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Abstract

A solution to blind recognition of binary cyclic codes is proposed in this paper. This problem could be addressed
on the context of non-cooperative communications or adaptive coding and modulations. We consider it as a
reverse engineering problem of error-correcting coding. The proposed algorithm recovers the encoder parameters
of a cyclic, coded communication system with the only knowledge of the noisy information streams. By taking
advantages of soft-decision outputs of the channel and by employing statistical signal-processing methods, it
achieves higher recognition performances than existing algorithms which are based on algebraic approaches in
hard-decision situations. By comprehensive simulations, we show that the probability of false estimation of coding
parameters of our proposed algorithm is much lower than the existing algorithms, and falls rapidly when signal-to-
noise ratio increases.
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1. Introduction
The blind recognition of cyclic codes is a reverse engin-
eering problem of the error-correcting coding which
can be applied to non-cooperative communications [1,2]
and adaptive coding and modulations (ACM) [3-6].
In most cases of digital communications, forward error-
correcting coding is used to protect the transmitted
information against noisy channels to reduce errors
which occur during transmission. Cyclic codes are one
class of the most important error-correcting codes ap-
plied in communication area. In cooperative context, the
parameters of the codes and modulations are usually
known by the transmitters and receivers both. But a re-
ceiver in non-cooperative communications or a cognitive
radio receiver may not know those parameters and thus
cannot directly receive and decode the transmitted infor-
mation on the channel. Therefore, to adapt itself to
an unknown transmission context, the receiver must
recognize the modulation and coding parameters blindly
before processing the received data. In this paper, we de-
velop an approach for blind recognition of the coding
parameters of a communication system which uses bin-
ary cyclic codes.
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2. Related work
In [7], a Euclidean algorithm-based method is proposed
to identify a 1/2-rate convolutional encoder in noiseless
cases. However, it is not suitable for noisy channels. In
[8], another approach is presented to identify a 1/n-rate
convolutional encoder in noisy cases based on the Ex-
pectation Maximization algorithm. The authors of [9,10]
develop methods for blind recovery of convolutional
encoder in turbo code configuration. In [6,11], a dual
code method for blind identification of k/n-rate convolu-
tional codes is proposed for cognitive radio receivers.
An iterative decoding-technique-based reconstruction of
block code is introduced by the authors of [12] and was
applied to low-density parity-check (LDPC) codes. An
algebraic approach for the reconstruction of linear
and convolutional codes is presented in [13]. In [14], an
algorithm for blind recognition of error-correcting codes
is presented by utilizing the rank properties of the re-
ceived stream.
In [15], an approach for blind recognition of binary lin-

ear block codes in low code-rate situations is presented.
The authors propose to estimate the code length
according to the code weight distribution characters of the
low-rate codes and then get the generator matrix by im-
proving the traditional simplification of matrices. It has a
good performance in high bit error rate (BER) but is not
suitable for high code rate situations. Furthermore, it re-
quires a large amount of observed data. In [16] and [17],
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Figure 1 The system model of the blind recognition problem
of coding parameters.
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the authors present a blind recognition algorithm for
Bose-Chaudhuri-Hocquenghem (BCH) codes based on
the Roots Information Dispersion Entropy and Roots
Statistic (RIDERS). This algorithm can achieve correct
recognition in both high and low code rate situations
with the BER of 10−2. But it is computationally inten-
sive, especially when the code length is large. The au-
thors of [18] improve the algorithm proposed in [16,17]
by reducing the computational complexity and making
the recognition procedure faster.
Most of the previous works are concentrating on

hard-decision situations, and are based on utilizing the
algebraic properties of the codes in Galois fields (GF).
The major drawback of them is that they have a low
fault tolerance. Even if only 1 bit error occurs in a
codeword, the algebraic properties of error-correcting
codes will be largely destroyed. Therefore, the recog-
nizers need a large amount of observed data. On the
other hand, if soft information about the channel output
is available, the soft-decision outputs can provide more
information for the code recognition, and statistical sig-
nal processing algorithms can also be employed to im-
prove the recognition performance.
When statistic and artificial-intelligence-based iterative

algorithms are applied to error-correcting decoding, the
decoding performance is improved about 2 ~ 3 dB in
soft-decision situations [19]. In [20,21], the authors
introduce a MAP approach to achieve blind frame
synchronization of error-correcting codes with a sparse
parity-check matrix. It is also developed on Reed Solo-
mon (RS) codes [22] and BCH product codes [23] and
yields better performances than previous hard decision
ones. In this paper, we propose an algorithm to achieve
blind recognition of binary cyclic codes in soft-decision
situations. Literature [4] also considers the blind recog-
nition of coding parameters based on soft decisions. But
in fact, its recognition procedure is semi-blind. The au-
thors assume that the channel code which is used at the
transmitter is unknown to the receiver, but the code is
chosen from a set of possible codes which the authors
call the candidate set. This set has a limited number of
candidates, and is arranged beforehand by both the
transmitter and the receiver. It has good performances
on ACM, but is not suitable for non-cooperative cases.
To the best of our knowledge, this paper is the first pub-

lication to consider the complete-blind recognition prob-
lem of binary cyclic codes in soft-decision situations. The
proposed algorithm in this paper is based on the RIDERS
algorithm introduced in [16-18]. We improve and extend
this work in order to handle soft-decision situations. To
utilize the soft-decision outputs, we employ the idea of
MAP-based processing method proposed in [20-23].
The remainder of this paper is organized as follows:

section 3 briefly introduces the RIDERS algorithm in
hard decision situations proposed in [16-18]; section 4
presents the principle of our proposed recognition algo-
rithm for binary cyclic codes in soft-decision situation;
section 5 draws the general recognition procedure of the
proposed algorithm; and finally, the simulation results
and conclusions are given in sections 6 and 7.

3. RIDERS algorithm for blind recognition of BCH
codes
3.1 Introduction of RIDERS algorithm
The RIDERS algorithm is introduced in [16,17] and im-
proved in [18] to solve the problem of recognition of
BCH codes. The system model of blind recognition
problem of coding parameters is shown in Figure 1.
On the transmitter, the information sequence Tm is
encoded and separated to coded blocks Tc by the en-
coder and modulated before transmitted to the chan-
nel. After demodulation, the receiver blindly recognizes
the coding parameters and decodes the received blocks
Rc to correct the errors which occur during the trans-
mission. Rm is the decoded information which could be
processed forward.
We define c(x) to be the codeword polynomial of Tc,

then the algebraic model of the encoding procedure can
be described as follows [24]:

c xð Þ ¼ m xð Þ � g xð Þ ð1Þ
or in systemic form:

c xð Þ ¼ m xð Þ � xn−kþ m xð Þ � xn−k
� �

modg xð Þ
� �

:

ð2Þ
where m(x) is the input information polynomial and g(x)
is the generator polynomial. The purpose of the
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recognition is to estimate the codeword length and gen-
erator polynomial g(x) blindly with the only knowledge
of the received streams. For an encoding system, m(x) is
different in each codeword, but g(x) is the same.
According to Equations 1 and 2, the roots of g(x) are
also the roots of c(x). If no error occurs, the roots of g(x)
will appear in every codeword. However, for an invalid
codeword, this algebraic relationship does not exist. In
this paper, we define the code roots as the roots of the
generator polynomial. The root space of a binary
codeword polynomial c(x) defined in GF(2m) (m ≥ 1) is a
finite space, which contains 2m − 1 symbols. We define
A to be the set of the generator polynomial roots. In a
noisy context, statistically, for each codeword c(x), the
probabilities of the codeword polynomial roots appear in
A is larger than that in �Α (defined in GF(2m)). While for
an invalid codeword polynomial c’(x), the roots of c’(x)
appear randomly in GF(2m). In this case, the authors of
[16-18] propose the following unproved hypothesis:

Hypothesis 1: Each symbol in GF(2m) has a uniform
probability of being a root of c’(x).

According to this hypothesis, the authors of [16-18]
propose an algorithm to recognize the BCH code length
by traversing all the possible code length and primitive
polynomials to find the correct coding parameters that
maximize the roots Information Dispersion Entropy
Function (IDEF) as follows:

ΔH ¼ −
Xn
i¼1

1
n
log

1
n
− −

Xn
i¼1

pi log pi

 !

¼
Xn
i¼1

pi log pi þ log n ð3Þ

where n = 2m − 1 is the code length, pi (1 ≤ i ≤ 2m − 1)
is the probability of αi to be the root of the code and α
is a primitive element in GF(2m). pi is calculated as
follows:

pi ¼
Ni

N
; 1 ≤ i ≤ 2m−1: ð4Þ

The received sequence, i.e. Rc in Figure 1, is separated
to M packets with an assumption of code length l, as
shown in Figure 2. In [16-18], the authors assume that
the start point of the first coding packet is obtained
Packet 1 Packet 2 Packet M

Observed Window

Figure 2 The received sequence separated to M packets.
according to the frame synchronization testing, while
the code length and generator polynomial are unknown.
We define rj(x)(1 ≤ j ≤ M) to be the codeword polyno-
mial of the jth packet in the received sequence. In Equa-
tion 4, Ni is the times of appearances of αi being the

root of rj(x) in the M packets, and N ¼
X2m−1
i¼1

Ni.

According to Hypothesis 1, when the estimation of
code length and primitive polynomial is incorrect,
pi could be considered uniformly distributed, and pi ≈
1/(2m − 1) (1 ≤ i ≤ 2m − 1). Thus the ΔH in Equation 2
is low. If the code parameters are estimated correctly
and αi is a root of g(x), pi should be larger. Therefore,
the distribution of pi should not be uniform. Then the
information entropy of pi is lower and ΔH is larger. This
is the basic principle of estimating the code length by
maximizing the ΔH defined in Equation 3.
Once the code length is estimated, by comparing pi at

different roots, we can consider the obviously higher
ones as the estimation of the code roots and the gener-
ator polynomial could be obtained by g xð Þ ¼ x−αi1ð Þ
x−αi2ð Þ⋯ x−αirð Þ , where αi1 ; αi2 ; ⋯; αir are the esti-
mated code roots, i.e. the roots of the generator
polynomial.
The RIDERS algorithm has a good performance but

there are still some drawbacks which need to be im-
proved, which are described as follows:

1) Hypothesis 1 proposed in [16-18] is not correct. In
section 3.2, we give the proof. In fact, not all the
symbols in GF(2m) have the same probability of
being a root of an invalid codeword c’(x).

2) This algorithm only considers the BCH codes in
the cases of regular code length, i.e. code length
l = 2m − 1. The authors ignored the shortened code
case, which are widely applied, however.

3) The code roots can be separated into some
conjugate root groups, and each group contains
several conjugate roots, which are the roots of a
same minimal polynomial. If a generator polynomial
g(x) has a root β, which is a root of the minimal
polynomial mp(x), the symbols which are other roots
of mp(x) also are part of the roots of g(x). So we can
test which minimal polynomials are factors of the
generator polynomial rather than testing which
elements in GF(2m) are roots of the code.

4) This algorithm is based on the hard decision
symbols and do not utilize the soft channel outputs

5) This algorithm only considers the recognition of
BCH codes and does not discuss the applications on
other binary cyclic codes.

6) The authors of [16-18] ignore the synchronization of
the codewords. They assume that the starting
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positions of the codewords have been known before
the recognition procedure by framing testing. But in
practical implementations, this should not be the
case in blind context.

In the paragraph from section 4, we propose an im-
proved RIDERS algorithm based on soft-decision situa-
tions and extend the applications to general binary
cyclic codes.

3.2 Proof of faultiness of Hypothesis 1
In this section, we present that Hypothesis 1 proposed
in [16-18] is not always correct. The proof is shown
below.
Proof. Let c’(x) be the codeword polynomial of a

codeword C ’, we can calculate pi, which is the probabil-
ity that αi is a root of c’(x). To calculate pi, we define the
minimal parity-check matrix Hmin (αi) corresponding to
the element αi in GF(2m) as follows:

H min αi
� � ¼ αi

� �l−1
; αi
� �l−2

;⋯; αi
� �1

; αi
� �0� �

: ð5Þ

We transform Hmin (αi) to its binary form by replacing
the symbols in Hmin (αi) by their binary column vector
patterns according to the coding theory [25] and record
it Hbmin (αi).
For example, the minimal parity-check matrix Hmin (α3)

corresponding to the element α3 in GF(23) with code
length l = 23 − 1 = 7 is as follows:

H min α3
� � ¼ α18 α15 ⋯ α3 1

� �
: ð6Þ

Based on the primitive polynomial p(x) = x3 + x + 1,
we can replace the symbol α3 by the vector [011]T, and
other symbols are processed similarly. Then the parity-
check matrix can be written in GF(2) as follows:

Hbmin α3
� � ¼ 1 0 1 1 1 0 0

1 1 1 0 0 1 0
0 0 1 0 1 1 1

0
@

1
A: ð7Þ

If αi is a root of c’(x), we have

Hbmin αi
� �� C′ ¼ 0 ð8Þ

There are m rows in Hbmin(α
i) and we define hμ(1 ≤

μ ≤ m) to be the μth row of Hbmin(α
i). Then the equa-

tion Hbmin(α
i) × C′ = 0 means that the product of any

row of Hbmin(α
i) with the codeword C’ equals to zero, as

shown in Equation 9:

Hbmin αi
� �� C′ ¼ 0⇔

h1 � C′ ¼ 0
h2 � C′ ¼ 0

⋮
hm � C′ ¼ 0

8>><
>>: ð9Þ
So we can calculate the probability of αi being a root
of c’(x), i.e. the probability of Hbmin(α

i) × C′ = 0 as
follows:

Pr Hbmin αi
� �� C′ ¼ 0

� �
¼ Pr h1 � C′ ¼ 0;h2 � C′ ¼ 0;…;hm � C′ ¼ 0ð Þ

ð10Þ

In the following paragraphs of this paper, we define
Pr(x) as the probability of x. Let hμ,u(1 ≤ u ≤ n) and Cu

be the uth elements in the vector hμ and C’ and we de-
fine the checking indexing set Sμ for hμ and C’ as follows:

Sμ ¼ Cu hμ;u ¼ 1g��	 ð11Þ

Obviously, when the number of nonzero elements in
Sμ is even, we have

hμ � C′ ¼ 0 ð12Þ
And when the number of nonzero elements in Sμ is

odd, we have

hμ � C′ ¼ 1 ð13Þ

When C’ is not a valid codeword, i.e. the elements in
C’ can be considered to appear randomly, the probabil-
ities of the number of nonzero elements in Sμ being odd
and even are all about 0.5. When Hbmin(α

i) is full rank
(the rank is calculated in GF(2)), the rows of Hbmin(α

i)
is linearly independent, so we can calculate Equation 10
as follows:

Pr Hbmin αi
� �� C ¼ 0

� � ¼Ym
μ¼1

Pr hμ � C ¼ 0
� � ¼ 0:5ð Þm

ð14Þ

But if Hbmin(α
i) is not full rank, the calculation of

Pr[Hbmin(α
i) × C = 0] by Equation 14 is not correct. We

define the maximum linearly independent vector group
MI of the row vectors set H = {hμ|1 ≤ μ ≤ m} as follows:
MI is a subset of H and meets the following

conditions:

(1)The vectors in MI are linearly independent;
(2)Any vector in H can be obtained by linear

combinations of the vectors in MI.

And it is easy to prove that the number of vectors in
MI equals to the rank of Hbmin(α

i).
According to the condition 2 of the definition of MI, if

all the vectors in {hμ|hμ ∈ MI} make hμ × C = 0, then
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also for all the vectors in {hμ|hμ ∈ H}, we have hμ × C =
0. So the calculation of Equation 10 should be:

Pr Hbmin αi
� �� C ¼ 0

� �
¼

Yrank Hbmin αið Þð Þ

θ¼1

Pr hμθ � C ¼ 0
� �

¼ 0:5ð Þrank Hbmin αið Þð Þ; ð15Þ

where the elements in hμθ 1≤θ≤rank Hbmin αið Þð Þgj	
are

the vectors in MI, i.e. a maximum linearly independent
vector group of the rows of Hbmin(α

i).
According to Equation 15, Hypothesis 1 is true only if

all the Hbmin(α
i), where 1 ≤ i ≤ 2m − 1, have the same

rank. Unfortunately, this condition cannot always be
met. For example, we have the following results over
GF(26):

rank Hbmin α1ð Þð Þð Þ ¼ 6
rank Hbmin α21ð Þð Þ ¼ 2
rank Hbmin α63ð Þð Þ ¼ 1

⋯

8>><
>>: ð16Þ

Therefore, we have

Pr Hbmin α1ð Þ � C ¼ 0½ � ¼ 1
2


 �
Pr Hbmin α21ð Þ � C ¼ 0½ � ¼ 1

2


 �2

Pr Hbmin α63ð Þ � C ¼ 0½ � ¼ 1
2


 �1

⋯

6
8>>>>>>>>><
>>>>>>>>>:

ð17Þ

Therefore, we can get the conclusion that Hypothesis
1 proposed in [16-18] is not correct.
Figure 3 shows the probabilities that the elements in

GF(26) are the roots of a random block with length l =
63 by simulations.

4. Blind recognition algorithm in soft-decision
situations
4.1 Code length estimation and blind block
synchronization
Soft outputs of the channel could provide more informa-
tion about the reliability of each decision symbol. In this
section, we propose an approach to improve the recog-
nition performance by employing the soft decisions.
We define cr(x) to be the codeword polynomial of a

code block Cr. According to the algebraic principles of
cyclic codes, if αi is a root of cr(x), we have cr(α

i) = 0 and
Hmin(α

i) × Cr = 0. In soft-decision situations, instead of
verifying whether αi is a root of each block, we can cal-
culate pj,i, the probability that αi is a root of the jth block
in the received sequence as shown in Figure 2, and cal-
culate pi in Equation 4 as follows:

pi ¼

XM
j¼1

pj;i

X2m−1
i¼1

XM
j¼1

pj;i

; 1 ≤ i ≤ 2m−1; ð18Þ

where M is the number of blocks, as shown in Figure 2.
The elements in an extension field GF(2m) can be sep-

arated to some groups according to the minimal ele-
ments over GF(2m). Each minimal polynomial has
several roots in GF(2m), we call the set of them as a con-
jugate element group in this paper. And the generator
polynomial of a cyclic code can be factorized by some
minimal polynomials as follows:

g xð Þ ¼ m1 xð Þm2 xð Þ…mp xð Þ ð19Þ
Because the generator polynomial g(x) is a factor of a

valid codeword polynomial c(x), the minimal polyno-
mials in Equation 19 are also the factors of c(x). So if an
element αi(1 ≤ i ≤ 2m − 1) in GF(2m) is a root of c(x), the
elements which have the same minimal polynomial with
αi are also the roots of c(x). Therefore, we can just calcu-
late p′ λ(1 ≤ λ ≤ q), the probability that the minimal
polynomial mλ(x)(1 ≤ λ ≤ q) is a factor of cr(x), where q
denotes the number of minimal polynomials over GF
(2m). According to this idea, we can modify Equation 18
to Equation 20 to calculate p′ λ rather than pi. This
modification can reduce the calculation complexity be-
cause the number of minimal polynomials over GF(2m)
is severely lower than the number of elements in GF
(2m). In Equation 20, p′ j,λ denotes the probability that
mλ(x) is a factor of the codeword polynomial of the jth
block in the observed window as shown in Figure 2.

p′λ ¼

XM
j¼1

p′j;λ

Xq
λ¼1

XM
j¼1

p′j;λ

; 1 ≤ λ ≤ q ð20Þ

And the IDEF defined in Equation 3 should be modi-
fied to Equation 21:

ΔH ¼ −
Xq
λ¼1

1
q
log

1
q
− −

Xq
λ¼1

p′λ log p′λ

 !

¼
Xq
λ¼1

p′λ log p′λ þ log q ð21Þ

To calculate p′ j,λ in Equation 20, which is the
probability that a minimal polynomial mλ(x) is a factor of
cr(x), we can define the binary minimal parity-check
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Figure 3 Probability of the elements in GF(26) being the roots of random codes.
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matrix Hbmin(mλ(x)) corresponding to mλ(x) and calculate
the probability of Hbmin(mλ(x)) × Cr = 0.
The coefficients of mλ(x) are in GF(2) and mλ(x) can

be written as follows:

mλ xð Þ ¼ gex
e þ ge−1x

e−1 þ⋯þ g1xþ g0 ð22Þ

where e is the degree of mλ(x). ge, ge − 1, ⋯, g1 and g0 are
all in GF(2). According to these coefficients of mλ(x), we
can obtain the minimal polynomial-based binary, min-
imal parity-check matrix Hbmin(mλ(x)) with the follow-
ing steps.

1) We assume the code length is l and initialize a matrix
G as follows:

In Equation 23, the number of rows and columns
are l-e and l, respectively.

G ¼
ge ge−1 … g1 g0 0 ⋯
0 ge ge−1 ⋯ g1 g0 0 ⋯

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
⋯ 0 ge ge−1 ⋯ g1 g0

0
BB@

1
CCA
ð23Þ

ransform the left e × e area of G to an identity
2) T
matrix I by elementary row transformation as
follows:

where Q is a matrix, which has l-e rows and e
columns.

G ¼ I QÞ;jð ð24Þ

he minimal parity-check matrix can be obtained as
3) T
follows:

Hbmin mλ xð Þð Þ ¼ QT IÞj� ð25Þ
According to the algebraic principles of coding theor-
ies, we can calculate the syndromes corresponding to
Hbmin(mλ(x)) by Equation 25 [23]:

S ¼ S 1ð Þ; S 2ð Þ;⋯; S nrð Þ½ �T
¼ Hbmin mλ xð Þð Þ � Cr; ð26Þ

where nr is the number of rows in Hbmin(mλ(x)), i.e. the
degree of mλ(x). If mλ(x) is a factor of cr(x) and no error
occurs during the transmission, all syndromes should
equal to zero. If the block contains errors or mλ(x) is not
a factor of cr(x), not all the syndromes equal to zero. So
when the minimal polynomials, which are the factors of
the generator polynomial, are correctly estimated, the
probability of S = 0 is larger than the case of incorrect
estimation of the minimal polynomials. p′ j,λ in Equa-
tion 20 can be calculated as follows:

p′j;λ ¼ 1
nr

Xnr
k¼1

Pr SH kð Þ ¼ 0½ �; 1 ≤ k ≤ nr; ð27Þ

where Pr[SH(k) = 0][1 ≤ k ≤ nr] is the probability of SH(k) =
0(1 ≤ k ≤ nr), k denotes the corresponding row number of
Hbmin(mλ(x)). In fact, p′ j,λ calculated in Equation 27 is not
the probability that mλ(x) is a factor of the codeword poly-
nomial, it is just the mean value of the probabilities that
the syndromes equal to zero. The true probability should
be obtained by calculating the probability that all syn-
dromes equal to zero. But as shown in section 3.2, the
probability that all syndromes equal to zero is determined
by the degree of the corresponding minimal polynomial for
incorrect coding parameter estimations, the probability
distribution is not uniform. But we use the mean value of
Pr[SH(k) = 0] to indirectly depict the probability that a
minimal polynomial is a factor of the codeword polyno-
mial, the influence of the degree of the difference minimal
polynomials is low. In this case, we can assume that for a
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random data, the distribution of the probabilities of
the minimal polynomials being factors of the codeword
polynomials is approximately uniform.
Jing proposed the Adaptive Belief Propagation (ABP)

method on soft-Input Soft-Output decoding of RS codes
[26]. The main idea is adapting the parity-check matrix of
the codes to the reliability of the received information bits
at each iteration step of the iterative decoding procedure.
This idea is also employed in [22] to achieve blind frame
synchronization of RS codes. The adaptation procedure
reduces the impact of most unreliable decision bits on the
calculation of syndromes. In our work, we also utilize the
adaptation algorithm introduced in [23] and [26] before
using Equation 27. The adaptive processing for a given re-
ceived codeword Cr and a binary minimal parity-check
matrix Hbmin(mλ(x)) includes the following steps:

1) Combine Hbmin(mλ(x)) and Cr
T to form a matrix

H*(mλ(x)) as follows:
(28)

where r1, r2, …, r3 are the soft-decision bits of the
codeword Cr, {hk,u|1 ≤ k ≤ nr, 1 ≤ u ≤ l} are the
elements of Hbmin(mλ(x)) in GF(2).

2) Replace each ru (1 ≤ u ≤ l) in H*(mλ(x)) with their
absolute values to form a new matrix H�

r mλ xð Þð Þ,
adjust the positions of the columns in H�

r mλ xð Þð Þ to
make the first row in H�

r mλ xð Þð Þ is ranked from the
lowest to the highest and record the indexes. The
absolute values of {ru|1 ≤ u ≤ l} denote the reliabilities
of the received soft-decision bits. As shown in
Equation 29, ri1j j≤ ri2j j≤⋯≤ rilj j and i1, i2, ⋯, il are the
column indexes of ri1 ; ri2 ;⋯; ril in H*(mλ(x)).
(29)
3) Transform H�
r mλ xð Þð Þ by elementary row operations

to make the last nr elements of the first column in
H�

r mλ xð Þð Þ has only one “1” at the top, as shown in
Equation 30. The first row does not join the
elementary transformations.
(30)

This transformation limits the influences of the most
unreliable decision bit to only one syndrome element.
Furthermore, we continue the elementary transform-
ation on H�

r mi xð Þð Þ to limit the numbers of “1” in the
following nr–1 columns to one (except the first row), as
shown in Equation 31.

H�
r mλ xð Þð Þ ¼

ri1j j ri2j j ri3j j ⋯ rinr
�� �� rinrþ1

�� �� ⋯ ril−1j j rilj j
1 0 0 ⋯ 0 x ⋯ x x
0 1 0 ⋯ 0 x ⋯ x x
0 0 1 ⋯ 0 x ⋯ x x
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ x x
0 0 0 0 1 x ⋯ x x

2
6666664

3
7777775

ð31Þ

When the left bottom nr × nr area becomes an indent
matrix, stop the operation. Then the last nr rows in
Hr*(mλ(x)) form a new matrix. We recover its original
column orders and call it Hbmin_a(mλ(x)). Because the
transformation is elementary, the relationship Hbmin_a

(mλ(x)) × Cr = 0 in the hard decision situations still
exists if Cr is a valid codeword. So we can calculate
the probability Pr[SH(k) = 0] according to Hbmin_a

(mλ(x)). This replacement reduces the influences of
the nr most unreliable decision bits.
In this paper, we assume that the transmitter is send-

ing a binary sequence of codewords and using a binary
phase shift keying (BPSK) modulation, i.e. let +1 and −1
be the modulated symbols of 0 and 1. The modulation
operation from code bit c to modulated symbol s could
be written as s = 1 – 2c, and we assume that the propa-
gation channel is a binary symmetry channel which is
corrupted by an additive white Gaussian noise (AWGN).
For each configuration, the information symbols in the
codes are randomly chosen. A received symbol r could
be expressed as r = s + w, where w is the AWGN.
According to the previous assumptions, s is an equally

probable binary random variable and
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Pr s ¼ þ1ð Þ ¼ Pr s ¼ −1ð Þ ¼ 1=2 ð32Þ

The noise w follows a normal distribution with the
probability density function (PDF)

f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp −

x2

2σ2


 �
ð33Þ

So the conditional PDF of r is

f r sÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp −

x−sð Þ2
2σ2

 !�����
 

ð34Þ

where σ2 ¼ 1
2 Es=N0ð Þ is the variance of the noise.

For a given received bit r, we can obtain the following
conditional probabilities:

Pr s ¼ þ1jrð Þ

¼ f rjs ¼ þ1ð Þ � Pr s ¼ þ1ð Þ
f rjs ¼ þ1ð Þ � Pr s ¼ þ1ð Þ þ f rjs ¼ −1ð Þ � Pr s ¼ −1ð Þ

¼ exp 2r=σ2ð Þ
1þ exp 2r=σ2ð Þ

ð35Þ

Pr s ¼ −1jrð Þ ¼ 1−Pr s ¼ þ1jrð Þ
¼ 1

1þ exp 2r=σ2ð Þ ð36Þ

Let r = [r1, r2, …,rn, rn+1, …] be a received soft-decision
vector corresponding to the random modulated vector s =
[s1, s2, …, sn, sn + 1, …]. We now calculate the conditional
probabilities of s1 ⊕ s2 = + 1 and s1 ⊕ s2 = −1. According
to the mapping operation defined by s = 1–2c, we have

Pr s1⊕s2 ¼ þ1 rÞ ¼ Pr s1 ¼ þ1ð jr1j Þ � Pr s2 ¼ þ1ð jr2ð Þ
þ Pr s1 ¼ −1ð jr1Þ
� Pr s2 ¼ −1ð jr2Þ
¼ 1

2
þ 1
2

Y2
u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

ð37Þ

Pr s1⊕s2 ¼ −1jrð Þ ¼ 1−Pr s1⊕s2 ¼ þ1jrð Þ
¼ 1

2
−
1
2

Y2
u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

ð38Þ
Similarly, we can calculate the conditional probabilities
of s1 ⊕ s2 ⊕ s3 = + 1 and s1 ⊕ s2 ⊕ s3 = −1 as follow:

Pr s1⊕s2⊕s3 ¼ þ1jrð Þ ¼ Pr s1⊕s2 ¼ þ1jrð Þ

�Pr s3 ¼ þ1jr3ð Þ þ Pr s1⊕s2 ¼ −1jrð Þ

�Pr s3 ¼ −1jr3ð Þ ¼ 1
2
þ 1
2

Y3
u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

ð39Þ

Pr s1⊕s2⊕s3 ¼ −1ð jrÞ ¼ 1−Pr s1⊕s2⊕s3 ¼ þ1jrð Þ
¼ 1

2
−
1
2

Y3
u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

ð40Þ
We define the XOR-SUM operation as

Xn
u¼1

⊗su ¼ s1⊕

s2⊕⋯⊕sn and assume that the conditional probabilities
of XOR-SUM can be expressed as Equation 41:

Pr

Xn
u¼1

⊗su ¼ þ1jr
 !

¼ 1
2
þ 1
2

Yn
u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

Pr

Xn
u¼1

⊗su ¼ −1jr
 !

¼ 1
2
−
1
2

Yn
u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

8>>><
>>>:

ð41Þ
Then, we have

Pr

Xnþ1

u¼1

⊗su ¼ þ1jr
 !

¼ Pr

Xn
u¼1

⊗su ¼ þ1jr
 !

�Pr snþ1 ¼ þ1jrð Þ þ Pr

Xn
u¼1

⊗su ¼ −1jr
 !

�Pr snþ1 ¼ −1jrð Þ ¼ 1
2
þ 1
2

Ynþ1

u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

ð42Þ
Pr

Xnþ1

u¼1

⊗su ¼ −1jr
 !

¼ 1−Pr

Xnþ1

u¼1

⊗su ¼ þ1jr
 !

¼ 1
2
−
1
2

Ynþ1

u¼1

exp 2ru=σ2ð Þ−1
exp 2ru=σ2ð Þ þ 1

ð43Þ
According to the induction principle, the expression of

the conditional probabilities in Equation 41 turns out to
be true, and could be simplified as follows:

Pr

Xn
u¼1

⊗su ¼ þ1jr
 !

¼ 1
2
þ 1
2

Yn
i¼1

tanh ru=σ
2

� �
Pr

Xn
u¼1

⊗su ¼ −1jr
 !

¼ 1
2
−
1
2

Yn
i¼1

tanh ru=σ
2

� �
8>>>><
>>>>:

ð44Þ
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By employing Equation 44, we can calculate the prob-
ability Pr[SH(k) = 0] as follows:

Pr SH kð Þ ¼ 0½ � ¼ Pr

 Xwk

v¼1

⊕suv ¼ þ1jr
!

¼ 1
2
þ 1
2

Ywk

v¼1

tanh ruv=σ
2

� �
;

ð45Þ

where wk is the number of ones in the kth row of the
adapted minimal binary parity-check matrix Hbmin_a
(mλ(x)), uv represents the position of the vth non-zero
element in the kth row of Hbmin_a(mλ(x)). suv and ruv are
the uvth modulated symbol on the transmitter and the
corresponding soft-decision output on the receiver,
respectively.
In shortened code cases, a codeword with block length

l and shortened length ls can be obtained by choosing
the last l elements from a codeword which has a regular
length (l + ls) as follows:

Cw ¼ 0 ⋯ 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
lszeros

cl cl−1 ⋯ c0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
l elements

0
B@

1
CA′ ð46Þ

where the first ls elements of Cw are zeros. Therefore, we
can simply obtain the minimal parity-check matrices of
the shortened codes by deleting the first ls columns of
Hbmin(mλ(x)).

4.2 Recognition of generator polynomials
After the code length and synchronization position esti-
mation, the extension field degree m corresponding to
the being recognized code can also be obtained. Then
we can list the minimal polynomials over GF(2m) and
find out which ones are factors of the generator polyno-
mial. These minimal polynomials can also be recognized
according to the probabilities of syndromes equaling to
zero.
In the procedure of the code length and synchronization

position estimation, we have calculated the probability
that a minimal polynomial is a factor of the received
codeword polynomials. We assume that the estimated
code length and extension field degree are l and m, the
number of minimal polynomials over GF(2m) is q and
m1(x), m2(x), …, mq(x) are the minimal polynomials
over GF(2m).
According to Equation 45, we can calculate the kth

syndrome for a given minimal parity-check matrix of
Hbmin(mλ(x)). Equation 47 is the log-likelihood ratios
(LLR) of Pr[SH(k) = 0], where H = Hbmin(mλ(x)) is
L SH kð Þ½ � ¼ log
Pr SH kð Þ ¼ 0½ �
Pr SH kð Þ≠0½ �

¼ log

1þ
Ywk

v¼1

tanh ruv=σ
2

� �
1−
Ywk

v¼1

tanh ruv=σ
2

� �
¼ 2artanh

Ywk

u¼1

tanh ruv=σ
2

� �" #
ð47Þ

And we propose to calculate a likelihood criterion
(LC) of mλ(x)(1 ≤ i ≤ q) being a factor of the generator
polynomial as follows:

L mλ xð Þð Þ ¼
XM
j¼1

1
nr

Xnr
k¼1

Lj SHbmina mλ xð Þð Þ kð Þ� �
; 1≤λ≤q;

ð48Þ
where Hbmin_a(mλ(x)) is the adapted minimal parity-
check matrix corresponding to the minimal polynomial
mλ(x), M is the number of packets in the observed window
W as shown in Figure 2, nr is the number of the rows in
Hbmin_a(mλ(x)), Lj SHbmin−a mλ xð Þð Þ kð Þ� �

is the LLR defined by
Equation 47 and calculated at the jth block of the observed
window W. According to Equation 48, we can calculate the
LCs of all the minimal polynomials over GF(2m). By com-
paring the LCs, we can choose the minimal polynomials,
LCs of which are obviously higher than others, as the
estimated factors of the generator polynomial, then the
generator polynomial is obtained.
However, we can test whether the product of several

most likely minimal polynomials is a factor of the gener-
ator polynomial to increase the successful recognition
rate, because according to the adaptive processing of the
parity-check matrices, the more parity equations we con-
sider, the more we are able to construct a parity matrix
which is parsed on less reliable bits. For the convenience
of automatic recognition using computer programs, we
propose the procedure including the following steps to
estimate the optimal parity-check matrix:

Step 1: Calculate the LCs to form a vector L:

L ¼ L m1 xð Þð Þ; L m2 xð Þð Þ;⋯; L mq xð Þ� �� � ð49Þ

Step 2: Rank the vector L from the highest to the
lowest, in order to form a new vector LR as follows:

LR ¼ L mλ1 xð Þð Þ; L mλ2 xð Þð Þ;⋯; L mλq xð Þ� �� � ð50Þ
and record the indexes:

I ¼ λ1; λ2;⋯; λq
� � ð51Þ

where λω(1 ≤ ω ≤ q) denotes the index of L mλω xð Þð Þ in L.
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Step 3: Let ω increase from 1 to q, combine the binary
minimal parity matrices for the minimal polynomials
mλ1 xð Þ…mλω xð Þ, in order to form Hω as follows:

Hω ¼
Hbmin mλ1 xð Þð Þ
Hbmin mλ2 xð Þð Þ

⋮
Hbmin mλω xð Þð Þ

0
BB@

1
CCA; 1 ≤ω ≤ q ð52Þ

After adaptive processing for Hω, calculate the LCs of
Hω × Cr = 0(1 ≤ ω ≤ q) by Equation 53 and obtain the
LC vector LH as shown in Equation 54.

L Hωð Þ ¼
Xnr
k¼1

L SHω kð Þ½ �; 1 ≤ω ≤ q ð53Þ

LH ¼ L H1ð Þ; L H2ð Þ;⋯; L Hq

� �� � ð54Þ
Step 4: Find the maximal element of LH, record the
corresponding matrix Hω̂
Step 5: According to Equations 49 and 50, we can find
the polynomials mλ1 xð Þ … mλω̂ xð Þ and write the
generator polynomial as follows:

g xð Þ ¼ mλ1 xð Þmλ2 xð Þ…mλω̂ xð Þ ð55Þ
But in our work, we find that some minimal
polynomials are easily lost. These minimal polynomials
have the minimal parity-check matrices with low rows,
so the adaptive processing can only reduce the
influence for low number of unreliable decision bits.
For example, consider the following minimal
polynomials corresponding to the elements α1, α9 and
α0 in GF(26):

m1 xð Þ ¼ x6 þ x1 þ 1
m2 xð Þ ¼ x3 þ x2 þ 1
m3 xð Þ ¼ xþ 1

8<
: ð56Þ

The degrees of m1(x), m2(x) and m3(x) are 6, 3, and 1,
respectively. Therefore, the number of rows of the
binary minimal parity-check matrices Hbmin(m1(x)),
Hbmin(m2(x)) and Hbmin(m3(x)) corresponding to m1(x),
m2(x) and m3(x) are also 6, 3, and 1, respectively. So
Hbmin(m1(x)), Hbmin(m2(x)) and Hbmin(m3(x)) can limit
the influences of 6, 3, 1 unreliable decision bits after
adaptive processing, respectively. For m2(x) and m3(x),
the LCs of Hbmin_a(m2(x)) and Hbmin_a(m3(x)),
especially Hbmin_a(m2(x)), may lower than the incorrect
minimal polynomials when the signal-to-noise ratio
(SNR) is low. In this case, the ranking of LCs in
Equation 50 may not be correct, so the generator
polynomial recognition is failed. To solve this problem,
we can additionally combine these minimal parity-
check matrices with Hω̂ obtained in Step 4 described
previously and check whether the corresponding
minimal polynomials are also factors of the generator
polynomials. The details of the additional steps are
listed below:
Step 6: List the binary minimal parity-check matrices
over GF(2m) which have low rows: Hbmin(mL1(x)), Hbmin

(mL2(x)),…, Hbmin(mLη(x)), here η represents the number
of binary minimal parity-check matrices with low rows.
Step 7 Record LCmax ¼ LC Hω̂ð Þ and initialize a
variable τ to be 1.
Step 8: Combine Hω̂ and Hbmin(mLτ(x)) to form a new
parity-check matrix H ω̂;τ as follow:

H ω̂;τ ¼ Hω̂ Hbmin mLτ xð Þð Þð Þ ð57Þ
Step 9: If LC H ω̂;τ

� �
> 0:9� LCmax, let Hω̂ ¼ H ω̂;τ and

LCmax ¼ max LCmax; LC H ω̂;τ

� �� �
.

Step 10: If τ = η, execute step 11; else, let τ = τ + 1 and
go back to step 8.
Step 11: Output the newly obtained Hω̂ as the final
estimation of the parity-check matrix and get the
generator polynomials according to the minimal
polynomials corresponding to Hω̂.

5. General recognition procedure
In this section, we present the general procedure for the
blind recognition of binary cyclic codes based on the princi-
ples proposed in the previous sections. Before the recogni-
tion, some prior information could help to estimate the
possible range of the code length l. Then, we traverse all
the possible values of code length l and codeword starting
position t and choose the parameter pair (l, t) which maxi-
mizes the IDEF defined in Equation 21 to be the estimated
code length and block synchronization position. Note that
to get the minimal polynomials for each code length l over
an extension field GF(2m), we must know the field expo-
nent m of the code. For an ordinary binary cyclic code, its
code length is 2m − 1, while the code length l of a shortened
code is ¼ 22

m
−1−ls , where ls is the shortened length.

Therefore, the minimal value of the field exponent m for a

code length l is the smallest integer k such that < 22
k
. The

maximal value of m should be estimated with some prior
information. For each code length l and synchronization
position t, we traverse all the possible extension field
degrees to calculate ΔH, and choose the maximum
one as ΔH(l,t). After the code length estimation, we
search for the minimal polynomials which are the factors
of the generator polynomial by the algorithm described
in section 4.2.
The general recognition procedure is listed below:

Step 1: According to some prior information, set the
searching range of the code length l, i.e. set the
minimal and maximal code length lmin and lmax.
Step 2: Design a window W which has a length L at
least 10 × lmax, i.e. M ≥ 10 in Figure 2.
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Step 3: Full fill the window W with the received
soft-decision bits.
Step 4: Set the code length l = lmin.
Step 5: Set the initial synchronization position t at 0,
which is the starting position of W.
Step 6: Assume the code length is l and the
synchronization position is t and calculate ΔH. Note
that the window W has more than one assumed
codewords, we calculate the ΔH on all the codewords
and compute the mean of them as ΔH(l,t).
Step 7: If t < l, then let t = t + 1 and go back to step 6;
if t = l, then jump to step 8.
0 2 4 6
0
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0.06

0.08

0.1
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Figure 5 Values of p′ λ under correct parameters.
Step 8: If l < lmax, then let l = l + 1 and go back to step
5; if l = lmax, then jump to step 9.
Step 9: Compare all the calculated ΔH(l,t), select the
maximum one and get the corresponding values of l,
t and m as the estimated code length, synchronization
position and the degree of the GF of the recognized
codes, respectively.
Step 10: Let the code length and synchronization
position be the estimated parameters l and t, fetch M
codewords from the observed window W. And list the
minimal polynomials over GF(2m), which are m1(x),
m2(x),…, mq(x).
8 10 12 14
λ
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Step 11: Calculate the LCs of the minimal polynomials
over GF(2m) by Equations 47 and 48 for the M packets
in W, and get the LC vector as shown in Equation 49.
Step 12: Recognize the generator polynomial follow the
steps described in section 4.2.

Finally, we need a detection threshold to reject random
data. When the received data stream is not encoded by
binary cyclic codes, it can be considered that the data is
random for all the coding parameters. The recognizer
should give a report to reject the estimated parameters
when the parity-check matrix is not likely enough.
Figure 7 IDEF on different code length and synchronization positions
We define the mean value of p′ j,λ for all the blocks in
the observed window as follows:

mean p′j;λ
� � ¼ 1

M

XM
j¼1

p′j;λ; ð58Þ

where p′ j,λ is calculated by Equation 27 according to the
recognized parity-check matrix Hω̂ , H in Equation 27 is
the recognized parity-check matrix Hω̂ and nr denotes
the number of rows of Hω̂ . As shown in Figure 4, the dis-
tributions of mean (p′ j,λ) for random data and coded data
with correctly estimated coding parameters are separated.
.
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The distances between the two distributions are mainly
determined by the noise level, the number of rows in Hω̂ ,
and the number of code blocks in the observed window.
Experimentally, we propose the threshold δ to be about
0.6, in order to decide whether the data stream is random
or not. After the estimation of the coding parameters, we
calculate mean (p′ j,λ) for all complete code blocks in the
observed window. If mean (p′ j,λ) is smaller than δ, we
propose to reject the recognition result.

6. Simulations
In this section, we show the efficiency of our proposed blind
recognition algorithm by simulations. In the simulations,
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Figure 9 Generator polynomial recognition of cyc (63, 36): original LC
we assume that the searching range of the code
length is 7 ~ 128 and the observed window contains
N = 3,000 consecutive soft-decision bits from the BPSK
demodulator. Meanwhile, we assume the data stream is
corrupted by an AWGN on the channel.
When employing the proposed algorithm to recognize

the BCH (63, 51) code, the simulation results for code
length and synchronization position recognitions are
shown in Figures 5, 6, 7 and 8. The SNR is Es/N0 = 5 dB
and corresponding BER is 10−2.19. Figure 5 shows the
values of p′ λ defined in Equation 20 when l = 63 and
m = 6, and the block synchronization is achieved.
Figure 6 is the case of another l and m. It is shown in
8 10 12 14
λ

s.
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the two figures that when the code length and
synchronization positions are correctly estimated, some
minimal polynomials have higher probabilities to be factors
of the received codeword polynomials. The obviously larger
ones are calculated on the minimal polynomials which are
factors of the generator polynomial. If the parameters are
not correctly estimated, such feature will not exist. Figure 7
shows the IDEF ΔH for different code length l and
synchronization position t, while the first bit of the observed
window is the 40th bit of a codeword. When l = 63 and
t = 23, the IDEF is the largest. Thus, we propose l = 63
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Figure 11 FRP of generator polynomial recognization on different SN
and t ¼ 23þ lk k∈Zþð Þ to be the estimation of the code
length and synchronization positions, which are consistent
with the simulation settings.
The performance of the algorithm is affected by the

channel quality. In Figure 8, we draw the performance
of the proposed algorithm when applied to code length
recognitions of several different binary cyclic codes.
The curves depict the false recognition probabilities
(FRP) of the code length and synchronization position
estimations on different SNRs. In Figure 8, we also
compare the performance of our proposed recognition
3 4 5 6
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Rs for several binary cyclic codes.



Table 1 LCs for H4 and H4,k

H LCs

H4 4,406.8

H4,1 5,237.4

H4,2 468.2

H4,3 −389

H4,4 5,424.7

Table 2 Error rejection rate

Es/N0 (dB) ERP for BCH
(63,51)

ERP for BCH
(31,21)

ERP for
cyc (63,36)

EAP for
random data

−1.0 1.00E0 4.06E-1 5.10E-1 <2E-6

−0.5 1.00E0 9.00E-3 4.51E-2

0.0 9.95E-1 6.67E-6 1.19E-4

0.5 9.90E-1 <2E-6 <2E-6

1.0 5.21E-1

1.5 1.32E-2

2.0 <2E-6
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algorithm with the hard-decision-based RIDERS algo-
rithm proposed in [16-18]. The PFR of our proposed al-
gorithm fall rapidly when SNR increases, and it is
much lower than that of the previous algorithms on
each single SNR value.
After the code length estimation, the generator poly-

nomial could be recognized by searching for the min-
imal polynomials which are factors of the generator
polynomial according to the steps proposed in section
4.2. We assume that the data stream sent by the trans-
mitter is coded by a cyclic code, the code length and in-
formation length of which are 63 and 36, respectively.
We call it cyc (63, 36) code in this paper. The generator
polynomial of the code is the product of the following
minimal polynomials, which includes low-degree min-
imal polynomials:

m1 xð Þ ¼ x6 þ xþ 1
m2 xð Þ ¼ x6 þ x4 þ x2 þ xþ 1
m3 xð Þ ¼ x6 þ x4 þ x2 þ xþ 1
m4 xð Þ ¼ x6 þ x5 þ x2 þ xþ 1
m5 xð Þ ¼ x3 þ x2 þ 1
m13 xð Þ ¼ xþ 1

8>>>>>><
>>>>>>:

ð59Þ

The coded data is modulated by BPSK and corrupted by
an AWGN with SNR Es/N0 = 1.5 dB, and the correspond-
ing hard-decision BER is about 4 × 10−2. The recognizing
procedure is shown in Figures 9, 10 and 11.
There are 13 minimal polynomials over GF(26), which

are listed below:

m1 xð Þ ¼ x6 þ xþ 1
m2 xð Þ ¼ x6 þ x4 þ x2 þ xþ 1
m3 xð Þ ¼ x6 þ x4 þ x2 þ xþ 1
m4 xð Þ ¼ x6 þ x5 þ x2 þ xþ 1
m5 xð Þ ¼ x3 þ x2 þ 1
m6 xð Þ ¼ x6 þ x5 þ x3 þ x2 þ 1
m7 xð Þ ¼ x6 þ x4 þ x3 þ x1 þ 1
m8 xð Þ ¼ x6 þ x5 þ x4 þ x2 þ 1
m9 xð Þ ¼ x2 þ x1 þ 1
m10 xð Þ ¼ x6 þ x5 þ x4 þ xþ 1
m11 xð Þ ¼ x3 þ xþ 1
m12 xð Þ ¼ x6 þ x5 þ 1
m13 xð Þ ¼ xþ 1

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð60Þ

Figure 9 shows the original LCs of different minimal
polynomials over GF(26) to be factors of the codeword
polynomials in the observed window. We rank the ori-
ginal LCs from the highest to the lowest, in order to
form a new vector LR and record the index I (defined in
Equation 51) as follows:

I ¼ 4 1 2 3 9 5 12 10 8 11 6 7 13½ �
ð61Þ
Then we let ω increase from 1 to 13, combine the bin-
ary minimal parity matrices for the minimal polynomials
mI(1)(x)…mI(ω)(x), in order to form Hω by Equation 52,
and calculate the LCs of Hω × Cr = 0(1 ≤ ω ≤ q) by
Equation 48. The LCs are shown in Figure 10. We can
see that the LC of H4 is the highest. H4 is obtained by
combining the minimal parity-check matrices Hbmin(m4

(x)), Hbmin(m1(x)), Hbmin(m2(x)) and Hbmin(m3(x)). Fur-
thermore, we list the low-degree minimal polynomials to
check whether they are factors of the generator polyno-
mial. The low-degree minimal polynomials are mL1(x) =
m5(x), mL2(x) = m9(x), mL3(x) = m11(x) and mL4(x) =
m13(x). We record LCmax = LC(H4) = 4,406.8 and execute
the steps 8 ~ 10 described in section 4.2. Finally, we can ob-
tain the values of LLR(H4,k)(1 ≤ k ≤ 4)) in Table 1.
It is obvious that LLR(H4,1) > 0.9 × LLR(H4) and LLR

(H4,4) > 0.9 × LLR(H4,1). Therefore, H4,4 should be con-
sidered as the finally recognized parity-check matrix.
According to section 4.2, H4,4 is obtained by combining
the minimal parity-check matrices Hbmin(m4(x)), Hbmin

(m1(x)), Hbmin(m2(x)), Hbmin(m3(x)), Hbmin(m5(x)) and
Hbmin(m13(x)), so we can write the generator polynomial
as follows:

g xð Þ ¼ m1 xð Þm2 xð Þm3 xð Þm4 xð Þm5 xð Þm13 xð Þ ð62Þ

The recognition result is accordant with the simula-
tion settings.
Figure 11 shows the performance of the proposed gener-

ator polynomial recognition algorithm when applied to
several different binary cyclic codes. The curves show the
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FRP on different noise levels. As Es/N0 rises, the curves fall
rapidly. We also compare our proposed algorithm with the
previous hard-decision-based recognition algorithms pro-
posed in [16-18]. It shows that the recognition performance
is improved obviously in soft-decision situations.
After the coding parameter recognition, an additional

testing program checks whether the data is random. The
principle is described in section 4.2. We list the error-
rejection-probabilities (ERPs) for some binary cyclic
codes and the error-acceptance probabilities (EAP) for
random data in Table 2. The ERP level is much lower
than the FRP. Especially when the noise level is low
enough, the ERPs are nearly zeros. And all the random
data is rejected, that is to say, nearly no recognized result
on random data is accepted.

7. Conclusion
A blind recognition method for binary cyclic codes for
non-cooperative communications and ACM in soft-
decision situations is proposed. The code length and
synchronization positions are estimated by checking the
minimal parity-check matrices. After that, the whole
check matrix and generator polynomial are reconstructed
by searching which minimal polynomials are factors of the
generator polynomial. The recognition method proposed
in this paper is based on an earlier published RIDERS al-
gorithm with some significant improvements. By calculat-
ing the probability that a minimal polynomial is a factor of
the received codewords rather than checking whether an
element in the extension field is a root of the codewords,
we develop the RIDERS algorithm to soft-decision situa-
tions. To calculate the probability that a minimal polyno-
mial is a factor of a received codeword, we adopt some
algorithms and ideas introduced in soft-decision-based
decoding methods and blind-frame-synchronization
approaches for RS and BCH codes in the literatures.
Although we have always a loss of performance when
these algorithms are applied in cyclic codes while they are
particularly well suited for LDPC codes, the algorithm
proposed in this paper still has a previously better recogni-
tion performance for binary cyclic codes in a soft-decision
situation than that in a hard-decision situation. And by
the reliability-based adaptive processing, we reduce the
influences of the most unreliability decision bits on the
calculation of the syndromes, though the parity-check
matrices of binary cyclic codes are not sparse. Moreover,
the application field of the recognition method is extended
to general binary cyclic codes in this paper, including
shortened codes. To the best of our knowledge, this paper
is the first publication in literature, which introduces an
approach for complete-blind recognition of binary cyclic
codes in soft-decision situations. Simulations show that
our proposed blind recognition algorithm yields obviously
better performance than that of the previous ones.
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