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Relaxed algorithms for p-adic numbers

par Jérémy BERTHOMIEU, Joris VAN DER HOEVEN
et Grégoire LECERF

Résumé. Les implantations actuelles des nombres p-adiques re-
posent essentiellement sur des techniques dites zélées, où la pré-
cision de calcul doit être fixée à l’avance par l’utilisateur. Cette
approche est très efficace du point de vue de la complexité asymp-
totique et elle est largement utilisée, par exemple dans des algo-
rithmes de remontée de type Newton–Hensel.

Dans le contexte similaire des séries formelles, il existe des tech-
niques alternatives, appelées paresseuses, qui ont l’avantage d’être
plus naturelles : une série formelle y est représentée comme une
suite de coefficients munie d’une méthode pour calculer le coeffi-
cient suivant et ce, à tout ordre. Cette approche facilite grande-
ment la résolution d’équations implicites et retire tout soucis de
choix de la précision des calculs à l’utilisateur. Pendant longtemps
cette approche paresseuse était pénalisée par son manque d’effi-
cacité. Les premières variantes rapides ont été développées dans
les années 90 par van der Hoeven, et portent désormais la termi-
nologie d’algorithmes détendus : ceux-ci combinent le confort de
l’approche paresseuse avec l’efficacité des méthodes zélées.

Dans ce papier, nous montrons comment adapter l’algorith-
mique détendue des séries au cas des nombres p-adiques. Nos im-
plantations sont disponibles dans la bibliothèque C++ algebra-
mix de Mathemagix. Comparés à une itération de Newton clas-
sique, nous obtenons des gains de performances significatifs pour
la résolution de certaines équations fonctionnelles p-adiques.

Abstract. Current implementations of p-adic numbers usually
rely on so called zealous algorithms, which compute with trun-
cated p-adic expansions at a precision that can be specified by the
user. In combination with Newton-Hensel type lifting techniques,
zealous algorithms can be made very efficient from an asymptotic
point of view.
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In the similar context of formal power series, another so called
lazy technique is also frequently implemented. In this context, a
power series is essentially a stream of coefficients, with an effective
promise to obtain the next coefficient at every stage. This tech-
nique makes it easier to solve implicit equations and also removes
the burden of determining appropriate precisions from the user.
Unfortunately, naive lazy algorithms are not competitive from the
asymptotic complexity point of view. For this reason, a new re-
laxed approach was proposed by van der Hoeven in the 90’s, which
combines the advantages of the lazy approach with the asymptotic
efficiency of the zealous approach.

In this paper, we show how to adapt the lazy and relaxed ap-
proaches to the context of p-adic numbers. We report on our im-
plementation in the C++ library algebramix of Mathemagix,
and show significant speedups in the resolution of p-adic functional
equations when compared to the classical Newton iteration.

1. Introduction

Let R be an effective commutative ring, which means that algorithms are
available for all the ring operations. Let (p) be a proper principal ideal of
R. Any element a of the completion Rp of R for the p-adic valuation can be
written, in a non unique way, as a power series

∑
i>0 aip

i with coefficients
in R. For example, the completion of K [x] for the ideal (x) is the classical
ring of power series K [[x]], and the completion of Z for any prime integer p
is the ring of p-adic integers written Zp.

In general, elements in Rp give rise to infinite sequences of coefficients,
which cannot be directly stored in a computer. Nevertheless, we can com-
pute with finite but arbitrarily long expansions of p-adic numbers. In the
so called zealous approach, the precision n of the computations must be
known in advance, and fast arithmetic can be used for computations in
R/(pn). In the lazy framework, p-adic numbers are really promises, which
take a precision n on input, and provide an n-th order expansion on output.

In [Hoe97] appeared the idea that the lazy model actually allows for
asymptotically fast algorithms as well. Subsequently [Hoe02], this compro-
mise between the zealous and the naive lazy approaches has been called the
relaxed model. The main aim of this paper is the design of relaxed algo-
rithms for computing in the completion Rp. We will show that the known
complexity results for power series extend to this setting. For more de-
tails on the power series setting, we refer the reader to the introduction
of [Hoe02].
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1.1. Motivation. Completion and deformation techniques come up in
many areas of symbolic and analytic computations: polynomial factoriza-
tion, polynomial or differential system solving, analytic continuation, etc.
They make an intensive use of power series and p-adic integers.

1.1.1. Recursive equations. The major motivation for the relaxed ap-
proach is the resolution of algebraic or functional equations. Most of the
time, such equations can be rewritten in the form

(1.1) Y = Φ(Y ),

where the indeterminate Y is a vector in Rdp and Φ some algebraic or more
complicated expression with the special property that

ỹ − y ∈ pnRdp =⇒ Φ(ỹ)− Φ(y) ∈ pn+1Rdp,

for all y, ỹ ∈ Rdp and n ∈ N. In that case, the sequence 0,Φ(0),Φ2(0), . . .
converges to a solution y ∈ Rdp of (1.1), and we call (1.1) a recursive equa-
tion.

Using zealous techniques, the resolution of recursive equations can often
be done using a Newton iteration, which doubles the precision at every
step [BK78]. Although this leads to good asymptotic time complexities in
n, such Newton iterations require the computation and inversion of the
Jacobian of Φ, leading to a non trivial dependence of the asymptotic com-
plexity on the size of Φ as an expression. For instance, at higher dimensions
d, the inversion of the Jacobian usually involves a factor O(d3), whereas Φ
may be of size O(d). We shall report on such examples in Section 5.

The main rationale behind relaxed algorithms is that the resolution of
recursive equations just corresponds to a relaxed evaluation of Φ at the
solution itself. In particular, the asymptotic time complexity to compute
a solution has a linear dependence on the size of Φ. Of course, the tech-
nique does require relaxed implementations for all operations involved in
the expression Φ. The essential requirement for a relaxed operation ϕ is
that ϕ(y)n should be available as soon as y0, . . . , yn are known.

1.1.2. Elementary operations. A typical implementation of the relaxed
approach consists of a library of basic relaxed operations and a function to
solve arbitrary recursive equations built up from these operations. The basic
operations typically consist of linear operations (such as addition, shifting,
derivation, etc.), multiplication and composition. Other elementary oper-
ations (such as division, square roots, higher order roots, exponentiation)
are easily implemented by solving recursive equations. In several cases, the
relaxed approach is not only elegant, but also gives rise to more efficient
algorithms for basic operations.
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Multiplication is the key operation and Sections 2, 3 and 4 are devoted
to it. In situations were relaxed multiplication is as efficient as naive mul-
tiplication (e.g. in the naive and Karatsuba models), the relaxed strategy
is optimal in the sense that solving a recursive equation is as efficient as
verifying the validity of the solution. In the worst case, as we will see in
Proposition 3.1, relaxed multiplication is O(logn) times more expensive
than zealous multiplication modulo pn. If Fp contains many 2p-th roots of
unity, then this overhead can be further reduced to O(e2

√
log 2 log logn) us-

ing similar techniques as in [Hoe07b]. In practice, the overhead of relaxed
multiplication behaves as a small constant, even though the most efficient
algorithms are hard to implement.

In the zealous approach, the division and the square root usually rely on
Newton iteration. In small and medium precisions the cost of this iteration
turns out to be higher than a direct call to one relaxed multiplication or
squaring. This will be illustrated in Section 6: if p is sufficiently large, then
our relaxed division outperforms zealous division.

1.1.3. User-friendly interface. An important advantage of the relaxed
approach is its user-friendliness. Indeed, the relaxed approach automatically
takes care of the precision control during all intermediate computations. A
central example is the Hensel lifting algorithm used in the factorization
of polynomials in Q[x]: one first chooses a suitable prime number p, then
computes the factorization in Z/pZ[x], lifts this factorization into Qp[x],
and finally one needs to discover how these p-adic factors recombine into
the ones over Q (for details see for instance [GG03, Chapter 15]). Theoret-
ically speaking, Mignotte’s bound [GG03, Chapter 6] provides us with the
maximum size of the coefficients of the irreducible factors, which yields a
bound on the precision needed in Qp. Although this bound is sharp in the
worst case, it is pessimistic in several particular situations. For instance,
if the polynomial is made of small factors, then the factorization can usu-
ally be discovered at a small precision. Here the relaxed approach offers
a convenient and efficient way to implement adaptive strategies. In fact
we have already implemented the polynomial factorization in the relaxed
model with success, as we intend to show in detail in a forthcoming paper.

1.2. Our contributions. The relaxed computational model was first in-
troduced in [Hoe97] for formal power series, and further improved in [Hoe02,
Hoe07b]. In this article, we extend the model to more general comple-
tions Rp. Although our algorithms will be represented for arbitrary rings R,
we will mainly focus on the case R = Z when studying their complexities.
In Section 2 we first present the relaxed model, and illustrate it on a few
easy algorithms: addition, subtraction, and naive multiplications.
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In Section 3, we adapt the relaxed product of [Hoe02, Section 4] to p-adic
numbers. We first present a direct generalization, which relies on products
of finite p-expansions. Such products can be implemented in various ways
but essentially boil down to multiplying polynomials over R. We next focus
on the case R = Z and how to take advantage of fast hardware arithmetic on
small integers, or efficient libraries for computations with multiple precision
integers, such as Gmp [G+91]. In order to benefit from this kind of fast
binary arithmetic, we describe a variant that internally performs conversion
between p-adic and 2-adic numbers in an efficient way. We will show that
the performance of p-adic arithmetic is similar to power series arithmetic
over R/(p).

For large precisions, such conversions between p-adic and 2-adic expan-
sions involve an important overhead. In Section 4 we present yet another
blockwise relaxed multiplication algorithm, based on the fact that Rp ∼= Rpk

for all k > 1. This variant even outperforms power series arithmetic over
R/(p). For large block sizes k, the performance actually gets very close to
the performance of zealous multiplication.

In Section 5, we recall how to use the relaxed approach for the resolution
of recursive equations. For small dimensions d, it turns out that the relaxed
approach is already competitive with more classical algorithm based on
Newton iteration. For larger numbers of variables, we observe important
speed-ups.

Section 6 is devoted to division. For power series, relaxed division essen-
tially reduces to one relaxed product [Hoe02, Section 3.2.2]. We propose
an extension of this result to p-adic numbers. For medium precisions, our
algorithm turns out to be competitive with Newton’s method.

In Section 7, we focus on the extraction of r-th roots. We cover the case of
power series in small characteristic, and all the situations within Zp. Com-
mon transcendental operations such as exponentiation and logarithm are
more problematic in the p-adic setting than in the power series case, since
the formal derivation of p-adic numbers has no nice algebraic properties.
In this respect, p-adic numbers rather behave like floating point numbers.
Nevertheless, it is likely that holonomic functions can still be evaluated
fast in the relaxed setting, following [Bre76, CC90, Hoe99, Hoe01, Hoe07a].
We also refer to [Kob84, Kat07] for more results about exponentiation and
logarithms in Qp.

Algorithms for p-adic numbers have been implemented in several li-
braries and computer algebra systems: P-pack [Wan84], Maple, Magma,
Pari/gp [PAR08], Mathematica [DS04], Sage [S+09], Flint [HH09],
etc. These implementations all use the zealous approach and mainly pro-
vide fixed-precision algorithms for R = Z. Only Sage also proposes a lazy
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interface. However, this interface is not relaxed and therefore inefficient for
large precisions.

Most of the algorithms presented in this paper have been implemented in
the C++ open source library algebramix of Mathemagix [H+02] (revi-
sion 5342, freely available from http://www.mathemagix.org). Although
we only report on timings for p-adic integers, our code provides support
for general effective Euclidean domains R.

2. Data structures and naive implementations

In this section we present the data structures specific to the relaxed
approach, and the naive implementations of the ring operations in Rp.

2.1. Finite p-adic expansions. As stated in the introduction, any ele-
ment a of the completion Rp of R for the p-adic valuation can be written,
in a non unique way, as a power series

∑
i>0 aip

i with coefficients in R.
Now assume that M is a subset of R, such that the restriction of the pro-
jection map π : R → R/(p) to M is a bijection between M and R/(p).
Then each element a admits a unique power series expansion

∑
i>0 aip

i

with ai ∈ M . In the case when R = Z and p ∈ N \ {0, 1}, we will always
take M = {0, . . . , p− 1}.

For our algorithmic purposes, we assume that we are given quotient and
remainder functions by p

quo (·, p) : R → R

rem (·, p) : R → M,

so that we have
a = quo (a, p)p+ rem (a, p),

for all a ∈ R.
Polynomials

∑n−1
i=0 aip

i ∈M [p] will also be called finite p-adic expansions
at order n. In fact, finite p-adic expansions can be represented in two ways.
On the one hand, they correspond to unique elements in R, so we may
simply represent them by elements of R. However, this representation does
not give us direct access to the coefficients ai. By default, we will therefore
represent finite p-adic expansions by polynomials in M [p]. Of course, poly-
nomial arithmetic in M [p] is not completely standard due to the presence
of carries.

2.2. Classical complexities. In order to analyze the costs of our algo-
rithms, we denote by M(n) the cost for multiplying two univariate polyno-
mials of degree n over an arbitrary ring A with unity, in terms of the number
of arithmetic operations in A. Similarly, we denote by I(n) the time needed
to multiply two integers of bit-size at most n in the classical binary represen-
tation. It is classical [SS71, CK91, Für07] that M(n) = O(n logn log logn)
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and I(n) = O(n logn2log∗ n), where log∗ represents the iterated logarithm of
n. Throughout the paper, we will assume that M(n)/n and I(n)/n are in-
creasing. We also assume that M(O(n)) = O(M(n)) and I(O(n)) = O(I(n)).

In addition to the above complexities, which are classical, it is natural
to introduce Ip(n) as the time needed to multiply two p-adic expansions in
Zp at order n with coefficients in the usual binary representation. When
using Kronecker substitution for multiplying two finite p-adic expansions,
we have Ip(n) = I(n(log p+ logn)) [GG03, Corollary 8.27]. We will assume
that Ip(n)/n is increasing and that Ip(O(n)) = O(Ip(n)).

It is classical that the above operations can all be performed using linear
space. Throughout this paper, we will make this assumption.

2.3. The relaxed computational model. For the description of our re-
laxed algorithms, we will follow [Hoe02] and use a C++-style pseudo-code,
which is very similar to the actual C++ implementation in Mathemagix.
As in [Hoe02], we will not discuss memory management related issues, which
have to be treated with care in real implementations, especially when it
comes to recursive expansions (see Section 5 below).

The main class Padicp for p-adic numbers really consists of a pointer
(with reference counting) to the corresponding abstract representation class
Padic_repp. On the one hand, this representation class contains the com-
puted coefficients ϕ : M [p] of the number a up till a given order n : N (let
us mention here that ϕ can eventually be used to store anticipated data,
as in the algorithms of Section 3). On the other hand, it contains a "purely
virtual method" next , which returns the next coefficient an:

class Padic_repp
ϕ: M [p]
n: N
virtual next ()

Following C++-terminology, the purely virtual function next is only de-
fined in a concrete representation class which derives from Padic_repp. For
instance, to construct a p-adic number from an element inM , we introduce
the type Constant_Padic_repp that inherits from Padic_repp (inheritance is
represented by the symbol D) in this way:

class Constant_Padic_repp D Padic_repp
c: M
constructor (c̃: M)

c := c̃
method next ()

if n = 0 then return c else return 0
In this piece of code n represents the current precision inherited from
Padic_repp. The user visible constructor is given by
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padic (c: M)→Padicp := (Padicp) new Constant_Padic_repp (c).
This constructor creates a new object of type Constant_Padic_repp to rep-
resent c, after which its address can be casted to the type Padicp of p-adic
numbers. From now on, for the sake of conciseness, we no longer describe
such essentially trivial user level functions anymore, but only the concrete
representation classes.

It is convenient to define one more public top-level function for the ex-
traction of the coefficient ak, given an instance a of Padicp and a positive
integer k : N. This function first checks whether k is smaller than the order
a.n of a. If so, then ak = (a.ϕ)k is already available. Otherwise, we keep
increasing a.n while calling next , until ak will eventually be computed. For
more details, we refer to [Hoe02, Section 2]. We will now illustrate our
computational model on the basic operations of addition and subtraction.

2.4. Addition. The representation class for sums of p-adic numbers, writ-
ten Sum_Padic_repp, is implemented as follows:

class Sum_Padic_repp D Padic_repp
a, b: Padicp
γ: R
constructor (ã: Padicp, b̃: Padicp)

a := ã; b := b̃; γ := 0
method next ()

t := an + bn + γ
γ := quo (t, p)
return rem (t, p)

In the case when R = Z, we notice by induction over n that we have
γ ∈ {0, 1}, each time that we enter next , since 0 6 an + bn + γ 6 2p − 1.
In that case, it is actually more efficient to avoid the calls to quo and rem
and replace the method next by

method next ()
t := an + bn + γ
if t < p then

γ := 0
return t

else
γ := 1
return t− p

Proposition 2.1. Given two relaxed p-adic integers a and b, the sum a+b
can be computed up till precision n using O(n log p) bit-operations.

Proof. Each of the additions ak + bk +γ and subsequent reductions modulo
p take O(log p) bit-operations. �
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2.5. Subtraction in Zp. In general, the subtraction is the same as the ad-
dition, but for the special case when R = Z, we may use the classical school
book method. In our framework, this yields the following implementation:

class Sub_Padic_repp D Padicp
a, b: Padicp
γ: R
constructor (ã: Padicp, b̃: Padicp)

a := ã; b := b̃; γ := 0
method next ()

t := an − bn − γ
if t > 0 then

γ := 0
return t

else
γ := 1
return t+ p

Proposition 2.2. Given two relaxed p-adic integers a and b, the difference
a− b can be computed up till precision n using O(n log p) bit-operations.

Proof. Each call to the function next costs O(log p) bit-operations. �

2.6. Naive product. Here we consider the school book algorithm: each
coefficient (ab)n is obtained from the sum of all products of the form akbn−k
plus the carry involved by the products of the preceding terms. Carries are
larger than for addition, so we have to take them into account carefully.
The naive method is implemented in the following way:

class Naive_Mul_Padic_repp D Padic_repp
a, b: Padicp
γ: a vector with entries in R, with indices starting at 0.
constructor (ã: Padicp, b̃: Padicp)

a := ã; b := b̃;
Initialize γ with the empty vector

method next ()
Append γn = 0 at the end of γ
t := 0
for i from 0 to n do

s := aibn−i + γi
t := t+ s
γi := quo (t, p)
t := rem (t, p)

return t
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Note. Let us precise that, in the pseudo-code, the for loop means that i
runs over all the integral values from 0 to n included.

Proposition 2.3. Given two relaxed p-adic integers a and b, the product
ab can be computed up till precision n using O(n2I(log p)) bit-operations.

Proof. We show by induction that, when entering in next to compute the
coefficient (ab)n, the vector γ has size n and entries in M . This clearly
holds for n = 0. Assume that the hypothesis is satisfied until a certain
value n > 0. When entering next the size of γ is increased by 1, so that it
will be n + 1 at the end. Then, at step i ∈ {0, . . . , n} of the loop we have
s 6 (p− 1)2 + p− 1 = p2− p. Since t 6 p− 1 it follows that s+ t 6 p2 − 1,
whence γi 6 p − 1 on exit. Each of the O(n2) steps within the loop takes
O(I(log p)) bit-operations, which concludes the proof. �

Since hardware divisions are more expensive than multiplications, perform-
ing one division at each step of the above loop turns out to be inefficient
in practice. Especially when working with hardware integers, it is therefore
recommended to accumulate as many terms aibn−i as possible in s before
a division. For instance, if p fits 30 bits and if we use 64 bits hardware
integers then we can do a division every 16 terms.

2.7. Lifting the power series product. In this subsection we assume
that we are given an implementation of relaxed power series over R, as de-
scribed in [Hoe02, Hoe07b]. The representation class is written Series_repR
and the user level class is denoted by SeriesR, in the same way as for p-adic
numbers. Another way to multiply p-adic numbers relies on the relaxed
product in R[[p]]. This mainly requires a lifting algorithm of M [[p]] into
R[[p]] and a projection algorithm of R[[p]] onto M [[p]], The lifting proce-
dure is trivial:

class Lift_Series_repR D Series_repR
a: Padicp
constructor (ã: Padicp)

a := ã
method next ()

return an
Let lift denote the resulting function that converts a p-adic number a:

Padicp into a series in SeriesR. The reverse operation, project, is implemented
as follows:

class Project_Padic_repp D Padic_repp
f : SeriesR
γ: R
constructor (f̃ : SeriesR)

f := f̃ ; γ := 0
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n 8 16 32 64 128 256 512 1 024
Naive_Mul_Padicp 2.9 3.8 8.3 22 68 250 920 3 600
Maple 14 240 320 520 1 200 3 500 11 000 38 000 160 000
Pari/Gp 0.52 1.0 2.7 8.4 28 99 360 1 300

Table 2.1. Naive products, for p = 536870923, in microseconds.

method next ()
t := fn + γ
γ := quo (t, p)
return rem (t, p)

Finally the product c = ab is obtained as project (lift(a)lift(b)).

Proposition 2.4. Given relaxed p-adic integers a and b, the product ab
can be computed up till precision n using O(I(log p + logn)M(n) logn) or
O(I(n(log p+ logn)) logn) bit-operations.

Proof. The relaxed product of two power series in size n can be done with
O(M(n) logn) operations in R by [Hoe02, Section 4.3.2, Theorem 6]. In
our situation the size of the integers in the product are in O(log p+ logn).
Then, by induction, one can easily verify that the size of the carry γ does
not exceed O(log p + logn) during the final projection step. We are done
with the first bound.

The second bound is a consequence of the classical Kronecker substitu-
tion: we can multiply two polynomials in Z[x] of size n and coefficients of
bit-size O(log p) with O(I(n(log p + logn))) bit operations [GG03, Corol-
lary 8.27]. �

This strategy applies in full generality and gives a "softly optimal algo-
rithm". It immediately benefits from any improvements in the power series
product. Nevertheless, when n is not much larger than p, practical imple-
mentations of this method involve a large constant overhead. In the next
sections, we will therefore turn our attention to "native" counterparts of the
relaxed power series products from [Hoe02, Hoe07b].

2.8. Timings. We conclude this section with some timings in Table 2.1 for
our C++ implementation of naive multiplication inside the algebramix
package of the Mathemagix system [H+02]. Timings are measured us-
ing one core of an Intel Xeon X5450 at 3.0 GHz running Linux and
Gmp 5.0.0 [G+91]. As a comparison, we display timings on the same plat-
form, obtained for the Maple 14 package Padic. Precisely, we created two
random numbers to precision n, did their product via the function evalp,
and then asked for the coefficient of order n/2. Notice that timings for small
precisions are not very relevant for Maple because of the overhead due to
the interpreter. As another comparison, we report on the performances of
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Pari/Gp version 2.3.5. For all these three cases we observe that asymptot-
ically fast algorithms are not used. In fact Pari/Gp carefully implements
the zealous strategy on the binary representation modulo pn: as expected,
such timings are better than ours, but no so much neither. We shall come
back in Section 4 on this critical issue of taking better advantage of native
binary representations within the lazy model.

3. Relaxed product

In this section, we extend the relaxed product of [Hoe02, Section 4.3.1] to
more general p-adic numbers. We also present a special version for R = Z,
which uses internal base conversions between base 2 and base p, and takes
better advantage of the fast arithmetic in Gmp [G+91].

3.1. Fast relaxed multiplication algorithm. Let a and b denote the
two p-adic numbers that we want to multiply, and let c be their product.
Let us briefly explain the basic idea behind the speed-up of the relaxed
algorithm with respect to naive lazy multiplication.

The first coefficient c0 is simply obtained as the remainder of a0b0 in the
division by p. The corresponding quotient is stored as a carry in a variable
γ similar to the one used in Naive_Mul_Padic_repp. We next obtain c1
by computing a0b1 + a1b0 + γ and taking the remainder modulo p; the
quotient is again stored in γ. At the next stage, which basically requires the
computation of a0b2+a1b1+a2b0+γ, we do a little bit more than necessary:
instead of a1b1, we rather compute (a1+a2p)(b1+b2p). For c3, it then suffices
to compute a0b3 and a3b0 since a1b2 + a2b1 has already been computed as
part of (a1 +a2p)(b1 +b2p). Similarly, in order to obtain c4, we only need to
compute a0b4, a4b0, a3b1 and a1b3, since a2b2 is already known. In order to
anticipate more future computations, instead of computing a3b1, a1b3, we
compute (a1 + a2p)(b3 + b4p) and (a3 + a4p)(b1 + b2p).

In Figure 3.1 below, the contribution of each aibj to the product ci+j ,
corresponds to a small square with coordinates (i, j). Each such square is
part of a larger square which corresponds to a product

(ak + · · ·+ ak+2q−1p
2q−1)(bl + · · ·+ bl+2q−1p

2q−1).

The number inside the big square indicates the stage k + l at which this
product is computed. For instance the products(

a3 + a4p+ a5p
2 + a6p

3) (b7 + b8p+ b9p
2 + b10p

3) ,(
a7 + a8p+ a9p

2 + a10p
3) (b3 + b4p+ b5p

2 + b6p
3) .

correspond to the two 4× 4 squares marked with 10 inside.
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2 3 4 5 6 7 8 9 1011121314123456
789101112
1314

1 84 6 10 12 14246
81012
14

610
14

10 14
14

0
Figure 3.1. Relaxed product.

Given a p-adic number a, it will be convenient to denote
ai...j = ai + ai+1p+ · · ·+ aj−1p

j−1−i.

For any integer n, we also define ln to be the largest integer such that 2ln
divides n+ 2 if n+ 2 is not a power of 2. Otherwise, if n+ 2 = 2m, we let
ln = m− 1. For instance, l0 = 0, l1 = 0, l2 = 1, l3 = 0, l4 = 1, etc. In fact,
this can be seen in Figure 3.1, where the greatest square with number n
inside has size precisely 2ln × 2ln .

We can now describe our fast relaxed product. Recall that ϕ is the finite
p-expansion inherited from Padic_repp that stores the coefficients known to
order n. In the present situation we also use ϕ for storing the anticipated
products.
class Relaxed_Mul_Padic_repp D Padic_repp

a, b: Padicp
γa, γb: vectors of vectors over R, with indices starting from 0
constructor (ã: Padicp, b̃: Padicp)

a := ã, b := b̃
Initialize γa and γb with the empty vector

method next ()
On entry, γa and γb have size 2n; resize them to 2(n+ 1)
Initialize γa2n and γb2n with the zero vector of size l2n + 1
Initialize γa2n+1 and γb2n+1 with the zero vector of size l2n+1 + 1
ta := 0, tb := 0
for q from 0 to ln do

k := (n+ 2)/2q
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ta+= γan,q, tb+= γbn,q
ta+= a2q−1...2q+1−1b(k−1)2q−1...k2q−1
if k = 2 then break
tb+= a(k−1)2q−1...k2q−1b2q−1...2q+1−1

sa := ϕn...n+2ln+1 + ta

for i from 0 to 2ln+1 − 1 do ϕn+i := sai
if n+ 2 6= 2ln+1 then γa

n+2ln+1,ln
:= sa2ln+1

sb := ϕn...n+2ln+1 + tb

for i from 0 to 2ln+1 − 1 do ϕn+i := sbi
if n+ 2 6= 2ln+1 then γb

n+2ln+1,ln
:= sb2ln+1

return ϕn

Example. Let us detail how our algorithm works with the first four steps
of the multiplication c = ab with

a = 676 = 4 + 5× 7 + 6× 72 + 73,

b = −1 = 6 + 6× 7 + 6× 72 + 6× 73 +O
(
74
)
.

Computation of c0. Since l0 = l1 = 0, the entries γa0 , γb0, γa1 , γb1 are set
to (0). In the for loop, q takes the single value 0, which gives k = 2,
ta = a0b0 = 3 + 3× 7, and tb = 0. Then we deduce sa = 3 + 3× 7, and we
set ϕ0 = 3, ϕ1 = 3. In return we have c0 = 3.
Computation of c1. We have l1 = 0, l2 = 1 and l3 = 0, so that γa2 and
γb2 are initialized with (0, 0), while γa3 and γb3 are initialized with (0). In
the for loop, q takes again the single value 0, and k is set to 3. We obtain
ta = a0b1 = 3+3×7 and tb = a1b0 = 2+4×7. It follows that sa = 6+3×7,
and then that sb = 1 + 1 × 7 + 1 × 72. Finally we set ϕ1 = 1, ϕ2 = 1,
γb3,0 = sb2 = 1, and we return c1 = 1.
Computation of c2. We have l2 = 1, l4 = 1 and l5 = 0, so that γa4 and
γb4 are initialized with (0, 0) and γa5 and γb5 with (0). During the first step
of the for loop we have q = 0, k = 4, ta = a0b2 = 3 + 3 × 7 and tb =
a2b0 = 1 + 5 × 7. In the second step we have q = 1, k = 2, and we add
a1...3b1...3 = (a1 + a2 × 7) (b1 + b2 × 7) = 2 + 4× 72 + 6× 73 to ta, its value
becomes 5+3×7+4×72 +6×73. Then we get sa = 6+3×7+4×72 +6×73,
and then sb = 2×7+5×72 +6×73. Finally we set ϕ2 = 0, ϕ3 = 2, ϕ4 = 5,
ϕ5 = 6, and return 0 for c2.
Computation of c3. We have l3 = 0, l6 = 2 and l7 = 0, hence γa6 and γb6 are
set to (0, 0, 0), and γa7 and γb7 to (0). In the for loop, q takes the single value
0. We have k = 5, ta = a0b3 = 3 + 3× 7 and tb = γb3,0 + a3b0 = 7. Then we
deduce sa = 5 + 7 + 72 which yields γa5,0 = 1, and then sb = 5 + 2 × 7. In
return we thus obtain c3 = 5.
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Proposition 3.1. Given relaxed p-adic integers a and b, the product ab
can be computed up till precision n using O (Ip (n) logn) bit-operations. For
this computation, the total amount of space needed to store the carries γa
and γb does not exceed O(n).

Proof. The proof is essentially the same as for [Hoe02, Section 4.3.2, The-
orem 6], but the carries require additional attention. We shall prove by
induction that all the entries of γa and γb are always in {0, 1} when en-
tering next for the computation of ϕn. This holds for n = 0. Assume now
that it holds for a certain n > 0. After the first step of the loop, namely
for q = 0, we have ta 6 (p− 1)2 + 1 6 p2 − 1. After the second step, when
q = 1, we have ta 6 (p2− 1)2 + p2− 1 + 1 6 p4− 1. By induction, it follows
that ta 6 p2q+1 − 1, at the end of the q-th step.

At the end of the for loop, we thus get ta 6 p2ln+1−1. This implies sa 6
2p2ln+1 − 2, whence γa

n+2ln+1,ln
∈ {0, 1}. The same holds for superscripts

b instead of a. Notice that if n + 2 6= 2ln+1 then 2ln+1 6 n + 1, hence
n + 2ln+1 6 2n + 1. This implies that γa

n+2ln+1,ln
and γb

n+2ln+1,ln
are well

defined.
If n + 2 = 2ln+1, then sa2ln+1 = sb2ln+1 = 0, since sa and sb are bounded

by (pn+1 − 1)2/pn < pn+2. On the other hand, the map n 7→ (n+ 2ln+1, ln)
is injective, so that each entry of γa and γb can be set to 1 at most once. It
thus follows that all the carries are carefully stored in the vectors γa and
γb.

If n+2 = 2lnu, with u > 2, then n+2ln+1+2 = 2ln(u+2), with u+2 > 2.
This implies that, when we arrive at order n′ = n + 2ln+1, then the value
ln′ is at least ln. Therefore all the carries are effectively taken into account.
This proves the correctness of the algorithm.

The cost of the algorithm at order n is

O

 n∑
i=0

li∑
q=0

Ip(2i)

 = O

∑
2q6n

n

2q Ip(2q)

 =

O

Ip(n)
∑

2q6n

1

 = O(Ip(n) logn),

using our assumption that Ip(n)/n is increasing. Finally,

O

(
n∑
i=0

(1 + li)
)

= O

 n∑
i=0

li∑
q=0

1

 = O

∑
2q6n

n

2q

 = O(n)

provides enough space for storing all the carries. �
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In practice, instead of increasing the sizes of carry vectors by one, we double
these sizes, so that the cost of the related memory allocations and copies
becomes negligible. The same remark holds for the coefficients stored in ϕ.

When multiplying finite p-adic expansions using Kronecker substitution,
we obtain a cost similar to the one of Proposition 2.4. Implementing a
good product for finite p-adic expansions requires some effort, since we
cannot directly use binary arithmetic available in the hardware. In the
next subsection, we show that minor modifications of our relaxed product
allow us to convert back and forth between the binary representation in
an efficient manner. Finally, notice that in the case when R = K[x] and
(p) = (x), the carries γa and γb are useless.

3.2. Variant with conversion to binary representation. In this sub-
section, we assume that R = Z and we adapt the above relaxed product in
order to benefit from fast binary arithmetic available in the processor or
Gmp. In fact we shall convert from base p to base 2 in order to perform
most of the internal computations efficiently, but backward conversions are
needed for the output. These conversions can be naturally integrated in an
efficient manner as described in the following algorithm:

class Binary_Mul_Padic_repp D Padic_repp
a, b: Padicp
βa, βb, δa, δb, γ: vectors over Z, with indices starting from 0.
constructor (ã: Padicp, b̃: Padicp)

a := ã, b := b̃
Initialize βa, βb, δa, δb, γ with empty vectors

method next ()
If n+ 2 is a power of 2, then

Resize βa, βb, δa, δb, and γ to ln + 1
Fill the new entries with zeros

εa := an, εb := bn, τ := 0
for q from 0 to ln do

if q > 0 then
εa := βaq−1 + p2q−1

εa

εb := βbq−1 + p2q−1
εb

if n+ 2 = 2q+1 then
δaq := εa, δbq := εb

τ+= δaq ε
b + γq

if n+ 2 = 2q+1 then break
τ+= εaδbq

βaln := εa, βbln := εb
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for q from ln down to 0 do
γq := quo (τ, p2q ), τ := rem (τ, p2q )

return τ

Proposition 3.2. Given two relaxed p-adic integers a and b, the computa-
tion of the product ab up till precision n can be done with O (I(n log p) logn)
bit-operations and O(n log p) bit-space.
Proof. When computing ϕn, the vectors βa, βb, δa, δb, and γ are resized to
rn, where rn is the largest integer such that 2rn 6 n + 2. From 2rn+1 >
n + 2 > 2ln+1, we deduce that rn > ln, which means that the read and
write operations in these vectors are licit.

For any integers n and q such that 2q+1 < n+ 2, we write µ(n, q) for the
largest integer less than n such that lµ(n,q) = q. We shall prove by induction
that, when entering next for computing ϕn, the following properties hold
for all q > 0 such that 2q+1 < n+ 2:
(a) βaq = a(k−1)2q−1...k2q−1 = aµ(n,q)−2q+1...µ(n,q)+1 where k = µ(n,q)+2

2q , and
similarly for βbq ,

(b) δaq = a2q−1...2q+1−1, and similarly for δbq, and
(c) γq 6 2p2q .
These properties trivially hold for when n = 0. Let us assume that they
hold for a certain n > 0.

Now we claim that, at the end of step q of the first loop, the value of εan
is a(k−1)2q−1...k2q−1 = an−2q+1...n+1 with k = (n+ 2)/2q. This clearly holds
for when q = 0 because εa = an and k = n+ 2. Now assume that this claim
holds until step q − 1 for some q > 1. When entering step q, we have that
µ(n, q − 1) = n − 2q−1, and part (a) of the induction hypothesis gives us
that βaq−1 = an−2q+1...n−2q−1+1. From these quantities, we deduce:

βaq−1 + p2q−1
εa = an−2q+1...n−2q−1+1 + p2q−1

an−2q−1+1...n+1

= an−2q+1...n+1 = a(k−1)2q−1...k2q−1,

with k = (n+ 2)/2q, which concludes the claim by induction. If n+ 2 is not
a power of 2 then part (a) is clearly ensured at the end of the computation
of ϕn. Otherwise n+2 = 2ln+1, and βaln is set to an−2ln+1...n+1, and part (a)
is again satisfied when entering the computation of ϕn+1.

When δaq is set to εa, the value of εa is a(k−1)2q−1...k2q−1 with k = 2. This
ensures that part (b) holds when entering the computation of ϕn+1.

As to (c), during step q of the first loop, the value of τ is incremented
by at most

2(p2q − 1)2 + 2p2q
6 2p2q+1 − 2p2q + 2.

At the end of this loop, we thus have

τ 6 2p2ln+1 − 2p+ 2(ln + 1).
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It follows that τ/p2ln
< 2p2ln + 2(ln + 1)/p2ln . If ln ∈ {0, 1} then it

is clear that 2(ln + 1) 6 p2ln , since p > 2. If ln > 1 then d(p2ln )
dln

=
log(2) log(p)2lnp2ln > 8(log 2)2 > 2. We deduce that 2(ln + 1) 6 p2ln holds
for all integer ln > 0. Before exiting the function we therefore have that
γln 6 2p2ln , γln−1 6 p2ln−1

6 2p2ln−1 , etc., which completes the induction.
Since n + 2 = 2lnu, with u > 2, we have n + 2k + 2 = 2k(2ln−ku + 1),

whence ln+2k > k, for any k 6 ln. All the carries stored in γ are therefore
properly taken into account. This proves the correctness of the algorithm.

At precision n, summing the costs of all the calls to next amounts to

O

 n∑
i=0

li∑
q=0

I(2q log p)

 = O

∑
2q6n

n

2q I(2q log p)


= O

I(n log p)
∑

2q6n

1


= O(I(n log p) logn).

Furthermore,

O

 ∑
2q+16n+2

2q log p

 = O(n log p)

provides a bound for the total bit-size of the auxiliary vectors βa, βb, δa, δb,
and γ. �

Again, in practice, one should double the allocated sizes of the auxiliary
vectors each time needed so that the cost of the related memory alloca-
tions and copies becomes negligible. In addition, for efficiency, one should
precompute the powers of p.

3.3. Timings. In following Table 3.1, we compare timings for power series
over Fp, and for p-adic integers via the technique of Section 2.7, called
Series_Mul_Padic_repp, and via Binary_Mul_Padic_repp of Proposition 3.2.
In Series_Mul_Padic_repp the internal series product is the relaxed one
reported in the first line.

n 8 16 32 64 128 256 512 1 024 2 048 4 096
Rel. mul. in Fp[[x]] 2 7 20 50 140 360 930 2 300 5 700 14 000
Series_Mul_Padicp 19 59 160 420 1 100 2 600 6 200 14 000 34 000 79 000
Binary_Mul_Padicp 8 16 37 89 170 360 800 1 900 4 300 10 000
Naive_Mul_Padicp 2.9 3.8 8.3 22 68 250 920 3 600 14 000 56 000

Table 3.1. Fast relaxed products, and naive lazy product,
for p = 536870923, in microseconds.
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For convenience, we recall the timings for the naive algorithm of Sec-
tion 2.6 in the last line of Table 3.1. We see that our Binary_Mul_Padic_repp
is faster from size 512 on. Since handling small numbers with Gmp is ex-
pensive, we also observe some overhead for small sizes, compared to the fast
relaxed product of formal power series. On the other hand, since the relaxed
product for power series makes internal use of Kronecker substitution, it
involves integers that are twice as large as those in Binary_Mul_Padic_repp.
Notice finally that the lifting strategy Series_Mul_Padic_repp, described in
Section 2.7, is easy to implement, but not competitive.

4. Blockwise product

As detailed in Section 4.1 below for R = Z, the relaxed arithmetic
is slower than direct computations modulo pn in binary representation.
In [Hoe07b], an alternative approach for relaxed power series multiplica-
tion was proposed, which relies on grouping blocks of k coefficients and
reducing a relaxed multiplication at order n to a relaxed multiplication at
order n/k, with FFT-ed coefficients in M2k−1.

Unfortunately, we expect that direct application of this strategy to our
case gives rise to a large overhead. Instead, we will now introduce a variant,
where the blocks of size k are rather rewritten into an integer modulo pk.
This aims at decreasing the overhead involved by the control instructions
when handling objects of small sizes, and also improving the performance
in terms of memory management by choosing blocks well suited to the sizes
of the successive cache levels of the platform being used.

We shall start with comparisons between the relaxed and zealous ap-
proaches. Then we develop a supplementary strategy for a continuous tran-
sition between the zealous and the relaxed models.

4.1. Relaxed versus zealous. The first line of Table 4.1 below displays
the time needed for the product modulo pn of two integers taken at random
in the range 0, . . . , pn − 1. The next line concerns the performance of our
function binary that converts a finite p-expansion of size n into its binary
representation. The reverse function, reported in the last line, and written
expansion, takes an integer in 0, . . . , pn − 1 in base 2 and returns its p-adic
expansion.

n 8 16 32 64 128 256 512 1 024 2 048 4 096 8 192
mod. mul. 0.38 0.52 1.0 2.9 9.0 27 85 250 690 1 800 4 500
binary 1.0 2.2 4.5 9.8 20 44 100 250 560 1 400 3 300
expansion 2.5 5.2 10 22 46 96 220 490 1 200 3 000 7 300

Table 4.1. Zealous product modulo pn and conversions, for
p = 536870923, in microseconds.
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Let us briefly recall that binary can be computed fast by applying the
classical divide and conquer paradigm as follows:

binary(a, pn) = binary(a0...h, p
h) + phbinary(ah...n, pn−h),where h = bn/2c ,

which yields a cost in O(I(n log p) logn). Likewise, the same complexity
bound holds for expansion. Within our implementation we have observed
that these asymptotically fast algorithms outperform the naive ones when-
ever pn is more than around 32 machine words.

Compared to Tables 2.1 and 3.1, these timings confirm the asymptotic
theoretical bounds: the relaxed product does not compete with a direct
modular computation in binary representation. This is partly due to the
extra O(logn) factor for large sizes. But another reason is the overhead
involved by the use of Gmp routines with integers of a few words. In Ta-
ble 4.2, we report on the naive and the relaxed products in base p32. Now
we see that our naive product becomes of the same order of efficiency as
the zealous approach up to precision 1024. The relaxed approach starts to
win when the precision reaches 256 in base p32.

kl 32 64 128 256 512 1 024 2 048 4 096 8 192
Naive_Mul_Padicpk 1.8 4.1 10 27 84 280 1 000 3 900 15 000
Binary_Mul_Padicpk 3.2 6.1 16 53 170 570 1 800 5 300 15 000

Table 4.2. Relaxed product modulo (pk)l, for k = 32 and
p = 536870923, in microseconds.

4.2. Monoblock strategy. If one wants to compute the product ab of two
p-adic numbers a and b, then: one can start by converting both of them
into pk-adic numbers A and B respectively, multiply A and B as pk-adic
numbers, and finally convert AB back into a p-adic number. The transfor-
mations between p-adic and pk-adic numbers can be easily implemented:

class To_Blockspk D Padic_reppk

a: Padicp
constructor (ã: Padicp)

a := ã
method next ()

return binary(ank...(n+1)k)
class From_Blocksp D Padic_repp

a: Padicpk

b: p-expansion of size k
constructor (ã: Padicpk)

a := ã
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method next ()
if nmod k=0 then b =p_expansion(an/k, p)
return bnmod k

If to_blocks and from_blocks represent the top level functions then the
product c of a and b can be simply obtained as

c = from_blocks (to_blocks(a)to_blocks(b)) .
We call this way of computing products the monoblock strategy.

Notice that choosing k very large is similar to zealous computations.
This monoblock strategy can thus be seen as a mix of the zealous and
the relaxed approaches. However, it is only relaxed for pk-expansions, not
for p-expansions. In fact, let A and B still denote the respective pk-adic
representations of a and b, so that c = from_blocks (C), for C = AB. Then
the computation of c0 requires the knowledge of C0 = A0B0, whence it
depends on all the coefficients a0, . . . , ak−1 and b0, . . . , bk−1, which breaks
the main requirement on relaxed operations recalled in Section 1.1.1. In the
next paragraphs we derive an actual relaxed product from this strategy, at
the price of a reasonable overhead.

4.3. Relaxed blockwise product. We are now to present a relaxed p-
adic blockwise product. This product depends on two integer parameters
m and k. The latter still stands for the size of the blocks to be used, while
the former is a threshold: below precision m one calls a given product
on p-expansions, while in large precision an other product is used on pk-
expansions.

If a and b are the two numbers in Rp that we want to multiply as a p-
expansions, then we first rewrite them a = a0...m+pmā and b = b0...m+pmb̄,
where

ā = a/pm =
∞∑
i=0

am+ip
i and b̄ = b/pm =

∞∑
i=0

bm+ip
i.

Now multiplying a and b gives

c = a0...mb0...m + pm
(
a0...mb̄+ āb0...m

)
+ p2māb̄,

where the product āb̄ can be computed in base pk, as it is detailed in the
following implementation:

class Blocks_Mul_Padic_repp D Padic_repp
a, b, c, ā, b̄: Padicp
Ā, B̄: Padicpk

constructor (ã: Padicp, b̃: Padicp)
a := ã, b := b̃
ā := a/pm, b̄ := b/pm

Ā := to_blocks(ā), B̄ := to_blocks(b̄)
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c̄ := from_blocks(ĀB̄)
c := a0...mb0...m + pm

(
a0...mb̄+ āb0...m

)
+ p2mc̄

method next ()
return cn

In Figure 4.1 below, we illustrate the contribution of each aibj to the prod-
uct ci+j computed with the present blockwise version. In both bases p and
pk the naive product is used, and the numbers inside the squares indicate
the degrees at which the corresponding product is actually computed.

01 1 2223456
78910 11109876543 34567

89101112
3 4 5 6 7 8 9 104 5 6 7 8 9 10 115 6 7 8 9 10 11 126 1010 14

Figure 4.1. Blockwise product for m = 3 and k = 4.

Proposition 4.1. If m > k − 1, then Blocks_Mul_Padic_repp is relaxed
for base p.

Proof. It is sufficient to show that the computation of c̄n−2m only involves
terms in a and b of degree at most n. In fact c̄n−2m requires the knowledge
of the coefficients of Ā and B̄ to degree at most l = b(n− 2m)/kc, hence
the knowledge of the coefficients of a and b to degree k(l + 1) − 1 + m 6
n−2m+k−1+m = n+k−1−m, which concludes the proof thanks to the
assumption on m. Notice that the latter inequality is an equality whenever
n − 2m is a multiple of k. Therefore m > k − 1 is necessary to ensure the
product to be relaxed. �

4.4. Timings. In following Table 4.3, we use blocks of size k = 32, and
compare the blockwise versions of the naive product of Section 2.6 to the
relaxed one of Section 3.2. The first line concerns the monoblock strategy:
below precision 32 we directly use the naive p-adic product; for larger pre-
cisions we use the naive pk-adic product. The second line is the same as the
first one except that we use a relaxed pk-adic product. In the third line the
relaxed blockwise version is used with m = 32: we use the naive product
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for both p- and pk-adic expansions. The fourth line is similar except that
the fast relaxed product is used beyond precision 32.

n 8 16 32 64 128 256 512 1 024 2 048 4 096
mono Naive_Mul_Padicp 3.5 5.5 11 53 95 190 380 870 2 200 6 500
mono Binary_Mul_Padicp 3.4 5.5 11 57 110 220 500 1 200 3 000 7 800
blocks Naive_Mul_Padicp 8.0 11 17 46 140 320 700 1 600 3 700 9 400
blocks Binary_Mul_Padicp 8.0 11 17 46 140 330 750 1 700 3 900 9 100

Table 4.3. Blockwise products to precision n, for p =
536870923 and k = 32, in microseconds.

When compared to Table 4.2, we can see that most of the time within
the monoblock strategy is actually spent on base conversions. In fact, the
strategy does not bring a significant speed-up for a single product, but for
more complex computations, the base conversions can often be factored.

For instance, assume that a and b are two d × d matrices with entries
in Zp. Then the multiplication c = ab involves only O(d2) base conver-
sions and O(d3) pk-adic products. For large d, the conversions thus become
inexpensive. In Section 7, we will encounter a similar application to root
extraction.

5. Application to recursive p-adic numbers

A major motivation behind the relaxed computational model is the effi-
cient expansion of p-adic numbers that are solutions to recursive equations.
This section is an extension of [Hoe02, Section 4.5] to p-adic numbers.

Let us slightly generalize the notion of a recursive equation, which was
first defined in the introduction, so as to accommodate for initial conditions.
Consider a functional equation

(5.1) Y = Φ(Y ),

where Y is a vector of d unknowns in Rp. Assume that there exist a k ∈ N∗
and initial conditions c0, . . . , ck−1 ∈Md, such that for all n > k and y, ỹ ∈
Rdp with y0 = c0, . . . , yk−1 = ck−1, we have

ỹ − y ∈ pnRdp =⇒ Φ(ỹ)− Φ(y) ∈ pn+1Rdp.(5.2)

Stated otherwise, this condition means that each coefficient bn = Φ(b)n
with n > k only depends on previous coefficients b0, . . . , bn−1. Therefore,
setting c = c0 +c1p+ · · ·+ck−1p

k−1, the sequence c,Φ(c),Φ(Φ(c)) converges
to a unique solution b ∈ Rdp of (5.1) with b0 = c0, . . . , bk−1 = ck−1. We will
call (5.1) a recursive equation and the entries of the solution b recursive
p-adic numbers.
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5.1. Implementation. Since p induces an element p = (p, . . . , p) in Rd

and an isomorphism Rdp
∼= (Rd)p, we may reinterpret a solution b = Φ(b)

as a p-adic number over Rd. Using this trick, we may assume without
loss of generality that d = 1. In our implementation, recursive numbers are
instances of the following class that stores the initial conditions b0, . . . , bk−1
and the equation Φ:

class Recursive_Padic_reppD Padic_repp
Φ: function from Rp to Rp
b0, . . . , bk−1: initial conditions in M
constructor (Φ̃: function, b̃0, . . . , b̃k−1: M)

Φ := Φ̃, b0 := b̃0, . . . , bk−1 := b̃k−1
method next ()

If n < k then return bn
return Φ(this)n

In the last line, the expression Φ(this) means the evaluation of Φ at the
concrete instance of the p-adic b = Φ(b) being currently defined.

Example. Consider Φ(b) = pb + 1, with one initial condition b0 = 1. It
is clear that b is recursive, since the n first terms of pb can be computed
from the only n − 1 first terms of b. We have b1 = b2 = · · · = 1. In fact,
b = 1/(1− p).

5.2. Complexity analysis. If Φ is an expression built from L constants,
sums, differences, and products (all of arity two), then the computation of b
simply consists in performing these L operations in the relaxed model. For
instance, when using the relaxed product of Proposition 3.1, this amounts
to O(LIp(n) logn) operations to obtain the n first terms of b.

This complexity bound is to be compared to the classical approach via
the Newton operator. In fact, one can compute b with fixed-point p-adic
arithmetic by evaluating the following operator NΦ(z) = z−(z−Φ(z))/(1−
Φ′(z)). There are several cases where the relaxed approach is faster than
the Newton operator:

(1) The constant hidden behind the "O" of the Newton iteration is
higher than the one with the relaxed approach. For instance, if b
is really a vector in Rdp, then the Newton operator involves the
inversion of a d × d matrix at precision n/2, which gives rise to a
factor O(d3) in the complexity (assuming the naive matrix product
is used). The total cost of the Newton operator to precision n in
Zp is thus in O((dL+ d3)Ip(n)). Here O(dL) bounds the number of
operations needed to evaluate the Jacobian matrix. In this situation,
if L� d2, and unless n is very large, the relaxed approach is faster.
This will be actually illustrated in the next subsection.
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(2) Even in the case d = 1, the "O" hides a non trivial constant factor
due to a certain amount of "recomputations". For moderate sizes,
when polynomial multiplication uses Karatsuba’s algorithm, or the
Toom-Cook method, the cost of relaxed multiplication also drops to
a constant times the cost of zealous multiplication [Hoe02, Hoe07b].
In such cases, the relaxed method often becomes more efficient. This
will be illustrated in Section 6 for the division.

(3) When using the blockwise method from Section 4 or [Hoe07b] for
power series, the overhead of relaxed multiplication can often be
further reduced. In practice, we could observe that this makes it
possible to outperform Newton’s method even for very large sizes.

For more general functional equations, where Φ involves non-algebraic op-
erations, it should also be noticed that suitable Newton operators Φ are
not necessarily available. For instance, if the mere definition of Φ involves
p-expansions, then the Newton operator may be not defined anymore, or
one needs to explicitly compute with p-expansions. This occurs for instance
for R = Z, when Φ involves the "symbolic derivation" b 7→

∑
n>1 nbnp

n−1.

5.3. Timings. In order to illustrate the performance of the relaxed model
with respect to Newton iteration, we consider the following family of sys-
tems of p-adic integers:

Φd,i(x1, . . . , xd) = 1 + p
d∑

k=1
(k + i)x(k+i) mod 3

k , for i ∈ {1, . . . , d}.

The number of p-adic products grows linearly with d. Yet, the total number
of operations grows with d2.

In Table 5.1, we compute the 256 first terms of the solution b = Φd(b)
with the initial condition b = (1, . . . , 1) + O(p). We use the naive product
of Section 2.6 and compare to the Newton iteration directly implemented
on the top of the routines of Gmp. In fact the time we provide in the line
"Matrix multiplication" does not correspond to a complete implementation
of the iteration but only to two products of two d × d matrices with in-
tegers modulo p64. These two operations necessarily occurs for inverting
the Jacobian matrix to precision p128 when using the classical algorithm
as described in [GG03, Algorithm 9.2]. This can be seen as a lower bound
for any implementation of the Newton method. However the line "Newton
implementation" corresponds to our implementation of this method, hence
this is an upper bound. The next line of the table, named "Naive iteration",
corresponds to the computation from b = (1, . . . , 1) of Φd (b) modulo p2,
then Φd (Φd (b)) modulo p3, etc. This sequence converges linearly to the
solution.

Although Newton iteration is faster for tiny dimensions d 6 2, its cost
growths as d3 for larger d, whereas the relaxed approach reported on the
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d 1 2 4 8 16 32 64 128
Matrix multiplication 0.002 0.014 0.12 0.9 7.2 56 460 3 600
Newton implementation 0.13 0.31 2.3 13 95 700 5 500 43 000
Naive iteration 3.8 7.7 17 40 110 330 1 100 4 000
Naive_Mul_Padicp 0.34 0.42 1.4 3.3 8.7 26 94 420

Table 5.1. 256 first terms of b = Φd(b), for p = 536870923,
in milliseconds.

last line only grows as d2. For d = 1, we notice that the number b is
computed with essentially one relaxed product. Notice that, due to the
linear convergence, the naive iteration behaves well when the dimension is
large and the precision relatively small.

In the next table we report of the same computations but with the relaxed
product of Section 3.2 at precision 1024; the conclusions are essentially the
same:

d 1 2 4 8 16 32 64 128
Matrix multiplication 0.014 0.12 0.98 7.9 62 490 4 000 31 000
Newton implementation 0.58 1.2 13 90 640 4 900 38 000 300 000
Naive iteration 110 220 450 930 2 000 4 800 13 000 37 000
Binary_Mul_Padicp 2.4 2.6 9.4 21 52 150 480 2 300

Table 5.2. 1024 first terms of b = Φd(b), for p =
536870923, in milliseconds.

6. Relaxed division

We are now to present relaxed algorithms to compute the quotient of
two p-adic numbers. The technique is similar to power series, as treated
in [Hoe02], but with subtleties.

6.1. Division by a "scalar". The division of a power series in K[[x]] by
an element of K is immediate, but it does not extend to p-adic numbers,
because of the propagation of the carries. We shall introduce two new op-
erations. Let β ∈ M play the role of a "scalar". The first new operation,
written mul_rem (a: Padicp, β:M), returns the p-adic number c with coeffi-
cients cn = rem (βan, p). The second operation, written mul_quo (a: Padicp,
β: R), returns the corresponding carry, so that

βa = mul_rem(a, β) + pmul_quo(a, β)

=
∞∑
n=0

rem (βan, p) pn +
∞∑
n=0

quo (βan, p) pn+1.

These operations are easy to implement, as follows:
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class Mul_Rem_Padic_repp D Padic_repp
a: Padicp
β: M
constructor (ã: Padicp, β̃: M)

a := ã, β := β̃
method next ()

return rem (βan, p)
class Mul_Quo_Padic_repp D Padic_repp

a: Padicp
β: M
constructor (ã: Padicp, β̃: M)

a := ã, β := β̃
method next ()

return quo (βan, p)
Proposition 6.1. Let a be a relaxed p-adic number and let β ∈ M . If β
is invertible modulo p, with given inverse γ = β−1 mod p, then the quotient
c=a/β is recursive and c satisfies the equation

c = mul_rem (a− pmul_quo (c, β) , γ) , c0 = γa0 mod p.
If R = Z, then a/β can be computed up till precision n using O(nI(log p))
bit-operations.
Proof. It is clear from the definitions that the proposed formula actually
defines a recursive number. Then, from

βc = mul_rem (c, β) + pmul_quo (c, β) ,
we deduce that βc− pmul_quo (c, β) = mul_rem (c, β), hence

c = mul_rem (βc− pmul_quo (c, β) , γ)
= mul_rem (a− pmul_quo (c, β) , γ) .

The functions mul_rem and mul_quo both take O(nI(log p)) bit-operations
if R = Z, which concludes the proof. �

6.2. Quotient of two p-adic numbers. Once the division by a "scalar"
is available, we can apply a similar formula as for the division of power
series of [Hoe02].
Proposition 6.2. Let a and b be two relaxed p-adic numbers such that b0 is
invertible of given inverse γ = b−1

0 mod p. The quotient c=a/b is recursive
and satisfies the following equation:

c = a− (b− b0)c
b0

, c0 = γa0 mod p.

In addition, if R = Z, then a/b can be computed up till precision n using
O(I(n log p) logn) bit-operations.
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Proof. The last assertion on the cost follows from Proposition 3.2. �

Remark. Notice that p is not assumed to be prime, so that we can replace
p by pk, and thus benefit of the monoblock strategy of Section 4.2. This
does not involve a large amount of work: it suffices to write

from_blocks(to_blocks(a)/to_blocks(b)).

Notice that this involves inverting b0...pk modulo pk.

6.3. Timings. In Table 6.1 we display the computation time for our di-
vision algorithm. We compare several methods:

• The first line "Newton" corresponds to the classical Newton itera-
tion [GG03, Algorithm 9.2] used in the zealous model.
• The second line corresponds to one call of Gmp’s extended g.c.d.
function.
• The third line is a comparison with Pari/Gp version 2.3.5.
• The next two lines Naive_Mul_Padicp and Binary_Mul_Padicp cor-
respond to the naive product of Section 2.6, and the relaxed one of
Section 3.2.
• The lines "mono Naive_Mul_Padicp" and "mono Naive_Mul_Padicp"
correspond to the monoblock strategy from Section 4.2 with blocks
of size 32.
• Then "blocks Naive_Mul_Padicp and "blocks Naive_Mul_Padicp"
correspond to the relaxed block strategy from Section 4.3 with
blocks of size 32.
• Finally the last line corresponds to direct computations in base p32

(with no conversions from/to base p).
When compared to Tables 2.1 and 3.1, we observe that the cost of one di-
vision algorithm is merely that of one multiplication whenever the size be-
comes sufficiently large, as expected. We also observe that our "monoblock
division" is faster than the zealous one for large sizes; this is even more true
if we directly compute in base p32.

7. Higher order roots

For power series in characteristic 0, the r-th root g of f is recursive,
with equation g =

∫
f ′/(rgr−1) and initial condition g0 = f

1/r
0 (see [Hoe02,

Section 3.2.5] for details). This expression neither holds in small positive
characteristic, nor for p-adic integers. In this section we propose new formu-
las for these two cases, which are compatible with the monoblock strategy
of Section 4.2.

7.1. Regular case. In this subsection we treat the case when r is invert-
ible modulo p.
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n 8 16 32 64 128 256 512 1024 2048
Newton 3 4 7 18 49 140 430 1 300 3 700
Gmp’s extended g.c.d. 3 6 14 35 92 250 730 2 200 5 600
Pari/Gp 0.68 1.1 2.8 8.5 28 99 360 1 300 4 800
Naive_Mul_Padicp 4 7 15 35 95 300 1 000 3 700 14 000
Binary_Mul_Padicp 9 21 44 93 200 420 920 2 000 4 800
mono Naive_Mul_Padicp 6 10 20 95 160 280 540 1 200 2 800
mono Binary_Mul_Padicp 6 10 20 110 170 320 660 1 500 3 600
blocks Naive_Mul_Padicp 10 16 27 70 190 430 900 1 900 4 500
blocks Binary_Mul_Padicp 10 16 27 65 180 410 900 2 000 4 500
Naive_Mul_Padicp32 6 22 42 88 200 500 1 500

Table 6.1. Divisions, for p = 536870923, in microseconds.

Proposition 7.1. Assume that r is invertible modulo p, and let a be a
relaxed invertible p-adic number in Rp such that a0 is an r-th power modulo
p. Then any r-th root b0 of a0 modulo p can be uniquely lifted into an r-th
root b of a. Moreover, b is a recursive number for the equation

(7.1) b = a− br + rbr−1
0 b

rbr−1
0

.

The n first terms of b can be computed using
• O(log rM(n) logn) operations in K, if R = K[[x]] and p = x, or
• O(log rI(n log p) logn) bit-operations, if R = Z.

Proof. Since r is invertible modulo p, the polynomial xr − a is separable
modulo p. Any of its roots modulo p can be uniquely lifted into a root in
Rp by means of the classical Newton operator [Lan02, Proposition 7.2].

Since a0 is invertible, so is b0. It is therefore clear that Equation (7.1)
uniquely defines b, but it is not immediately clear how to evaluate it so
that it defines a recursive number. For this purpose we rewrite b into b0 +c,
with c of valuation at least 1:

b = a− (b0 + c)r + rbr−1
0 (b0 + c)

rbr−1
0

=
a−

∑r
k=2

(r
k

)
br−k0 ck + (r − 1) br0
rbr−1

0
.

Since r is invertible modulo p, we now see that it does suffice to know the
terms to degree n− 1 of b in order to deduce bn.

The latter expanded formula is suitable for an implementation but un-
fortunately the number of products to be performed grows linearly with
r. Instead we modify the classical binary powering algorithm to compute
the expression needed with O(log r) products only, as follows. In fact we
aim at computing βr = (b0 + c)r − rbr−1

0 c − br0 in a way to preserve the
recursiveness. We proceed by induction on r.
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If r = 1, then βr = 0. If r = 2 then β2 = c2. Assume that r = 2h, and
that βh is available by induction. From

β2
h = (b0 + c)r +

(
hbh−1

0 c+ bh0

)2
− 2

(
hbh−1

0 c+ bh0

) (
βh + hbh−1

0 c+ bh0

)
= (b0 + c)r −

(
hbh−1

0 c+ bh0

)2
− 2

(
hbh−1

0 c+ bh0

)
βh,

we deduce that

βr = β2
h +

(
hbh−1

0 c+ bh0

)2

+ 2
(
hbh−1

0 c+ bh0

)
βh − rbr−1

0 c− br0

= βh
(
βh + 2

(
hbh−1

0 c+ bh0

))
+
(
hbh−1

0 c
)2
.

Since βh and c have positive valuation, the recursiveness is well preserved
through this intermediate expression.

On the other hand, if r is odd then we can write r = h+ 1, with h even,
and assume that βh is available by induction. Then we have that:

βr = (b0 + c)βh + (b0 + c)(hbh−1
0 c+ bh0)− (h+ 1)bh0c− bh+1

0

= (b0 + c)βh + hbh−1
0 c2.

Again the recursiveness is well preserved through this intermediate expres-
sion. The equation of b can finally be evaluated using O(log r) products and
one division. By [Hoe02, Section 4.3.2, Theorem 6], this concludes the proof
for power series. By Propositions 3.2 and 6.2, we also obtain the desired
result for p-adic integers. �

For the computation of the r-th root in Z/pZ, we have implemented the
algorithms of [GG03, Theorems 14.4 and 14.9]: each extraction can be done
with Õ(r log p) bit-operations in average, with a randomized algorithm.
This is not the bottleneck for our purpose, so we will not discuss this aspect
longer in this paper.

Remark. Notice that (p) is not assumed to be prime in Proposition 7.1.
Therefore, if we actually have an r-th root b of a modulo pk, then b can be
seen as a pk-recursive number, still using Equation (7.1). Hence, one can
directly apply the monoblock strategy of Section 4.2 to perform internal
computations modulo pk.

7.2. p-th roots. If K is a field of characteristic p, then f ∈ K[[x]] is a
p-th power if, and only if, f ∈ Kp[[xp]]. If it exists, the p-th root of a power
series is unique. Here, Kp represents the subfield of the p-th powers of K.
By the way, let us mention that, for a general effective field K, Fröhlich and
Shepherdson have shown that testing if an element is a p-th power is not
decidable [FS56, Section 7] (see also the example in [Gat84, Remark 5.10]).
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In general, for p-adic numbers, an r-th root extraction can be almost
as complicated as the factorization of a general polynomial in Rp[x]. For
instance, with R = Z[

√
2] and p =

√
2 we have that r = 2 = p2 has

valuation 2 in Rp. We will not cover such a general situation. We will only
consider the case of the p-adic integers, that is for when R = Z and p is
prime.

From now on, let a denote a p-adic integer in Zp from which we want to
extract the p-th root (if it exists). If the valuation of a is not a multiple of
p, then a is not a p-th power. If it is a multiple of p, then we can factor out
pval a and assume that a has valuation 0. The following lemma is based on
classical techniques, we briefly recall its proof for completeness:

Lemma 7.1. Assume that p is prime, and let a ∈ Zp be invertible.
• If p > 3, then a is a p-th power if, and only if, a0 +pa1 = ap0 modulo
p2. In this case there exists only one p-th root.
• If p = 2, then a is a p-th power if, and only if, a1 = a2 = 0. In this
case there exist exactly two square roots.

Proof. If a = bp in Zp then b0 = a0. After the translation x = a0 + y in
xp − a = 0, we focus on the equation (b0 + y)p − a = 0, which expands to

(7.2) h(y) = yp +
p−1∑
i=1

(
p

i

)
bp−i0 yi − (a− bp0) = 0.

For any i ∈ {1, . . . , p − 1}, the coefficient
(p
i

)
has valuation at least one

because p is prime. Reducing the latter equation modulo p2, it is thus
necessary that a0 + pa1 = bp0 modulo p2.

Assume now that a0 + pa1 = bp0 holds modulo p2. After the change of
variables y by pz and division by p2, we obtain

(7.3) h̃(z) = pp−2zp +
p−1∑
i=2

(
p

i

)
bp−i0 pi−2zi + bp−1

0 z − a− bp0
p2 = 0.

We distinguish two cases: p > 3 and p = 2.
If p > 3, then any root of h̃ must be congruent to (a− bp0) /(bp−1

0 p2)
modulo p. Since h̃′

(
(a− bp0) /(bp−1

0 p2)
)

= bp−1
0 has valuation 0, the Newton

operator again ensures that h̃ has exactly one root [Lan02, Proposition 7.2].
If p = 2, then h̃(z) rewrites into z2 + b0z −

a−b2
0

p2 = z2 + z − a−1
4 . Since

h̃′(z) = b0 mod p = 1 mod 2, any root of h̃ modulo 2 can be lifted into a
unique root of h̃ in Z2. The possible roots being 0 and 1, this gives the
extra condition a2 = 0. �
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7.3. Square roots in base 2. In the following proposition we show that
the square root of a 2-adic integer can be expressed into a recursive number
that can be computed with essentially one relaxed product.

Proposition 7.2. Let a be a relaxed 2-adic integer in Z2 with a0 = 1 and
a1 = a2 = 0. Let b be a square root of a, with b0 = 1 and b1 being 0 or
1, and let c = (b − b0 − 2b1)/4, and ã = (a − (b0 + 2b1)2)/8. Then c is a
recursive number with initial condition c0 = ã0 and equation

(7.4) c = ã− 2c2

b0 + 2b1
.

In addition, the n first terms of b can be computed with O(I(n log p) logn)
bit-operations.

Proof. Equation (7.4) simply follows from
(b0 + 2b1 + 4c)2 − a = (b0 + 2b1)2 + 8(b0 + 2b1)c+ 16c2 − a = 0.

The cost is a consequence of Propositions 3.2 and 6.2. �

Remark. As in the preceding regular case, we can see c as a pk-recursive
number as soon as c is known modulo pk. In fact letting C = C0 + C̃, with
C0 = C mod pk, Equation (7.4) rewrites into

(b0 + 2b1)C = ã− 2(C0 + (C − C0))2

= ã− 2C2
0 − 4C0(C − C0)− 2(C − C0)2,

which gives
(b0 + 2b1 + 4C0)C = ã+ 2C2

0 − 2(C − C0)2.

The latter equation implies that C is pk-recursive, so that we can naturally
benefit of the monoblock strategy from Section 4.2.

7.4. p-th roots in base p. In this subsection we assume that p is an
odd prime integer. We will show that the p-th root is recursive and can be
computed using similar but slightly more complicated formulas than in the
regular case.

Proposition 7.3. Let a be an invertible relaxed p-adic integer in Zp such
that a = ap0 mod p2. Let b denote the p-th root of a, with b0 = a0, let
ã = (a − (b0 + pb1)p)/p2, and let c = (b − b0)/p. Then c is a recursive
number with initial condition c0 = b1 and equation

(7.5) c = c0 + ã− γp
(b0 + pc0)p−1 ,

where

γr = (b0 + pc)r − rp(b0 + pc0)r−1(c− c0)− (b0 + pc0)r

p2 , for all r > 0.
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The n first terms of b can be computed with O(log pI(n log p) logn) bit-
operations.

Proof. As a shorthand we let β = b0 + pc0 and d = c − c0. Equation (7.5)
simply follows from

bp − a = (β + pd)p − a
= p2γp + p2βp−1d+ βp − a
= p2γp + p2βp−1d− p2ã = 0.

Since

γp =
p∑
i=2

(
p

i

)
βp−ipi−2di,

and since d has positive valuation, Equation (7.5) actually defines c as a
recursive number.

As in the regular case, we need to provide an efficient way to compute
γr. We proceed by induction on r. If r = 1, then γr = 0. If r = 2, then
γr = d2, which preserves the recursiveness. Assume now that r = 2h and
that γh is available by induction. From

(p2γh)2 = (β + pd)r +
(
hpβh−1d+ βh

)2

− 2
(
hpβh−1d+ βh

) (
p2γh + hpβh−1d+ βh

)
= (β + pd)r −

(
hpβh−1d+ βh

)2
− 2

(
hpβh−1d+ βh

)
p2γh,

we deduce that

p2γr = (p2γh)2 +
(
hpβh−1d+ βh

)2

+ 2
(
hpβh−1d+ βh

)
p2γh − rpβr−1d− βr

= p2γh
(
p2γh + 2

(
hpβh−1d+ βh

))
+
(
hpβh−1d

)2
,

whence
γr = γh

(
p2γh + 2

(
hpβh−1d+ βh

))
+
(
hβh−1d

)2
.

Since γh and d have positive valuation, the recursiveness is well preserved
through this intermediate expression.

On the other hand, if r is odd, then we can write r = h+ 1, with h even,
and assume that γh is available by induction. Then we have that:
p2γr = p2(β + pd)γh + (β + pd)(hpβh−1d+ βh)− (h+ 1)pβhd− βh+1

= p2(β + pd)γh + hp2βh−1d2,

whence
γr = (β + pd)γh + hβh−1d2,
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which again preserves the recursiveness. Finally the equation of d can be
evaluated with O(log r) products and one division, which concludes the
proof by Propositions 3.2 and 6.2. �

Remark. As in the regular case, we can see c as a pk-recursive number
as soon as c is known modulo pk. In fact, letting C = C0 + D, with C0 =
C mod pk, Equation (7.5) rewrites into

C = C0 + Ã− Γp
(b0 + pC0)p−1 ,

where Ã = (a− (b0 + pC0)p)/p2, and

Γr = (b0 + pC)r − rp(b0 + pC0)r−1(C − C0)− (b0 + pC0)r

p2 , for all r > 0.

Notice that division by p2 in base pk, with k > 2, is equivalent to multiplica-
tion by pk−2 and division by pk, which corresponds to a simple shift. Then
Γp can be computed by recurrence with the same formula as γp, mutatis
mutandis. In this way C is pk-recursive, so that we can naturally benefit of
the monoblock strategy of Section 4.2.

7.5. Timings. In Table 7.1, we give the computation time of the square
root using our fast relaxed product of Section 4.3 that has been reported in
Table 4.3. Since, in terms of performances, the situation is very similar to
the division, we only compare to the zealous implementation in Pari/Gp
version 2.3.5.

n 8 16 32 64 128 256 512 1024 2048
blocks Binary_Mul_Padicp 14 22 39 91 230 520 1 100 2 400 5 400
Pari/Gp 5 11 28 74 210 670 2 300 8 100 30 000

Table 7.1. Square root, for p = 536870923, in microseconds.

8. Conclusion

From more than a decade a major stream in complexity theory for com-
puter algebra has spread the idea that high level algorithms must be param-
eterized in terms of a small number of elementary operations (essentially
integer, polynomial and matrix multiplication), so that the main goal in al-
gorithm design consists in reducing as fast as possible to these operations.
Although many asymptotically efficient algorithms have been developed
along these lines, an overly doctrinaire application of this philosophy tends
to be counterproductive.
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For example, when it comes to computations in completions, we have seen
that there are two general approaches: Newton’s method and the relaxed
(or lazy) approach. It is often believed that Newton’s method is simply
the best, because it asymptotically leads to the same complexity as integer
or polynomial multiplication. However, this "reduction" does not take into
account possible sparsity in the data, non asymptotic input sizes, more
involved types of equations (such as partial differential equations), etc.

In this paper, we have demonstrated that, in the area of computations
with p-adic numbers, the relaxed approach can be more efficient than meth-
ods based on Newton iteration. The gains are sometimes important: in Ta-
bles 5.1 and 5.2, we have shown that Hensel lifting in high dimensions can
become more than 100 times faster, when using the relaxed approach. At
other moments, we were ourselves surprised: in Table 6.1, we see that, even
for the division of p-adic numbers, a naive implementation of the relaxed
product yields better performances than a straightforward use of Gmp,
whenever p is sufficiently large.

Of course, the detailed analysis of the mutual benefits of both approaches
remains an interesting subject. On the one hand, Newton iteration can be
improved using blockwise techniques [Ber00, Hoe10]. On the other hand,
the relaxed implementation can be improved for small sizes by ensuring a
better transition between hardware and long integers, and massive inlining.
At huge precisions, the recursive blockwise technique from [Hoe07b] should
also become useful. Finally, "FFT-caching" could still be used in a more
systematic way, and in particular for the computation of squares.

To conclude our comparison between Newton iteration and the relaxed
approach, we would like to stress that, under most favourable circum-
stances, Newton iteration can only be hoped to be a small constant times
faster than the relaxed approach, since the overhead O(logn) of relaxed
multiplication should really be read as (1/2) log(n/128) or less. In other
extreme cases, Newton iteration is several hundreds times slower, or even
does not apply at all (e.g. for the resolution of partial differential equations).

Let us finally mention that the relaxed resolution of recursive systems
of equations has been extended to more general systems of implicit equa-
tions [Hoe09]. The computation of such local solutions is the central task of
the polynomial system solver called Kronecker (see [DL08] for an intro-
duction). We are confident that the results of [Hoe09], which were presented
in the power series context, extend to more general completions, and that
the relaxed model will lead to an important speed-up.

Acknowledgments. We would like to thank the anonymous referees for
their helpful comments.
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