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Abstract

With the rapid development of urbanization, collecting and analyzing traffic flow data are of great significance to
build intelligent cities. The paper proposes a novel traffic data collection method based on wireless sensor network
(WSN), which cannot only collect traffic flow data, but also record the speed and position of vehicles. On this basis,
the paper proposes a data analysis method based on incremental noise addition for traffic flow data, which provides a
criterion for chaotic identification. The method adds noise of different intensities to the signal incrementally by an
improved surrogate data method and uses the delayed mutual information to measure the complexity of signals.
Based on these steps, the trend of complexity change of mixed signal can be used to identify signal characteristics. The
numerical experiments show that, based on incremental noise addition, the complexity trends of periodic data,
random data, and chaotic data are different. The application of the method opens a new way for traffic flow data
collection and analysis.

Keywords: Traffic data collection, Wireless sensor network, Incremental noise addition, Noise intensity, Delayed mutual
information

1 Introduction
Traffic congestion is a daily phenomenon in large- and
medium-sized cities all over the world. With limited
urban facilities and resources, it is an effective way to
control traffic congestion by analyzing and predicting
traffic flow. This involves two issues, collecting and ana-
lyzing traffic data.
There are many methods to collect traffic data, such

as pneumatic road tubes [1], induction loop [2], and
piezoelectric sensors [3]. These methods can collect traffic
flow, but cannot record the speed and location of vehicles,
which cannot meet the needs of traffic flow analysis algo-
rithm. The paper proposes a novel traffic data collection
scheme based on wireless sensor network (WSN). The
scheme measures vehicle flow and speed based on vehicle
disturbances to geomagnetism and uses the slotted
ALOHA protocol to communicate between data nodes.
Based on the scheme, vehicle speed and location are
record every specific time slot.

Chaos algorithm is widely used in traffic flow data
processing, and chaotic identification is the premise of
chaotic analysis. However, because of the complexity of
chaos, its intrinsic mechanism has not been fully re-
vealed, so the academic community has not yet proposed
a unified definition of chaos. Aiming at the chaotic iden-
tification, scholars have proposed many criterions, such
as Poincare section [4], bifurcation diagram [5], power
spectrum [6], Kolmogorov entropy [7], and topological
entropy [8]. The most commonly used criteria are the
largest Lyapunov exponent [9, 10] and the fractal dimen-
sion [11, 12], but these two parameters are based on
phase space reconstruction [13, 14]. Only in real phase
space or near-real phase space that the two parameters
can accurately analyze and identify the signal. The time
delay method based on the Takens embedding theorem
[15] is a main way for phase space reconstruction. How-
ever, this method has been influenced by many causes in
practice, so the real phase space model of the object is
often difficult to get, which leads to the unreliability of
the identification results.
According to the idea of indirect method, the noise of

different intensities is incrementally added to the signal,
and it is found that the complexity trend of the mixed
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signal is an important feature for identifying signal char-
acteristics. The paper uses surrogate data method as a
noise-adding algorithm, and the noise intensity ρ in the
algorithm is used to measure the size of adding noise.
Then the delayed mutual information is used to measure
the complexity of signals. The numerical experiments
show that, based on incremental noise addition, the
complexity trends of periodic data, random data, and
chaotic data are different. This feature can be used as a
significant criterion for identifying the differences of
various kinds of signals, which achieves reliable chaotic
recognition for traffic flow signals.

2 Traffic data collection scheme based on WSN
2.1 System architecture
The scheme uses a magnetometer to count the vehicle
and identify the speed. Normally, the Earth’s magnetic
field is almost evenly distributed anywhere on the sur-
face, between 0.25 and 0.65 gauss. Since the vehicle is
generally composed of a highly permeable ferrous mater-
ial, when the vehicle passes through the sensor, it dis-
turbs the Earth’s magnetic field in the detection area.
Generally, a magnetometer sensor can detect vehicles
that are 10 m apart. The system architecture is shown in
Fig. 1. In the system, all data collection nodes are re-
sponsible for collecting road traffic data, and then these
nodes transmit data to the aggregation node based on
the ALOHA protocol and finally transmit to the remote
server through the mobile internet. The system has
strong scalability, and the cost of construction,

maintenance and operation is low, which is suitable for
urban traffic monitoring.

2.2 Hardware selection
The data collection node uses RFM69HCW wireless
module and magnetometer sensor FXOS8700CQ to
build the hardware part. RFM69HCW is a low-cost, ver-
satile radio module that can work in the unauthorized
ISM (industrial, scientific, and medical) band. RF69 is a
wireless transceiver chip promoted by HopeRF. It has +
20 dBm transmission power, − 120 dBm sensitivity, and
140 dB link budget. The module operates at 915 MHz
with a maximum spatial rate of 300 kbps. RFM69HCW
uses SPI (Serial Peripheral Interface) to communicate
with the master microcontroller and provides several
Arduino libraries. It supports up to 256 networks, each
with 255 nodes, and uses AES encryption to protect your
data without restriction and transmits up to 66 bytes of
packets. The module costs less than $2 and consumes
less power to support on-board power supply.
The FXOS8700CQ is a smart digital chipset that inte-

grates a three-axis magnetometer and a three-axis accel-
erometer sensor. The three-axis magnetometer has a
dynamic detection range of 1200 μT and a 16-bit ADC
resolution with a sensitivity of 0.1 μT/LSB. Power con-
sumption is as low as 8 μA and consumes only 2 μA in
standby mode. The chip has a wide measurement range,
high resolution, low noise density, high sensitivity, low
output noise range, low cost, low power consumption,
and the ability to manage high interference areas.

Fig. 1 Traffic flow collecting system architecture based WSN. The data collection node uses RFM69HCW wireless module and magnetometer
sensor FXOS8700CQ to build the hardware part. The magnetometer sensor identifies the vehicle flow and speed based on the vehicle's
disturbance to the earth's magnetic field, and then the wireless module aggregates the data into the aggregation node. Finally, the aggregation
node data is transmitted to the remote cloud server via the mobile internet
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2.3 Wireless communication protocol
ALOHA protocol is selected in this scheme. ALOHA is
the earliest and most basic wireless data communication
protocol. Its idea is simple. As long as users have data to
send, let them send it. Usually, it includes pure ALOHA
protocol and slotted ALOHA protocol.
Pure ALOHA is the most basic form of a MAC proto-

col, it has two rules:

If there is data to be sent, send the data.
And if, while sending that data, the data is received
from another node, a collision has occurred. If this
happens, try resending the data later.

This protocol is seldom used because of its high chan-
nel conflict.
Slotted ALOHA is an improved vision of pure

ALOHA, which modifies the protocol by adding slots
that dictate when a node may start transmitting. Adding
the rule doubles the throughput of the protocol to a suc-
cessful transmission rate of 36%. Therefore, the slotted
ALOHA protocol is chosen in this scheme.

3 Traffic data analysis method
Chaos theory is an effective method of data analysis, but
the premise of chaos analysis is chaos identification. A
data analysis method based on incremental noise
addition is proposed in the paper for traffic flow data,
which provides a criterion for chaotic identification. The
method uses an improved surrogate data method to add
noise to the signal to be analyzed incrementally, while
using delayed mutual information to measure the com-
plexity of mixing signals under different noise intensity.

3.1 Noise addition: Pseudo-periodic surrogate data
method
3.1.1 The basic steps of pseudo-periodic surrogate data
method
The pseudo-periodic surrogate data method (PPS) [16]
is proposed by Small in 2001 and has been successfully
applied to the chaotic identification of ECG signals. The
essence of this method is to add noise to the source
signal by changing the signal phase order.
The main steps of the PPS algorithm are as follows:
Step 1: For time series {x(t), t = 1, 2,⋯,N}, the phase

space is reconstructed according to the Takens embed-
ding theorem and generates a set of high dimension vec-
tor X = {X1, X2,⋯, XL},

Xt ¼ x tð Þ; x t þ τð Þ;⋯; x t þ m−1ð Þτ½ Þf g t
¼ 1; 2;⋯; L ð1Þ

In formula (1), m is embedding dimension, τ is time
delay, and L =N − (m − 1)τ.

Step 2: Select a phase point s1 randomly in phase space
X as the first value of vector sequence S, s1 ∈ X;
Step 3: According to the Euclidean distance between

s1 and phase points in phase space X, calculate the tran-
sition probability of phase points and select s2 randomly
according to this probability, and so on. The transition
probability is set as

Prob siþ1 ¼ Xtð Þ∝ exp
− Xt−sik k

ρ
ð2Þ

In formula (2), ρ is the noise intensity, which is a key
parameter, and its significance will be discussed in the
later paper.
Step 4: Repeats the steps until select vector sequence

S = {s1, s2,⋯sN}, and the surrogate data ~S is a time series
which is composed of the first coordinate of each phase
point in vector sequence S.

3.1.2 The discussion of pseudo-periodic surrogate data
method
The PPS has three parameters, which are embedding di-
mension m, time delay τ, and noise intensity ρ. However,
the value of ρ is the key to randomly changing the phase
sequence of the source signal, and the choice of m and τ
has no large effect on the algorithm. Therefore, the algo-
rithm does not need phase space reconstruction, and m
and τ need only to specify as a fixed set of values. Ac-
cording to formula (2), when ρ value is small, the phase
transition probability is small, the phase point in the
vector sequence S can only jump around the initial
phase point s1, so the surrogate data is similar to the ori-
ginal data; When ρ increases gradually, the transition
probability increases gradually too, and the jump range
of the phase point in S increases accordingly. When ρ
increases to a certain extent, the phase point in S will
jump randomly in phase space X, so surrogate data ~S
will be a completely random signal. Therefore, the ρ
value determines the amplitude of noise added to the
source signal in PPS. It is especially pointed out that, the
ρ value is associated with the value of the original signal,
so before the analysis, it is necessary to normalize the
original signal.
According to the PPS, the surrogate data of a sine sig-

nal under each noise intensity are shown in Fig. 2.
There are four subgraphs in Fig. 2, the first is a nor-

malized sine signal, and the others are surrogate data of
sine signal under each noise intensity. When ρ = 0.01,
although affected by noise, the surrogate data is similar
to the original data. When ρ = 0.05, the surrogate data is
influenced by the noise remarkably. When ρ = 0.2, the
surrogate data has almost changed into a stochastic se-
quence. As the noise increases, the surrogate data of the
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sine signal gradually evolve from a regular sequence to a
random sequence.
In summary, PPS can be used as a noise addition algo-

rithm. Compared with the method of adding white
noise, this algorithm can disrupt the phase order of the
original data. With the increase of ρ, the structure of
original data is gradually annihilated, but at the same
time, the mean, variance, and range of the signals remain
unchanged. Randomizing the signal while preserving the
statistical characteristics is an important feature of the
algorithm.

3.2 The parameter for signal complexity evaluation
After adding the quantitative noise to the signal, it is ne-
cessary to evaluate the complexity of the signal with
noise effectively. Kolmogorov proposed the first defin-
ition of the signal complexity in 1965. Later, Lempel and
Ziv proposed the specific algorithm called LZ complex-
ity, which is widely used in the research of nonlinear
science. In addition, Skyllingstad et al. [17] studied the
correlation between the delayed mutual information and
entropy then drew the conclusion the slope of mutual
information is negatively correlated with the entropy.
Therefore, delayed mutual information is also often used
to measure the complexity of a time series. Taking the
logistic chaotic time series, Lorenz’s chaotic time series,
and ECG signals as examples, Zhang [18] compares LZ
complexity and delayed mutual information. The con-
clusion is that both parameters can effectively express
the data complexity, and the values are negatively corre-
lated. Calculating the two parameters using a four-

segment or more detailed segmentation algorithm can
more accurately reflect the essence of nonlinear signals.
The example analysis shows the delayed mutual infor-
mation is more sensitive than the LZ complexity in ex-
pressing the intrinsic characteristics of the nonlinear
dynamic system. Therefore, this paper uses delayed mu-
tual information as the measurement for the signal
complexity.

3.2.1 The definition of mutual information
A and B are the two information systems, the state space
of the two systems are respectively A = {a1, a2,⋯, an} and
B = {b1, b2,⋯, bm}, and the corresponding probabilities in
the state spaces are p(ai)(i = 1, 2,⋯, n) and p(bj)(j = 1, 2,

⋯,m), among them
Pn

i¼1
pðxiÞ ¼ 1 and

Pm

j¼1
pðx jÞ ¼ 1. A and

B can be regarded as two information sources, and their
respective information entropy are

H Að Þ ¼ −
Xn

i¼1
p aið Þ log2p a2ð Þ ð4Þ

H Bð Þ ¼ −
Xm

j¼1
p bj
� �

log2p bj
� � ð5Þ

The joint information source AB is composed of A
and B, and its state space is AB = {a1b1, a1b2,⋯, anbm},
and the joint probability distribution corresponding to
the state space is

a1b1 a1b2 ⋯ anbm
p a1b1ð Þ p a1b1ð Þ ⋯ p anbmð Þ
�
�
�
�

�
�
�
� ð6Þ

The information entropy of the joint source AB is

H ABð Þ ¼ −
Xn

i¼1

Xm

j¼1
p aib j
� �

log2 a2bj
� � ð7Þ

The mutual information of the sources A and B is de-
fined as

MI A;Bð Þ ¼ H Að Þ þ H Bð Þ−H ABð Þ ð8Þ
Mutual information can express the correlation be-

tween two sources A and B. When A is the same as B,
the value of mutual information is maximum; when A
and B are independent of each other, the mutual infor-
mation is 0.

3.2.2 Calculation of delayed mutual information
To express the complexity of a signal, the time series of
a signal can be used to calculate the delayed mutual in-
formation. Time series A = {a1, a2,⋯, an} can be
regarded as the information source A, moves the se-
quence of source A backward for the k points, and the
times series B = {a1 + k, a2 + k,⋯, an + k} is obtained, which
can be regarded as the information source B. The mu-
tual information between A and B is called delayed mu-
tual information of a signal. The specific algorithms are

Fig. 2 Sine signal and the surrogate data under different noise
intensity. Add noise of different intensities (corresponding to the
value of parameter ρ) to a sine signal using the PPS algorithm. With
the increase of noise, the structure of source signal is
gradually annihilated
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as follows: The ranges of A and B are divided into 2c sec-
tions evenly from the minimum to the maximum, then
1, 2, ⋯, i, ⋯, 2c and 1, 2, ⋯, j, ⋯, 2c are used as the
scale of each section, respectively. The joint information
source AB can be regarded as a two-dimension vector;
the corresponding sections of the two-dimension vector
can be labeled by (i, j), i, j = 1, 2, ⋯, 2c; the scales of
these sections are (1, 1), (1, 2), ⋯, (2, 1), ⋯, (i, j), ⋯, (2c,
2c); and the total quantity of these sections is 22c. Counts
the number num(i,j) of the joint information source AB
in the section (i,j), and calculates the joint probability of
corresponding section (i,j) as below

p aib j
� � ¼ num i; jð Þ

n
; i; j ¼ 1; 2;⋯; 2cð Þ ð9Þ

n is the total number of the time series data, then

p aið Þ ¼
X2c

j¼1

num i; jð Þ
n

¼ num ið Þ
n

ð10Þ

p bj
� � ¼

X2c

i¼1

num i; jð Þ
n

¼ num jð Þ
n

ð11Þ

Sets the delay point k = 0, 1, 2, ⋯, K, and brings the cal-
culation results of formulas (9), (10), and (11) into formulas
(4), (5), (7), and (8), then the delayed mutual information
sequence D = {D0,D1,⋯,DK} of time series A can be ob-
tained. When k = 0, the time series A and B are exactly the
same, and the time delay mutual information D0 is max-
imum, that is, D0 ≥Dl, D = 1, 2, ⋯, K. Therefore, the value
of D0 can be used to normalize I. Applying the algorithm,
the delayed mutual information sequences of a Lorenz cha-
otic signal and a periodic signal are shown in Fig. 3.

In Fig. 3, with the increase of time delay, the delayed
mutual information value of the Lorenz chaotic signal
decreases rapidly and then keeps oscillating between
[0.1,0,3]; meanwhile, the delayed mutual information
value of the periodic signal oscillates between [0.75,1]
periodically. The figure shows the delayed mutual infor-
mation oscillations range of high complexity chaotic sig-
nals are far lower than the periodic signals’ with lower
complexity, which shows the complexity of signal can be
expressed by delayed mutual information. To quantify
the complexity accurately, this paper uses the mean
value MD of K + 1 delayed mutual information from k =
0 to K as the measurement:

MD ¼
PK

i¼1Di

K þ 1
ð12Þ

4 Result and discussion
4.1 Data sources
In this section, the method of the third section is used
to carry out numerical experiments on typical periodic
signals, chaotic signals, and random signals, respectively.
The periodic signals used for analysis are generated by

logistic model [19]. The logistic model, proposed by
biologist May, is also called model of insect, which is the
most prestigious achievement in the early study of chaos.
The expression of the model is

xnþ1 ¼ λxn 1−xnð Þ ð13Þ

In formula (13), n = 1,2,…, is the iterative sequence, λ
is a key control parameter, and λ ∈ [3, 4], the iterative
initial value x0 ∈ [0, 1]. The logistic model is a famous ex-
ample from regularity to chaos. The model can produce
typical periodic signals and chaotic signals by setting dif-
ferent values of λ. Using the logistic model, three sets of
periodic signals are generated, which λ values are 3.4,
3.84, and 3.5, and the three sets of signals are double
period, triple period, and four times period, respectively.
There are two groups of chaotic signals for analysis.

The three chaotic signals in the first group are also gen-
erated by logistic model, which λ values are 3.7, 3.8, and
3.9, respectively. The two signals in the second group
are generated by the Lorenz attractor [20] and Henon
attractor [21]. In addition, to analyze the signal charac-
teristics, a set of traffic flow data is selected in the sec-
ond group.
Finally, three white Gaussian noise signals are selected

as random signals for numerical analysis.
All the signals used for analysis above can be regarded

as time series, and all of which have a length of 5000.

Fig. 3 Delayed mutual information sequence of two signals. This
figure shows that the delayed mutual information can express the
complexity of the signal. The simpler the signal is, the closer the
parameter value is to 1; the more complex the signal is, and the
closer the parameter value is to 0
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4.2 Experimental design
For the above signals, the following analysis steps are
adopted:

(1) The generation of surrogate data: First of all, the
experimental signal is normalized. For the
normalized signal, the noise intensity is set to be
ρ = 0 : 0.01 : 0.2, then generates 5000 sets of
surrogate data for each ρ value respectively by
means of improved PPS.

The calculation of MD: The range of the surrogate
data under each noise intensity is divided into 32 sec-
tions, that is 2c = 32, c = 5, then calculates the MD of
each set of surrogate data. Finally, calculates the MD
mean value of 5000 sets of surrogate data under each
noise intensity.

(2) Draws the figure for the data from step 2 and
discuss its connotation.

4.3 Experimental results and discussion
4.3.1 The periodic signals
For three periodic signals, according to the experimental
design, the surrogate data are generated separately, and
then the corresponding MD values are calculated. After
the above steps, the MD mean value curves of three sets
of periodic sequences’ surrogate data under different
noise intensity are shown in Fig. 4.
According to Fig. 4, when the noise intensity ρ < 0.07,

the values of the three curves are almost 1, and when
the noise intensity ρ > 0.07, the values of the three curves
begin to descend to varying degrees. For the periodic
signal, when the added noise is small, the signal is still

regular, and the complexity of the signal is not obviously
changed. When the noise increases, the three curves
range abilities are different, which is related to the struc-
ture of these signals. The λ values are 3.4, 3.84, and 3.5,
and the periodic signals are double period, triple period,
and three times period signal, respectively. With the in-
crease of period multiplier, the structure of the periodic
signal is more complex. The more complex the structure
is, the more likely the signal is to be disturbed by noise.
So in Fig. 4, when ρ > 0.07, the trend of the curve(λ =
3.4) is the slowest, while the trend of the curve (λ = 3.5)
is the most intense.

4.3.2 The chaotic signals
Three chaotic signals in the first group are generated by
the logistic model, and the MD mean value curves of
these sequences’ surrogate data under different noise in-
tensity are shown in Fig. 5.
Compared to Figs. 4 and 5, the trends of two sets of

curves corresponding to periodic signals and chaotic sig-
nals are remarkably different. First, the initial value of
the three curves in Fig. 5 is between [0.35,0.45], and the
initial values of the three curves in Fig. 4 are all 1, which
indicates that the complexity of the chaotic signal is
much higher than that of the periodic signal. Second,
with the increase of noise, three curves in Fig. 5 decrease
monotonously. The λ value of the three signals in Fig. 5
can reflect the complexity of these signals. The higher
the λ value, the more complex the signal is. Therefore,
in Fig. 5, the curve corresponding to λ = 3.7 is at the top,
the curve corresponding to λ = 3.8 is centered, and the
curve corresponding to λ = 3.9 is at the bottom. When
the noise is large enough, the three sets of surrogate data
almost turn into random signals, so the MD mean values
of these signals tend to be consistent.

Fig. 4 The MD mean value of three periodic signals’ surrogate data.
The curves corresponding to the periodic signals remain stable at
first, and when the noise exceeds a certain threshold, these curves
begin to decline

Fig. 5 The MD mean value of first group chaotic signals’ surrogate
data. With the increase of noise, these curves decrease
monotonously. The position of the curve in the figure is related to
the complexity of the corresponding signal
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The MD mean value curves corresponding to the three
signals in the second group under different noise inten-
sities are shown in Fig. 6.
Compared to Figs. 5 and 6, although the curve values

of the six sets of signals are different, the curve charac-
teristics are very similar. In particular, the corresponding
curve characteristic of the traffic flow signal is consistent
with those of other chaotic signals.

4.3.3 The random signals
The MD mean value curves of these random signal se-
quences’ surrogate data under different noise intensity
are shown in Fig. 7.
According to Fig. 7, the characteristic of random sig-

nals curves is obviously different from that of periodic
signals and chaotic signals. The first value is smaller
than the periodic signal and the chaotic signal, and with
the increase of noise, the curve trend does not change
significantly with the increase of noise. This is because
the inherent complexity of the random signal is high, so
the first value of MD is small; the noise complexity
added in the original signal is not significantly different
from the original random signal. As the noise increases,
the MD value will not vary significantly, and the curve
trend is relatively flat.

4.3.4 The comparison of three kinds of signals
In order to compare the difference of three kinds of sig-
nals, the vector angle is used as the similarity measure-
ment. Each curve in Figs. 4, 5, 6, and 7 is treated as a
vector, and the similarity between curves can be mea-
sured by the vector angle. The parameter is defined as

A ¼ arccos
v1 � v2
v1k k v2k k ð14Þ

In formula (14), v1 and v2 are two vectors, and the
unit of A is degree. The smaller the A value is, the stron-
ger the correlation between the vectors is.
Takes the Lorenz signal curve as the reference, calcu-

lates the vector angles of 12 curves in Figs. 4, 5, 6, and 7,
the data are shown in Table 1.
According to Table 1, the A values of chaotic signals

are between [0∘, 3.5∘], which are significantly different
from the A values of periodic signals and random sig-
nals. Therefore, the surrogate data MD mean value
changing trend under different noise intensities can be
used as a strong criterion for distinguishing types of sig-
nals. Meanwhile, it proves that traffic flow signal is a
typical chaotic signal, which can be analyzed by chaotic
theory. Of course, compared with the largest Lyapunov
exponent and other parameters, the criterion proposed
in this paper is relatively vague, and further work is
needed.

Fig. 6 The MD mean value of second group chaotic signals’
surrogate data. The curve trends of two groups of chaotic signals
are highly consistent

Fig. 7 The MD mean value of three random signals’ surrogate data.
The increase of added noise has no effect on the complexity of
random signal, and the curves in the figure remain flat from
beginning to end

Table 1 Curve similarity analysis

Unit,
degree

Chaotic signals

Lorenz Henon Traffic
flow

Logistic attractor

λ = 3.7 λ = 3.8 λ = 3.9

A 0 1.21 2.85 1.64 2.32 3.21

Periodic signals Random signals

Logistic attractor 1 2 3

λ = 3.4 λ = 3.84 λ = 3.5

A 12.74 13.69 27.17 12.55 12.47 12.55
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5 Conclusion
In this paper, a WSN-based traffic data collection
scheme is proposed, which is low cost and low power.
The scheme can collect vehicle speed and position infor-
mation accurately and timely and lays a foundation for
traffic flow analysis. Then a method based on incremen-
tal noise addition is proposed for the chaotic identifica-
tion of traffic flow signal. PPS is used to add noise
incrementally to the analyzed signal, and the MD mean
value is used as a measurement for the complexity of the
signal. It is found that, for different types of signals, the
complexity trends of surrogate data under each noise in-
tensity are different. For the periodic signal, when the
noise intensity is small, the MD mean value of surrogate
data is stable; when the noise intensity is larger than a
threshold, the MD mean value starts to decrease grad-
ually. For the chaotic signal, such as traffic flow, the first
MD mean value is obviously smaller than the periodic
signal, and as the increase of noise intensity, the MD
mean value keeps decreasing monotonously. For the ran-
dom signal, the MD mean value keeps at a low value.
Therefore, as the noise intensity increases, the trend of
MD mean values is an effective criterion for distinguish-
ing various types of signals. Of course, although param-
eter A is used to try to quantify the criteria presented in
this paper, the criterion is more inclined to a qualitative
criterion than a quantitative one. Further research is
needed to make extensive use of the criterion.
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