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1  Introduction
Polar codes, pioneered by Arıkan [1] in 2008, are capable of reaching the Shannon maxi-
mum capability with low encoding and decoding complexity, which have been accepted 
as the coding scheme of the control channel of the 5G wireless communication systems 
[2].

Arıkan [1] employed the n times Kronecker power of the polarized kernel matrix 

denoted by G2 =
[

1 0

1 1

]

 to perform a linear transformation to an input block of N (= 2n) 

bits. By combining and splitting a Binary Input Discrete Memoryless Channel (B-DMC) 
N times repeatedly, the same number of polarized sub-channels are acquired. While 
some of them tend to possess the reliability of one, others tend to be zero. However, the 
code lengths of such polar codes are constrained to 2n , which makes it difficult for them 
to be applied to the narrow-band, low-rate, and real-time communication fields that 
require flexible medium and short code lengths, such as real-time voice communication. 
Korada et  al. [3] generalized the polar code kernel as an l × l(l ≥ 2) invertible matrix 
denoted by Gl , whose arbitrary column permutation is not an upper triangular matrix. 

Abstract 

Multi-kernel polar codes have recently received considerable attention since they can 
provide more flexible code lengths than do the original ones. The construction process 
of them can be simplified by obtaining the Bhattacharyya parameter bounds of the 
kernels employed. However, there has been currently no generic method for seeking 
such bounds. In this paper, therefore, we focus on the upper Bhattacharyya param-
eter bounds of the standard binary polar code kernels with an arbitrary dimension 
of l ≥ 2 . A calculation process composing of four steps, the common column binary 
tree construction for the channel inputs, the common factor extraction, the calcula-
tion feasibility testing, and the upper bound calculation based on pattern matching, is 
formulated with a computational complexity of O(2l) . It is theoretically proved that the 
upper bounds obtained by the proposed method are tight, which can lay the founda-
tion to compare the reliability of the synthesized channels in polar codes.

Keywords:  Bhattacharyya parameter, Tight bounds, Upper, Binary tree, Polar codes

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Zhang et al. J Wireless Com Network         (2021) 2021:76  
https://doi.org/10.1186/s13638-021-01954-y

*Correspondence:   
lss589@163.com 
Zhengzhou Information 
Science and Technology 
Institute, No. 62 Science 
Avenue, Zhengzhou 450000, 
China

http://orcid.org/0000-0001-7320-2410
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-01954-y&domain=pdf


Page 2 of 21Zhang et al. J Wireless Com Network         (2021) 2021:76 

Benammar et al. [4] proved that the channel polarization condition still holds for such 
multi-kernel polar codes. Thus, flexible code lengths can be obtained by applying the 
Kronecker product

of kernels with various dimensions as a generator matrix in the construction of the polar 
codes, where BN is a permutation matrix. Following this, both principle and design of 
multi-kernel polar codes have become a significant research area in recent years [5–7].

When the construction of polar codes is a concern, it is crucial to select the most reli-
able channels from the synthesized channels, which can be measured by the Bhattachar-
yya parameters [1]. However, closed-form expressions for the Bhattacharyya parameters 
of the synthesized channels are usually unavailable [8]. Generally, for the polar code 
kernels with l = 2 , the reliability of the synthesized channels can be acquired by Bhat-
tacharyya parameter calculation [1], Monte-Carlo simulation [1], density evolution [9, 
10], Gaussian approximation [11], or an approximation by degrading and upgrading 
transformations, quoted as Tal-Vardy [12]. For l > 2 , on the other hand, the Bhattacha-
ryya calculation and Monte Carlo simulation methods are employed [13]. Among these 
methods, while the Bhattacharyya parameter calculation is simple but only applicable to 
Binary Erasure Channels (BECs), the Gaussian approximation is applicable to Additive 
White Gaussian Noise (AWGN) channels. More generally, the Tal-Vardy and Monte-
Carlo simulation can be applied to arbitrary binary discrete memoryless channels. How-
ever, all of the constructions based on these five methods depend on the transmission 
channel conditions, which make it necessary to construct codes separately for different 
Signal-to-Noise Ratios (SNRs) [14].

Dealing with resolving the above-mentioned problems in the construction of the polar 
codes, general construction methods independent of transmission channel conditions 
have gained significant attention in recent years. Schürch et al. [15] and Wu et al. [16]  
proposed the partial order theory of the polarized channels, and He et al. [17] proposed 
the Polarization Weight (PW) for G2 . Based on the comparison of the kernel channels 
indicated by the Bhattacharyya parameter bounds, these two theories pointed out that 
there were unambiguous relationships between some of the synthesized channels, which 
could be utilized to select more reliable channels in the construction of the polar codes. 
Investigating the bounds of the Bhattacharyya parameters with dimension l > 2 could 
apply these theories to the construction of large-sized and multi-kernel polar codes. 
Accordingly, Hanif et al. [8] suggested that the kernels’ Bhattacharyya parameter bounds 
could simplify the construction of the polar codes.

In the research of the Bhattacharyya parameter bounds of the polar code kernels, 
Arıkan [1] presented the bounds for l = 2 ; however, the lower bound was not tight 
enough. To address this issue, Korada [18] proposed a much tighter lower bound. As for 
l > 2 , Korada et al. [3] researched the relationship between the Bhattacharyya param-
eter bounds and the partial distances of their kernels and proposed a concise formula 
for calculating the bounds of Bhattacharyya parameters. However, both lower and 
upper bounds are not tight enough. Zhang et  al. [19] examined the upper bounds for 
l = 3 , but did not the lower bounds. Cheng et al. [20] presented a formula to calculate 
the Bhattacharyya parameters for a given polar code kernel under BECs. However, the 

(1)GN = BN · Gl0 ⊗ Gl1 ⊗ · · · ⊗ Gln−1
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calculation of the proposed formula would be very complicated for polar code kernels 
with large dimensions.

The available researches mentioned above reveal that there has been no general 
method for seeking tight bounds on the Bhattacharyya parameters of the polar code 
kernels with an arbitrary dimension yet. Thus, investigating the bounds on the cor-
responding kernels’ Bhattacharyya parameters is of great importance to simplify the 
construction of the polar codes, which can also play a significant role in validating and 
evaluating the asymptotic speed of the polarization [21]. This paper, therefore, examines 
the upper Bhattacharyya parameters bounds of polar code kernels with dimension l ≥ 2.

The main contributions of this paper are summarized as follows: We concluded that 
any k-order sub-matrix of the inputs must have some common columns, which leads 
to construct a common column binary tree. Then, we proposed a process to compute 
the upper bound of Z(i)

l  utilizing an iterative pattern matching and presented a compu-
tationally feasible criterion to test whether the proposed method could be applied to a 
certain polar code kernel.

The rest of this paper is organized as follows. In Sect.  2, we present notations and 
definitions. In Sect. 3, we derive the upper bounds of the Bhattacharyya parameter. In 
Sect. 4, we demonstrate the computation procedure of the upper bound on channel 2 of 
a polar code kernel with a dimension of five. Section 5 provides a detailed discussion of 
the findings. Finally, Sect. 6 summarizes the paper and lists some potential directions for 
future research. The proofs of the properties, lemmas and theorems are provided in the 
“Appendix”.

1.1 � Methods/experimental

This paper is mainly theoretical derivation and analysis, and no experiment is carried 
out.

2 � Preliminaries
In this section, we first give the symbols and definitions to be employed throughout the 
paper. Then, we introduce the Bhattacharyya parameter of the polar code kernels.

2.1 � Symbols and definitions

Following [1], we denote random variables by upper case letters, e.g., X, Y, and their 
realizations by the corresponding lower case letters, i.e., x, y and use X− , Y− to denote 
their upper bounds. We employ the notation al−1

0  as the shorthand to denote a row vec-
tor (a0, a1, . . . , al−1) and use aji to denote its sub-vector (ai, ai+1, . . . , aj) , where aji is void 
when i > j . Later, we will abbreviate al−1

0  as the corresponding bold character a.
For a matrix T  , we use Ti,j to denote the element in row i and column j, T i,: and T :,j to, 

respectively, denote the ith row vector and the jth column vector, and employ T i::m,: to 
denote the sub-matrix composing of the row vectors of T  with starting index i and inter-
val m. We use 

[

T
(0) : T (1)

]

 denote for the combined matrix of T (0) and T (1) , which have 
the same column size, in the row direction.

For an integer k, we employ (bk0, b
k
1, . . . , b

k
l−1

) , denoted by b(k, l), to represent its l-bit 
binary expansion with the most significant bit on the left.
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Furthermore, W : X → Y  represents a symmetric B-DMC transmission chan-
nel with input X(X = 0, 1) , output Y, and its transition probabilities denoted by 
W (y|x), x ∈ X , y ∈ Y .

All vectors, matrices, and their operations are defined in GF(2).

Definition 1  For an integer k, the reverse order shuffle operation on its l-bit binary 
expansion is defined as a reverse order operator, which is denoted by r(k, l). For example, 
the result of r(22, 6) is represented by 26(010110 → 011010).

Definition 2  For a non-negative integer x and a positive integer vector bn−1
0  , we 

employ (mn−1mn−2 . . .m0)|bn−1
0

 to denote the n-digit mixed-nary representation of x 

where bn−1
0  is the base vector, mi = Qi mod bn−i−1 and

The operation of calculating the mixed-nary representation under the base vector bn−1
0  

for x is denoted as M(x,bn−1
0 ).

Taking the decimal number 37 as an example, its three-digit mixed-nary representation 
under base vector [2,  3,  8] is M(37,[2,3,8])=(115)|[2,3,8] . The base vector indicates that 
the digit 1 on the left of the mixed-nary representation is in binary, the middle digit 1 is 
in ternary, and the right digit 5 is in octonary.

Definition 3  For an n× l binary matrix T  and a certain operation f (·) , we define a 
boolean vector cl−1

0  as the valid column indicator, abbreviated as VCI, of T  for f (·) with 
cj = 1 to indicate that the elements in column j of T  are involved in f (·) for ∀j ∈ [0, l) . 
Correspondingly, cl−1

0  is called the VCI of each row vector of T k ,:(0 ≤ k < n) for f (·).

Definition 4  For an n× l binary matrix T  with a VCI of c , we define a boolean vec-
tor �l−1

0  as the common column indicator, abbreviated as CCI, of T with �j = 1 to mark 
that all the elements in column j of T  are the same and cj = 1 for ∀j ∈ [0, l) . We define 
�
l−1
0 = g(T , c) to denote the operation of calculating the CCI of T  under the VCI of c . 

Correspondingly, γ l−1
0 = �

l−1
0 ∧ T 0,: is referred as the common column vector, abbrevi-

ated as CCV, of T  with the VCI of c.

Definition 5  For two vectors x(0) and x(1) with the same VCI of c for an operation f (·) , 
(x(0) , x(1)) is defined as a mutually different vector pair under c for f (·) if x(0) ⊕ x

(1) = c.

Definition 6  For a 2m × l binary matrix T  , T i::2k ,: ( 0 ≤ k ≤ m , 0 ≤ i ≤ 2k−1 ) is defined 
as its ith k-order sub-matrix.

It is easy to infer that the 0-order sub-matrix of T  is T  itself, and each m-order sub-
matrix of T  has only one element.

Definition 7  For an l × l binary invertible lower triangular matrix denoted by

(2)Qi =
{

x, i = 0,

⌊Qi−1/bn−i−1⌋, 0 < i ≤ n− 1.
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 where all of its diagonal elements are 1, Gl is defined as a standard binary polar code 
kernel with dimension l [3].

Definition 8  For an input vector Ul−1
0  , which is randomly and uniformly distributed in 

{0, 1}l−1
0  , the linear transformation sequence of its polarized kernel Gl is defined by

Here, {Wl : Xl → Y l} is defined as a combined channel under polar code kernel Gl when 
Xl−1
0  is sequentially transmitted through the channel W : X → Y  . Thus, the transition 

probability of Wl is

Definition 9  For Xl−1
0  defined in (4) and its output Y l−1

0  of a combined channel 
{Wl : Xl → Y l} , the virtual channel {W (i)

l : X → Y l × Xi−1, 0 ≤ i < l} formed by the 
channel splitting under Successive Cancellation (SC) decoder in [1] is defined as a polar 
code kernel channel of Gl.

The transition probability of W (i)
l  with input ui and output (yl−1

0 ,ui−1
0 ) is defined in [3] as

where the values of ui−1
0  are evaluated sequentially from 0 to i − 1 prior to ui.

Considering ul−1
i+1 ∈ {0, 1} , we construct an input matrix with a size of N × l as

where n = l − i + 1 , N = 2n , ui−1
0 = 0i−1

0  and 0 ≤ k < N . The variables n and N will be 
used throughout the paper.

The linear transformation matrix is constructed from v
(i,ui) utilizing Gl with 

x
(i,ui) = v

(i,ui) · Gl according to (4). The elements in x(i,ui) possess the following property.

Property 1  ∀k ∈ [1, n) and ∀s, t ∈ [0, 2k) , then g
(

x
(i,ui)

s::2k ,:, 1
l−1
0

)

= g
(

x
(i,ui)

t::2k ,:, 1
(l−1)
0

)

 

 = 0l−1
0  holds. This means that for any k-order sub-matrix of x(i,ui) must have some com-

mon columns, and the CCIs of all sub-matrices in the same order are the same.

(3)Gl =









1 0 · · · 0

· · · 1 · · · 0

· · · · · · 1
...

· · · · · · · · · 1









,

(4)Xl−1
0 = Ul−1

0 · Gl .

(5)Wl(y
l−1
0 |ul−1

0 ) =
l−1
∏

i=0

W (yi|xi).

(6)

W
(i)
l (yl−1

0 ,ui−1
0 |ui) =

1

2l−1

∑

ul−1
i+1

Wl

(

yl−1
0 |ul−1

0

)

= 1

2l−1

∑

ul−1
i+1

l−1
∏

k=0

W
(

yk |(ul−1
0 · Gl)k

)

,

(7){v(i,ui) : v(i,ui)k ,: =
(

0i−1
0 ,ui, b(k , n)

)

, 0 ≤ k < N },
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2.2 � The Bhattacharyya parameters of the polar code kernels

According to [1], the Bhattacharyya parameter of a transmission channel W : X → Y  is 
defined by

Similarly, the Bhattacharyya parameter of W (i)
l  shown in (6), referred as the ith Bhat-

tacharyya parameter of the polar code kernel Gl , can be denoted by

Since Ul−1
0  is distributed uniformly in {0, 1}l−1

0  , for any function ϕ(·) on uk(k < i) where i 
is the index of W (i)

l  shown in (9), 
∑

uk
ϕ(uk ) =2ϕ(0)=2ϕ(1) holds. Thus, according to (4), 

the expression of Z(i)
l  shown in (9), where ui−1

0  is set to 0i−1
0  , could be rewritten as

 where f (·) is defined by

 and cl−1
0  is the VCI of xl−1

0  for f (·) . In the calculation process of (10), the initial VCI of 
x
(i,ui)
0  for f (·) is 1l−1

0 .
According to (11), we can easily derive that for two VCIs denoted by c(0) and c(1) of xl−1

0  , 
if c(0) ∧ c

(1) = 0l−1
0  , then

Considering the Bhattacharyya parameter of the last channel W (l−1)

l  for a polar code 
kernel Gl , we attain x(l−1,ul−1=0) = 0l−1

0  and x(l−1,ul−1=1) = Gl−1,: with ul−2
0  being set to 

zeros according to (4) and (7). Furthermore, we can obtain 

Z
(l−1)

l =
∑

yl−1
0

√

f
(

0l−1
0 , 1l−1

0

)

· f
(

Gl−1,:, 1
l−1
0

)

 according to (10). Due to 
∑

(y∈Y )

√

W (yi|0)W (yi|1) = Z(W ) , we can get

(8)Z(W ) =
∑

y∈Y

√

W (y|0)W (y|1).

(9)

Z
(i)
l =

∑

yl−1
0 ,ui−1

0

√

W
(i)
l

(

yl−1
0 ,ui−1

0 |ui = 0

)

·W (i)
l

(

yl−1
0 ,ui−1

0 |ui = 1

)

= 1

2l−1
·

∑

yl−1
0 ,ui−1

0

√

√

√

√

√

∑

ul−1
i+1

∏l−1
k=0 W

(

yk |((ui−1
0 , 0,ul−1

i+1) · Gl)k

)

·
∑

ul−1
i+1

∏l−1
k=0W

(

yk |((ui−1
0 , 1,ul−1

i+1) · Gl)k

) .

(10)

Z
(i)
l = 1

2l−i−1
·
∑

yl−1
0

√

√

√

√

√

N−1
∑

p=0

l−1
∏

k=0

W
(

yk |x(i,ui=0)

p,k

)

·
N−1
∑

q=0

l−1
∏

k=0

W
(

yk |x(i,ui=1)

q,k

)

= 1

2n
·
∑

yl−1
0

√

√

√

√

N−1
∑

p=0

f
(

x
(i,0)
p,: , 1l−1

0

)

·
N−1
∑

q=0

f
(

x
(i,1)
q,: , 1l−1

0

)

,

(11)f
(

xl−1
0 , cl−1

0

)

=
l−1
∏

k=0

Wck
(

yk |xk
)

,

(12)f
(

xl−1
0 , c(0)

)

· f
(

xl−1
0 , c(1)

)

= f
(

xl−1
0 , c(0) ⊕ c

(1)
)

.

(13)Z
(l−1)

l = Z
∑

Gl−1,:(W ).
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It can be seen from (10) that as l increases, the composition of Z(i)
l  may become much 

more complicated, which makes it difficult to calculate the bounds of Z(i)
l  . Since the 

value of Z(l−1)

l  can be directly calculated by (13), we mainly research the upper bounds 
of Z(i)

l  for 0 ≤ i ≤ l − 2 in this paper.

3 � The upper Bhattacharyya parameter bound
In this section, we first construct a k-order sub-matrix common column binary tree for 
the polar code kernel channel inputs. Then, we proposed a process to calculate the upper 
bound of Z(i)

l  utilizing an iterative pattern matching.

Lemma 1  If a, b, c, and d are non-negative real numbers, then [1] defined the inequality 
given below

Lemma 2  For two mutually different vector pairs denoted by (x0,:, x1,:) and (x2,:, x3,:) 
with a VCI of c , the following inequality

 holds, where � = x0,: ⊕ x2,:.

3.1 � The common column binary tree

According to Definition 4 and Property 1, we can extract a CCV for each k-order sub-
matrix of x(i,ui) , and the extracting process can be divided into ( n+ 1 ) stages ranging 
from 0 to n. For any stage k ∈ [0, n] , all the 2k sub-matrices of x(i,ui) have the same VCI ck 
and CCI �k . The �k , ck , and the CCV γ (i,ui)

k ,j  of each sub-matrix can be calculated by

By doing so, a common column binary tree γ (i,ui) can be constructed as shown in Fig. 1.
Suppose that

(14)
√

(ab+ cd)(ac + bd) ≤
(√

ab+
√
cd

)(√
ac +

√
bd

)

− 2
√
abcd.

(15)

∑

yl−1
0

√

[

f
(

x0,:, c
)

+ f
(

x1,:, c
)]

·
[

f
(

x2,:, c
)

+ f
(

x3,:, c
)]

≤

2 · Z
∑

�(W )+ 2 · Z
∑

c−
∑

�(W )− 2 · Z
∑

c(W )

(16)�k ,: = g
(

x
(i,ui=0)

0::2k ,: : x(i,ui=1)

0::2k ,: , ck

)

, 0 ≤ k ≤ n,

(17)ck =
{

1l−1
0 , k = 0,

ck−1 ⊕ �k−1,:, 0 < k ≤ n,

(18)γ
(i,ui)
k ,j = �k ,: ∧ x

(i,ui)
j,: , 0 ≤ j < 2k+1.

(19)

s
�

γ
(i,ui)
k ,j

�

=







f
�

γ
(i,ui)
k+1,2j , ck+1

�

· s
�

γ
(i,ui)
k+1,2j

�

+ f
�

γ
(i,ui)
k+1,2j+1

, ck+1

�

· s
�

γ
(i,ui)
k+1,2j+1

�

, k < n,

f
�

γ
(i,ui)
k ,j , ck

�

, k = n,
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 if there are equal paths from the child nodes of γ (i,e1)
k ,j1  and γ (i,e2)

k ,j2  to their corresponding 
leaf nodes in the tree shown in Fig. 1, then s

(

γ
(i,e1)
k ,j1

)

= s
(

γ
(i,e2)
k ,j2

)

 where e1 and e2 are the 

instantiated values of ui.
According to (19), the expression of Z(i)

l  in (10) can be transformed into

Considering that 
∑

y∈Y W (yi|xi) = 1 and (8), we express h = γ
(i,0)
0,0 ⊕ γ

(i,1)
0,0 ∧ c0 . It can 

be derived that 
∑

yl−1
0

√

f
(

γ
(i,0)
0,0 , c0

)

· f
(

γ
(i,1)
0,0 , c0

)

= Z
∑

h(W ) . Thus, the expression of 

Z
(i)
l  in (20) can be further transformed into:

The common factor binary tree of x(i,ui) shown in Fig. 1 has the following properties.

Property 2  If s
(

γ
(i,0)
1,0

)

= s
(

γ
(i,0)
1,1

)

 , then Z(i)
l  in (21) has a common factor defined by

(20)Z
(i)
l = 1

2n
·
∑

yl−1
0

√

f
(

γ
(i,0)
0,0 , c0

)

· s
(

γ
(i,0)
0,0

)

· f
(

γ
(i,1)
0,0 , c0

)

· s
(

γ
(i,1)
0,0

)

.

(21)Z
(i)
l = 1

2n
· Z

∑

h(W ) ·
∑

yl−1
0

√

s
(

γ
(i,0)
0,0

)

· s
(

γ
(i,1)
0,0

)

.

(22)CM1 =
∑

yl−1
0

√

[

f
(

γ
(i,0)
1,0 , c1

)

+ f
(

γ
(i,0)
1,1 , c1

)]

·
[

f
(

γ
(i,1)
1,0 , c1

)

+ f
(

γ
(i,1)
1,1 , c1

)]

Fig. 1  The common column binary tree of x(i,ui ) : �k denotes the CCI for stage k, and γ represents the CCV of 
x
(i,ui )

j::2k ,:
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 that matches (14).

Property 3  If s
(

γ
(i,0)
2,0

)

= s
(

γ
(i,0)
2,1

)

 and γ (i,0)
2,0 + γ

(i,0)
2,1 = γ

(i,0)
2,2 + γ

(i,0)
2,3  , then Z(i)

l  in (21) 

has a common factor defined by

 that matches (14).

Since s
(

γ
(i,0)
2,0

)

 and s
(

γ
(i,0)
2,1

)

 are mutually different vectors with the VCI of c2 , both CM1 

and CM2 cannot coexist, which can be extracted from Z(i)
l  shown in (21) to calculate its 

upper bound separately. By doing so, γ (i,ui) should be reconstructed for the remaining 
items of Z(i)

l  shown in (21), which will be explained in detail later.

Theorem 1  For the reconstructed γ (i,ui) , if ∃j ∈ {0, 1} makes s
(

γ
(i,0)
1,0

)

= s
(

γ
(i,1)
1,j

)

 hold, 

then 
∑

yl−1
0

√

s
(

γ
(i,0)
0,0

)

· s
(

γ
(i,1)
0,0

)

≤ Z0 , where Z0 can be iteratively calculated by

 and �̂ = γ
(i,0)
n,0 ⊕ γ

(i,0)
n,2  , �∗ = γ

(i,0)
1,0 ⊕ γ

(i,1)
1,1−j ∧ �1,: , and �′ = �1,: ⊕ �

∗.

3.2 � The calculation of the upper bound

According to Property 2, Property 3 and Theorem 1, we construct the following process to 
calculate the upper bound of Z(i)

l  for a general polar code kernel Gl.

3.2.1 � The common column binary tree construction

The k-order common column binary tree γ (i,ui) of x(i,ui) can be constructed according to 
(16), (17) and (18) gradually. As shown in Fig. 1, the item γ (i,ui)

n,j  in the last stage corresponds 
to x(i,ui)r(j),: ; thus, γ (i,ui) can be constructed rapidly from right to left gradually.

3.2.2 � The common factor extraction

According to Property 2 and Property 3, we construct Algorithm 1 to extract the common 
factor of Z(i)

l  , namely the CM1 or the CM2. The input parameters include the common 
column binary tree γ (i,ui) and its CCI matrix � . The output is a vector of (c∗, r0, r1, r2, r3) , 
where ri corresponds to xi,: in (15), and c∗ denote the VCI of ri . If neither CM1 nor CM2 
exists, the return value of c∗ is 0l−1

0  . In Step 5, γ (i,ui) is reconstructed due to the common 
factor extraction. 

(23)CM2 =
∑

yl−1
0

√

[

f
(

γ
(i,0)
2,0 , c2

)

+ f
(

γ
(i,0)
2,1 , c2

)]

·
[

f
(

γ
(i,1)
2,0 , c2

)

+ f
(

γ
(i,1)
2,1 , c2

)]

(24)Zk =















2 · Z
�

�
∗
(W ) ·

�

1− Z
�

�
′
(W )

�

· Z1 + 2n · Z
�

�
′
(W ), k = 0,

2 ·
�

1− Z
�

�k ,:(W )

�

· Zk+1 + 2n−k+1 · Z
�

�k ,:(W ), k ∈ (0, n− 1),

2 · Z
�

�̂(W )+ 2 · Z
�

�k+1−
�

�̂(W )− 2 · Z
�

�k+1(W ), k = n− 1,



Page 10 of 21Zhang et al. J Wireless Com Network         (2021) 2021:76 

3.2.3 � The calculation feasibility testing

According to the conditions of Theorem 1, for the reconstructed γ (i,e) after conducting 
the common factor extraction mentioned above, if ∃j leads to s(γ (i,0)

1,0 ) = s(γ
(i,1)
1,j ) , it is 

feasible to employ the proposed method to calculate the upper Bhattacharyya parameter 
bound. Otherwise, the upper bound cannot be calculated with the proposed method.

3.2.4 � The upper bound calculation based on pattern matching

The upper Bhattacharyya parameter bound composes of two parts: (1) the bounds of the 
CM1 and the CM2 and (2) the bounds of the remaining part of the reconstructed γ (i,ui) . 
The upper bounds of these two parts can be calculated by matching (14) and Theorem 1, 
respectively.

Thus, the upper bound of Z(i)
l  can be calculated as

where Z
′ denotes the upper bound part contributed by both 

CM1 and CM2, which can be calculated according to (14) where 
Z

′ = 2 · Z
∑

�
∗
(W )+ 2 · Z

∑

c∗−
∑

�
∗
(W )− 2 · Z

∑

c∗(W ) if CM1 or CM2 exists, other-
wise Z′ is set to 1.

4 � Illustrative examples
In this section, we utilize the following 5× 5 polar code kernel as an illustrative example 
to demonstrate the computation of the upper bound of Z(2)

5 :

Prior to conduct the upper bound computations, data initialization is performed for some 
parameters such as n = l − i − 1 = 2 , N = 2n = 4 , x(2,0) = [00000, 11101, 10010, 01111] , 

(25)Z
(i)−
l = 2−n · Z

∑

h(W ) · Z ′ · Z0,

(26)G5 =











1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 1 1 0 1











.
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and x(2,1) = [10100, 01001, 00110, 11011] . The upper bound computation is performed 
by following four main steps provided below: 

1.	 The common column binary tree construction We construct the common column 
binary tree of x(2,u2) shown in Fig. 2 according to (16), (17) and (18). The value of h in 
(21) is calculated as [00000].

2.	 The common factor extraction As calculated by Algorithm 1, x(2,ui) has no common 
factor, i.e., c∗ =[00000].

3.	 The calculation feasibility testing Since s
(

γ
(2,0)
1,0

)

= s
(

γ
(2,1)
1,1

)

 , it is feasible to calcu-

late the upper bound with j = 1.
4.	 The upper bound calculation by pattern matching Since x(2,ui) has no common fac-

tor, Z′ in (25) is assigned to one.

By calculating �∗ = γ
(i,0)
1,0 ⊕ γ

(i,1)
1,1−j ∧ �1,: = [00100] and �′ = �1,: ⊕ �

∗ = [01001] , where 
j = 1.

According to (24), we compute Z1 = 2 · Z(W )+ 2 · Z2(W )− 2 · Z3(W ) and 
Z0 = 4 · Z5(W )− 8 · Z4(W )− 4 · Z3(W )+ 12 · Z2(W ).

According to (25), the upper bound of Z(2)
5  is computed by

Similarly, the upper Bhattacharyya parameter bounds of G5 ’s other channels listed in 
“Appendix 6” are illustrated in Fig. 3. It could be seen from the figure that the reliability 
of all channels except for channel 0 is significantly improved compared to the transmis-
sion channel W when Z(W ) < 0.23.

In the “Appendix,” we provide the Bhattacharyya parameter bounds of the polar code 
kernels with a dimension varying from 2 to 6 listed in [22]. According to [1], when W is a 
BEC channel, all the polar code kernels’ Bhattacharyya parameters take their upper lim-
its and satisfy the equality defined by

 Seen that all the upper Bhattacharyya parameter bounds of the polar code kernels with 
dimension l(∈ [2, 6]) listed in “Appendix 6” meet (28), the correctness of the results gen-
erated by the proposed method is proven.

(27)
Z
(2)−
5 = 2−2 · Z

∑

h(W ) · Z′ · Z0 = Z5(W )− 2 · Z4(W )− Z3(W )+ 3 · Z2(W ).

(28)
l−1
∑

i=0

Zi = l · Z(W ).

Fig. 2  The common column binary tree of x(2,0) and x(2,1) : the left part is for x(2,0) and the right part is for 
x
(2,1)
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5 � Results and discussion
In this section, we first summarize the results of this article and then discuss the compu-
tational complexity, the application scope of the proposed method and the polarization 
effects of some multi-kernel polar codes. Finally, we make some comparisons between 
the proposed method and the schemes in [3, 20] and demonstrate the possible applica-
tion of the results of this paper in the construction of multi-kernel polar codes.

5.1 � The results and computational complexity

None experiment has been carried out since the paper is mainly theoretical derivation 
and analysis.

As a result of theoretical reasoning, we gave a computation process based on the con-
struction of a common column binary tree and pattern matching, and the results of 
upper bounds are tight.

For the calculation of the upper Bhattacharyya parameter bounds for a polar code 
kernel Gl with dimension, the main part is to construct the sub-matrix common factor 
binary tree of x(i,ui) , which needs to traverse a total of 2l−i−1 + 2l−i−2 + · · · + 20 nodes. 
Thus, the computational complexity is O(2l).

5.2 � The scope of application

The computation of the upper Bhattacharyya parameter bounds, however, needs to meet 
certain conditions, which are validated by the calculation feasibility in this paper. It is 
pointed out in [22] that there is more than one form of polar kernels of dimension l(> 2) 
with the same exponent. Utilizing two 6× 6 polar kernels:

G
(0)
6 =















1 0 0 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 1 1 0

0 1 1 0 1 1















 in “Appendix  4” and G(1)
6 =















1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 1 1 0 1 0

1 1 0 1 0 1















 in [22], both of 

which have an exponent 0.451328, as an illustrative example. The upper Bhattacharyya 
parameter bound of each channel of G(0)

6  can be calculated by the method proposed in 
this paper. However, the calculation of channels 1, 2 and 3 of G(1)

6  are not feasible 

Fig. 3  The upper Bhattacharyya parameter bounds of G5 : Z(W) denotes the Bhattacharyya parameter of the 
transmission channel W 
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according to Theorem 1. Provided this, it is feasible to search for the polar code kernels 
whose upper Bhattacharyya parameter bounds can be computed by the proposed 
method.

5.3 � Polarization effect

According to [1], the polarization effect of the original polar codes improves as the code 
lengths increase. In order to examine such effects of multi-kernel polar codes, G2 and G5 
in “Appendix  6” are employed as illustrative examples to construct multi-kernel polar 
codes with length N =100, 500 and 1000.

The polarization effect of these multi-kernel polar codes and the original polar codes 
with code length N=128, 512 and 1024 is illustrated in Fig. 4 for the case W is a BEC 
with erasure probability ǫ=0.5. The symmetric capacity values are computed according 
to [1] based on the upper Bhattacharyya parameter bounds of G2 and G5 in “Appendix 6”.

The result in Fig. 4 shows that the multi-kernel polar codes composed of G2 and G5 
have the similar polarization effect as the original polar codes.

5.4 � Comparisons and analyses

The upper Bhattacharyya parameter bounds of a kernel are pertinent to its partial dis-
tance [3]. By utilizing G5 in (26) as an illustrative example, we compare the upper bounds 
computed by the proposed method and those by [3], where the partial distance of G5 is 
(1, 2, 2, 2, 4) in [3]. Table 1 shows the upper Bhattacharyya parameter bounds of G5 com-
puted by the two methods.

As shown in Table  1, for Z ∈ [0, 1] , the upper bounds for each channel, except for 
channel 4, of G5 provided by the method proposed in this paper are tighter than those 
of [3].

Fig. 4  Polarization effect of some polar codes: G128 = G⊗7

2
 , G512 = G⊗9

2
 , G1024 = G⊗10

2
 , G100 = G⊗2

5
⊗ G⊗2

2
 , 

G500 = G⊗3

5
⊗ G⊗2

2
 and G1000 = G⊗3

5
⊗ G⊗3

2
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When compared to [20], the upper bounds of the kernels with dimension of three and 
four calculated by the proposed method are the same as that, entitled as Bhattacharyya 
parameter expression under BECs, in [20]. However, for the kernels with dimension of 
l ≥ 5 , it is difficult to compute the upper bounds by the method in [20] since it is essen-
tially an exhaustive computational method.

5.5 � Illustrative application in construction of multi‑kernel polar codes

The multi-kernel polar codes allow for more flexibility in terms of the code length than 
the original polar codes [7] for the enhanced mobile broadband (eMBB) control channel 
for the 5th generation (5G) of wireless communications. Here we consider the applica-
tion of upper Bhattacharyya parameter bounds in the construction of multi-kernel polar 
codes for BECs, which requires selecting the most reliable ones from all polarized chan-
nels to transmit information [1].

Taking the instantiated expression

of GN in (1) as an example, the Tanner graph shown in Fig. 5 of the multi-kernel polar 
code with the generator matrix of G24 can be constructed as in [7]. As shown in Fig. 5 for 
G24 , the Tanner graph of GN can be devided into n stages indexed from right to left.

For a multi-kernel polar code P with a generator matrix shown in (1), the following 
property and theorems can be established.

Property 1  For P’s one channel indexed by i, whose mixed-nary representation under 
base vector ln−1

0  is (mn−1mn−2 . . .m0)|ln−1
0

 , the digit mk ( 0 ≤ k ≤ n− 1 ) corresponds to 

the subchannel mk of the polar code kernel Glk at stage lk.

Since Property 1 is simply derived from the Tanner graph of the polar code as shown in 
Fig. 5, the proof is omitted.

Theorem 2  For P’s two polarized channels indexed by i and j, whose mixed-nary rep-
resentations are [M(p, ln−1

s+1 ), a,M(q, ls−1
0 )] and [M(p, ln−1

s+1 ), b,M(q, ls−1
0 )], respectively, if 

the Bhattacharyya parameters of kernel Gls satisfy Z(a)
ls

≤ Z
(b)
ls

 , then Z(i)
N ≤ Z

(j)
N  holds.

Theorem  3  For P’s two polarized channels indexed by i and j, and Gls and Glt 
( 0 ≤ s < t ≤ n− 1 ) are both equal to G2 listed in “Appendix 6”, if the mixed-nary rep-
resentations for i and j can be expressed as [M(p, ln−1

t+1 ), 1,M(q, lt−1
s+1 ), 0,M(r, ls−1

0 )] and 
[M(p, ln−1

t+1 ), 0,M(q, lt−1
s+1 ), 1,M(r, ls−1

0 )], respectively, then Z(i)
N ≤ Z

(j)
N  holds.

It can be deduced that if two polarized channels satisfy Theorem 2 or 3, then one of 
them is always more reliable than the other one, which is independent with the trans-
mission channel W and can be empolyed to simplify the construction of multi-kernel 
polar codes as in [15] and [16] .

Employing G2 and G3 in “Appendix 6” for G24 in (29) as an example, it can be easily 
inferred from the upper Bhattacharyya parameter bound expressions listed in “Appen-
dix 6” that Z(0)−

2 ≥ Z
(1)
2  and Z(0)−

3 ≥ Z
(1)−
3 ≥ Z

(2)
3  . Since the transmission channel W is 

(29)G24 = B24 · G⊗2
2 ⊗ G3 ⊗ G2
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a BEC, then W (0)
2 ≤ W

(1)
2  and W (0)

3 ≤ W
(1)
3 ≤ W

(2)
3  hold in terms of reliability accord-

ing to [1]. For the channels 17, 22 and 23 of G24 , their mixed-nary representations 
under the base vector [2,  2,  3,  2] are (1021)|[2,2,3,2] , (1120)|[2,2,3,2] and (1121)|[2,2,3,2] , 
respectively. Therefore, channel 23 is superior to channel 22 in reliability accord-
ing to Theorem 2, and channel 22 is superior to channel 17 according to Theorem 3. 
Similarly applying Theorems 2 and 3 to the remaining polarized channels, a partial 
order graph as shown in Fig. 6 of G24 could be constructed, where A → B denotes that 
channel A is superior to B in terms of reliability. The reliability comparison relation-
ship of polarized channels in the same level in Fig. 6 remains uncertain, which can be 
further determined by other methods such as the distance principle in [7].

These partial order results make it no longer heavy-computationally to compare the 
reliability of all polarized channels under the transmission channel W, which can do 
simplify the construction of multi-kernel polar codes.

It should be noted that the example only applies to BECs. For B-DMCs, the lower 
Bhattacharyya parameter bounds of the used polar code kernels should be investi-
gated at the same time.

G3

G3

G3

G3

G3

G3

G3

G3

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

G2

u0

1121

1120
1111

1110
1101
1100
1021

1020

1011

1010
1001

1000
0121
0120
0111

0110

0101

0100
0021

0020
0011
0010
0001

0000

Stage 0Stage 1Stage 2Stage 3

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

u17

u18

u19

u20

u21

u22

u23

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

Mixed-nary

Fig. 5  Tanner graph of the multi-kernel polar with transformation matrix G24 : G24 = B24 · G⊗2

2
⊗ G3 ⊗ G2 , 

and the mixed-nary representations of the channel indexes are listed on the left
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6 � Conclusions
In this paper, we proposed a novel method to compute the tight upper Bhattachar-
yya parameter bounds of polar code kernels of any dimension, providing a theoreti-
cal basis for the reliability comparison of the polarized channels in the construction 
of the polar codes. The computation of the upper Bhattacharyya parameter bounds 
can be applied to some standard polarization kernels utilizing the construction of the 
sub-matrix common column tree of the channel inputs. Future studies should focus 
on searching for the standard polar code kernels that are suitable for the upper bound 
computation method of this paper or devising an improved method that is suitable 
for any standard polar code kernels.

Appendix
1. Proof of Property 1

∀k ∈ [1, n) and ∀s, t ∈ [0, 2k) , then

 where v(i,ui)
m·2k+s,: =

(

0i−1
0 ,ui, b(m, n− k), b(s, k)

)

.

(30)v
(i,e)

s::2k ,: = {v(i,e)
m·2k+s,: : 0 ≤ m < 2n−k},

23

22

21

17

20

19

16

11

15

18

10

9

14

13

4

3

6

0

2

1

5

8

12

7

 Level 0       Level 1        Level 2          Level 3           Level 4              Level 5             Level 6          Level 7         Level 8

Fig. 6  Channel order graph of a multi-kernel polar code : G24 = B24 · G⊗2

2
⊗ G3 ⊗ G2

Table 1  Comparison of the upper Bhattacharyya parameter bounds of G5 , where Z is the 
abbreviation of Z(W)

Index Results of [3] Results of the proposed method

0 16Z 5Z − 10Z
2 + 10Z

3 − 5Z
4 + Z

5

1 8Z
2

6Z
2 − 9Z

3 + 5Z
4 − Z

5

2 4Z
2

3Z
2 − Z

3 − 2Z
4 + Z

5

3 2Z
2

Z
2 + Z

4 − Z
5

4 Z
4

Z
4
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Assume that �(s)k = g
(

x
(i,ui)

s::2k ,:, 1
l−1
0

)

 and �(t)k = g
(

x
(i,ui)

t::2k ,:, 1
l−1
0

)

 . According to (3), the 

elements of the last k columns of x(i,e)
s::2k ,: are only related to s and k, i.e., �(s)k ,l−k:l−1

= 1k−1
0  . 

Similarly, �(t)k ,l−k:l−1
= 1k−1

0  . Therefore, g
(

x
(i,ui)

s::2k ,:, 1
l−1
0

)

�= 0l−1
0  holds.

For j ∈ [0, l − k) , let’s suppose that �(s)k ,j = 1 . Then, for ∀m ∈ [0, 2n−k),

Since �(s)k ,l−k:l−1
= �

(t)
k ,l−k:l−1

= 1k−1
0  , then,

 holds, i.e., �(t)k ,j = 1 . Therefore, �(s)k = �
(t)
k .

2. Proof of Lemma 2

Let �0 = x0,: ⊕ x2,: and �1 = �0 ∧ � . Since x0,: ⊕ x1,: = x2,: ⊕ x3,: = c , we can derive 
that f (xi,:, c) = f (xi,:, �0) · f (xi,:, �1) , f (x0,:, �0) = f (x3,:, �0) , f (x1,:, �0) = f (x2,:, �0) , 
f (x0,:, �1) = f (x2,:, �1) , and f (x1,:, �1) = f (x3,:, �1).

Let ψ =
√

[f (x0,:, c)+ f (x1,:, c)] · [f (x2,:, c)+ f (x3,:, c)] , According to Lemma 1, we can 
derive that

Since 
∑

yl−1
0

[f (x0,:, �i)+ f (x1,:, �i)] = 2 and 
∑

yl−1
0

√

f (x0,:, �i) · f (x1,:, �i) = Z
∑

�i(W ) , 

the conclusion in Lemma 2 holds.

3. Proof of Theorem 1

The proof is divided into three cases according to the value of k.
(1) k = 0.

Let Z∗ = 
∑

yl−1
0

√

s
(

γ
(i,0)
0,0

)

· s
(

γ
(i,1)
0,0

)

 . According to (16) and (18), both (γ (i,0)
1,0 , γ

(i,0)
1,1 ) and 

(γ
(i,0)
1,1 : γ (i,1)

1,1 ) are mutually different vector pairs with a VCI of c1 . It can be derived that �∗ 
and �′ shown in Theorem 1 denote the CCIs γ (i,0)

1,0 : γ (i,1)
1,j  and γ (i,0)

1,0 : γ (i,1)
1,1−j with the same 

VCI of c1 , respectively. Then, both f
(

γ
(i,0)
1,0 , �∗

)

= f
(

γ
(i,1)
1,j , �∗

)

 and 

f
(

γ
(i,0)
1,0 , �′

)

= f
(

γ
(i,1)
1,1−j , �

′

)

 hold.

According to (19) and (12), Z∗ can be transformed into:

 which matches (14). Then, we can calculate the upper bound of Z∗ defined by

(31)x
(i,ui)

m·2k+s,j
=

((

0i−1
0 ,ui, b(m, n− k), b(s, k)

)

· Gl

)

j
≡ w,w ∈ {0, 1}.

(32)x
(i,ui)

m·2k+t,j
=

((

0i−1
0 ,ui, b(m, n− k), b(t, k)

)

· Gl

)

j
≡ w′,w′ ∈ {0, 1},

(33)
ψ ≤ [f (x0,:, �0)+ f (x1,:, �0)]

√

f (x0,:, �1) · f (x1,:, �1)+
[f (x0,:, �1)+ f (x1,:, �1)]

√

f (x0,:, �0) · f (x1,:, �0)
−

√

f (x0,:, �0) · f (x1,:, �0) · f (x0,:, �1) · f (x1,:, �1).

(34)

∑

yl−1
0

√

[

f
(

γ
(i,0)
1,0 , �′

)

· f
(

γ
(i,0)
1,0 , �∗

)

· s
(

γ
(i,0)
1,0

)

+ f
(

γ
(i,0)
1,1 , �′

)

· f
(

γ
(i,0)
1,1 , �∗

)

· s
(

γ
(i,0)
1,1

)]

·
√

[

f
(

γ
(i,1)
1,1−j , �

′

)

· f
(

γ
(i,1)
1,1−j , �

∗
)

· s
(

γ
(i,1)
1,1−j

)

+ f
(

γ
(i,1)
1,j , �′

)

· f
(

γ
(i,1)
1,j , �∗

)

· s
(

γ
(i,1)
1,j

)]

,
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Since (γ (i,0)
1,0 , γ

(i,0)
1,1 ) and (γ (i,0)

1,1 , γ
(i,1)
1,1 ) are mutually different vector pairs with a VCI of c1 , 

we can attain that 
∑

yl−1
0

[

f
(

γ
(i,0)
1,0 , �′

)

+ f
(

γ
(i,0)
1,1 , �′

)]

= 2 , 
∑

yl−1
0

√

f
(

γ
(i,0)
1,0 , �′

)

· f
(

γ
(i,0)
1,1 , �′

)

= Z
∑

�
′
(W ) , and 

∑

yl−1
0

√

f
(

γ
(i,0)
1,0 , �∗

)

· f
(

γ
(i,1)
1,0 , �∗

)

= Z
∑

�
∗
(W ) . Furthermore, since γ (i,0)

1,0  has 2n−k leaf 

nodes, we can derive that 
∑

yl−1
0

[

f
(

γ
(i,0)
1,0 , �∗

)

· s
(

γ
i,0
1,0

)

+ f
(

γ
(i,0)
1,1 , �∗

)

· s
(

γ
i,0
1,1

)]

= 2n .

T h e r e f o r e , 

Z∗ ≤ 2 ·Z
∑

�
∗
(W ) · (1−Z

∑

�
′
(W )) ·

∑

yl−1
0

√

s
(

γ
(i,0)
1,0

)

· s
(

γ
(i,0)
1,1

)

+2n ·Z
∑

�
′
(W ).

Suppose that the upper bound of 
∑

yl−1
0

√

s
(

γ
(i,0)
1,0

)

· s
(

γ
(i,0)
1,1

)

 is Z1 . Then, we can obtain

(2) 0 < k < n− 1.
By generalizing the case of k = 0 to 0 < k < n− 1 , and let Z∗ = 

∑

yl−1
0

√

s
(

γ
(i,0)
k ,0

)

· s
(

γ
(i,0)
k ,1

)

 , we could derive that

Since 
(

γ
(i,0)
k+1,0

, γ
(i,0)
k+1,1

)

 is a mutually different vector pair with the VCI of ck+1 and the 

CCI of �k+1 , then 
∑

yl−1
0

(

γ
(i,0)
k+1,0

+ γ
(i,0)
k+1,1

)

= 2 and 
∑

yl−1
0

√

γ
(i,0)
k+1,0

· γ (i,0)
k+1,1

= Z
∑

�k+1(W ) hold. Since γ (i,0)
k+1,0

 has 2n−k leaf nodes, we can 

attain 
∑

yl−1
0

[

s
(

γ
(i,0)
k+1,0

)

+ s
(

γ
(i,0)
k+1,1

)]

= 2n−k+1.

T h e r e f o r e , 

Z∗ ≤
(

2− 2 · Z
∑

�k+1(W )

)

·
∑

yl−1
0

√

s
(

γ
(i,0)
k+1,0

)

· s
(

γ
(i,0)
k+1,1

)

+2n−k+1·Z
∑

�k+1(W ).

Suppose that the upper bound of 
∑

yl−1
0

√

s
(

γ
(i,0)
k+1,0

)

· s
(

γ
(i,0)
k+1,1

)

 is Zk+1 , then we obtain

(3) k = n− 1.
According to (16) and (18), 

(

γ
(i,0)
n,0 , γ

(i,0)
n,1

)

 and 
(

γ
(i,0)
n,2 , γ

(i,0)
n,3

)

 are two mutually different 

vector pairs under the VCI of cn . Thus,

(35)

Z∗ ≤
∑

yl−1
0

[

f
(

γ
(i,0)
1,0 , �′

)

+ f
(

γ
(i,0)
1,1 , �′

)]

√

f
(

γ
(i,0)
1,0 , �∗

)

· f
(

γ
(i,1)
1,0 , �∗

)

√

s
(

γ
(i,0)
1,0

)

· s
(

γ
(i,0)
1,1

)

+
∑

yl−1
0

[

f
(

γ
(i,0)
1,0 , �∗

)

· s
(

γ
(i,0)
1,0

)

+ f
(

γ
(i,0)
1,1 , �′∗

)

· s
(

γ
(i,0)
1,1

)]

√

f
(

γ
(i,0)
1,0 , �′

)

· f
(

γ
(i,0)
1,1 , �′

)

−
∑

yl−1
0

√

f
(

γ
(i,0)
1,0 , �′

)

· f
(

γ
(i,0)
1,1 , �′

)

√

f
(

γ
(i,0)
1,0 , �∗

)

· f
(

γ
(i,1)
1,0 , �∗

)

·
√

s
(

γ
(i,0)
1,0

)

· s
(

γ
(i,0)
1,1

)

(36)Z∗ ≤ 2 · Z
∑

�
∗
(W ) ·

(

1− Z
∑

�
′
(W )

)

· Z1 + 2n · Z
∑

�
′
(W ) = Z0.

(37)

Z∗ ≤
∑

yl−1
0

(

γ
(i,0)
k+1,0

+ γ
(i,0)
k+1,1

)

√

s
(

γ
(i,0)
k+1,0

)

· s
(

γ
(i,0)
k+1,1

)

+
∑

yl−1
0

[

s
(

γ
(i,0)
k+1,0

)

+ s
(

γ
(i,0)
k+1,1

)]
√

γ
(i,0)
k+1,0

· γ (i,0)
k+1,1

−

2 ·
∑

yl−1
0

√

s
(

γ
(i,0)
k+1,0

)

· s
(

γ
(i,0)
k+1,1

)
√

γ
(i,0)
k+1,0

· γ (i,0)
k+1,1

.

(38)Z∗ ≤
(

2− 2 · Z
∑

�k+1(W )

)

· Zk+1 + 2n−k+1 · Z
∑

�k+1(W ).
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 matches Lemma 2 and the expression of Zk in (24) can be derived for k = n− 1.
Therefore, the conclusion of Theorem 1 holds.

4. Proof of Theorem 2

Since the mixed-nary representations of i and j differ only in the sth digit, it can be directly 
concluded according to Property 1 that the inputs ui and uj are processed by channels with 
the same index of the same polar code kernel in each stage before and after stage s. There-
fore, the influence of the polar kernels on the reliability of channels i and j is the same in all 
stages except the sth stage.

In stage s, since the Bhattacharyya parameters of the polar code kernel satisfy Z(a)
ls

≤ Z
(b)
ls

 , 
there is Z(i)

N ≤ Z
(j)
N .

5. Proof of Theorem 3

Since the mixed-nary representations of i and j differ only in the sth and tth digits, it can be 
deduced according to Property 1 as in Theorem 2 that the influence of the polar kernels on 
the reliability of channels i and j is the same in all stages except stage s and t

Therefore, the reliability comparison of channels i and j can be attributed to the compari-
son between channels 1 and 2, whose binary representations are (01) and (10), respectively, 
of the polar code with a generator matrix of G4 = G2 ⊗ G2.

According to [16], Z(2)
4 ≤ Z

(1)
4  . Therefore, Z(i)

N ≤ Z
(j)
N  holds.

6. The Bhattacharyya parameter upper bounds of the polar code kernels with dimensions 

ranging from 2 to 6

For some standard polar code kernels with dimension of l(∈ [2, 6]) , the upper Bhattachar-
yya parameter bounds computed by the proposed method are as follows:

For G2 =
[

1 0

1 1

]

 , Z
(0)−
2 = 2Z − Z2

Z
(1)
2 = Z2

 .

For G3 =





1 0 0

1 1 0

1 0 1



 , 
Z
(0)−
3 = 3Z − 3Z2 + Z3

Z
(1)−
3 = 2Z2 − Z3

Z
(2)
3 = Z2

 .

For G4 =







1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1






 , 

Z
(0)−
4 = 4Z − 6Z2 + 4Z3 − Z4

Z
(1)−
4 = 4Z2 − 4Z3 + Z4

Z
(2)−
4 = 2Z2 − Z4

Z
(3)
4 = Z2

 .

For G5 =











1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 1 1 0 1











 , 

Z
(0)−
5 = 5Z − 10Z2 + 10Z3 − 5Z4 + Z5

Z
(1)−
5 = 6Z2 − 9Z3 + 5Z4 − Z5

Z
(2)−
5 = 3Z2 − Z3 − 2Z4 + Z5

Z
(3)−
5 = Z2 + Z4 − Z5

Z
(4)
5 = Z4

 .

(39)

∑

yl−1
0

√

s
(

γ
(i,0)
n−1,0

)

· s
(

γ
(i,0)
n−1,1

)

=
∑

yl−1
0

√

[

f
(

γ
(i,0)
n,0 , �n

)

+ f
(

γ
(i,0)
n,1 , �n

)]

·
[

f
(

γ
(i,0)
n,2 , �n

)

+ f
(

γ
(i,0)
n,3 , �n

)]
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For G6 =















1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 1 1 1 0 0

0 0 1 0 1 0

0 0 1 1 1 1















 , 

Z
(0)−
6 = 6Z − 15Z2 + 20Z3 − 15Z4 + 6Z5 − Z6

Z
(1)−
6 = 9Z2 − 18Z3 + 15Z4 − 6Z5 + Z6

Z
(2)−
6 = 4Z2 − 2Z3 − 4Z4 + 4Z5 − Z6

Z
(3)−
6 = 4Z4 − 4Z5 + Z6

Z
(4)−
6 = 2Z2 − Z4

Z
(5)
6 = Z4

 , where Z is 

the abbreviation of the Bhattacharyya parameter Z(W) of transmission channel W.

Abbreviations
AWGN: Additive White Gaussian Noise; BEC: Binary Erasure Channel; B-DMC: Binary Input Discrete Memoryless Channel; 
CCI: Common Column Indicator; CCV: Common Column Vector; eMBB: Enhanced Mobile Broadband; PW: Polarization 
Weight; SC: Successive Cancellation; SNR: Signal-to-Noise Ratio; VCI: Valid Column Indicator.

Authors’ contribution
TZ carried out the tight upper Bhattacharyya parameter calculation method and drafted the manuscript. SL helped to 
improve the calculation method and participated in drafting the manuscript. BY helped revise and improve the whole 
paper. All authors read and approve the final manuscript.

Funding
This work is supported by the Research Fund for the Doctoral Program (JY2019B162), and in part by Research Fund for 
the Doctoral Program (JSY2018029).

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 17 August 2020   Accepted: 22 March 2021

References
	1.	 E. Arikan, Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input 

memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009). https://​doi.​org/​10.​1109/​TIT.​2009.​20213​79
	2.	 3GPP: 5G; NR; Multiplexing and channel coding. Technical Specification (TS) 38.212, 3rd Generation Partnership 

Project (3GPP). Version 15.1.0 (2018)
	3.	 S.B. Korada, E. Şaşoğlu, R. Urbanke, Polar codes: characterization of exponent, bounds, and constructions. IEEE Trans. 

Inf. Theory 56(12), 6253–6264 (2010). https://​doi.​org/​10.​1109/​TIT.​2010.​20809​90
	4.	 M. Benammar, V. Bioglio, F. Gabry, I. Land, Multi-kernel polar codes: Proof of polarization and error exponents, in 2017 

IEEE Information Theory Workshop (ITW), pp. 101–105 (2017). https://​doi.​org/​10.​1109/​itw.​2017.​82779​49
	5.	 N. Presman, O. Shapira, S. Litsyn, Mixed-kernels constructions of polar codes. IEEE J. Sel. Areas Commun. 34(2), 

239–253 (2016). https://​doi.​org/​10.​1109/​JSAC.​2015.​25042​78
	6.	 F. Gabry, V. Bioglio, I. Land, J. Belfiore, Multi-kernel construction of polar codes, in 2017 IEEE International Conference 

on Communications Workshops (ICC Workshops), pp. 761–765 (2017). https://​doi.​org/​10.​1109/​ICCW.​2017.​79627​50
	7.	 V. Bioglio, F. Gabry, I. Land, J. Belfiore, Multi-kernel polar codes: concept and design principles. IEEE Trans. Commun. 

(2020). https://​doi.​org/​10.​1109/​TCOMM.​2020.​30062​12
	8.	 M. Hanif, M. Ardakani, Polar codes: bounds on Bhattacharyya parameters and their applications. IEEE Trans. Com-

mun. 66(12), 5927–5937 (2018). https://​doi.​org/​10.​1109/​TCOMM.​2018.​28674​75
	9.	 R. Mori, T. Tanaka, Performance and construction of polar codes on symmetric binary-input memoryless channels, 

in 2009 IEEE International Symposium on Information Theory, pp. 1496–1500 (2009). https://​doi.​org/​10.​1109/​ISIT.​2009.​
52058​57

	10.	 R. Mori, T. Tanaka, Performance of polar codes with the construction using density evolution. IEEE Commun. Lett. 
13(7), 519–521 (2009). https://​doi.​org/​10.​1109/​LCOMM.​2009.​090428

	11.	 P. Trifonov, Efficient design and decoding of polar codes. IEEE Trans. Commun. 60(11), 3221–3227 (2012). https://​doi.​
org/​10.​1109/​TCOMM.​2012.​081512.​110872

	12.	 I. Tal, A. Vardy, How to construct polar codes. IEEE Trans. Inf. Theory 59(10), 6562–6582 (2013). https://​doi.​org/​10.​
1109/​TIT.​2013.​22726​94

	13.	 P. Trifonov, On construction of polar subcodes with large kernels, in 2019 IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 1932–1936 (2019). https://​doi.​org/​10.​1109/​ISIT.​2019.​88496​72

	14.	 H. Vangala, E. Viterbo, Y. Hong, A comparative study of polar code constructions for the AWGN channel. arXiv:​ Infor​
matio​nTheo​ry (2015)

https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/TIT.2010.2080990
https://doi.org/10.1109/itw.2017.8277949
https://doi.org/10.1109/JSAC.2015.2504278
https://doi.org/10.1109/ICCW.2017.7962750
https://doi.org/10.1109/TCOMM.2020.3006212
https://doi.org/10.1109/TCOMM.2018.2867475
https://doi.org/10.1109/ISIT.2009.5205857
https://doi.org/10.1109/ISIT.2009.5205857
https://doi.org/10.1109/LCOMM.2009.090428
https://doi.org/10.1109/TCOMM.2012.081512.110872
https://doi.org/10.1109/TCOMM.2012.081512.110872
https://doi.org/10.1109/TIT.2013.2272694
https://doi.org/10.1109/TIT.2013.2272694
https://doi.org/10.1109/ISIT.2019.8849672
http://arxiv.org/abs/InformationTheory
http://arxiv.org/abs/InformationTheory


Page 21 of 21Zhang et al. J Wireless Com Network         (2021) 2021:76 	

	15.	 C. Schurch, A partial order for the synthesized channels of a polar code, in 2016 IEEE International Symposium on 
Information Theory (ISIT), pp. 220–224 (2016). https://​doi.​org/​10.​1109/​ISIT.​2016.​75412​93

	16.	 W. Wu, P.H. Siegel, Generalized partial orders for polar code bit-channels. IEEE Trans. Inf. Theory 65(11), 7114–7130 
(2019). https://​doi.​org/​10.​1109/​TIT.​2019.​29302​92

	17.	 G. He, J. Belfiore, I., Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang, Y. Ge, R. Zhang, et al. Beta-expansion: a theoretical 
framework for fast and recursive construction of polar codes, in 2017 IEEE Global Communications Conference, pp. 
1–6 (2017). https://​doi.​org/​10.​1109/​GLOCOM.​2017.​82541​46

	18.	 S.B. Korada, Polar codes for channel and source coding. PhD thesis, École Polytechnique Fédérale de Lausanne, 
Lausanne(Switzerland) (2009). https://​doi.​org/​10.​5075/​epfl-​thesis-​4461

	19.	 L. Zhang, Z. Zhang, X. Wang, Polar code with block-length n = 3 n, in 2012 International Conference on Wireless Com-
munications and Signal Processing (WCSP), pp. 1–6 (2012). https://​doi.​org/​10.​1109/​WCSP.​2012.​65429​82

	20.	 L. Cheng, L. Zhang, Q. Sun, Classification of polarizing matrices based on bhattacharyya parameters, in 2018 12th 
IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 159–163 (2018). https://​doi.​
org/​10.​1109/​ICASID.​2018.​86931​30

	21.	 R. Mori, T. Tanaka, Source and channel polarization over finite fields and Reed-Solomon matrices. IEEE Trans. Inf. 
Theory 60(5), 2720–2736 (2014). https://​doi.​org/​10.​1109/​TIT.​2014.​23121​81

	22.	 H. Lin, S. Lin, K. Abdelghaffar, Linear and nonlinear binary kernels of polar codes of small dimensions with maximum 
exponents. IEEE Trans. Inf. Theory 61(10), 5253–5270 (2015). https://​doi.​org/​10.​1109/​TIT.​2015.​24692​98

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ISIT.2016.7541293
https://doi.org/10.1109/TIT.2019.2930292
https://doi.org/10.1109/GLOCOM.2017.8254146
https://doi.org/10.5075/epfl-thesis-4461
https://doi.org/10.1109/WCSP.2012.6542982
https://doi.org/10.1109/ICASID.2018.8693130
https://doi.org/10.1109/ICASID.2018.8693130
https://doi.org/10.1109/TIT.2014.2312181
https://doi.org/10.1109/TIT.2015.2469298

	Computing tight upper bounds for Bhattacharyya parameters of binary polar code kernels with arbitrary dimension
	Abstract 
	1 Introduction
	1.1 Methodsexperimental

	2 Preliminaries
	2.1 Symbols and definitions
	2.2 The Bhattacharyya parameters of the polar code kernels

	3 The upper Bhattacharyya parameter bound
	3.1 The common column binary tree
	3.2 The calculation of the upper bound
	3.2.1 The common column binary tree construction
	3.2.2 The common factor extraction
	3.2.3 The calculation feasibility testing
	3.2.4 The upper bound calculation based on pattern matching


	4 Illustrative examples
	5 Results and discussion
	5.1 The results and computational complexity
	5.2 The scope of application
	5.3 Polarization effect
	5.4 Comparisons and analyses
	5.5 Illustrative application in construction of multi-kernel polar codes

	6 Conclusions
	References


