). For example, abs can be implemented as 𝑥 > 0 ? 𝑥 : −𝑥 . However,
one could easily define a discontinuous function such as 𝑥 > 0 ? 1 : 0 using our syntax. Thus, for

the computed Jacobian (and by extension Lipschitz constant) to be semantically meaningful and

valid, we restrict the type of branching we support. We will later show that checking for these

restrictions is undecidable in Section 4.2, and thus the responsibility of ensuring that the restrictions

are satisfied rests upon the programmer or an (incomplete) program analysis.

Lastly, even though we restrict the type of branches we support, more complex branches with

arbitrary Boolean predicates can be systematically desugared into simpler ones. For example, the

branch

(
𝑐1 < 𝑥 ∧ 𝑥 < 𝑐2

)
? 𝑓1 : 𝑓2 can be desugared into 𝑐1 < 𝑥 ?

(
𝑥 < 𝑐2 ? 𝑓1 : 𝑓2

)
: 𝑓2. Disjunctions

and negations of Booleans can be encoded similarly.

Type System. As our language only employs real-valued functions, the typing rules for a function are

simple and based on standard real-valued arithmetic. For instance, when adding two functions, their

dimensions must agree. Likewise, when dividing by a function 𝑓1 (as in 1/𝑓1), the output dimension

of the function 𝑓1 must be 1. The full typing rules can be seen in Fig. 3, where Γ corresponds to the

typing context that maps all arithmetic expressions (including intermediate ones) to their types.
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4.2 Standard Interpretation
As our language is an augmented differentiable programming language, the semantic interpretation

of a function 𝑓 is its derivative, which in our case corresponds to its Clarke Generalized Jacobian

𝜕𝑐 (𝑓 , ·). Our language is inspired by Sherman et al. [2021], hence we follow their convention of

lifting the Clarke Jacobian to become a total function by defining the result to be ⊤ whenever 𝜕𝑐
would be undefined, such as trying to evaluate the Clarke Jacobian of log(𝑥) at 𝑥 = 0. Because of

this, ⊤ corresponds to the entire space of all real 𝑛 ×𝑚 matrices (R𝑛×𝑚).
The semantic rules for recursively defining the Clarke Generalized Jacobian of each language

primitive are shown in Figure 4. Unlike the regular Jacobian, these rules use ⊆ instead of equality.

This means that the exact Clarke Jacobian is not computable; however, our end goal is to compute

a sound over-approximation.

Convex Arithmetic Operations. We denote +𝑐 : Co(R𝑛×𝑚) × Co(R𝑛×𝑚) → Co(R𝑛×𝑚) to be the

addition of two convex sets (Minkowksi addition), where 𝐴 +𝑐 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.
Likewise, we denote ·𝑐 : R × Co(R𝑛×𝑚) → Co(R𝑛×𝑚) where 𝑣 ·𝑐 𝐴 = {𝑣 · 𝑎 : 𝑎 ∈ 𝐴} and

/𝑐 : Co(R𝑛×𝑚) ×R≠0 → Co(R𝑛×𝑚) where 𝐴/𝑐 𝑣 = { 1
𝑣
· 𝑎 : 𝑎 ∈ 𝐴} to be convex scalar multiplication

and division, respectively. Lastly, as mentioned, we let co : P(R𝑛×𝑚) → Co(R𝑛×𝑚) be the convex
hull operator that takes the convex hull of a set of matrices. We now detail the rules of Fig. 4.

Variables and Constants. The Clarke Jacobian of a single variable 𝑥𝑖 is {1}, but if we compute it

with respect to x0 ∈ R𝑚 , the Clarke Jacobian will be𝑚-dimensional, hence denoted as {e𝑖 }, where
the 𝑖𝑡ℎ entry of e𝑖 is 1 and all other𝑚 − 1 entries are 0. Equivalently, 𝑓 ≜ 𝑥𝑖 can be thought of as a

projection function going from R𝑚 → R that takes the 𝑖𝑡ℎ component of x0. Similarly, the Clarke

Jacobian of any constant is just the vector of𝑚 zeroes, denoted as {0}.

Cartesian Product. The Clarke Jacobian of the Cartesian product of two functions (defined over the

same input) is a subset of the matrix concatenation of each function’s respective Clarke Jacobians.

This follows directly from proposition 2.6.2 (e) of Clarke [1990].

Addition. The Clarke Jacobian does not obey exact linearity; however, the Clarke Jacobian of the

sum of two functions is contained in the Minkowski sum of each function’s respective Clarke

Jacobian. This rule follows directly from Proposition 2.3.3 of Clarke [1990].

Multiplication and Division. The Clarke Jacobian follows both a product and quotient rule, but

as with the other rules, the relationship is of containment instead of strict equality. These follow

directly from Propositions 2.3.13 and 2.3.14 of Clarke [1990].

Composition. To ensure our language is fully compositional, we can exploit the fact that the Clarke

Jacobian follows a chain rule, when the outermost function is𝐶1
-smooth. This result follows directly

from Theorems 2.3.9 and 2.6.6 of Clarke [1990].

𝐶1 Functions. For the 𝐶1
primitive functions, the Clarke Jacobian reduces to the standard Jacobian

J(𝐶1, ·). Furthermore, one can catch erroneous behavior by leveraging knowledge about the known

domain of each 𝐶1
primitive function. For instance, if one tries to evaluate 𝜕𝑐 (sqrt(−𝑅𝑒𝐿𝑈 (𝑥𝑖 )), 1),

this would require evaluating J(sqrt,−1). However, since -1 lies outside the domain of sqrt, this

result is undefined; thus, the expression will evaluate to ⊤, and errors will be caught at this step.

One can then propagate ⊤ up the remainder of a function’s expression tree, since all other rules in

Fig. 4 first check if any sub-expression evaluates to ⊤ (in which case they will also evaluate to ⊤).

Branching. Branching is absent in Clarke’s original formulation. Furthermore, 𝜆𝑆 [Sherman et al.

2021] and Di Gianantonio and Edalat [2013] also do not support a branching primitive. This is
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because a branch can introduce the possibility of encoding a discontinuous function, such as

𝑓 (𝑥) = 𝑥 > 0 ? 1 : 0. As a branch can be thought of as “splitting” a function into two separate

pieces, we need to ensure that the entire function is still locally Lipschitz continuous (on the region

of interest containing x0) for it to have a well-defined Clarke Jacobian at x0. Thus, to formally

establish the necessary conditions for the well-definedness of the Clarke Jacobian of a branching

function, we use results from the theory of piecewise differentiable functions [Khan and Barton

2013; Scholtes 2012]. We first state a useful lemma.

Lemma 4.1. Let 𝑓 : R𝑚 → R𝑛 be a function expressible using the syntax of Figure 3 that does not
contain branches. For any x0 where J(𝑓 , x0) is defined, we have that 𝜕𝑐 (𝑓 , x0) = {J(𝑓 , x0)}.

Proof. (Sketch) Since a function that does not have branches is a constant or only uses addition,

composition with a 𝐶1
function, multiplication, division, or the Cartesian product, one can directly

compute J(𝑓 , x0) using linearity, chain rule, product or quotient rule, or the direct computation

of the derivative (for 𝐶1
functions and constants), provided J(𝑓 , x0) is well-defined (e.g., there is

no division by 0). Furthermore, by Proposition 2.2.4 of Clarke [Clarke 1990], if a function has a

well-defined Jacobian at a point, the Clarke Jacobian reduces to that value. □

We now formally define piecewise differentiability.

Definition 4.2. (Piecewise Differentiability [Scholtes 2012]) A function 𝑓 : R𝑚 → R𝑛 is piecewise

differentiable on an open set X ⊆ R𝑚 if 𝑓 is continuous on X and for every 𝑥 ∈ X there exists an

open neighborhood𝑂 ⊆ X and a finite number of differentiable functions, denoted {𝑔1, ..., 𝑔𝑘 }, such
that for any 𝑥𝑜 ∈ 𝑂 , 𝑓 (𝑥𝑜 ) ∈ {𝑔1 (𝑥𝑜 ), ..., 𝑔𝑘 (𝑥𝑜 )}. We will refer to the set of differentiable functions

{𝑔1, ..., 𝑔𝑘 } as the selection set.

Any function 𝑓 that is differentiable on a setX ⊆ R𝑚 (meaning J(𝑓 , ·) exists) is trivially piecewise
differentiable on X, albeit with a single piece. A piecewise differentiable function has a well-defined

Clarke Jacobian that can be given in terms of the convex hull of the standard Jacobian of constituent

pieces, provided an active set is known a priori [Scholtes 2012]. If 𝑓 has the selection set of

differentiable functions {𝑔1, ..., 𝑔𝑘 }, then (by Proposition 4.3.1 of Scholtes [2012]):

𝜕𝑐 (𝑓 , x0) = co{J(𝑔𝑖 , x0) | 𝑖 ∈ 𝐴(𝑓 , x0)} (4)

where 𝐴(𝑓 , x0) ⊆ {1, .., 𝑘} is the active set, which denotes at x0 which of the 𝑘 selection functions

satisfy 𝑔𝑖 (x0) = 𝑓 (x0). To adapt this to our setting, we start with the simplest branching function

𝑓 ≜ 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 where 𝑓1, 𝑓2 are branch-free (meaning they are compositions, sums, or products

of 𝐶1
functions). Since 𝑓1 and 𝑓2 do not contain branches, one can compute J(𝑓𝑖 , x0) directly in

accordance with Lemma 4.1. Hence, 𝑓1 and 𝑓2 are the selection set, as they are differentiable (by

assumption) and the value of 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 for some 𝑥0 will necessarily be in {𝑓1 (𝑥0), 𝑓2 (𝑥0)}.
Therefore, when writing a branch, the selection set is known by construction. So all that remains

for 𝑓 to be piecewise differentiable (and have a well-defined 𝜕𝑐 ) is to ensure that it is continuous,

which is true provided 𝑓1 (𝑥) = 𝑓2 (𝑥) for {𝑥 : 𝑓0 (𝑥) = 𝑐}.
We do not need to restrict to cases where 𝑓1 and 𝑓2 are branch-free. We can nest branches

arbitrarily deeply, provided they agree on the decision boundary {𝑥 : 𝑓0 (𝑥) = 𝑐}, as all this does is
increase the number of selection functions (or pieces) by finitely many. This is because we do not

allow infinite recursion or while loops that would permit expressing countably infinite possible

branches. Intuitively, we recursively “unroll” the nested branches into all possible innermost

functions (which themselves will no longer contain branches). This ultimately yields a finite set

of branch-free functions 𝑓𝑖 for which we can compute J(𝑓𝑖 , ·) directly (as in Lemma 4.1). Using

these notions, we can now formally describe necessary conditions for the Clarke Jacobian of the

branching primitive to be well-defined.
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Theorem 4.3. (Well-Definedness of the Clarke Jacobian of a Branch) The function given by the
branch 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 is piecewise differentiable on an open set X ⊆ R𝑚 if 𝑓1 is piecewise differentiable
on {𝑥 ∈ X : 𝑓0 (𝑥) ≥ 𝑐}, 𝑓2 is piecewise differentiable on {𝑥 ∈ X : 𝑓0 (𝑥) ≤ 𝑐}, and 𝑓1 (𝑥0) = 𝑓2 (𝑥0) for
all 𝑥0 ∈ {𝑥 ∈ X : 𝑓0 (𝑥) = 𝑐}.

Proof. (Sketch) Since 𝑓1 is piecewise differentiable on {𝑥 ∈ X : 𝑓0 (𝑥) ≥ 𝑐}, it has some selection

set {𝑔1, ..., 𝑔𝑘 }, hence 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 is also piecewise differentiable on {𝑥 ∈ X : 𝑓0 (𝑥) ≥ 𝑐}, with
the same selection set on that region. Likewise, since 𝑓2 is piecewise differentiable on {𝑥 ∈ X :

𝑓0 (𝑥) ≤ 𝑐}, it has some selection set {ℎ1, ..., ℎ𝑙 } thus 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 is also piecewise differentiable

on {𝑥 ∈ X : 𝑓0 (𝑥) ≤ 𝑐}, with the same selection set. Furthermore, since {𝑥 ∈ X : 𝑓0 (𝑥) =

𝑐} ⊆ {𝑥 ∈ X : 𝑓0 (𝑥) ≥ 𝑐} and {𝑥 ∈ X : 𝑓0 (𝑥) = 𝑐} ⊆ {𝑥 ∈ X : 𝑓0 (𝑥) ≤ 𝑐}, the selection set

for {𝑥 ∈ X : 𝑓0 (𝑥) = 𝑐} is {𝑔1, ..., 𝑔𝑘 , ℎ1, ..., ℎ𝑙 }. Lastly, since 𝑥0 ∈ {𝑥 ∈ X : 𝑓0 (𝑥) = 𝑐} implies

𝑓1 (𝑥0) = 𝑓2 (𝑥0), then 𝑓0 > 𝑐 ? 𝑓1 : 𝑓2 is continuous on its entire domain. □

We now present the rule for computing the Clarke Jacobian for a branching function, using the

notions of piecewise differentiability. Formally, for 𝑓0 : R
𝑚 → R, 𝑓1, 𝑓2 : R𝑚 → R𝑛 , and x0 ∈ R𝑚 :

𝜕𝑐 (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x0) ⊆


𝜕𝑐 (𝑓1, x0) if 𝑓0 (x0) > 𝑐
𝜕𝑐 (𝑓2, x0) if 𝑓0 (x0) < 𝑐
co

(
𝜕𝑐 (𝑓1, x0), 𝜕𝑐 (𝑓2, x0)

)
otherwise

(5)

When 𝑓0 (x0) > 𝑐 , the active set is 𝐴(𝑓0, x0) = {𝑓1}; similarly, when 𝑓0 (x0) < 𝑐 , the active set

is 𝐴(𝑓0, x0) = {𝑓2}. Along the decision boundary, both 𝑓1 and 𝑓2 are in the active set, hence the

Clarke Jacobian is the convex hull, co, of both of their respective Clarke Jacobians. In the rule

shown in Eq. 5, we evaluate 𝜕𝑐 (𝑓1, x0) and 𝜕𝑐 (𝑓2, x0) instead of J(𝑓1, x0) and J(𝑓2, x0) as in Eq. 4.

This recursive definition allows us to capture the notion of unrolling a nested branch, as once 𝑓1
and 𝑓2 are themselves branch free, 𝜕𝑐 (𝑓𝑖 , x0) and J(𝑓𝑖 , x0) become equivalent (by Lemma 4.1); thus,

this equation would coincide with Eq. 4.

Example 4.4. We can encode ReLU(𝑥) ≜ 𝑥 > 0 ? 𝑥 : 0, and hence 𝜕𝑐 (𝑥 > 0 ? 𝑥 : 0, 0) =

co(𝜕𝑐 (𝑥, 0), 𝜕𝑐 (0, 0)) = co({1, 0}) = [0, 1].

Despite the elegant theory of Scholtes [2012] allowing us to characterize the conditions and

well-definedness of the Clarke Jacobian of a piecewise differentiable function (or branch in our

language), the problem of statically checking that these conditions are satisfied is undecidable. This

is because even the smaller problem of ensuring that a branch is continuous along the decision

boundary is known to be undecidable [Chaudhuri et al. 2010; Di Gianantonio and Edalat 2013;

Griewank 2013]. As those works do not target the exact framework we focus on, we offer a short

self-contained result:

Lemma 4.5. (Undecidability of Ensuring Piecewise Differentiability) Let 𝑓1 : R𝑚 → R𝑛 and 𝑓2 :

R𝑚 → R𝑛 be arbitrary functions in the language, and let X ⊆ R𝑚 be an arbitrary set on which 𝑓1 and
𝑓2 are both defined. Checking if 𝑓1 (𝑥) = 𝑓2 (𝑥) for all 𝑥 ∈ X where 𝑓0 (𝑥) = 𝑐 is undecidable.

Proof. (Sketch) Reduction using Richardson’s Theorem [Richardson 1969]. □

Existing works can heuristically check for this condition using SMT solvers [Chaudhuri et al.

2010], or restrict the language to only pre-specified operators (e.g., max, min, ReLU and abs) [Beck

and Fischer 1994; Di Gianantonio and Edalat 2013; Sherman et al. 2021]. Despite the difficulties

introduced by a branching primitive, it will prove immensely useful in making the static analysis

more precise, particularly for functions such as bilinear interpolation.
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5 INTERVAL CLARKE JACOBIAN
Having now defined the syntax and the standard Clarke Jacobian, we now formalize a computable,

sound over-approximation: the Interval Clarke Jacobian, 𝜕𝐼𝑛𝑡 . We will then show how to scalably

implement our abstraction with an equivalent formulation that leverages a sound abstraction of

forward-mode automatic differentiation.

5.1 Interval Domain
To soundly approximate the Clarke Jacobian, we use the interval domain as it is fully computable and

can soundly abstract the convex set of matrices corresponding to the original Clarke Generalized

Jacobian, since interval matrices are necessarily convex sets.

Preliminaries. Denote the set of real-valued intervals of the form [𝑎, 𝑏] where 𝑎, 𝑏 ∈ R ∪ {±∞} and
𝑎 ≤ 𝑏 as IR. The set of 𝑛 ×𝑚 matrices of intervals is denoted as IR𝑛×𝑚 . We will use the notation

x̂0 instead of x0 to distinguish matrices and vectors whose entries are intervals instead of scalars.

Similarly, to denote the evaluation of a function 𝑓 where all of its operations are lifted to interval

arithmetic, we will write 𝑓 (x̂0). To denote the lower and upper bounds of an interval x̂0 = [𝑎, 𝑏],
we will write 𝑙𝑏 (x̂0) and 𝑢𝑏 (x̂0), respectively. We denote +IR , ·IR , and /IR as the interval arithmetic

versions of addition, multiplication, and division, respectively. Likewise, we denote⊔ : IR×IR → IR
to be the standard interval join, which returns the smallest interval enclosing both arguments. We

may also apply ⊔ element-wise to matrices in IR𝑛×𝑚 . Lastly, we denote ⊤ = IR𝑛×𝑚 , thus ⊤ is the

entire space of 𝑛 ×𝑚 interval matrices. We now define the Interval Clarke Jacobian 𝜕𝐼𝑛𝑡 .

Definition 5.1. The Interval Clarke Jacobian 𝜕𝐼𝑛𝑡 :
( (
R𝑚 → R𝑛

)
× IR𝑚

)
→ IR𝑛×𝑚 for a function

𝑓 : R𝑚 → R𝑛 and interval vector x̂ ∈ IR𝑚 is denoted 𝜕𝐼𝑛𝑡 (𝑓 , x̂0) and is given by the rules of Fig. 5.

The interpretation of the Jacobian of a function 𝑓 is now an interval matrix that over-approximates

the convex set of matrices corresponding to the original Clarke Jacobian. This will be necessary

to be able to define the local neighborhood of points for which we want to abstractly analyze or

compute a Lipschitz constant. We now detail each abstract transformer.

Constants and Variables. The Interval Clarke Jacobian of a constant function is nearly identical to

the respective Clarke Jacobian (in that 𝜕𝐼𝑛𝑡 of a constant is 0); it is lifted to become the constant

interval [0, 0] of the same dimension as x̂0, which we denote as 0̂ ∈ IR𝑚 . Likewise, the Interval
Clarke Jacobian of a single variable 𝑥𝑖 is also the constant vector where the 𝑖𝑡ℎ component is 1 and

all other𝑚 − 1 components are 0, again lifted to become a constant interval, which we denote as

ê𝑖 ∈ IR𝑚 .

Cartesian Product. The Interval Clarke Jacobian of a Cartesian product of functions is just the

concatenation of their respective Interval Clarke Jacobians.

Addition. The Interval Clarke Jacobian obeys linearity exactly.

Multiplication and Division. The Interval Clarke Jacobian satisfies a lifted interval arithmetic version

of the product and quotient rules.

Composition. For compositions with 𝐶1
-smooth functions, the Interval Clarke Jacobian satisfies a

chain rule as well, where J𝐼𝑛𝑡 is the classical Jacobian of the 𝐶1
-smooth function, just interpreted

using interval arithmetic instead of ordinary arithmetic.

Example 5.2. J𝐼𝑛𝑡 (sin, [𝑥 ℓ
0
, 𝑥𝑢

0
]) = cos( [𝑥 ℓ

0
, 𝑥𝑢

0
]) and J𝐼𝑛𝑡 (tanh, [𝑥 ℓ

0
, 𝑥𝑢

0
]) = [1, 1] −IR [tanh(𝑥 ℓ0), tanh(𝑥

𝑢
0
)]2.

Just as with 𝜕𝑐 , primitive 𝐶1
functions are where we can check if the Jacobian is undefined (in

which case 𝜕𝐼𝑛𝑡 evaluates to ⊤), which we likewise propagate up the function’s expression tree.
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𝜕𝐼𝑛𝑡 :

((
R𝑚 → R𝑛

)
× IR𝑚

)
→ IR𝑛×𝑚

𝜕𝐼𝑛𝑡 (𝑓1 × 𝑓2, x̂0) =

[
𝜕𝐼𝑛𝑡 (𝑓1, x̂0)
𝜕𝐼𝑛𝑡 (𝑓2, x̂0)

]
if 𝑓1 & 𝑓2 Lipschitz on x̂0, else ⊤

𝜕𝐼𝑛𝑡 (𝑓1 + 𝑓2, x̂0) = 𝜕𝐼𝑛𝑡 (𝑓1, x̂0) +IR 𝜕
𝐼𝑛𝑡 (𝑓2, x̂0)

if 𝑓1 & 𝑓2 Lipschitz on x̂0, else ⊤

𝜕𝐼𝑛𝑡 (𝑓1 · 𝑓2, x̂0) = 𝑓1 (x̂0) ·IR 𝜕𝐼𝑛𝑡 (𝑓2, x̂0)+IR 𝑓2 (x̂0) ·IR 𝜕𝐼𝑛𝑡 (𝑓1, x̂0)
if 𝑓1 & 𝑓2 Lipschitz on x̂0, else ⊤

𝜕𝐼𝑛𝑡 (1/𝑓1, x̂0) = −𝜕𝐼𝑛𝑡 (𝑓1, x̂0) /IR 𝑓1 (x̂0)2
if 𝑓1 Lipschitz on x̂0 and 0 ∉ 𝑓1 (x̂0), else ⊤

𝜕𝐼𝑛𝑡 (𝐶1 ◦ 𝑓1, x̂0) = J𝐼𝑛𝑡 (𝐶1, 𝑓1 (x̂0)) ·IR 𝜕𝐼𝑛𝑡 (𝑓1, x̂0)
if 𝑓1 Lipschitz on x̂0 and 𝐶1

differentiable on 𝑓1 (x̂0), else ⊤

𝜕𝐼𝑛𝑡 (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0) =


𝜕𝐼𝑛𝑡 (𝑓1, J𝑓0 > 𝑐K(x̂0)) if 𝑙𝑏 (𝑓0 (x̂0)) > 𝑐
𝜕𝐼𝑛𝑡 (𝑓2, J𝑓0 < 𝑐K(x̂0)) if 𝑢𝑏 (𝑓0 (x̂0)) < 𝑐
𝜕𝐼𝑛𝑡 (𝑓1, J𝑓0 ≥ 𝑐K(x̂0))

⊔
𝜕𝐼𝑛𝑡 (𝑓2, J𝑓0 ≤ 𝑐K(x̂0)) otherwise

if 𝑓1 & 𝑓2 Lipschitz on x̂0 and
𝑓1 (𝑥) = 𝑓2 (𝑥) for 𝑥 ∈ {𝑥 ′ : 𝑓0 (𝑥 ′) = 𝑐 ∧ 𝑥 ′ ∈ x̂0}, else ⊤

𝜕𝐼𝑛𝑡 (𝑥𝑖 , x̂0) = ê𝑖

𝜕𝐼𝑛𝑡 (𝑐, x̂0) = 0̂

Fig. 5. Interval Clarke Jacobian Rules

Branching. If the lower bound of 𝑓0 (x̂0) is larger than 𝑐 , we definitively know that 𝑓1 is the only

possible function of the active set. Similarly, if the upper bound of 𝑓0 (x̂0) is smaller than 𝑐 , we

definitively know that 𝑓2 is the only possible function of the active set. If 𝑐 ∈ 𝑓0 (x̂0), then it is

possible that both 𝑓1 and 𝑓2 are in the active set, thus we have to consider both possibilities.

In either case, we can also refine our information about x̂0. For example, when evaluating 𝜕𝐼𝑛𝑡

of the function 𝑓 (𝑥) ≜ 𝑥 > 0 ? 𝑓1 : 𝑓2 on the interval x̂0 = [−1, 1], conditional upon entering the

true branch, we should only evaluate 𝜕𝐼𝑛𝑡 (𝑓1, [0, 1]). Likewise, conditional upon entering the false

branch, we should only evaluate 𝜕𝐼𝑛𝑡 (𝑓2, [−1, 0]). We denote the refinement of x̂0 for a Boolean
guard of the form 𝑓0 > 𝑐 as J𝑓0 > 𝑐K(x̂0). However, the general problem of determining how to

optimally refine the input x̂0, conditioned on the information of the branch 𝑓0 > 𝑐 , is undecidable.

Therefore, we follow the approach of Miné [Miné 2017] and refine x̂0 when the function 𝑓0 in the

Boolean guard has a simple form: a single variable 𝑥𝑖 , and then use the fallback transformer (the

identity function) for all other cases (which can then be simplified to get the rule from Fig. 5):

J𝑓0 𝑜𝑝 𝑐K(x̂0) =


x̂0 ∩

(
[−∞,∞] × ... × [−∞, 𝑐] × ... × [−∞,∞]

)
if 𝑓0 = 𝑥𝑖 ∧ 𝑜𝑝 ∈ {<, ≤}

x̂0 ∩
(
[−∞,∞] × ... × [𝑐,∞] × ... × [−∞,∞]

)
if 𝑓0 = 𝑥𝑖 ∧ 𝑜𝑝 ∈ {>, ≥}

x̂0 otherwise
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5.2 Soundness of the Abstraction
We now state the soundness of 𝜕𝐼𝑛𝑡 . We first define the concretization 𝛾 .

Definition 5.3. Define the concretization𝛾 : IR𝑛×𝑚 → Co
(
R𝑛×𝑚

)
for an interval matrix 𝑆 ∈ IR𝑛×𝑚

as follows:

𝛾 (𝑆) = {𝑠 ∈ R𝑛×𝑚 | 𝑠 ∈ 𝑆}
This is because an interval matrix is already by definition a convex set of matrices. The soundness

theorem is now given as follows.

Theorem 5.4. (Soundness) Let 𝑓 : R𝑚 → R𝑛 be any function constructible according to Fig. 3 and
x0 ∈ R𝑚 , x̂0 ∈ IR𝑚 with x0 ∈ x̂0. Then

𝜕𝑐 (𝑓 , x0) ⊆ 𝛾 (𝜕𝐼𝑛𝑡 (𝑓 , x̂0))
Proof. See Appendix A.2 (Laurel et al. [2022]). □

6 DUAL INTERVAL DOMAIN
While we could compute 𝜕𝐼𝑛𝑡 recursively in a reverse-mode pass, a key contribution of our work is

to provide an equivalent, forward-mode version of the static analysis based on dual numbers.

6.1 Dual Interval Arithmetic
Definition 6.1. The set of dual intervals, denoted as ID, are tuples of the form [𝑎, 𝑏] + [𝑐, 𝑑]𝜖 ,

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R ∪ {±∞}, 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑 . Intuitively, a dual interval represents a set of dual
numbers where the real part is within [𝑎, 𝑏] and the dual part is within [𝑐, 𝑑]. To access the real

part [𝑎, 𝑏] of a dual interval, we will write 𝑓 𝑠𝑡 ( [𝑎, 𝑏] + [𝑐, 𝑑]𝜖); to access the coefficients of the

dual part [𝑐, 𝑑], we will write 𝑠𝑛𝑑 ( [𝑎, 𝑏] + [𝑐, 𝑑]𝜖). We will denote the set of𝑚-dimensional vectors

of dual intervals as ID𝑚 and the set of 𝑛 ×𝑚 dimensional matrices as ID𝑛×𝑚 . Lastly, we denote
⊤ = ID𝑛×𝑚 (the entire space of dual interval matrices).

We can lift the ordinary arithmetic operators to dual intervals. We define dual interval addition,

+ID : ID × ID → ID as follows:(
[𝑎, 𝑏] + [𝑐, 𝑑]𝜖

)
+ID

(
[𝑒, 𝑓 ] + [𝑔, ℎ]𝜖

)
=
(
[𝑎, 𝑏]+IR [𝑒, 𝑓 ]

)
+
(
[𝑐, 𝑑]+IR [𝑔, ℎ])𝜖

We define dual interval multiplication, ·ID : ID × ID → ID as(
[𝑎, 𝑏] + [𝑐, 𝑑]𝜖

)
·ID

(
[𝑒, 𝑓 ] + [𝑔, ℎ]𝜖

)
=
(
[𝑎, 𝑏] ·IR [𝑒, 𝑓 ]

)
+
(
[𝑎, 𝑏] ·IR [𝑔, ℎ]+IR [𝑐, 𝑑] ·IR [𝑒, 𝑓 ]

)
𝜖

And dual interval division, /ID : ID × ID → ID as(
[𝑎, 𝑏]+ [𝑐, 𝑑]𝜖

)
/ID

(
[𝑒, 𝑓 ]+ [𝑔, ℎ]𝜖

)
=
(
[𝑎, 𝑏]/IR [𝑒, 𝑓 ]

)
+
( (
[𝑐, 𝑑] ·IR [𝑒, 𝑓 ]−IR [𝑎, 𝑏] ·IR [𝑔, ℎ]

)
/IR [𝑒, 𝑓 ]2

)
𝜖

It will also be useful to define a join for dual intervals, ⊔ID : ID × ID → ID as(
[𝑎, 𝑏] + [𝑐, 𝑑]𝜖

)
⊔ID

(
[𝑒, 𝑓 ] + [𝑔, ℎ]𝜖

)
=
(
[𝑎, 𝑏] ⊔ [𝑒, 𝑓 ]

)
+
(
[𝑐, 𝑑] ⊔ [𝑔, ℎ]

)
𝜖

6.2 Forward-Mode Abstract Evaluation with Dual Intervals
We now describe how to perform a forward-mode abstract evaluation where all operations are

lifted to operate on dual intervals using the abstract interpreter 𝐸𝑣𝑎𝑙ID.

Definition 6.2. The abstract interpreter 𝐸𝑣𝑎𝑙ID :

( (
R𝑚 → R𝑛

)
× ID𝑚

)
→ ID𝑛 takes a real-valued

function 𝑓 : R𝑚 → R𝑛 and evaluates it abstractly by lifting the interpretation of all operations to

dual interval arithmetic, as shown in Fig. 6.

Because our language is functional, there is no “state.” However, the second argument to 𝐸𝑣𝑎𝑙ID
is the input, which serves the same purpose. We now detail the rules shown in Fig. 6.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 56. Publication date: January 2022.



56:18 Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic

𝐸𝑣𝑎𝑙ID :

((
R𝑚 → R𝑛

)
× ID𝑚

)
→ ID𝑛

𝐸𝑣𝑎𝑙ID (𝑓1 × 𝑓2, x̂0 + ŷ0𝜖) = 𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ŷ0𝜖) × 𝐸𝑣𝑎𝑙ID (𝑓2, x̂0 + ŷ0𝜖)
if 𝑓1 & 𝑓2 Lipschitz on x̂0, else ⊤

𝐸𝑣𝑎𝑙ID (𝑓1 + 𝑓2, x̂0 + ŷ0𝜖) = 𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ŷ0𝜖)+ID𝐸𝑣𝑎𝑙ID (𝑓2, x̂0 + ŷ0𝜖)
if 𝑓1 & 𝑓2 Lipschitz on x̂0, else ⊤

𝐸𝑣𝑎𝑙ID (𝑓1 · 𝑓2, x̂0 + ŷ0𝜖) = 𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ŷ0𝜖)·ID𝐸𝑣𝑎𝑙ID (𝑓2, x̂0 + ŷ0𝜖)
if 𝑓1 & 𝑓2 Lipschitz on x̂0, else ⊤

𝐸𝑣𝑎𝑙ID (1/𝑓1, x̂0 + ŷ0𝜖) =

(
[1, 1] + [0, 0]𝜖

)
/ID𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ŷ0𝜖)

if 𝑓1 Lipschitz on x̂0, else ⊤

𝐸𝑣𝑎𝑙ID (𝐶1 ◦ 𝑓1, x̂0 + ŷ0𝜖) = 𝐸𝑣𝑎𝑙ID (𝐶1, 𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ŷ0𝜖))
if 𝑓1 Lipschitz on x̂0 and 𝐶1

differentiable on 𝑓1 (x̂0), else ⊤

𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0 + ŷ0𝜖) =


𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 > 𝑐K(x̂0) + ŷ0𝜖) 𝑙𝑏 (fst(𝐸𝑣𝑎𝑙ID (𝑓0, x̂0 + ŷ0𝜖))) > 𝑐
𝐸𝑣𝑎𝑙ID (𝑓2, J𝑓0 < 𝑐K(x̂0) + ŷ0𝜖) 𝑢𝑏 (fst(𝐸𝑣𝑎𝑙ID (𝑓0, x̂0 + ŷ0𝜖))) < 𝑐
𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 ≥ 𝑐K(x̂0) + ŷ0𝜖) otherwise

⊔ID𝐸𝑣𝑎𝑙ID (𝑓2, J𝑓0 ≤ 𝑐K(x̂0) + ŷ0𝜖)

𝐸𝑣𝑎𝑙ID (𝑥𝑖 , x̂0 + ŷ0𝜖) = x̂0 [𝑖] + ŷ0 [𝑖]𝜖

𝐸𝑣𝑎𝑙ID (𝑐, x̂0 + ŷ0𝜖) = [𝑐, 𝑐] + [0, 0]𝜖

𝐸𝑣𝑎𝑙ID (𝐶1, [𝑥 ℓ
0
, 𝑥𝑢

0
] + [𝑦ℓ

0
, 𝑦𝑢

0
]𝜖) = 𝐶1 ( [𝑥 ℓ

0
, 𝑥𝑢

0
]) +

(
J𝐼𝑛𝑡 (𝐶1, [𝑥 ℓ

0
, 𝑥𝑢

0
]) ·IR [𝑦ℓ

0
, 𝑦𝑢

0
]
)
𝜖

if 𝐶1
differentiable on [𝑥 ℓ

0
, 𝑥𝑢

0
], else ⊤

Fig. 6. Dual Interval Forward Mode Abstract Evaluation

Constants and Variables. The abstract evaluation of a constant is that constant, albeit abstracted to

a (degenerate) dual interval. Likewise, the evaluation of a single variable 𝑥𝑖 is the 𝑖
𝑡ℎ

element of the

input dual interval (denoted by the [𝑖] accessor).

Cartesian Product. To abstractly evaluate the Cartesian product of two functions 𝑓1 and 𝑓2 on a

given input x̂0 + ŷ0𝜖 , we abstractly evaluate each one, then take the Cartesian product of the results.

Addition. To abstractly evaluate the sum of two functions, we abstractly evaluate each on the given

input x̂0 + ŷ0𝜖 , then take the dual interval sum +ID of the respective results.

Multiplication and Division. As with addition, to abstractly evaluate the product of two functions

or their quotient, we first abstractly evaluate the individual functions on the input, then use the

dual interval forms of multiplication ·ID and division /ID .

Composition. The abstract evaluation of the composition of any function 𝑓1 with a 𝐶1
function

for an input dual interval x̂0 + ŷ0𝜖 , is the composition of the successive abstract evaluations: 𝑓1 is

abstractly evaluated on the input, then the 𝐶1
function is abstractly evaluated on that result.
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Branching. When evaluating a branch abstractly, we only use the real part of the dual interval,

denoted 𝑓 𝑠𝑡 (𝐸𝑣𝑎𝑙ID (𝑓0, x̂0 + ŷ0𝜖)), to select which branch to take (or whether to abstractly evaluate

both). While this may seem strange, one will note that in Eq. 5, the Clarke Jacobian is only computed

for the piece that is ultimately chosen – 𝑓1 or 𝑓2 (possibly both) – and not the threshold function

𝑓0. In fact, 𝑓0 is only used to select which branch to take, hence its derivative information (which

corresponds to its dual part) is unnecessary. If the lower bound 𝑙𝑏 (𝑓 𝑠𝑡 (𝐸𝑣𝑎𝑙ID (𝑓0, x̂0 + ŷ0𝜖))) is larger
than 𝑐 , we definitively know to take only the true branch. Conversely, if the upper bound of the

real part 𝑢𝑏 (𝑓 𝑠𝑡 (𝐸𝑣𝑎𝑙ID (𝑓0, x̂0 + ŷ0𝜖))) is less than 𝑐 , we only take the false branch. Otherwise, we

abstractly evaluate both branches then take their join ⊔ID . In all cases, we can refine the information

of the real part x̂0 but not the dual part ŷ0, as there is no way of knowing which sub-regions of x̂0
correspond to which sub-regions in ŷ0, since the interval domain is non-relational.

6.3 Equivalence
We now prove that 𝐸𝑣𝑎𝑙ID can be used to compute exactly the same result as 𝜕𝐼𝑛𝑡 .

Theorem 6.3. (Equivalence of 𝜕𝐼𝑛𝑡 and 𝐸𝑣𝑎𝑙ID) Let 𝑓 : R𝑚 → R𝑛 and let x̂0 ∈ IR𝑚 . Then

𝜕𝐼𝑛𝑡 (𝑓 , x̂0) = 𝑠𝑛𝑑
(
𝐸𝑣𝑎𝑙ID (𝑓 , x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓 , x̂0 + ê𝑚𝜖)𝑇

)
Proof. We show the sketch for select cases; the full proof is in Appendix A.4.

Base Cases. Constants and single variables are straightforward.

𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑐, x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑐, x̂0 + ê𝑚𝜖)𝑇

)
= [0, 0] × ... × [0, 0] = 𝜕𝐼𝑛𝑡 (𝑐, x̂0)

𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑥𝑖 , x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑥𝑖 , x̂0 + ê𝑚𝜖)𝑇

)
= [0, 0] × ... × [1, 1] × ... × [0, 0] = ê𝑖 = 𝜕𝐼𝑛𝑡 (𝑥𝑖 , x̂0)

Arithmetic Operations. Equivalence for arithmetic primitives is straightforward, though it

requires the inductive hypothesis and using the definitions of +ID , ·ID , /ID . We now detail addition:

𝜕𝐼𝑛𝑡 (𝑓1 + 𝑓2, x̂0) = 𝜕𝐼𝑛𝑡 (𝑓1, x̂0)+IR 𝜕
𝐼𝑛𝑡 (𝑓2, x̂0) (Def.)

= 𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓1, x̂0 + ê𝑚𝜖)𝑇

)
(Ind. Hyp.)

+IR𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓2, x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓2, x̂0 + ê𝑚𝜖)𝑇

)
= 𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓1 + 𝑓2, x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓1 + 𝑓2, x̂0 + ê𝑚𝜖)𝑇

) (Def. of +ID ,

× distributes

with 𝑠𝑛𝑑)

The case for the Cartesian product proceeds analogously. Composition also uses the inductive

hypothesis and relies upon the fact that 𝑠𝑛𝑑
(
𝐸𝑣𝑎𝑙ID (𝐶1, [𝑥𝑙

0
, 𝑥𝑢

0
] + [1, 1]𝜖)𝑇

)
= J𝐼𝑛𝑡 (𝐶1, [𝑥𝑙

0
, 𝑥𝑢

0
]).

Branching. As stated in Lemma 4.1, up to this point, without branching the language is just a

standard differentiable programming language, thus the result is not surprising. However, with

branching, establishing this equivalence is more challenging. We split the proof into three cases:

(1) 𝑙𝑏 (𝑓 (x̂0)) > 𝑐 , (2) 𝑢𝑏 (𝑓 (x̂0)) < 𝑐 , and (3) 𝑐 ∈ 𝑓 (x̂0). Starting with 𝑙𝑏 (𝑓0 (x̂0)) > 𝑐:
𝜕𝐼𝑛𝑡 (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0) = 𝜕𝐼𝑛𝑡 (𝑓1, J𝑓0 > 𝑐K(x̂0)

And for any 𝑖 ∈ {1, ..,𝑚}, 𝑙𝑏 (𝑓0 (x̂0)) > 𝑐 iff 𝑙𝑏 (𝑓 𝑠𝑡 (𝐸𝑣𝑎𝑙ID (𝑓0, x̂0 + ê𝑖𝜖))) > 𝑐 , hence:
𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0 + ê𝑖𝜖) = 𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 > 𝑐K(x̂0) + ê𝑖𝜖)

By induction and the definitions of 𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0 + ê𝑖𝜖) and 𝜕𝐼𝑛𝑡 (𝑓1, J𝑓0 > 𝑐K(x̂0)):

𝜕𝐼𝑛𝑡 (𝑓1, J𝑓0 > 𝑐K(x̂0)) = 𝑠𝑛𝑑
(
𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 > 𝑐K(x̂0) + ê1𝜖)𝑇 × ...×𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 > 𝑐K(x̂0) + ê𝑚𝜖)𝑇

)
(Ind.)

𝜕𝐼𝑛𝑡 (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0) = 𝑠𝑛𝑑
(
𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0+ê1𝜖)𝑇×...×𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0+̂e𝑚𝜖)𝑇

)
(Def.)
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The case where 𝑢𝑏 (𝑓0 (x̂0)) < 𝑐 proceeds exactly the same by symmetry. When we assume

𝑐 ∈ 𝑓0 (x̂0), we must take the join. Starting from the desired right-hand side:

𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0 + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0 + ê𝑚𝜖)𝑇

)
(Desired RHS)

= 𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 ≥ 𝑐K(x̂0) + ê1𝜖)𝑇⊔ID𝐸𝑣𝑎𝑙ID (𝑓2, J𝑓0 ≤ 𝑐K(x̂0) + ê1𝜖)𝑇 × ... (Assump.)

... × 𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 ≥ 𝑐K(x̂0) + ê𝑚𝜖)𝑇⊔ID𝐸𝑣𝑎𝑙ID (𝑓2, J𝑓0 ≤ 𝑐K(x̂0) + ê𝑚𝜖)𝑇
)

= 𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 ≥ 𝑐K(x̂0) + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓1, J𝑓0 ≥ 𝑐K(x̂0) + ê𝑚𝜖)𝑇

)
⊔ 𝑠𝑛𝑑

(
𝐸𝑣𝑎𝑙ID (𝑓2, J𝑓0 ≤ 𝑐K(x̂0) + ê1𝜖)𝑇 × ... × 𝐸𝑣𝑎𝑙ID (𝑓2, J𝑓0 ≤ 𝑐K(x̂0) + ê𝑚𝜖)𝑇

)
(Def. of ⊔ID , × dis-

tributes with 𝑠𝑛𝑑)

= 𝜕𝐼𝑛𝑡 (𝑓1, J𝑓0 ≥ 𝑐K(x̂0)) ⊔ 𝜕𝐼𝑛𝑡 (𝑓2, J𝑓0 ≤ 𝑐K(x̂0)) = 𝜕𝐼𝑛𝑡 (𝑓0 > 𝑐 ? 𝑓1 : 𝑓2, x̂0) (Def. of 𝜕𝐼𝑛𝑡 and Ind.

Hyp.)

□

6.4 Complexity
The key insight of Theorem 6.3 is that, as with standard forward-mode AD, the dual interval

abstraction requires as many forward passes as there are inputs. Therefore, for 𝑓 : R𝑚 → R𝑛 , we
require𝑚 independent passes of 𝐸𝑣𝑎𝑙ID in order to compute the full interval over-approximation of

the Clarke Jacobian. However, they can be computed in parallel (as we do). Hence, as with standard

forward-mode AD, our method is better suited for functions where the input dimension is small.

Additionally, the real part for each pass will be the same, and need only be computed once.

Furthermore, for the basic arithmetic functions, dual interval arithmetic requires more primitive

operations than the same operation defined over the reals. For example, multiplication of two dual

intervals as shown in Section 6.1 requires 12 primitive multiplications to perform all the interval

arithmetic multiplications for both the real and dual parts, as well as 2 primitive additions. However,

for all arithmetic operations {+,−, ·, /}, the amount of additional primitive operations required for

the dual interval version (vs. the real-valued version) is still just a constant factor more.

While it has been established that for standard AD, the amount of primitive operations of a single

pass of forward-mode evaluation with dual numbers is at most a constant amount (typically 2− 3x)

more than the number of operations to evaluate the function itself [Griewank and Walther 2008],

this is not the case for our analysis. A key complexity issue arises due to our support of branching.

As the abstract evaluator 𝐸𝑣𝑎𝑙ID could potentially evaluate both branches of a conditional, we may

have exponentially many more evaluations compared to evaluating the function with ordinary real

numbers. Thus, if𝑂𝑃𝑆 (𝑓 ) denotes the number of primitive arithmetic operations to evaluate 𝑓 (not

its Jacobian) over real numbers, then O(2𝑂𝑃𝑆 (𝑓 ) ) is the upper bound on the number of primitive

arithmetic operations required to evaluate a single pass of the dual interval lifted version of 𝑓 . For

the evaluation, the ReLU function, as well as the contrast variation and rotation perturbations

employ branching. Yet, despite the theoretically worst-case exponential operation complexity, in

practice, DeepJ’s implementation of 𝐸𝑣𝑎𝑙ID was still quite fast. Lastly, each term will always have

only two intervals associated to it (the real and dual parts), hence unlike affine interval arithmetic

[De Figueiredo and Stolfi 2004] or tools like Rosa [Darulova and Kuncak 2017], the number of

intervals we must track per variable does not grow as a function of the expression size.

7 METHODOLOGY
We next describe the experimental setup, including the perturbation functions and networks used

in our experiments. We also detail the training procedures and accuracies of these networks. We

ran our experiments on a 2.20 GHz 14 core Intel Xeon Gold 5120 CPU with 256 GB of main memory.
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Implementation. We implemented our analysis in a tool called DeepJ, written in C++. DeepJ employs

operator and function overloading to allow dual interval inputs to be propagated through arbitrary

perturbation functions and neural networks. Even though our formalization is from a purely

functional view, one can easily use an ANF conversion [Flanagan et al. 1993] to produce imperative

code, since our programs do not have recursions or while loops. All code, neural networks, and

results are available at https://github.com/uiuc-arc/DeepJ.

Perturbation Functions. We consider three previously studied image perturbations affecting pixel

intensity and image geometry, as well as compositions of these perturbations. We assume that the

images’ pixel values are in the range [0, 1].
(1) Haze [Paterson et al. 2021]: The intensity 𝑥𝑖 of the 𝑖

𝑡ℎ
pixel in the original image is perturbed

to (1 − 𝛼)𝑥𝑖 + 𝛼 , where 𝛼 = [0, 𝛼𝑚𝑎𝑥 ] + [1, 1]𝜖; the parameter 𝛼𝑚𝑎𝑥 ∈ [0, 1] represents the
degree of haze.

(2) Contrast [Paterson et al. 2021]: The intensity 𝑥𝑖 of the 𝑖
𝑡ℎ

pixel in the original image is

perturbed to max(0,min(1, 𝑥𝑖−0.5·𝛼
1−𝛼 )), where 𝛼 = [0, 𝛼𝑚𝑎𝑥 ] + [1, 1]𝜖; the parameter 𝛼𝑚𝑎𝑥 ∈

[0, 1] represents the degree of contrast.
(3) Rotation [Balunović et al. 2019]: We analyze image rotations with bilinear interpolation

within a range of angles 𝜃 , where 𝜃 = [−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥 ] + [1, 1]𝜖; the parameter 𝜃𝑚𝑎𝑥 ∈ R≥0
represents the rotation angle in radians.

(4) Composition: We look at three ways of composing the above functions – haze followed by

rotation, contrast followed by rotation, and contrast followed by haze.

The contrast, rotation, and composite perturbations described above are non-differentiable but

Lipschitz continuous, and cannot be handled by prior work [Edalat and Maleki 2017; Jordan and

Dimakis 2020; Mangal et al. 2020; Zhang et al. 2019]. In our experiments, we consider𝛼𝑚𝑎𝑥 ≤ 0.63 for

the haze and contrast perturbations, and 𝜃𝑚𝑎𝑥 ≤ 0.32 radians (which corresponds to approximately

±18◦) for rotation.

Network Architectures. We trained three ReLU networks each for the CIFAR10 and MNIST datasets.

The first network (FFNN) is a 7-layer fully-connected architecture from RecurJac [Zhang et al. 2019].

The other networks are convolutional networks from Mirman et al. [2018] – ConvMed features

two convolutional and two fully-connected layers, while ConvBig features four convolutional and

three fully-connected layers. Details on these networks are in Appendix A.5. Our largest network

is the CIFAR ConvBig network containing > 62 K neurons. These network sizes are comparable to

those of other state-of-the-art verification techniques [Singh et al. 2019]. Furthermore, for the local

optimization landscape experiment, we trained 7 fully-connected networks on the MNIST dataset,

varying the total number of layers from 3 to 9. Each hidden layer contains 30 neurons, and a ReLU

activation is applied after every layer (including the final layer).

Data Transformation. For all MNIST networks, we transformed the training set so that for each

image, we padded it by 4 and took a random 28x28 crop of the resulting 32x32 image. For the CIFAR10

networks, we introduced random cropping with padding 4 and randomly flipping each image

horizontallywith probability 0.5. Afterwards, we normalized the images using 𝜇 = 0.1307, 𝜎 = 0.3081

for MNIST and 𝜇 = (0.4914, 0.4822, 0.4465), 𝜎 = (0.2023, 0.1994, 0.2010) for CIFAR10.

Training Hyperparameters. For the 7 networks trained for the local optimization experiment, we

used the Adam optimizer [Kingma and Ba 2014] with a learning rate of 10
−4

and L2-regularization

with 𝜆 = 0.001; we trained with a batch size of 500 for 60 epochs, using 6,000 images from the

training set for validation. For all other networks, we used the Adam optimizer with a learning rate

of 10
−3

on MNIST and 10
−4

on CIFAR10. We trained the MNIST networks with a batch size of 500 for
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30 epochs, using 6,000 images from the training set for validation; we trained the CIFAR10 networks

with a batch size of 64 for 60 epochs, using 5,000 images from the training set for validation. In all

cases, we then picked the model that attained the highest validation accuracy out of all epochs.

Network Accuracies. The fully-connected networks trained for the local optimization landscape

experiment all attain test accuracy of at least 92%. The classification accuracies for the networks in

the Lipschitz experiments are shown in Table 1.

Table 1. Classification accuracy on test set for our networks.

CIFAR10 MNIST

FFNN 56.71 98.34

ConvMed 67.26 98.95

ConvBig 79.58 99.50

8 EXPERIMENTAL EVALUATION
We evaluate the effectiveness of our approach on two tasks: (i) Lipschitz robustness certification and

(ii) optimization landscape analysis. Both tasks are defined across a variety of datasets, perturbation

functions, and neural network architectures, demonstrating our language’s flexibility and scalability.

8.1 Lipschitz Robustness
We compute an upper bound on the Lipschitz constant of functions of the form 𝑓 ◦ 𝑛 ◦ 𝑝 , where 𝑝
denotes one or more perturbation functions, 𝑛 is an input normalization function (which simply

rescales images by a constant), and 𝑓 is a neural network. The correctness of bounding the Lipschitz

constant via the Interval Clarke Jacobian is proved in Appendix A.3. We use the ℓ∞-norm for the

calculation of all Lipschitz constants. For both individual and composite perturbations, we consider

five versions of our tool: DeepJ with the given range for the input perturbation parameter(s) and

four versions of DeepJ where the input intervals are subdivided uniformly, denoted DeepJ 𝑘x,

where 𝑘 represents how many subintervals are used per input parameter. When using splitting, we

compute the upper bound on the Lipschitz constant separately for each split and take the maximum

constant across the splits. Each pass of our analysis per image and split is completely independent

of one another, and is thus parallelized in our implementation. Since no existing work can handle

functions of the form 𝑓 ◦ 𝑛 ◦ 𝑝 considered in our evaluation, we employ a baseline combining

global and local Lipschitz analysis. The baseline computes 𝐿𝑙𝑜𝑐 (𝑝) · 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 (𝑛) · 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 (𝑓 ), where
𝐿𝑙𝑜𝑐 and 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 are the local and global Lipschitz constants of their corresponding functions. As 𝑝

is not globally Lipschitz, we obtain 𝐿𝑙𝑜𝑐 (𝑝) with DeepJ. We compute 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 (𝑛) as the reciprocal of
the standard deviation (MNIST) or the reciprocal of the smallest standard deviation of the three

RGB channels (CIFAR10) used for normalizing the input. We calculate 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 (𝑓 ) by multiplying

the norm of each layer’s weights using the tool from Gouk et al. [2021].

Results for Individual Perturbations. Figure 7 shows the Lipschitz constant results for single

perturbations on our larger convolutional architectures for both MNIST and CIFAR10. The results

for the remaining networks are in Appendix A.5. The x-axis for the haze and contrast perturbations

shows the value of 𝛼𝑚𝑎𝑥 used for defining the input range 𝛼 = [0, 𝛼𝑚𝑎𝑥 ] + [1, 1]𝜖 , while for rotation,
the x-axis shows 𝜃𝑚𝑎𝑥 used for defining the input range 𝜃 = [−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥 ] + [1, 1]𝜖 . The y-axis
shows the upper bound on the Lipschitz constant computed with different methods. Both axes use

logarithmic scales. Each data point is the average over 100 correctly classified images, selected

by taking the first 10 correctly classified test-set images from each output category. The same set

of images are used per dataset for each experiment. We use 𝛼𝑚𝑎𝑥 ∈ {10−𝑘/4 · 2 | 𝑘 ∈ [2, 18]} for
haze and contrast and 𝜃𝑚𝑎𝑥 ∈ {10−𝑘/4 | 𝑘 ∈ [2, 18]} for rotation. For the rotation perturbation, the
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Fig. 7. Upper bounds on the Lipschitz constants with respect to individual perturbations.

input to our function is in radians and covers the same range of interval sizes as the other two

perturbations, but we convert the units to degrees for clearer presentation.

In all cases, DeepJ is more precise than the baseline, often obtaining Lipschitz bounds orders of

magnitude smaller than the baseline. The computed bounds become larger as the perturbation size

is increased. It can also be seen that increased splitting leads to more precise results, with DeepJ

25x achieving much lower bounds than vanilla DeepJ (which does not do splitting).

Table 2 shows statistics on the runtime of the different methods for the same networks as in

Figure 7. We consider all values of the parameters on the x-axis shown in Fig. 7. The runtimes

for the remaining networks can be found in Appendix A.5. We report the minimum, median, and

maximum runtimes across the 100 images for each function. DeepJ 25x takes the longest to run

due to more splits, while the baseline usually runs the fastest, except for rotation on large angles.

In some cases, splitting may be faster than the baseline or vanilla DeepJ, since without splitting,

intervals can become too over-approximate; evaluating conditionals on over-approximate intervals
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Table 2. Runtimes in seconds to compute Interval Clarke Jacobians for individual perturbations over 100
images. For each network, the six rows represent the times for DeepJ vanilla, 2x, 5x, 9x, 25x, and Baseline.

Haze Contrast Rotation

Min Med Max Min Med Max Min Med Max

MNIST ConvBig

10.4

20.6

51.1

91.5

254.0

0.05

10.9

21.1

51.8

101.5

258.8

0.06

11.7

21.9

57.4

391.8

397.2

0.07

10.3

20.4

50.7

91.4

252.7

0.04

10.5

20.7

51.1

93.1

282.0

0.06

10.9

21.4

53.6

359.9

489.5

0.08

24.5

48.9

79.4

134.4

352.3

13.6

24.8

49.2

80.1

141.9

379.7

14.0

130.5

129.8

127.4

311.5

689.5

114.9

CIFAR ConvMed

0.9

1.7

4.1

7.3

20.1

0.05

0.9

1.7

4.2

7.4

21.8

0.05

1.0

1.8

4.3

7.6

88.7

0.07

0.9

1.7

4.1

7.3

20.3

0.06

0.9

1.7

4.2

7.4

21.6

0.06

0.9

1.8

4.3

7.5

191.7

0.07

69.9

139.9

142.5

215.7

503.1

65.4

70.0

140.1

143.4

241.7

531.6

66.2

715.6

614.2

550.2

630.2

865.5

685.6

CIFAR ConvBig

14.3

28.5

70.8

127.3

350.7

0.05

14.7

29.1

71.9

130.3

360.9

0.06

14.9

29.5

73.3

142.9

757.5

0.08

14.4

28.6

70.1

127.5

351.2

0.07

14.7

29.2

72.0

131.2

357.6

0.07

15.0

29.6

72.9

150.5

510.9

0.08

83.3

165.6

208.3

335.1

840.5

65.5

83.7

167.0

211.3

339.3

880.6

66.2

734.7

635.4

475.4

768.1

1029.7

685.6

often requires evaluating both branches, which may lead to the exponential blowup phenomenon

discussed in Section 6.4. For rotation with bilinear interpolation, we empirically observed this

beyond ±0.1 radians.
The computation of 𝐿𝑙𝑜𝑐 (𝑝) via our method contributes the most to the runtime of the baseline.

For all versions of DeepJ, the rotation perturbation has the highest runtime. For a given perturbation

type, the runtime increaseswith the size of the network. On themost expensive rotation perturbation

with the CIFAR ConvBig network, the median time for DeepJ to finish is under 1.4 min (per 100

images). Finally, the precision of our analysis can be improved by increasing the number of splits

(as seen in Figure 7) at the cost of additional runtime (as seen in Table 2).

Results for Composite Perturbations. Figure 8 shows the upper bounds on the Lipschitz constant

computed for compositions of perturbations on the same networks as in Figure 7. The results for

the remaining networks can be found in Appendix A.5. Haze-Rotation denotes a haze perturbation

composed with a rotation, in that order; the terminology is similar for the other composite per-

turbations. We use the same interval width when perturbing each parameter independently; the

x-axis shows this width. For compositions that involve rotation, if the interval size on the x-axis is

denoted 𝑠 , we utilize the real interval [−𝑠/2, 𝑠/2] for rotation and the interval [0, 𝑠] for the other
perturbation. The y-axis shows the upper bounds on the Lipschitz constants computed by each

method. Again, both axes use logarithmic scales. Each data point is the average over 10 correctly

classified images, taking the first correctly classified test-set image from each output category. We

use 𝑠 ∈ {10−𝑘/4 · 2 | 𝑘 ∈ {4, 7, 10, 13, 16, 19}} for all experiments.

As with individual perturbations, DeepJ is better than the baseline in all cases, obtaining upper

bounds on the Lipschitz constants orders of magnitude smaller than the baseline, as seen in Figure 8.

DeepJ 9x with the largest number of splits is the most precise. The Lipschitz constants for both the

Haze-Rotation and Contrast-Rotation perturbations are nearly identical, since the entries in the

Clarke Jacobian corresponding to the rotation variable have much higher magnitudes. Thus, these

entries dominate the ℓ∞-norm, overshadowing the effect of the other perturbation.
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Fig. 8. Upper bounds on the Lipschitz constants with respect to composite perturbations.

Table 3 shows the runtime statistics for the different methods in the same way as Table 2. The

results for the remaining networks can be found in Appendix A.5. We observe similar trends in

the relative runtimes of the different methods as with individual perturbations. For all versions

of DeepJ and for the baseline, the compositions that take the longest time to analyze are those

containing rotations. On the most expensive composite perturbation (Haze-Rotation) with the

CIFAR ConvBig network, the median time for DeepJ to finish is under 51 seconds (per 10 images).

As with individual perturbations, the precision of DeepJ can be improved by considering more

splits at the cost of additional runtime.

Our implementation, though implemented via floating-point, assumes real arithmetic. To ensure

this assumption does not lead to substantially different results, we also implemented a floating-point

sound version using the techniques in [Miné 2004]. We ran floating-point sound experiments for

vanilla DeepJ. Table 4 shows that the difference in the computed Lipschitz constants is negligible

(< 10
−10

) in all cases. However, ensuring floating-point soundness adds up to 4x runtime overhead.
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Table 3. Runtimes in seconds to compute Interval Clarke Jacobians for composite perturbations over 10
images. For each network, the six rows represent the times for DeepJ vanilla, 2x, 3x, 5x, 9x, and Baseline.

Haze-Rotation Contrast-Rotation Contrast-Haze

Min Med Max Min Med Max Min Med Max

MNIST ConvBig

14.8

58.7

76.0

102.5

247.7

8.2

14.9

59.6

76.6

103.4

251.3

8.2

24.4

72.2

78.0

107.6

263.6

13.9

14.7

58.8

75.7

102.3

246.4

8.2

14.9

59.1

76.3

102.5

248.8

8.2

20.9

70.9

77.6

105.7

257.3

13.8

6.3

24.8

33.8

52.3

158.6

0.06

6.4

25.2

34.2

52.8

160.0

0.07

6.7

26.0

35.0

55.4

174.0

0.08

CIFAR ConvMed

42.2

167.2

209.1

247.4

527.7

39.4

42.2

167.6

209.4

247.9

530.6

39.4

80.7

239.2

216.1

264.1

559.6

79.1

42.1

167.9

209.3

247.4

526.1

39.4

42.3

173.0

210.1

247.6

530.1

39.4

82.0

251.3

214.9

265.3

561.7

76.1

0.6

2.0

2.9

4.3

12.7

0.05

0.8

2.1

3.1

4.4

13.3

0.05

1.8

2.2

3.5

4.8

13.5

0.07

CIFAR ConvBig

49.9

198.9

251.1

313.9

695.3

39.4

50.4

199.8

252.5

315.0

701.8

39.4

89.1

270.9

257.9

328.3

728.3

79.1

50.0

198.8

251.1

314.2

693.6

39.4

50.1

199.3

251.9

315.9

696.5

39.4

89.7

269.7

258.5

327.8

725.9

76.1

8.6

34.2

46.0

72.7

220.6

0.06

8.8

34.7

46.7

73.7

224.0

0.06

16.8

35.2

52.4

74.7

227.1

0.08

Table 4. Error and overhead of floating-point sound computations for DeepJ. For each network, the two rows
represent maximum relative error and maximum relative time overhead, respectively.

Haze Contrast Rotation Haze-Rotation Contrast-Rotation Contrast-Haze

MNIST ConvBig

2.24e-11 9.34e-13 1.23e-12 1.24e-12 1.25e-12 9.77e-13

3.67x 3.78x 3.51x 3.59x 3.58x 4.08x

CIFAR ConvMed

8.08e-12 1.79e-12 8.93e-13 9.07e-13 8.99e-13 5.62e-12

3.58x 3.68x 2.83x 3.28x 3.25x 3.45x

CIFAR ConvBig

2.84e-11 2.81e-12 1.30e-12 1.36e-12 1.36e-12 6.85e-12

3.45x 3.43x 2.94x 3.31x 3.27x 3.66x

8.2 Local Optimization Landscape Analysis
Obtaining an Interval Clarke Jacobian allows us to study the local geometry of 𝑓 ◦ 𝑛 ◦ 𝑝 . We focus

on finding the largest input regions where no stationary point exists. To prove that a given region

does not contain a stationary point, we check if there exists an interval entry [𝑙𝑖, 𝑗 , 𝑢𝑖, 𝑗 ] in the

Interval Clarke Jacobian such that 𝑙𝑖, 𝑗 > 0 or 𝑢𝑖, 𝑗 < 0. If this holds, then we can guarantee that the

Clarke Jacobian matrix will not become zero, and therefore no stationary point exists within the

given input region (which follows from Theorem 2.3.2 of [Clarke 1990]). Hence, similar to RecurJac

[Zhang et al. 2019], we study the relationship between network depth and the maximal interval

size for which the absence of stationary points can still be guaranteed. However, RecurJac cannot

handle functions of the form 𝑓 ◦ 𝑛 ◦ 𝑝 considered in our work.

We define the set of input intervals to analyze as {[0, 10−𝑘/4 · 2] | 𝑘 ∈ [2, 21]} for haze and
contrast and {[−10−𝑘/4, 10−𝑘/4] | 𝑘 ∈ [2, 21]} for rotation. We consider 100 test images from MNIST

that are correctly classified, using the first 10 correctly classified test images from each category.

For each combination of perturbation type and network, we compute the largest input region

where a stationary point does not exist. For each image, we uniformly split every input interval

into 25 subintervals, computing the Interval Clarke Jacobians separately for each subinterval. Next,

we identify the subintervals where the entry in the Interval Clarke Jacobian corresponding to
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Table 5. Largest interval sizes that guarantee no stationary point exists for CIFAR10 (left) and MNIST (right)
networks, averaged over 100 images.

Haze Contrast Rotation

FFNN 6.2e-5 7.5e-5 3.6e-7

ConvMed 4.2e-3 4.0e-3 4.4e-5

ConvBig 4.4e-6 4.7e-6 2.3e-8

Haze Contrast Rotation

FFNN 9.7e-4 2.0e-3 6.7e-5

ConvMed 7.8e-3 1.8e-2 1.3e-3

ConvBig 1.3e-4 7.6e-4 1.9e-5
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Fig. 9. Largest interval size that guarantees no stationary point exists for Haze (left), Contrast (center), and
Rotation (right), averaged over 100 images.

the correctly classified class is either strictly positive or negative. We sum the widths of all such

subintervals, then compute the maximum of these sums across all candidate widths.

Figure 9 shows that as the depth of the fully-connected network increases, the maximal interval

size that guarantees a non-zero Jacobian decreases for all perturbations. Further, we use the same

procedure to obtain maximal interval sizes for the networks used in Section 8.1, as shown in

Table 5. We observe that rotation requires noticeably smaller interval sizes as it is a more complex

perturbation involving interpolation, whereas the other two are simpler pixel-wise operations.

Furthermore, we can certify the absence of stationary points for larger regions on MNIST compared

to CIFAR10, due to the former’s smaller input dimension.

9 RELATEDWORK
While there is considerable work on the static analysis of input-output properties of ML models

specified via constraints on the network inputs and outputs [Balunović et al. 2019; Ehlers 2017;

Huang et al. 2017; Katz et al. 2017, 2019; Singh et al. 2018, 2019; Sotoudeh and Thakur 2020; Urban

and Miné 2021], such as for robustness and safety, much less work has been done on formally

analyzing the Jacobian matrix.

From the programming languages (PL) and automatic differentiation (AD) literature, prior works

[Di Gianantonio and Edalat 2013; Edalat et al. 2013; Khan and Barton 2013; Sherman et al. 2021] have

examined AD through the Clarke Jacobian [Clarke 1990]. However, many define their semantics

for computing the Clarke Jacobian at a single point [Khan and Barton 2012, 2013], instead of an

abstraction of points. Additionally, the works that can formally analyze Jacobians for sets of input

points are insufficient for our tasks. Di Gianantonio and Edalat [2013] restrict functions’ domains

to [-1,1] and require all Lipschitz constants be less than 1, thus their analysis cannot be used for

local Lipschitz certification. The work by Edalat and Lieutier [2004] is restricted to functions of

a single variable with input domain on [0, 1]. Follow-up works [Edalat et al. 2013; Edalat and

Maleki 2017, 2018] all suffer other restrictions, namely requiring the output dimension be one

and only supporting limited arithmetic operations (e.g., no division), which render them unable

to analyze both neural networks and our perturbations. Furthermore, these techniques provide

only a theoretical discussion, with no implementation of their approaches. 𝜆𝑆 [Sherman et al.

2021] presents semantics for the Clarke Jacobian for concrete input points, extended partially
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to intervals (described in their appendix) as compared to our approach, which presents a sound

abstract interpretation of the Clarke Jacobian that we compute with a set of fully compositional

dual interval domain transformers, whose behavior is specified exactly for all language primitives.

Another closely related PL work by Chaudhuri et al. [2011] aims to establish Lipschitz robustness

of programs, but they use the classical Jacobian and do not support AD. Follow-up works showed

how to analyze Lipschitz robustness of non-differentiable programs by analyzing their smooth

approximation [Chaudhuri and Solar-Lezama 2011], stemming from the fact that several PL works

focus on differentiable approximations of non-differentiable programs and ML models [Chaudhuri

and Solar-Lezama 2010; Laurel and Misailovic 2020]. In contrast, DeepJ can analyze Lipschitz

properties of programs with points of non-differentiability directly without using approximations,

by employing the more general Clarke Jacobian.

In addition, while the practical problem of Lipschitz certification of neural networks has been

studied [Jordan and Dimakis 2020; Scaman and Virmaux 2018; Weng et al. 2018a,b; Zhang et al.

2019], to the best of our knowledge, none of these works can bound local Lipschitz constants for

composite, non-smooth perturbations. Both Mangal et al. [2020] and Jordan and Dimakis [2020]

use proof techniques that require the classifier function analyzed be piecewise linear, hence they

cannot support arbitrary activations. Additionally, RecurJac [Zhang et al. 2019] cannot support

arbitrary arithmetic primitives like non-scalar multiplication or division. Hence, none of these

works can reason about non-differentiable input perturbations, such as those generated by rotation

[Balunović et al. 2019] or contrast variation [Paterson et al. 2021].

Our work also bears similarity with Rosa [Darulova and Kuncak 2017], as they also bound

Jacobians to compute Lipschitz constants. However, unlike us, they do not support bounding Clarke

Jacobians. Further, while their abstract domain tracks “𝜖-terms,” the semantics of these terms do

not correspond to first derivatives, but rather numerical round-off error effects.

10 CONCLUSION
We developed a novel abstraction for bounding the Clarke Jacobian of a Lipschitz, but not necessarily

differentiable function for local input regions. Our domain, based upon dual numbers, soundly

over-approximates all first derivatives needed to compute the Clarke Jacobian. We implemented

our analysis in tool named DeepJ and showed that it can efficiently compute Lipschitz bounds

and analyze the local geometry of multiple deep neural networks with respect to multiple non-

differentiable input perturbations. Our work is the first to address the problem of local Lipschitz

certification of non-smooth perturbations, such as haze, contrast variation, rotation with bilinear

interpolation, and their compositions.
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