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ABSTRACT 

Räsänen, Aleksi 
Developing and comparing methods for mapping habitat types and 
conservation values using remote sensing data and GIS methods 
Jyväskylä: University of Jyväskylä, 2014, 77 pp. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 284) 
ISBN 978-951-39-5711-7 (nid.) 
ISBN 978-951-39-5712-4 (PDF) 
Yhteenveto: Elinympäristötyyppien ja suojeluarvojen kartoitus kaukokartoitus-
aineistojen ja paikkatietomenetelmien avulla 
Diss. 

In this research, new methods for mapping habitat patches and types, 
conservation values, and species richness were developed in order to locate 
areas that are or are not valuable from a conservation perspective. The study 
was performed in two primarily forested southern boreal zone landscapes. The 
main datasets were airborne laser scanning data and high spatial resolution 
multispectral images. First, segmentation methods for delineating habitat 
patches were compared by means of supervised evaluation measures and 
visual interpretation. It was found that choosing the best segmentation is often 
arbitrary and that supervised measures give inconsistent results. Second, 
classification of the delineated segments was performed using a random forest 
classifier and several different features derived from remotely sensed datasets. 
For classification, several features were needed in order to map different habitat 
types and to get the highest classification accuracy. Third, different habitat 
types were given values, based on potential number of species, their rarity and 
naturalness. Conservation value maps were then drawn using different 
methodologies, taking habitat type connectivity and complementarity into 
account. The resulting maps were compared with maps of selected ecosystem 
services. Conservation value maps differed largely from each other, and thus 
great care should be used when mapping conservation values. Fourth, habitat 
type classification was used together with topographic, geodiversity, and other 
landscape features to explain and predict vascular plant species richness 
patterns. Most of the variance in species richness could be explained through 
mean altitude, which had a negative relationship with species richness, and 
landscape variability, which had a positive relationship. While the methods 
developed here can be utilized (e.g. for land-use planning), different 
uncertainties must be taken into account. 
 
Keywords: Airborne laser scanning; conservation value; habitat type; object-
based image analysis; segmentation; species richness; spectral images. 
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1 INTRODUCTION  

1.1 General introduction 

The loss of biodiversity and the degradation of ecosystem functioning have 
been noted as among the most serious – if not the most serious – environmental 
problems on Earth. Changes in land use are a major driver in this loss, both 
globally (Rockström et al. 2009) and nationally in Finland (Rassi et al. 2010). 
Thus, land use and the planning of land use play a key role in addressing the 
loss of biodiversity. In many planning processes, such as land use planning or 
environmental impact assessment, evaluation of the natural environment has 
been used in order to prioritize areas for development or for conservation 
(Margules and Usher 1981, Smith and Theberge 1986, Spellerberg 1992). At least 
in Finland, however, it has been noted that ecological impact assessments 
performed in planning processes are often superficial. They are done too late in 
the process, they do not consider broader treatments of biodiversity and 
ecosystem services, and they are not integrated well enough into the process 
(Söderman 2012). 

One of the approaches for early stage ecological impact assessment is 
habitat ranking (Rossi and Kuitunen 1996, Hilli and Kuitunen 2005). In habitat 
ranking, habitat types are given values on the basis of their potential number of 
species and species’ conservation status. In other words, in this approach, 
habitat types that potentially include a large number of species overall and 
many threatened species are the most valuable. The mapping of habitat types is 
performed manually by experts by means of interpreting different maps. In this 
study, habitat ranking is automated, updated and evaluated critically. 
Automation means that geographic information systems (GIS) and geographic 
information analysis methods are used and, for the most part, data is remotely 
sensed. 

Traditionally, the habitat ranking method took into account vascular plant 
species and vertebrates. In this study, however, only vascular plants are 
considered (III, IV). The reason why only plants are considered is that even 
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though plants are just one taxon and partly depend on other organisms, they 
are the basis of the food chain (Whittaker et al. 2001). 

The introductory chapter provides a background on the main topics of this 
research, and some of the key concepts are defined and discussed. The 
introduction starts with a discussion of conservation values and mapping 
methods for different conservation values. After this, an object-based image 
analysis (OBIA) methodology for mapping habitat types is presented, with a 
focus on segmentation evaluation (topic of I) and data selection (II). Then, 
different approaches and principles of spatial conservation prioritization (III) 
are discussed. The introduction ends with a short discussion about vascular 
plant species richness and modeling of species richness (IV). 

1.2 Explaining conservation values 

Conservation value (Fig. 1) can be considered as the value of nature from a 
conservation perspective. High conservation value areas are those that should 
primarily be conserved. Nonetheless, the concept of conservation value is not 
widely established. Generally speaking, the concept itself can be rather 
problematic, since in evaluations of (natural) areas the focus is not always on 
conservation. In terms of why something may have a high conservation value, 
several different criteria or principles have been suggested. Arguably, the most 
used principle is biodiversity, which is usually presented as consisting of three 
levels: genes, species and ecosystems. Usually, however, instead of considering 
all levels of biodiversity, often the focus is on species diversity (Orme et al. 2005, 
Wilson et al. 2006), and some species (e.g. threatened, rare, endemic, keystone) 
can be regarded as more valuable or targeted for conservation (Margules and 
Usher 1981, Smith and Theberge 1986, Groves et al. 2002, Duelli and Obrist 2003, 
Orme et al. 2005).  

Biodiversity or even species diversity is tedious to measure as such; 
therefore, surrogates for biodiversity are usually used. Surrogates include, for 
example, habitat types or a subset of species (Margules and Pressey 2000, 
Pressey 2004). There are also many different indices for measuring species or 
other types of diversity (Tuomisto 2010). One set of indices measures diversity 
in a community or a location as -diversity, differentiation of diversity between 
communities or locations as -diversity, and diversity inside an area (i.e. a 
combination of  and ) as -diversity (Whittaker 1960). Another set of indices 
combines evaluations of richness and evenness of the species composition. 
These indices include, for example, the Shannon index and Simpson index 
(Tuomisto 2010). 

Biodiversity is not the only suggested principle for conservation. 
Geodiversity can be regarded as important as such (Gray 2013) or as providing 
conditions for biodiversity (Parks and Mulligan 2010). Naturalness (i.e. lack of 
human influence) has been argued to be the basis for conservation and even for 
deciding how much diversity should exist (Angermeier 2000). Terms such as 
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ecological or biological integrity can also be related to the natural state of a 
system (Karr 1990, Angermeier and Karr 1994). Ecological health (Karr 1990), 
however, refers to ecosystem functioning and can be defined metaphorically as 
an absence of distress (Callicott et al. 1999). 

FIGURE 1 A simplified illustration of some of the factors that reduce or increase the 
conservation value of something. In the end, conservation value is an 
anthropogenic measurement set by humans. Some biophysical or geophysical 
factors may reduce or increase conservation value, but humans set the value 
of these factors. 

Ecosystem services, which are used in conservation decisions more and more 
widely, can be defined in numerous ways. Roughly speaking, they are the 
contributions that natural ecosystems provide for human well-being. Ecosystem 
services can be divided into four main types: provisioning services, regulating 
services, habitat services and cultural services (De Groot et al. 2010). Ecosystem 
services can be understood as providing conditions of instrumental values of 
nature to humans, as opposed to intrinsic values of nature (Chan et al. 2012). 
Intrinsic value means that something has a value as an end in itself. Instrumental 
value is the value of something as a means to another’s ends (Callicott 1997). 
Another way to define these terms is that if something has intrinsic value, it is 
valuable as such, independent of the valuer. Additionally, if something has 
instrumental value, it is regarded as valuable by the valuer (Justus et al. 2009). In 
other words, all of the value given to nature can be considered as instrumental 
value, since it needs to be given by someone. In this manner, the “intrinsic” value 
of biodiversity or nature, irrespective of the direct or indirect benefits it provides, 
can also be defined as an ecosystem service (Mace et al. 2012). 

Through the application of different principles, two schools of conservation 
biology can be described. These schools are not antagonistic but complementary, 
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and different principles can also be used together. For the compositionalist 
school, humans are considered to be separate from nature, and emphasized 
principles include integrity and diversity. The functionalist school regards 
humans as being a part of nature, and it emphasizes principles such as ecosystem 
services and ecological health (Callicott et al. 1999). 

In addition to certain defining principles, a plethora of different criteria 
have been suggested for conservation. Such criteria include principles, but also 
other factors that are taken into account when conservation decisions are made. 
These criteria can be divided into two categories. Scientific criteria are 
measurable and can consist of biodiversity, rarity and naturalness. Political 
criteria are not based on biological, ecological or biogeographic concepts. These 
criteria include availability and amenity value (Margules and Usher 1981). It can 
be argued, however, that all conservation criteria are essentially political or at 
least normative (i.e. value laden) (Callicott et al. 1999, Kalamandeen and Gillson 
2007). 

When nature is valued, valuation can also be divided into subjective and 
objective components (Geneletti 2003, Villarroya and Puig 2012). It has been 
claimed, nonetheless, that all valuation is performed by humans (Justus et al. 
2009). In this manner, subjectivity cannot be removed from planning decisions. 
Therefore, it is not possible to be objective; instead, one should be explicit in the 
valuation and selection of criteria (Smith and Theberge 1986, Margules and 
Pressey 2000, Pressey 2004). Overall, it is crucial that conservation criteria are 
selected with care, since they define the actions that are done in conservation or 
in land use planning (Angermeier 2000, Kalamandeen and Gillson 2007). 

1.3 Spatial distribution of conservation values 

For mapping different conservation values, several different solutions have been 
suggested. In this work, ‘mapping’ means visualizing or analyzing spatial 
distribution of something (e.g. conservation values) on maps. When biodiversity 
or species distributions have been mapped, both direct and indirect methods are 
suggested. Direct mapping means the identification of a single species or of 
species assemblages with remotely sensed information, such as satellite imagery. 
In indirect mapping, some environmental variables are used as surrogates 
(Nagendra 2001, Turner et al. 2003). 

Different indirect methods include using spectral values or the spatial 
variation of spectral values as proxies for species diversity (Nagendra 2001, 
Turner et al. 2003, Rocchini et al. 2010, Nagendra et al. 2013). Other habitat 
requirements can also be related to the distribution of species or species richness 
(Nagendra 2001, Turner et al. 2003). The term ‘habitat’ is usually defined as the 
resources that are present in an area and needed by organisms. The term ‘habitat 
type’ is defined as a mappable land unit in which vegetation and environmental 
factors are fairly homogenous. However, the terms ‘habitat’ and ‘habitat type’ are 
often used interchangeably (Corsi et al. 2000). 
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Remote sensing based habitat type mapping is often based on land use / 
land cover classification. Land cover refers to biophysical surface characteristics 
of the Earth and land use to land utilization by humans (e.g. Kerr and Ostrovsky 
2003, McDermid et al. 2005). Habitat types can be inferred from land cover only 
or from land cover and other environmental factors (McDermid et al. 2005). One 
methodological approach for mapping habitat types is explained in Section 1.4. 
Habitats, on the other hand, are usually mapped using species distribution 
models (for SDMs, see Section 1.6). In SDMs, environmental and spatial 
characteristics needed by different species are mapped instead of vegetation or 
habitat type (Elith and Leathwick 2009). 

When the distribution of species or another level of biodiversity is known, 
spatial conservation prioritization can be used for mapping sites with the highest 
conservation value (Margules and Pressey 2000, Moilanen et al. 2005, Moilanen et 
al. 2009). Spatial conservation prioritization approaches are explained in more 
detail in Section 1.5. 

Mapping approaches also exist for other conservation principles than 
biodiversity. For naturalness, different simple indices have been constructed. In 
these indices, the highest value is given to the most natural environment, and the 
state of naturalness is examined using remote sensing data interpretation and 
fieldwork (Machado 2004, Villarroya and Puig 2012). In more complex indices, 
several metrics of human influence can be combined in the assessment of 
integrity or naturalness (e.g. McGarigal et al. 2011). The state of naturalness or 
habitat condition can also be included in habitat type mapping methods (Vanden 
Borre et al. 2011, Spanhove et al. 2012, Nagendra et al. 2013). Remote sensing 
methods can be used to map invasive species (He et al. 2011, Nagendra et al. 2013) 
that lessen the state of naturalness and can reduce the instrumental values of 
nature. 

Ecosystem services have been quantified by using direct observations, 
proxy data or process models (Egoh et al. 2012, Maes et al. 2012). The simplest 
method for assessing the potential supply of ecosystem services is a reference 
table or assessment matrix. In these matrices, regions are divided into different 
land use, land cover or habitat types, and the potential production of ecosystem 
services in them is valued either monetarily or otherwise (Costanza et al. 1997, 
Troy and Wilson 2006, Burkhard et al. 2012). There are also, however, more 
sophisticated efforts for mapping single or many ecosystem services. In these 
approaches as well, the primary GIS-data has been land cover or habitat type 
maps, but other GIS-datasets have also been used (Egoh et al. 2012, Maes et al. 
2012, Crossman et al. 2013). The focus in ecosystem service mapping can be either 
in biophysically (or monetarily) accurate predictions (e.g. Troy and Wilson 2006, 
Willemen et al. 2008, Nelson et al. 2009) or in spatially explicit mapping (e.g. for 
making spatial comparisons or prioritizations of the studied areas) (Raudsepp-
Hearne et al. 2010, Vihervaara et al. 2010, Egoh et al. 2011, Burkhard et al. 2012). 
Finally, approaches exist for mapping conservation value per se by means of a 
diverse set of criteria (e.g. Geneletti 2007, Samu et al. 2008). In many of the 
approaches for mapping conservation values, habitat type or land cover maps are 
used (e.g. Kerr and Ostrovsky 2003, Turner et al. 2003, Gillespie et al. 2008, 
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Newton et al. 2009). In the next section, one methodological framework for 
mapping habitat types is introduced. 

1.4 Object-based image analysis (OBIA) 

1.4.1 Introduction to OBIA 

OBIA, or Geographic object-based image analysis (GEOBIA), has been an 
emerging topic in remote sensing and geographic information science literature 
since the early 2000s, and it has even been noted to be a paradigm (Castilla and 
Hay 2008, Blaschke et al. 2014). OBIA differs from traditional pixel-based 
analyses. In pixel-based analyses, pixels are the main studied units. In OBIA, 
pixels are instead merged into objects using segmentation. In OBIA classification, 
segments are classified rather than pixels (Blaschke 2010, Blaschke et al. 2014). 
Ideally and in the widest terms, OBIA should mimic human observations by 
means of, among other methods, contextual and multi-scale analysis (Hay and 
Castilla 2008, Blaschke et al. 2014). In contextual analysis, objects are often not 
observed being in isolation; instead, their relationships to neighboring areas are 
surveyed. Multi-scale analysis means, for instance, that when observed from 
above (e.g. from an aerial or satellite image), a forest area consists of forest 
patches made up of individual trees and gaps in the canopy. Finally, OBIA is not 
only object-based; instead, it can also be object-oriented. More specifically, objects 
are often not only used in the first part of the analysis; they can also be altered 
during the analysis from primitive objects to objects of interest (Baatz et al. 2008). 
In this research, however, OBIA is used in a narrower scope of meaning through 
a typical segmentation–classification approach, using single scale and including 
no contextual information. 

Compared to pixel-based analyses, the advantages of OBIA are also 
numerous in this narrower approach. Objects produced by OBIA are more 
meaningful entities and a more realistic representation of a landscape, especially 
when very high resolution (pixel size < 5 m) remote sensing data are used 
(Castilla and Hay 2008). Resulting maps do not suffer as much from salt-and-
pepper effects (Blaschke 2010). In other words, resulting maps have more 
contiguous areas instead of pixels with varying values. Additionally, OBIA has 
produced better classification accuracies than pixel-based analyses (e.g. Bock et al. 
2005, Díaz Varela et al. 2008, Whiteside et al. 2011, Yan et al. 2006). The availability 
of high resolution data, together with advances in computer software, can even 
be seen as two main reasons for doing OBIA analyses (Blaschke 2010). OBIA, 
however, is no panacea; pixel-based approaches may also give as good or better 
results. In some studies, OBIA has not given a statistically significantly better 
classification accuracy compared to pixel-based analysis (Dingle Robertson and 
King 2011, Duro et al. 2012). Moreover, although objects are more meaningful in 
OBIA, small rare classes can easily be merged into larger objects (Dingle 
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Robertson and King 2011). OBIA is also more labor-intensive than pixel-based 
analysis (Duro et al. 2012). 

1.4.2 Segmentation and segmentation evaluation (I) 

Segmentation is usually the first part of OBIA. In segmentation, images are 
partitioned into image objects (i.e. segments), which are prototypes of geographic 
objects or landscape objects, such as patches (Castilla and Hay 2008, Hay and 
Castilla 2008). In segmentation, the goal is to create meaningful objects (Castilla 
and Hay 2008). Meaningful objects are representations of geographic objects 
(Castilla and Hay 2008), mimic real-world objects (Zhang et al. 2008, Clinton et al. 
2010), or minimize heterogeneity inside regions and maximize heterogeneity 
between regions (Zhang et al. 2008, Hou et al. 2013). Remote sensing 
segmentation methods are a special case of more general image segmentation 
methods, which have been also utilized in remote sensing for decades (Blaschke 
2010). Segmentation methods can be divided into two types: similarity or region-
based segmentation and discontinuity-based segmentation. In region-based 
segmentation, a similarity measure is used to find suitable regions. In 
discontinuity-based segmentation, discontinuities of the images, usually 
boundaries, are detected (Zhang 1997, Gonzales and Woods 2002). These groups 
are, however, only ideal types. For instance, watershed segmentation combines 
approaches from both groups. In watershed segmentation, boundaries between 
basin areas are sought by flooding the image (Gonzales and Woods 2002). 

For deciding when segmentation is good (i.e. meaningful and appropriate), 
segmentation evaluation has generally been performed (Clinton et al. 2010, 
Marpu et al. 2010). One of the stated reasons for performing segmentation 
evaluation has been the argument that segmentation quality affects classification 
accuracy. In other words, it has been argued that better segmentations give 
higher classification accuracies (Kim et al. 2009, Clinton et al. 2010, Ke et al. 2010, 
Gao et al. 2011).  

Segmentation evaluation has concentrated on developing new 
segmentation methods, comparing them, and optimizing parameters inside 
segmentation methods. In general, segmentation evaluation can be divided into 
two major categories: subjective (visual) evaluation and objective evaluation. 
Objective evaluation can be further divided into system-level evaluation, which 
evaluates the overall system in which segmentation is performed, and direct 
evaluation (Zhang et al. 2008). Segmentation quality has been assessed using final 
classification output as a system, for example (Smith 2010, Wang et al. 2010, Gao 
et al. 2011). Direct evaluation can be either analytical or empirical, with the former 
evaluating the method itself and the latter its results. Empirical methods consist 
of supervised and unsupervised methods (i.e. if ground truth is used as a 
reference or not) (Zhang et al. 2008). 

In terms of remote sensing, analytical methods have been used in 
segmentation evaluation (Hay et al. 2003). However, most segmentation 
evaluation has been performed using unsupervised and supervised methods. In 
unsupervised segmentation evaluation, the most used approaches have arguably 
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been based on heterogeneity and/or spatial autocorrelation. One approach seeks 
to minimize variance within segments and spatial autocorrelation between 
segments (Espindola et al. 2006, Gao et al. 2011, Yue et al. 2012). In another 
approach, optimal segmentations are hypothesized to have only low 
autocorrelation between segments (Kim et al. 2008, 2009). In supervised 
segmentation evaluation, either area-based or location-based measures have been 
used. Area-based measures evaluate if segmentation is either too coarse (under-
segmentation) or too fine (over-segmentation). Over-segmentation and under-
segmentation measures can also be combined. Location-based measures, on the 
other hand, are based on distances between segment centroids and reference 
polygon centroids or distances between boundary pixels (e.g. Clinton et al. 2010). 
Supervised measures of quality have been mostly applied when extracting 
features with clear borders, usually in urban and agricultural areas (Lucieer and 
Stein 2002, Möller et al. 2007, Zhan et al. 2005, Tian and Chen 2007, Weidner 2008, 
Clinton et al. 2010, Wang et al. 2010). In some studies, however, quality measures 
have been used in natural area segmentations (Carleer et al. 2005, Ke et al. 2010, 
Bar Massada et al. 2012). Another example of supervised segmentation evaluation 
is the comparison of thematic quality between segments and reference polygons 
(Pekkarinen 2002, Mustonen et al. 2008). Supervised segmentation evaluation can 
be performed using automated approaches with many reference polygons inside 
a large area (e.g. Clinton et al. 2010) or only a couple of distinct reference 
polygons and semi-automated approaches (e.g. Marpu et al. 2010). 

1.4.3 Data and features in OBIA (II) 

In OBIA studies, the most commonly used data types have been satellite or aerial 
imagery, often in very high spatial resolution (Blaschke 2010). It has been stated 
that one of the additional advantages of OBIA is its better chance of allowing 
textural analysis (Benz et al. 2004). Texture refers to changes in image brightness 
values (i.e. if neighboring pixel values are similar or different). Different textural 
features have also been used in pixel-based analyses (e.g. Coburn and Roberts 
2004), but they are perhaps more meaningful in OBIA, since texture per image 
object can be quantified (Benz et al. 2004). In terms of different textural features, 
probably the most commonly used approach is the Gray-Level Co-occurrence 
Matrix (GLCM, Haralick et al. 1973, Haralick 1979) features, which are widely 
used in OBIA analyses (e.g. Yu et al. 2006, Johansen et al. 2007, Kim et al. 2009, 
2011, Murray et al. 2010, Han et al. 2012, Sasaki et al. 2012). The GLCM quantifies 
how often different combinations of pixel brightness values occur, and several 
features can be calculated using the matrix (Haralick et al. 1973, Haralick 1979). 
There are also other approaches for quantifying texture and extracting features. 
These include semivariograms, filters and neural networks (Balaguer et al. 2010, 
Li et al. 2011), as well as wavelet features, which can quantify orderliness in 
imagery in larger neighborhoods than allowed by the GLCM (Arivazhagan and 
Ganesan 2003, Ruiz et al. 2004, Ouma et al. 2008, Su et al. 2012, Wang et al. 2012). It 
can also be argued that whereas the GLCM quantifies fine-scale texture, wavelets 
extract coarse-scale patterns (Morgan et al. 2010). 
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In addition to the multispectral images, also other data types have been 
used in OBIA studies. One of the most used data types is airborne laser scanning 
(ALS), a.k.a light detection and ranging (lidar) data. The usage of ALS has 
become increasingly popular in OBIA studies (Blaschke 2010). ALS is an active 
remote sensing technique, compared to passive techniques such as aerial or 
satellite imagery. In ALS, the sensor emits laser pulses that hit target surfaces and 
record their reflections; in passive sensors, only the reflectance of other 
electromagnetic radiation is recorded. The ALS reveals features that cannot be 
seen from above using passive sensors. Using ALS data, the three-dimensional 
structure of vegetation or buildings and a high-resolution digital terrain model 
(DTM) can be accurately quantified. The usefulness of ALS is evident, for 
instance, in forest habitats (Lefsky et al. 2002, Vierling et al. 2008). In the case of 
boreal forests, spectral reflectance seen from imagery does not give information 
about tree canopy height and soil moisture, for instance, which are vital 
characteristics in boreal forest habitat type mapping. In OBIA, vegetation 
structure has been quantified with ALS data (Antonorakis et al. 2008, Ke et al. 
2010, Bar Massada et al. 2012, Sasaki et al. 2012), but ALS data have also been used 
to derive DTMs (Bar Massada et al. 2012, Ke et al. 2010). Furthermore, in terms of 
segmentation, it has been found that coupling imagery and ALS provides 
promising segmentation results and that the selection of input data has an effect 
on segmentation quality (Geerling et al. 2007, Mustonen et al. 2008, Ke et al. 2010, 
Hou et al. 2013). 

Several different topographic features can be calculated from a DTM. These 
features include slope, aspect and curvature, which are widely used in OBIA 
studies (Yu et al. 2006, Thompson and Gergel 2008, Thompson et al. 2008, Ke et al. 
2010, Morgan and Gergel 2010). Topographic features also include features that 
quantify local hydrologic or climatic conditions. Of the different hydrologic 
features, possibly the most widely used is the topographical wetness index (TWI, 
Beven and Kirkby 1979). The TWI models local soil moisture, taking local slope 
and upslope contributing area into account. The TWI has also been used in OBIA 
studies (Thompson and Gergel 2008, Thompson et al. 2008, Ke et al. 2010, Morgan 
and Gergel 2010). There are also other topographic features that are or can be 
incorporated into the OBIA workflow. Finally, also other types of data, such as 
soil or bedrock data, have been used in OBIA studies (e.g. Bock et al. 2005). 

1.5 Spatial conservation prioritization (III) 

Systematic conservation planning means that sites are prioritized in a systematic 
manner in order to conserve the most valuable areas (Margules and Pressey 
2000). When prioritization is performed spatially using computational tools, the 
activity can be called ‘spatial conservation prioritization’ (Kukkala and Moilanen 
2013). Usually spatial conservation prioritization is performed using species 
distribution data as input data (Margules and Pressey 2000, Kukkala and 
Moilanen 2013). Other types of data as well, such as ecosystem services (Chan et 



18 
 
al. 2006) or habitat types (Lehtomäki et al. 2009), can be used. Furthermore, SDM 
results can be used. However, it has been found that prioritization results based 
on SDMs and species presence data may markedly differ (Altmoos and Henle 
2007). 

The most valuable areas are not necessarily the most species-rich areas. 
Instead, factors such as the vulnerability, irreplaceability, complementarity, 
connectivity and size of areas are taken into account (Margules and Pressey 2000, 
Wilson et al. 2009, Kukkala and Moilanen 2013). Vulnerability of the area refers to 
threats that the area will be converted to extractive uses. Irreplaceability means 
that the features that an area possesses cannot be replaced by conserving other 
areas. Complementarity means that conserved areas should complement each 
other (Margules and Pressey 2000). In other words, if all species in an area are to 
be conserved, a suitable minimum set of conserved locations is the minimum set 
of locations where all species exist. Connectivity can be defined as the degree to 
which a landscape facilitates or impedes movement of different organisms. 
Connectivity is divided into structural and functional connectivity. Structural 
connectivity refers to habitat contiguity and is analyzed only using landscape 
structure. With functional connectivity, on the other hand, responses of the 
organisms are considered (Tischendorf and Fahrig 2000). Structural connectivity, 
size and other spatial composition and configuration calculations that can be 
computed (e.g. with landscape metrics and indices) have also been used in 
planning and conservation value mapping outside the spatial conservation 
prioritization methodology (Botequilha Leitão and Ahern 2002, McGarigal et al. 
2011, Uuemaa et al. 2013). Other factors that can be included in spatial 
conservation prioritization have also been included in other spatial analyses. In 
addition to ecological factors, political or economic factors can be included in 
spatial conservation prioritization approaches. It has even been claimed that the 
focus has been too much on economic factors, compared to other socio-political 
or ecological factors (Arponen et al. 2010). 

1.6 Species richness and species distribution models (IV) 

Species richness has been widely explained by means of area size and energy, 
using species-area (Connor and McCoy 1979) and species-energy relationships 
(Evans et al. 2005). That is, the larger the area or the more energy that is available 
there, the more species there are. Many of the factors that explain species richness 
can be reduced by means of different mechanisms to energy and area (Honkanen 
et al. 2010). Energy can be understood rather broadly and divided into solar and 
productive energy. Solar energy metrics, such as temperature, quantify the 
amount of available solar energy. Productive energy metrics, such as net primary 
productivity, measure the resources available for consumers (Evans et al. 2005, 
Honkanen et al. 2010). There are also many other factors used to explain species 
richness that cannot be reduced to area and energy. These factors can also be 
random; therefore, explaining why a particular area has a certain degree of 
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species richness is far from straightforward. Other factors include historical 
factors related, for example, to dispersal and speciation, environmental stress, 
environmental stability, disturbance, and ecological interactions (Fraser and 
Currie 1996, Whittaker et al. 2001). 

Recently, species richness has partly been explained in terms of 
geodiversity (Parks and Mulligan 2010, Anderson and Ferree 2010, Hjort et al. 
2012, Ruddock et al. 2013), which can be defined as the variability of the Earth’s 
surface materials, forms and physical processes (Gray 2013). Because 
geodiversity explains species richness and because it is more constant, as 
opposed to a perennially changing climate, it has been argued that areas to be 
conserved could be selected on the basis of geodiversity (Anderson and Ferree 
2010, Beier and Brost 2010, Ruddock et al. 2013). Furthermore, it has been found 
that geodiversity and habitat diversity are positively connected (Ja ková and 
Romportl 2008). Habitat diversity is, on the other hand, positively linked with 
species richness (Honkanen et al. 2010). Therefore, the factors that have an effect 
on species richness have also interactions. 

SDMs use a range of different factors to map species richness (Guisan et al. 
2006, Austin 2007, Elith and Leathwick 2009). SDMs are especially applicable on a 
mesoscale or landscape level. Although SDMs are usually constructed for a single 
species only, they have been widely used in richness mapping (Austin 2007, Elith 
and Leathwick 2009). When SDMs are used in species richness mapping, species 
distributions can be modeled one species at a time (Ferrier et al. 2002a, Thuiller et 
al. 2004, Raes et al. 2009), by assessing plant family species richness (Parviainen et 
al. 2009), at a community level (Ferrier et al. 2002b, Ferrier and Guisan 2006) or by 
looking at all species together (Heikkinen and Neuvonen 1997, Honnay et al. 
2003, Hjort et al. 2012). There are few comparisons between different approaches. 
In one study, it was found that “one species at a time” and “all species together” 
approaches bring similar results in the current climate. In a changing climate, 
however, the “all species together” approach brings more realistic results, since 
in this approach high species richness areas were correlated with meaningful 
landscape structures (Guisan and Theurillat 2000). 

Several different explanatory features have been used in SDMs. Perhaps the 
most often used have been bioclimatic features in large-scale studies and 
topographic features in mesoscale studies (Guisan and Zimmermann 2000). 
Other predictors include different remotely sensed variables. A normalized 
difference vegetation index (NDVI) is widely used as a proxy for productivity 
(e.g. Nagendra 2001, Turner et al. 2003, Parviainen et al. 2009), while spectral 
heterogeneity serves as a proxy for habitat heterogeneity (Rocchini et al. 2010, 
2011a). Furthermore, remote sensing-based thematic land cover data has been 
used in SDMs that model species richness (Honnay et al. 2003, Thuiller et al. 
2004). Finally, there are a few studies where different measures of geodiversity 
have been used (Heikkinen and Neuvonen 1997, Lobo et al. 2001, Pausas et al. 
2003, Titeux et al. 2009, Hjort et al. 2012). Nevertheless, in SDMs relationships can 
be found between the explanatory features and the response feature, even if these 
relationships are not ecologically meaningful. Therefore, more effort should be 
put into finding the causal mechanisms (Araújo and Guisan 2006). 



 
 

2 OBJECTIVES 

The main objective of this study was to develop new methods for mapping 
habitat types and conservation values, as well as to critically evaluate those new 
methods. First, an object-based methodology for mapping habitat types was 
developed. Second, habitat type maps were converted into conservation value 
maps by taking species richness and rarity, naturalness, connectivity, 
complementarity, and selected ecosystem services into account. Third, the 
habitat type map was used to explain and predict vascular plant species 
richness. In the study, a critical approach was taken; in other words, methods, 
datasets, features, and approaches were compared. The study was divided into 
four consecutive phases, all of which had their own objectives and research 
questions. 

1. Testing segmentation method, parameter value and data layer 
combinations in order to find a solution that works well in boreal 
forest habitat type mapping (I). In this framework, the following 
questions were assessed: 

a. Are supervised segmentation evaluation measures applicable in 
boreal forest habitat type mapping? 

b. Are the different evaluation measures sensitive to changes in 
reference polygons? 

c. Does the best segmentation lead to the best classification 
accuracy? 

2. Developing a working habitat type classification (HTC) workflow that 
is applicable to boreal forest habitat type mapping (II). Two more 
specific research questions were formulated, as follows: 

a. What approaches, features and layers are needed to classify 
different habitat types? 

b. Is the examination of heterogeneity inside and between different 
habitat types useful in assessing problems in HTC? 

3. Giving values to habitat types and patches from a conservation 
perspective and comparing different methods for mapping 
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conservation values (III). More specifically, the following questions 
were asked: 

a. To what extent do conservation value maps change if different 
habitat type mapping methods, valuation methods, or 
connectivity and complementarity mapping methods are used? 

b. To what extent do conservation value maps differ from maps of 
selected ecosystem services (timber production potential, carbon 
storage, landscape recreational value)? 

4. Assessing the usefulness of the HTC method in vascular plant species 
richness mapping and explaining vascular plant species richness by 
means of landscape, topographic and geodiversity features (IV). Based 
on these general objectives, three more specific research questions were 
formulated: 

a. How does the developed HTC perform compared to two other 
landscape type classifications? 

b. Do explicit measures of geodiversity explain species richness in 
a fragmented landscape? 

c. Do results differ if only native species are taken into account? 



 
 

3 MATERIALS AND METHODS 

3.1 Study areas 

This work included two study areas, both located in Southern Finland in the 
southern boreal vegetation zone (Fig. 2, Ahti et al. 1968). Both of the areas are 
predominantly rural and mostly covered by different forest types. Most of the 
forests are coniferous, but there are also some mixed and broadleaf forests. In 
both study areas, the main tree species are Scots pine (Pinus sylvestris), 
Norwegian spruce (Picea abies) and birches (Betula pubescens and B. pendula). 
Other main land cover types include peatlands, which are partly covered by 
forest, agricultural areas and lakes. Most of the forest areas are used for timber 
production with rotation-based forestry, including regeneration cutting with 
either artificial or natural regeneration. Most of the peatlands are drained for 
forestry. The relief of the areas varies between flat and moderately hilly. 

The first study area (I, II) is southwest of the city of Jyväskylä. The 
geographic coordinates (WGS84) of the area are 62° 10´ 30´´ – 62° 13´ 30´´ N and 
25° 29’–25° 38´ E. The size of the area is about 15 km2. For the study, the area 
was divided into three separate blocks that all had different landscape 
characteristics. In the area, there are two nature conservation areas, which 
mostly consist of a semi-natural, over 100-year-old mesic forest. One of the 
protected zones is also part of a NATURA 2000 area. 

The second study area (III, IV) is located southeast of the city of Tampere. 
The geographic coordinates (WGS84) of the area are 61° 16´ – 61° 30´ N and 24° 
26´–24° 55´ E. The size of the area is about 390 km2 and the central parts of the 
area are covered with one 38.9 km2 lake. The flora in the second study area is a 
bit more diverse than in the first area. The area is located more to the south; 
hence, the annual effective temperature sum is larger. In the bedrock, there are 
some alkaline and limy patches in addition to granite. Additionally, there are 
many herb-rich forest patches, many of which are protected. In total, there are 
three NATURA 2000 areas and approximately 20 nature conservation areas. 
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FIGURE 2 Location of the two study areas in Southern Finland. Study areas are outlined 
with a black border. Background maps: Corine Land Cover 2006 land 
use/land cover (generalized 25 ha) © SYKE, EEA; General map © NLS 
Finland 2010. 

3.2 Datasets used 

Numerous different remotely sensed and GIS datasets were used in the study 
(Table 1). The most important datasets were ALS data from the National Land 
Survey of Finland (NLS) and aerial and satellite imagery. Also included was 7 
km2 fieldwork data from the first study area, which was collected in 2010 and 
used as training and reference data in classifications (I and II) and as reference 
data in segmentation evaluation (I). None of the other datasets were collected 
for this study. 
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TABLE 1 Different datasets used in the study. 

           
Data Resolution 

/ Scale 
Articles Year Purpose Producer / Source

        

      
WorldView-2 
(WV-2) satellite 
imagery 

2 m I, II 2010 segmentation, classification Digital Globe Inc. 

ALS data 0.5 pts m-2 I, II, III, 
IV 

2008, 
2010, 
2012 

segmentation, classification The National Land 
Survey of Finland 
(NLS) 

Aerial imagery 20 cm I, II 2007 orthorectification of WV-2, 
assisting fieldwork 

The City of 
Jyväskylä 

Aerial imagery 40 cm III, IV 2011 segmentation, classification, 
spectral heterogeneity (SH) 

The Finnish Forest 
Centre Pirkanmaa 
/ Terratec 

Aerial imagery 50 cm III, IV 2010–
2012 

segmentation, classification NLS 

Topographic 
database 

1:10 000 II, III, 
IV 

2010 classification, geodiversity NLS 

SLICES land use 
database 

1:50 000 II, III, 
IV 

2010 classification NLS 

Digital soil map 1:20 000 II, III, 
IV 

1972–
2007 

classification, geodiversity The Geological 
Survey of Finland 

Digital bedrock 
map 

1:200 000 III, IV 2009 classification, geodiversity The Geological 
Survey of Finland 

Multi-source 
national forest 
inventory 

20 m II, III 2009 classification, ecosystem 
services 

The Finnish Forest 
Research Institute 

Fieldwork data polygons 
> 45 m2 

I, II 2011 segmentation reference, 
training and reference for 
classification 

Antti Rusanen 

Forestry 
planning data 

polygons 
> 270 m2 

I 2005 segmentation reference The City of 
Jyväskylä 

Forestry 
planning data 

polygons 
> 280 m2 

III, IV 1998–
2011 

training and reference for 
classification 

The Finnish Forest 
Centre Pirkanmaa 

Biotope 
classification 
data 

polygons 
> 190 m2 

I 2006 segmentation reference The Finnish Forest 
and Park Service 

Vascular plant 
species inventory 

1 km2 III, IV 1983–
2011 

reference in species richness 
mapping, valuation of 
different habitat types 

Tuomo Kuitunen 

Habitat ranking 
data 

not spatial III 1993 valuation of different 
habitat types 

Rossi and 
Kuitunen (1996) 

Forest Act 
habitat polygons 

polygons 
> 180 m2 

III, IV 1998–
2011 

classification The Finnish Forest 
Centre Pirkanmaa 

Corine Land 
Cover (CLC) 
2006 

25 m IV 2010 land use / land cover 
classification 

Finnish 
Environment 
Institute (SYKE) 
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3.3 Introduction to methodology 

A general workflow of the approaches used is presented in Fig. 3. The 
approaches are divided into four phases. The first phase of the methodology 
was segmentation and segmentation evaluation (I). In this phase, the goal was 
to find a good and meaningful segmentation that could be used in HTC. 
Segmentation and segmentation evaluation form a loop, since segmentation 
evaluation results help in the parameter selection of new segmentations. In the 
second phase, classification workflow was developed and tested, and several 
features derived from used datasets were evaluated and compared (II). As part 
of this phase, the classification approach was modified to match the datasets 
available from study area 2 (III, IV). In the third phase, HTC was used in 
conservation value mapping (III). Conservation value mapping included 
different habitat type valuations that used potential species richness and rarity, 
naturalness, and habitat type connectivity and complementarity mapping. 
Conservation value maps were compared with ecosystem service maps. In the 
fourth phase, to explain species richness (IV), the HTC system was used 
together with two other landscape classification schemes (Corine Land Cover 
(CLC) and spectral heterogeneity (SH)), geodiversity and topographic features. 
SH was also based on segmentation. 

FIGURE 3 A workflow of the different approaches used in the study. CLC refers to 
Corine Land Cover. 



26 
 
3.4 Habitat type classification (HTC) system 

The HTC system was based on habitat ranking (Rossi and Kuitunen 1996), in 
which the classification system was as detailed as possible, based on species’ 
habitat type preferences given in species identification literature (e.g. Hämet-
Ahti et al. 1986) and the Finnish Red List (Rassi et al. 1992, 2010). Therefore, the 
habitat types in the framework do not correlate to vegetation types or plant 
communities (as seen in Braun-Blanquet 1932, for example). Instead, habitat 
types are rather homogenous land units in which different species are likely 
found. Habitat types are partly based on vegetation and partly on abiotic 
factors. They are defined with the help of information given in species 
identification literature (e.g. Hämet-Ahti et al. 1986). In forests and peatlands, 
habitat types follow widely used Finnish classification systems (Cajander 1949, 
Eurola et al. 1995). 

In the first study area (I, II), HTC was modified to match with remotely 
sensed imagery. It included habitat types that were mapped during fieldwork 
in June and July 2011. In the second study area (III, IV), habitat types consisted 
of the types included in the habitat ranking and that existed in the study area. 
The different habitat types are listed in Table 2. 

3.5 Layers and features used 

From the datasets, several features and layers were calculated. A set of features 
and layers was used for data segmentation and classification in study area 1 
(Table 3, I, II). In study area 2, a slightly different set of features was used in 
segmentation and classification (Table 3, III, IV). For segmentation, derived 
raster layers were used as such; for classification, a number of features per each 
segment were calculated from the layers. Finally, to explain species richness, 
again different features were used. 

Most of the features used in classification were derived from imagery and 
ALS data. The imagery layers were different spectral bands, together with a 
NDVI (II). The ALS layers were constructed from the DTM, a digital surface 
model (DSM) and an intensity layer. The canopy height model (CHM) was 
calculated by subtracting the DTM from the DSM. From the CHM and imagery 
layers, GLCM features (Haralick et al. 1973, Haralick 1979; II, III, IV) and 
Daubechies wavelet features (Daubechies 1992; II) were calculated. From the 
DTM, several different features were calculated using different parameter values. 
A SAGA wetness index (SWI) is a modification of the TWI. In the SWI, large TWI 
values are spread into their neighborhood if the area is almost flat. A distance to 
water (DTW) layer is the cost distance from each cell to the nearest stream, using 
slope as the cost surface (Murphy et al. 2007). A terrain ruggedness index (TRI) 
quantifies the amount of local altitudinal differences (Riley et al. 1999). A 
topographic position index (TPI) is a measure of the relative altitudinal position 
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TABLE 2 Different habitat type classes that were mapped in the study. I–IV refer to 
original publications of the thesis. 

          
Habitat type I II III IV 
          

xeric (pine dominated) forests A A A X 
mesic (spruce dominated) forests B B A X 
herb-rich (mixed/deciduous) forests C C A X 
esker forests - - A X 
rocky areas X X - - 
non-calcareous rocky areas - - X X 
calcareous rocks and quarries - - X X 
pine mires X X D X 
spruce mires D D D X 
open mires X X D X 
rich fen - - X X 
water (lakes and streams) X X - - 
oligotrophic lakes - - X X 
eutrophic lakes - - X X 
streams and rivers - - X X 
small creeks X X - - 
riparian habitats - - X X 
flooded areas - - X X 
beaches - - X X 
springs X X X X 
meadows X X - - 
dry meadows - - X X 
wet meadows - - X X 
cultivated areas X X X X 
parks and gardens - - X X 
yards X X - - 
industrial and urban areas - - X X 
roads X X - - 
sand pits - X - - 
  
X: used in the publication 
-: not used in the publication 
A: 4 successional stages: open regeneration area (0), sapling stand (1), young (2), mature (3) 
B: 5 successional stages: 0, 1, 2, 3, natural (4) 
C: 4 successional stages: 1, 2, 3, 4 
D: 2 drainage statuses: not-drained, drained (d) 



 
 
TABLE 3  Different layers and features calculated for segmentation and habitat type classification. For segmentation, different layers were used. 

For classification, features calculated from layers were used. Features were calculated per segment or updated to the habitat type map 
as such. The MS-NFI data was only used for an alternative classification in II and III. 

                
Data Layer Resolution I and II 

segmentation
I 
classification

II classification III and IV 
segmentation

III and IV classification 

                
        

WV-2 Bands 1–8 2 m X mean mean, sd, GLCM, 
wavelets 

- - 

 Bands 1–8 10 m - - mean, sd - - 
 NDVI 2 m - - mean, sd, GLCM, 

wavelets 
- - 

 NDVI 10 m - - mean, sd - - 

Aerial imagery / 
Terratec 

Bands 1–3 10 m - - - X mean, sd, GLCM 

Aerial imagery /NLS Bands 1–4 10 m - - - X mean, sd, GLCM 

ALS CHM 2 m X mean mean, sd, range, 
GLCM, wavelets 

- - 

 CHM 10 m - - mean, sd, range X mean, sd, GLCM 
 intensity 2 m - - mean, sd - - 
 intensity 10 m - - mean, sd - - 
 slope 2 m - - mean, sd - - 
 slope 10 m - - mean, sd - - 
 SWI 2 m X mean mean, sd - - 
 SWI 5 m - - mean, sd - - 
 SWI 10 m - - mean, sd X mean, sd 
 DTW 2 m - - mean, sd - - 

 



 

 

 DTW 10 m - - mean, sd - mean, sd 
 TRI1 2 m - - mean, sd - - 
 TRI2 10 m - - - - mean, sd 
 TPI3 2 m - - mean, sd - - 
 TPI4 10 m - - - - mean, sd 
 MRVBF5 2 m - - mean, sd - - 
 MRVBF6 10 m - - - - mean, sd 

Soil map soil type 1:20 000 - - majority - as such / majority 

Bedrock map bedrock type 1:200 000 - - - - as such 

Topographic database land use type 1:10 000 - - as such / majority - as such 

SLICES land use type 1:50 000 - - as such / majority - as such / majority 

Forest Act habitats habitat type NA - - - - as such 

Forestry planning  habitat type - - - - - as such 

MS-NFI habitat type 20 m - - as such / majority - majority 
                

1 Calculated with window sizes of 3×3, 7×7, 11×11 
2 Calculated with a window size of 3×3 
3 Calculated with radiuses of 10, 25, 50, 100 
4 Calculated with a radius of 100 
5 Calculated with threshold values of 16, 75 
6 Calculated with a threshold value of 28 
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(Guisan et al. 1999). A multiresolution index for valley bottom flatness (MRVBF) 
indicates if areas are relatively low or flat (Gallant and Dowling 2003). Features 
from layers that were not derived from the imagery or ALS data were not 
employed in the classification per se, but used to make post-classification 
adjustments. These data are called ancillary data. Finally, multisource National 
Forest Inventory (MS-NFI) data was used only in alternative HTCs. 

 In explaining species richness, several features were calculated from 1 
km2 quadrats. Features were divided into three groups: landscape features, 
geodiversity features and topographic features. Landscape features included 
HTC, CLC, and SH. In the SH calculation, the principal component 1 was 
derived from aerial imagery. The principal component image was then 
generalized per segment and quantized to 64 classes. The number of patches 
and variety of types of each landscape classification were calculated. 
Geodiversity features included soil and bedrock type diversity and 
hydrological feature diversity. Topographic features included altitude, slope, 
SWI and solar radiation. From all four of these topographic features, mean 
value, standard deviation and range were calculated. 

3.6 Segmentation and classification 

3.6.1 Segmentation methods 

Two different segmentation methods were used. Watershed segmentation was 
used in I and region based segmentation in I, II, III, and IV. 

The watershed segmentation used was the segmentation method of IDRISI 
Taiga software. In this method, watersheds are delineated by means of a 
weighted average of variance images derived from input layers using a moving 
window analysis. Both the size of the moving window and the weights of 
averaging can be adjusted by the user. After watershed delineation, watersheds 
are merged if they are the most similar to each other in the neighborhood and if 
their difference is smaller than a user-adjusted similarity tolerance. Difference is 
determined by the mean value and the standard deviation, whose weights are 
set by the user. 

Region-based segmentation used was Fractal Net Evolution Approach 
(FNEA) (Baatz and Schäpe 2000, Benz et al. 2004). At the outset, each pixel is 
treated as a region and pixels are merged into larger regions. Three user 
parameters can be adjusted. Scale parameter controls average object size. The 
weighting of color and shape can be adjusted. If more weight is given to color 
homogeneity, less weight is given to a specific shape. Shape is composed of 
smoothness and compactness, whose relative weights can be adjusted. 
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3.6.2 Segmentation evaluation (I) 

After initial evaluations in which a set of segmentation alternatives was 
selected, two different segmentation methods with different parameter options 
and layer combinations were evaluated by means of visual interpretation and 
23 different supervised segmentation evaluation measures. Four layer 
combinations were used: only imagery, only ALS, and two combinations of 
imagery and ALS. The following user parameters were modified: similarity 
tolerance, mean and variance weights in IDRISI, scale parameter, and 
color/shape parameter in FNEA. Overall, 33 IDRISI and 30 FNEA parameter 
combinations were used with all of the different layer combinations. Evaluation 
measures included both area-based measures and location-based measures. 
Some of the measures were combined measures (i.e. they were combinations of 
other measures). The details of the evaluation measures used are given in 
Clinton et al. (2010), and they are also summarized in publication I. The 
evaluation was performed with eight different reference polygon sets, three of 
which were different datasets (our own fieldwork data, forestry planning data, 
and biotope inventory data) and five of which were subsets of the fieldwork 
data. 

3.6.3 Classification of habitat types (I, II, III, IV) 

The classification of segments was performed with a random forest classifier 
(Breiman 2001, Breiman and Cutler 2007; I, II, III, IV). A random forest is a 
forest (or an ensemble) of several bootstrapped classification trees. When a 
classification tree is built, approximately two-thirds of the data is used for 
training the classifier. At each node of the classification tree, the best split is 
chosen from a randomly selected subset of features. For each case, in our case 
segment, a majority vote of individual trees is obtained. 

In I, habitat types were classified only to test different segmentation 
evaluation methods (i.e. if the best segmentation gives the highest classification 
accuracy). Hence, only a minimum set of features was used in the classification. 

In II, the goal was to find an optimal classification by comparing different 
alternatives. Additionally, different sets of features were tested in the analysis 
to determine how omitting or including different features might affect 
classification accuracy. These features included WV-2 features, ALS features, 
GLCM and wavelet features, and additional topographic features (DTW, TPI, 
TRI, MRVBF). This analysis was complemented with random forest feature 
importance metrics using three different measures: permutation importance, 
gini importance (Breiman 2001, Breiman and Cutler 2007) and Boruta feature 
selection (Kursa and Rudnicki 2010). Furthermore, it was tested if a data split 
based on a one meter vertical distance to the nearest stream helps in mapping 
streamside habitats and mires, as well as in balancing the data. Classification 
accuracies were quantified using a confusion matrix, user’s accuracy (error of 
commission) and producer’s accuracy (error of omission), as well as allocation 
and quantity disagreement (Pontius and Millones 2011). Finally, the 
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heterogeneity inside and between different habitat types was examined using 
Sammon’s mapping (Sammon 1969) and a multi-dimensional scaling 
(Torgerson 1958) plot based on a random forest proximity measure, which 
quantified the proximities between segments. 

In III and IV, HTC was performed in a different context, using a different 
set of features and habitat types. In these publications, the main focus was not 
on classification, but on using the classification for conservation value mapping 
(III) or to explain vascular plant species richness (IV). 

In II, III, and IV, ancillary data was used after the random forest 
classification. In II, one of the aims was to test if ancillary data increases 
classification accuracy. Different habitat types were either derived directly from 
the ancillary data or a majority value per segment was calculated. In II and III, 
an alternative classification was performed in which all classes were derived 
from pre-existing datasets. Forest and peatland habitat types were obtained 
from MS-NFI data, while other habitat types were obtained from the same data 
as in the primary classification. 

3.7 Mapping conservation value (III) 

Conservation values were mapped using HTC as a basis, and different methods 
for conservation value assessment and mapping were compared. Each habitat 
type was valued by means of nine different valuation methods based on the 
habitat type preferences of species (Rossi and Kuitunen 1996). The first 
valuation method was the potential number of species in the habitat type. The 
second valuation method was range-size rarity (Williams et al. 1996) corrected 
number of species. In the third valuation method, potential species were 
weighted based on their Red List status (Rassi et al. 2010, Ryttäri et al. 2012). In 
the second and the third methods, primary habitat type preferences were given 
more value. The fourth, fifth and sixth valuation methods were modifications of 
the first three methods, in which the value of non-natural or degraded habitat 
types was less. In the last three methods (valuation methods 7–9), human 
habitats were not given value. 

The complementarity and connectivity of different habitat types were 
mapped using two different methods: landscape metrics and spatial 
conservation prioritization. In calculations using landscape metrics calculations, 
two units of measurement were used: patch area and patch neighborhood 
similarity. The highest values were given to patches with a large area, similar 
neighborhood and high habitat type value. In some of the calculations, habitat 
type complementarity was taken into account, giving high values to each 
different habitat type. Overall, 30 different landscape metrics-based maps were 
created. In spatial conservation prioritization using Zonation software in core-
area Zonation mode (Moilanen et al. 2012), cells were weighted by habitat type 
values. Successional stages of forests and different drainage statuses of mires 
were calculated using a condition layer. Connectivity was calculated using 
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matrix connectivity. In half of the calculations, a habitat type connectivity 
matrix was also used as a habitat type similarity matrix for defining effective 
occurrences of habitat types. In all, 36 different spatial conservation 
prioritization maps were calculated. 

To complement conservation value maps based on habitat types, three 
ecosystem services were mapped. The monetary value of timber was mapped 
using MS-NFI data and the current prices for lumber and pulpwood. Carbon 
storage was calculated using MS-NFI biomass calculations for the carbon in 
trees and average soil carbon estimates for different forest and peatland habitat 
types, based on Liski and Westman (1997) and Turunen et al. (2002). Forest and 
peatland habitat types were mapped using the MS-NFI. The landscape value for 
recreation was calculated using a viewshed analysis from the most important 
recreation routes and resting places (measured with an ALS-based DSM). The 
areas were valued based on habitat type scenic beauty, with the highest values 
given to natural areas and in relation to how many times a specific point can be 
seen. 

3.8 Species richness modeling (IV) 

Statistical modeling analyses were performed separately for total species 
richness and for native species richness. Before these statistical analyses, 
multicollinear features were removed from the models using variance inflation 
factors calculated following the approach used by Zuur et al. (2009). 

Two different partitioning methods based on generalized linear models 
(GLMs, Nelder and Wedderburn 1972) were used. In variation partitioning 
(Heikkinen et al. 2004), the variation of the response variable (i.e. species 
richness) was divided into seven components: the discrete effects of landscape, 
topography, and geodiversity, as well as combinations of two or three discrete 
components. GLMs were processed with a lasso penalty (Tibshirani 1996), and 
quadratic terms of explanatory features were added into the models. In 
hierarchical partitioning (Walsh and Mac Nally 2013), the importance of each 
explanatory feature was measured. The mean Z-Scores of 100 randomizations 
were calculated and the statistical significance of each variable was tested. 

In addition to GLMs, a semi-parametric extension of GLMs (i.e. 
generalized additive models, GAMs, Hastie and Tibshirani 1986) were used to 
explain and predict species richness. Variables were selected for the models by 
implementing an extra penalty term, as suggested by Marra and Wood (2011). 
Eight different GAMs were compared in order to test the importance of 
geodiversity features and different landscape features. GAMs were calculated 
using a six-fold cross-validation. Due to overdispersion of data, a quasipoisson 
distribution with a log-link function was used in GLMs and GAMs, following 
the approach given in Zuur et al. (2009). 
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3.9 Used software 

Several different software products were used in the analyses. Different software 
products were used for different remote sensing, GIS, and statistical analyses. 
The programs used are listed in Table 4. Programs that were only used in initial 
analyses are not included in the table. Details of program usage are given in I–IV. 

TABLE 4 Different software products used in the study. 

    
Software Publication Purpose Source
    
  
ArcGIS I, II, III, IV GIS analyses Esri, Redlands, CA, USA 
eCognition III, IV segmentation & GLCM 

feature calculation
Trimble, Sunnyvale, CA, USA

ERDAS Imagine I, II, III, IV image 
orthorectification & 
feature calculation

Intergraph, Huntsville, AL, 
USA 

FRAGSTATS III landscape metrics McGarigal and Ene (2012) 
IDRISI Taiga I, II segmentation & GIS 

analysis
Clark Labs, Worcester, MA, 
USA

Intersector I segmentation 
evaluation

Clinton et al. (2010) 

LAStools I, II, III, IV ALS data 
preprocessing

rapidlasso, Gilching, Germany

R I, II, III, IV feature calculation, 
statistical analysis

R Core Team (2012) 

including e.g. the following packages
randomForest I, II, III, IV random forest 

classification
Liaw and Wiener (2002) 

EBImage II GLCM feature 
calculation

Pau et al. (2010) 

waveslim II wavelet feature 
calculation

Whitcher (2012) 

Boruta II random forest feature 
selection

Kursa and Rudnicki (2010) 

vegan III ordination analysis Oksanen et al. (2013) 
lqa IV GLM shrinkage using 

lasso
Ulbricht (2012) 

hier.part IV hierarchical 
partitioning

Walsh and Mac Nally (2013) 

mgcv IV GAM modeling Wood (2006, 2011) 
SAGA-GIS I, II, III, IV topographic feature 

calculation
SAGA (2011)

TauDEM II, III, IV stream network 
mapping

Tarboton (2012) 

TerraLib I, II segmentation Câmara et al. (2008) 
Zonation III spatial conservation 

prioritization
Moilanen et al. (2012) 

    



 

 

4 RESULTS 

4.1 Overview of the results 

An illustration of the results is given in Fig. 4. First, different segmentations are 
evaluated and, second, the best one possible is selected for HTC. Third, the 
classification is tuned by adding different features and ancillary data. Fourth, 
the classification is applied to a second study area. Fifth, with the help of HTC, 
different conservation value maps are drawn and compared. Sixth, HTC is used 
as one of the explanatory features to explain and predict vascular plant species 
richness patterns. 

4.2 Segmentation evaluation (I) 

Supervised segmentation evaluation measures gave inconsistent results. In 
other words, different measures ranked different segmentations as the best. 
Additionally, results differed if the reference polygon set was changed. Some 
measures were consistent (i.e. the same segmentations were ranked as being 
among the best, irrespective of the reference polygon set that was used), but 
other measures varied widely in their results. Overall, FNEA segmentations 
were generally valued more highly than IDRISI segmentations, and 
segmentations with only ALS-based layers were most often ranked as the best. 
It was also found that undersegmentation measures preferred the lowest scale 
parameter values and oversegmentation measures the highest scale parameter 
values. Intermediate-scale parameter values were given the lowest ranks in 
only some of the combined measures. 
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FIGURE 4 The figure is on the previous page. A simplified illustration of the results. 1) 
Four segmentations with a WV-2 image (© Digital Globe) in the background: 
top left: too fine (FNEA with all layers, scale parameter 5, color parameter 
0.75), top right: the best (FNEA with WV-2 bands blue, green, red, and near 
infra-red 1, scale 10, color 0.5), bottom left: too coarse (FNEA with all layers, 
scale 50, color 0.5), bottom right: too complex (IDRISI with WV-2 bands blue, 
green, red, and near infra-red 1, similarity 40, mean 0.5, variance 0.5); 2) 
habitat type classification with the best segmentation and with the features 
used in I; 3) classification with the 100 highest scoring features, according to 
Boruta and adjusted with ancillary data; 4) classification in the second study 
area; 5) four conservation value maps divided into deciles with the highest 
conservation value in the 10th decile: top left: FRAGSTATS with 
complementarity and habitat valuation 9, top right: Zonation with similarity 
and habitat valuation 9, bottom left: Zonation without similarity, habitat 
valuation 1, bottom-right: Zonation without similarity, habitat valuation 9; 6) 
species richness in the studied quadrats predicted by GAM with all features 
and a six-fold cross-validation. 

Visual interpretation was time-consuming and it was not thoroughly reliable 
for determining the best segmentation or the best parameter values. 
Nevertheless, it was found that both ALS and WV-2 layers were needed when 
delineating mire areas and water bodies, for example. FNEA segmentations 
with a low or intermediate weight for color were the most appealing 
segmentations, since segments were not too complex. Additionally, a rather low 
scale parameter value was needed to delineate the smallest habitat patches. 
Hence, the best segmentation was arguably chosen to be FNEA segmentation 
with the second lowest scale parameter (10), intermediate weight for color (0.5), 
and a combination of four spectral layers and two ALS layers. 

4.3 Habitat type classification (I, II, III, IV) 

In total, 12 classifications were performed for objects delineated with 12 selected 
segmentations (I, Table 5). The highest classification accuracy was achieved 
with the segmentation that was considered the best in visual interpretation. The 
differences in classification accuracies were, nevertheless, quite small. Finer 
segmentations led to higher classification accuracies overall, but the finest 
segmentations led to a salt-and-pepper effect and slightly worse classification 
accuracy. Additionally, the best classification accuracies were achieved by 
merging ALS and WV-2. 

When the number of features was increased from 12 (used in segmentation 
evaluation and I) to 328 (used in II), classification accuracy increased from 72 % to 
78 % (Tables 5, 6). The classification accuracy further increased to 79 % when the 
100 highest scoring features according to Boruta were used and ancillary datasets 
were included. A data split did not increase classification accuracy, but ancillary 
data increased it a little. When only ALS or WV-2 features were used, 
classification accuracy was significantly lower. Additionally, omitting extra 
topographic features or both GLCM and wavelet features decreased classification 
accuracy. However, omitting either GLCM or wavelet features did not decrease 
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classification accuracy. Finally, the accuracies of benchmark classifications based 
on MS-NFI and ancillary data were significantly lower than the accuracies based 
on random forest classification and WV-2 and ALS data. 

TABLE 5 Classification accuracies of classifications based on 12 different 
segmentations. Segmentations are named as follows: text refers to 
segmentation method, a–d to layer combinations (a: only WV-2; b: only ALS; 
c: WV-2 blue, green, red, and near infra-red 1 bands, and ALS; d: all layers), s 
to similarity or scale parameter, c to color parameter, m to weight given to 
mean and v to weight given to variance. 

      

Segmentation Classification 
accuracy Why segmentation was selected to the classification 

    

FNEA_b_s5_c.75 0.69 

The best in avoiding undersegmentation based on 
supervised evaluation measures, the worst based on 
the Combined measure (combination of all other 
measures) and full fieldwork reference polygon set 

FNEA_c_s5_c.75 0.69 Comparison against FNEA_b_s5_c.75 

FNEA_a_s10_c.5 0.71 WV-2 layers only, comparison against 
FNEA_c_s10_c.5 

FNEA_c_s10_c.5 0.72 The best segmentation based on visual interpretation
FNEA_d_s15_c.25 0.71 Good in visual interpretation 
FNEA_a_s20_c.75 0.69 Segmentation based on WV-2 data only, OK visually

FNEA_b_s25_c.5 0.66 The best segmentation based on the Combined 
measure and full reference polygon set, OK visually 

FNEA_d_s35_c.5 0.66 The best segmentation based on measure D (a 
combined measure) and full reference polygon set 

FNEA_c_s50_c.75 0.65 
Good in avoiding oversegmentation based on 
supervised measures, good in visual boundary 
evaluation 

IDRISI_d_s30_m9v1 0.70 OK in visual interpretation, small segments 
IDRISI_c_s40_m5v5 0.69 OK in visual interpretation, quite small segments 

IDRISI_b_s70_m9v1 0.60 
The best based on OverUnder (a combined measure) 
and full reference polygon set, poor in visual 
interpretation 

    
 

When the user’s and producer’s accuracies of single classes were examined 
(Tables 6, 7), it was found that a data split reduced omission errors in mapping 
mires and streamside habitats. Ancillary data reduced the omission errors of 
yards, roads, spruce mires, and rocky areas, for example. On the other hand, a 
data split increased the commission error of mapping spruce and pine mires, 
while ancillary data increased the commission error of meadows, rocky areas 
and herb-rich forests, for example. While some of the classes could not be 
classified at all and some had very low classification accuracies, classification 
accuracies of some of the classes were high across the board.  
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TABLE 6 Producer’s accuracy and total classification accuracy (in %) of different 
habitat type classes (rows) with different classification methods (columns). 
Accuracies were calculated at a pixel level. 

                                all 

only W
V

-2 

only A
LS 

no extra topography 

no G
LC

M
 

no w
avelet 

no G
LC

M
 &

 w
avelet 

boruta 100 

boruta 100 &
 ancillary 

split 

split &
 Boruta 

split &
 Boruta 100 

split &
 Bor100 &

 ancillary

m
sN

FI &
 ancillary 

segm
entation &

 m
sN

FI 

  

                              

xeric0 78 76 61 78 72 78 71 77 77 66 69 67 67 0 0
xeric1 61 53 67 65 55 60 55 59 59 64 64 64 64 0 0
xeric2 77 72 65 76 76 76 76 79 78 73 73 78 77 16 14
xeric3 0 0 0 0 0 0 0 0 0 0 0 0 0 10 6
mesic0 58 48 0 58 57 55 53 58 56 54 54 56 55 0 0
mesic1 83 79 78 83 82 82 80 83 79 82 82 81 79 54 58
mesic2 90 88 90 90 91 91 91 90 88 89 90 89 86 51 59
mesic3 73 55 65 71 68 71 62 73 70 71 71 71 68 23 17
mesic4 89 84 88 89 91 90 87 89 89 88 88 89 88 52 59
herb-rich1 5 2 4 0 0 14 22 10 9 2 2 7 7 0 0
herb-rich2 12 7 5 7 14 17 13 13 30 13 15 17 21 2 1
herb-rich3 5 2 0 10 2 9 0 9 9 3 3 1 1 0 0
herb-rich4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rocky area 46 48 31 41 48 48 49 47 57 45 45 41 55 50 51
pine mire 48 42 44 46 44 50 45 51 52 65 67 66 66 54 56
pine mire d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
spruce mire 7 0 15 2 6 12 12 11 19 18 17 23 29 14 13
spruce mire d 0 0 0 0 0 0 0 0 27 0 0 0 40 39 39
open mire 47 10 12 22 71 64 64 75 73 39 61 73 69 61 61
open mire d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
water 97 97 97 97 98 98 98 98 98 97 97 97 98 99 99
small creeks 4 0 1 0 4 6 6 6 6 27 28 26 25 0 0
spring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
meadow 20 14 11 17 18 28 23 23 35 31 31 35 32 34 34
cultivated 94 92 88 94 94 93 90 95 96 93 93 94 96 97 96
road 51 48 41 50 52 48 48 51 94 50 51 49 94 91 91
yard 54 53 31 53 57 46 41 54 69 57 57 55 69 66 64
sand pit 97 94 91 96 97 97 95 98 98 97 97 97 99 75 75
total 78.0 73.1 73.8 77.1 78.0 78.1 76.0 78.6 79.1 77.9 78.0 78.2 78.7 51.8 54.6
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TABLE 7 User’s accuracy of different habitat type classes (rows) with different 

classification methods (columns). Accuracies were calculated at a pixel 
level. 

                                

CLASS 

all 
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V

-2 
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no extra topography 

no G
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no w
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boruta 100 

boruta 100 &
 ancillary 

split 

split &
 Boruta 

split &
 Boruta 100 

split &
 Bor100 &

 ancillary 

m
sN

FI &
 ancillary 

segm
entation &

 m
sN

FI 

  

                              

xeric0 91 88 92 91 92 90 92 91 91 93 93 92 92 100 100
xeric1 90 96 93 88 94 89 96 92 92 92 92 89 89 0 0
xeric2 84 82 85 82 85 90 86 83 84 86 86 85 85 22 30
xeric3 100 100 100 100 100 100 100 100 100 100 100 100 100 1 0
mesic0 91 86 100 89 89 88 90 89 91 88 86 87 91 0 0
mesic1 81 75 67 80 81 80 79 81 84 81 81 80 83 61 68
mesic2 70 64 68 69 70 71 69 71 75 72 72 72 76 49 50
mesic3 64 59 60 62 64 65 60 65 67 66 66 66 69 17 14
mesic4 88 80 85 87 87 88 84 88 90 88 88 88 89 55 57
herb-rich1 100 100 74 100 100 98 84 71 29 100 67 100 36 0 0
herb-rich2 66 69 59 50 84 66 60 66 72 74 74 68 54 6 4
herb-rich3 62 93 100 79 100 58 100 74 76 85 85 66 5 100 100
herb-rich4 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100
rocky area 91 83 87 87 87 86 83 89 76 89 89 91 78 68 46
pine mire 75 66 69 82 69 72 62 72 71 58 57 63 64 57 56
spruce mire 55 0 42 46 58 57 54 50 43 42 44 39 38 22 35
spruce mire d 100 100 100 100 100 100 100 100 19 100 100 100 25 42 42
open mire 55 71 38 58 60 62 57 61 57 62 66 66 61 34 35
water 99 98 95 99 99 99 98 99 99 99 99 99 99 97 98
small creeks 50 100 28 100 42 50 37 52 53 34 36 44 45 100 100
spring 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
meadow 67 73 57 72 74 75 70 75 46 88 80 81 45 45 45
cultivated 87 84 84 85 88 87 87 87 89 88 89 90 89 86 94
road 70 68 62 69 69 66 63 67 55 67 66 66 55 46 48
yard 55 50 50 54 58 49 50 60 59 56 56 56 58 61 60
sand pit 97 94 95 98 97 98 95 100 100 99 99 99 100 100 100
                                

 
Overall, the allocation disagreement (13.3 %) was higher than the quantity 
disagreement (7.6 %) in the classification with the highest accuracy. In other 
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words, most of the errors were caused by allocating habitat types to incorrect 
locations. Most of the total disagreement was caused by different mesic forest 
classes, partly because these were among the most common classes. 

Different feature importance measures considered different features as 
important in the classification. Moreover, different features were regarded as 
being important in mapping different habitat types. Overall, mean features had 
higher importance values than standard deviation features, and 2 m features 
higher importance than 10 m features. In terms of the different WV-2 bands, 
band 1 (coastal blue) got the highest importance scores. Regarding the different 
ALS features, CHM, DTW and MRVBF got high importance values. The 
different GLCM and wavelet features were ranked as both important and not 
important. 

When the heterogeneity within and between habitat type classes was 
examined by means of a Sammon’s map (II, Fig. 5), it could be seen that 
different mesic forest classes had a huge heterogeneity and that other classes 
were often included in this heterogeneity. Additionally, only some of the classes 
(mesic2, mesic4, water) were easily distinguishable in the random forest multi-
dimensional scaling plot (II, Fig. 6). In both of these plots, however, multi-
dimensional data was reduced to two dimensions. 

The accuracy of HTC in study area 2 (III, IV) was 47 % for the habitat type 
classes that were classified with the random forest classifier. These classes 
included mesic, xeric, and herb-rich forest classes. Other habitat types were 
derived straight from ancillary, or reference, data. An alternative classification 
based on MS-NFI, used in III, gave an accuracy of 23 % for the same habitat 
types. Two classification alternative maps were 50 % similar overall and 22 % 
similar in the mesic, xeric, and herb-rich forest areas. 

4.4 Habitat type valuation and conservation value mapping (III) 

The values given to different habitat types were approximately similar in relative 
terms in different habitat type valuation methods (i.e. between methods 1–3 or 4–
6). Yet, if naturalness correction (valuation methods 4–6) was taken into account, 
values of some habitat types changed drastically. More specifically, when 
naturalness correction was not used, the most valuable habitat types were dry 
meadows, industrial and urban areas, and cultivated areas. When naturalness 
correction was taken into account, the most valuable habitat types were riparian 
habitats, non-calcareous rocky areas and mature herb-rich forests. 

In the conservation value maps, all habitat types were seen as valuable. 
However, if complementarity was not taken into account in the landscape 
metrics calculations, large mature herb-rich forest patches had the highest 
values. If naturalness correction was not used, large human habitat patches also 
got high values. In landscape metric maps, a patch received one value, whereas 
in spatial conservation prioritization approaches, high-value areas were found 
inside a patch or divided between neighboring patches. 
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FIGURE 5 A Sammon’s map of all segments in the training data. The whole study area 
and the 100 most important features (selected with Boruta) were used. The x 
and y axes represent the first two dimensions of the Sammon’s projection. 

Conservation value maps differed from each other, but the degree of difference 
varied (Table 8). In general, the differences were small if only habitat type 
valuation was changed (i.e. inside valuations 1–3 or 4–6). Differences were a 
little larger if naturalness correction was used or not used (i.e. between 
valuations 1–3 and 4–6), or if the HTC method was changed. And differences 
were even larger if different connectivity and complementarity calculations 
were used in the calculation method (landscape metric vs. spatial conservation 
prioritization). The differences were the largest when the calculation method for 
connectivity and complementarity was changed. 

The maps of three ecosystem services were very different from the 
conservation value maps (Table 8). The conservation value maps that were the 
most similar with the ecosystem service maps either had naturalness correction 
or were calculated without considerations of complementarity. In terms of the 
ecosystem service maps themselves, the maps of carbon and timber were rather 
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similar, whereas the maps of recreational value were different from the other 
two ecosystem service maps (Table 8). Open mires, other mires and older 
forests had the highest values in the carbon map, whereas the potential for 
timber production was greatest in older forests. Recreational value was the 
highest in natural habitats near recreational routes. 

 

 

FIGURE 6 A multidimensional scaling plot of classified data based on a random forest 
proximity matrix. In the random forest run, the whole study area and the 100 
most important features (based on Boruta results) were used. The x and y 
axes represent the first two scale coordinates of the proximity matrix. 
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TABLE 8 Pearson’s correlation coefficients between conservation value and 

ecosystem service maps. The abbreviation F refers to landscape metric 
(FRAGSTATS) maps, Z to spatial conservation prioritization (Zonation) 
maps and complem to complementarity. Different valuation comparisons 
are: inside group: valuations 1–3 (or 4–6); groups compared: naturalness or 
not; human or not: human habitats were given or not given value. Column 
classification refers to the two classification methods. 

            
Maps compared Correlation 

Comparison 1 Comparison 2 Valuation Classification Lower Upper
            

F w/o complem F w/o complem inside group  same in both 0.93 0.97 
F w/o complem F w/o complem groups compared same in both 0.64 0.91 
F w/o complem F w/o complem same in both different 0.57 0.64 
F with complem F with complem inside group  same in both 1.00 1.00 
F with complem F with complem groups compared same in both 0.96 0.98 
F with complem F with complem same in both different 0.54 0.57 
F with complem F with complem human or not same in both 0.53 0.70 
F w/o complem F with complem same in both same in both 0.31 0.48 
Z w/o similarity Z w/o similarity inside group  same in both 0.79 0.96 
Z w/o similarity Z w/o similarity groups compared same in both 0.45 0.75 
Z w/o similarity Z w/o similarity same in both different 0.58 0.77 
Z w/o similarity Z w/o similarity human or not same in both 0.49 0.78 
Z with similarity Z with similarity inside group  same in both 0.85 0.92 
Z with similarity Z with similarity groups compared same in both 0.38 0.64 
Z with similarity Z with similarity same in both different 0.58 0.72 
Z with similarity Z with similarity human or not same in both 0.99 1.00 
Z w/o similarity Z with similarity same in both same in both 0.44 0.60 
F w/o complem Z w/o similarity same in both same in both 0.10 0.28 
F w/o complem Z with similarity same in both same in both 0.17 0.37 
F with complem Z w/o similarity same in both same in both 0.12 0.34 
F with complem Z with similarity same in both same in both -0.15 0.03 
F, no value to 
human habitat 

Z, no value to 
human habitat same in both same in both 0.16 0.44 

Recreational 
value Other services - - 0.25 0.36 

Recreational 
value 

Recreational 
value - different 0.96 0.96 

Timber Carbon - - 0.84 0.84 
Recreational 
value 

All conservation 
value maps - - -0.08 0.33 

Timber 
All conservation 
value maps - - -0.24 0.47 

Carbon 
All conservation 
value maps - - -0.29 0.46 

            
Correlation color codes < 0.1 0.1 to 0.29 0.3 to 0.49 0.5 to 0.69 0.7 to 0.89 > 0.89
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4.5 Explaining species richness (IV) 

In terms of explaining and predicting vascular plant species richness, HTC had 
equal or slightly worse explanatory and predictive power than the two other 
landscape classification schemes (i.e. SH and CLC) (Fig. 7, Table 9). In 
explaining and predicting native species richness, its relative power was 
slightly better than in explaining and predicting total species richness. The 
result differed a bit if results of hierarchical partitioning (Fig. 7) or different 
GAMs (Table 9) were assessed. Overall, all of the landscape type features and 
mean altitude had the strongest explanatory significance. Of these features, 
mean altitude had a negative relationship with species richness, whereas 
landscape heterogeneity had a positive relationship. 

FIGURE 7 The relative importance of each used feature in explaining the total species 
richness based on hierarchical partitioning Z-Scores. HTC is an abbreviation 
of habitat type classification, CLC of Corine Land Cover, SH of spectral 
heterogeneity, Alti of altitude, SR of solar radiation, and SWI of SAGA 
wetness index. 

Overall, most of the variation in species richness could be explained using 
landscape and topographic features (Fig. 8). Geodiversity per se could explain or 
predict little of the variation (Table 9, Fig. 8), but the combined effect of 
geodiversity and landscape as well as all three feature groups was considerable. 
The relative importance of topography and geodiversity were greater in 
explaining native species richness than in explaining total species richness. 
Additionally, the degree of unexplained variation was greater in explaining 
native species richness. 
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TABLE 9 Explained deviance, r2 values and Spearman rank correlation coefficients 

between surveyed and predicted species richness for the different GAMs. 

   
all species native species 

calibration test calibration test 
explained 
deviance 

r2 
adjusted rs rs 

explained 
deviance

r2 
adjusted rs rs 

         
         
all variables 74.6 % 0.743 0.860 0.828 68.3 % 0.673 0.826 0.794 
topo+GD+HTC 64.6 % 0.643 0.809 0.780 62.2 % 0.611 0.787 0.759 
topo+GD+CLC 71.5 % 0.706 0.845 0.818 62.8 % 0.613 0.817 0.791 
topo+GD+SH 68.8 % 0.677 0.830 0.793 63.4 % 0.625 0.789 0.763 
patches omitted 74.3 % 0.742 0.858 0.827 67.9 % 0.670 0.826 0.797 
topography only 46.4 % 0.448 0.690 0.663 49.0 % 0.476 0.476 0.660 
topo+GD 59.4 % 0.583 0.778 0.745 57.8 % 0.561 0.747 0.718 
topo+landscape 73.8 % 0.736 0.855 0.838 66.0 % 0.652 0.818 0.808 
         

topo: topographic features 
GD: geodiversity features 
HTC: habitat type classification, number of habitat types 
CLC: Corine Land Cover, number of land use / land cover types 
SH: spectral heterogeneity, number of types 
patches omitted: the number of patches features omitted from the model 

 

FIGURE 8 Variation of (a) total species richness and (b) native species richness divided 
into different fractions based on variation-partitioning analysis. Numbers 
inside circles are percentage fractions explained by different feature groups. 
For instance, landscape explained 13.6 % and landscape and topography 
together explained 13.5 % of the variation in total species richness. The 
unexplained variation is marked with the symbol U. 



 

 

5 DISCUSSION 

5.1 Uncertainties in the segmentation evaluation (I) 

According to the results, supervised segmentation evaluation methods were 
inconsistent. Furthermore, when it is not possible to rank segmentations by 
means of supervised methods, it cannot be tested if better segmentations lead to 
higher classification accuracies, as has been previously argued by Kim et al. 
(2009), Clinton et al. (2010), Ke et al. (2010), and Gao et al. (2011). Therefore, it is 
vital to define in each case what segmentation is good and how quality could be 
measured.  

In our case, we defined that good segmentation should have (1) 
meaningful and not too complex segments, (2) boundaries parallel to the 
reference polygon boundaries, even for the smallest reference polygons, and, 
when these two conditions are taken into account, (3) segmentation should be 
as coarse as possible. Since none of the available supervised measures 
quantified the conditions we wanted, we could find the best segmentation more 
easily by using visual interpretation. This was also confirmed by means of 
classification accuracy analysis: the highest accuracy was achieved with the 
segmentation that was thought to be the best in visual interpretation. Visual 
interpretation was, nevertheless, far from easy. We could not examine all 252 
segmentations in detail, and accordingly only some general trends could be 
observed. More detailed observations were restricted to a few selected sites, 
such as small lakes or mires, inside the whole study area. 

Previously, some have also argued that supervised methods are not 
applicable, since ground truth is subjective, inaccurate or does not exist (Wulder 
et al. 2008, Corcoran et al. 2010). In other words, a comparison of segmentations 
against reference polygons drawn by human interpreters has been criticized as 
not being useful since reference polygons might also be biased. In these 
critiques, either unsupervised methods or visual interpretation are often 
recommended. In these and all other approaches, it should be decided what is 
being sought by the analysis. It could be discussed endlessly which 
segmentation is the best. And overall, it is not straightforward to judge when 
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segmentation is good (Hay and Castilla 2008), as different segmentations are 
good in different contexts. In other words, it can be stated that there is no right 
solution or truth, but that the truth is context-dependent. Therefore, it would be 
better to try to find an appropriate (as opposed to “right”) segmentation (Lang 
et al. 2010). Furthermore, it is often enough to find an appropriate segmentation 
not the most appropriate. For instance, in our case, classification accuracies 
between some of the classifications (Table 5) were rather small. Additionally, 
segmentations can be altered after the initial segmentation (Blaschke et al. 2014), 
for example, by modifying the segmentation result in the parts that are not as 
appropriate. 

In the future, segmentation evaluation could be further tested using 
unsupervised methods. Unsupervised methods using homogeneity or 
heterogeneity measures within and between segments have been widely used 
(e.g. Kim et al. 2009, Gao et al. 2011, Yue et al. 2012, Hou et al. 2013). These 
methods have not, however, been compared to supervised measures or to 
visual interpretation. Furthermore, it would be interesting to analyze how 
unsupervised measures perform when they are compared with reference 
polygons. In other words, would optimal segmentation based on unsupervised 
measures mimic human-drawn polygons in different contexts? 

Another possible new research direction could include finding new 
methods and measures for segmentation evaluation. Such new methods could 
be based on landscape metrics (e.g. Neubert and Meinel 2003) or polygon 
boundary evaluation (e.g. Lucieer and Stein 2002). In the latter approaches, it 
could be assessed if the boundaries of segmentation polygons are parallel with 
reference polygon boundaries. However, these approaches are no panacea, 
since real boundaries do not always exist in nature or are complex (Wulder et al. 
2008), and different boundaries are visible in different data and in the field.  

Third, multi-scale segmentations have been suggested and performed in 
different contexts (e.g. Hay et al. 2003, Kim et al. 2011). Multi-scale 
segmentations could also be good segmentations, according to segmentation 
evaluation. However, in multi-scale segmentation approaches, it needs to be 
decided when or in what area each scale should be used. 

5.2 Discussing how to map habitat types (II) 

In HTC, it became evident that different mesic forests both were among the 
most common habitat types in the study area and had a large heterogeneity. 
Other forest habitats, as well as other habitat types, were often found in this 
heterogeneity and thus were easily confused with mesic forests. Hence, the 
evaluation of the heterogeneity within and between different habitat types 
showed its usefulness in the analysis. 

One reason behind the heterogeneity problem might be that we followed 
the Finnish forest type classification system (Cajander 1949), in which habitat 
types are not based on tree species but on ground vegetation, nutrient status 
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and soil characteristics. However, an initial analysis revealed that that 
classification accuracies were not better if forests were classified on the basis of 
the most common tree species (i.e. not based on ground-level information). 
Hence, spruce-dominated forests can also be heterogeneous. This reveals the 
difficulties of interpreting nature, which are evident both observing it from 
above using remote sensing or conducting fieldwork on the ground. For 
instance, when Cherrill and McClean (1995, 1999) compared habitat type maps 
drawn by expert fieldwork mappers with each other, they got low accuracy 
rates. This is also in line with our results in HTC in the second study area (III, 
IV), in which accuracy rates of forest habitat mapping were low. 

To map different habitat types, different approaches are needed. For 
instance, mire and streamside habitats were mapped better when the studied 
area was split into two parts, based on one meter of vertical distance to the 
nearest stream. Additionally, topographic features were vital when mapping 
mires. These kinds of results have been found before. Random forest works 
slightly better when the data is more balanced (i.e. when rare classes have more 
cases or segments) (e.g. Breidenbach et al. 2010, Smith 2010). In the data of our 
study, uncommon mire habitats were more abundant near streams, relatively 
speaking. To map mires effectively, it has been found that topographic features 
– and potentially soil information as well – are needed (Ozesmi and Bauer 2002, 
Tomppo and Halme 2004, Wright and Gallant 2007, Maxa and Bolstad 2009, 
Corcoran et al. 2011). However, some rare habitat types, such as springs, could 
not be mapped at all. For these habitat types, another type of approach, such as 
more manual expert analysis (Thompson and Gergel 2008), is needed. 

Different datasets and features are needed for effective mapping of forest 
and other habitat types. First, both ALS data and spectral images were needed 
to get the highest classification accuracy. This has also been found before (e.g. 
Geerling et al. 2007, Ke et al. 2010, Sasaki et al. 2012). Second, including both 
texture features and topographic features increased classification accuracy. 
Third, all types of features were regarded as important, depending on different 
feature importance measures. However, some of the features gave overlapping 
information and had large correlations. For instance, including both wavelet 
and GLCM texture features did not increase classification accuracy. 
Accordingly, it might be enough to use only one of these, not both. 

In terms of habitat type classification, new research could target different 
comparisons. First, different classifiers could be compared. In forest inventories, 
for instance, improved k-NN classifications together with genetic algorithms 
have been used for feature selection and estimation (e.g. Tomppo and Halme 
2004). A second possible comparison could be between pixel- and object-based 
classifications. In this comparison, hybrid or combined approaches could also 
be included (e.g. Bernardini et al. 2010, Aguirre-Gutierrez 2012). A third 
comparison could be between single- and multi-scale approaches. In the multi-
scale approach, some areas or habitat types could be classified using a finer or 
coarser scale (e.g. Benz et al. 2004), or results could be combined using data 
fusion methods, such as majority vote. 
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Habitat types could be mapped using soft or fuzzy approaches. In other 
words, segments could be given probabilities of which class they most likely 
belong to (e.g. Benz et al. 2004). This could also be performed using the random 
forest classifier. In the random forest standard solution, a majority vote is taken. 
This majority vote could be replaced with proportions of how many times each 
class is given a vote. The heterogeneity results based on Sammon’s mapping or 
other approaches could also be used in soft classification approaches. In these 
soft approaches, rarer and potentially high conservation value habitat types 
could be better mapped. In other words, slight indications that a segment 
belongs to a rare habitat type could be followed up on. 

Another new research topic could be analysis of how different training 
datasets affect classification accuracy. Training datasets could be assessed, for 
example, in terms of homogeneity (i.e. if the feature information in training 
polygons and classes is homogenous). A subsequent test could determine if the 
use of more homogenous training datasets leads to higher classification 
accuracies. Finally, in this research, it should also be discussed if homogenous 
training datasets are realistic representations and if the ensuing classification 
results are actually found in the natural environment. 

5.3 Uncertainties in conservation value mapping (III) 

Many of the problems evident in segmentation evaluation are evident also in 
defining, assessing and mapping conservation values. If segmentation quality is 
a problematic concept, so is conservation value. As was discussed in the 
introduction, many different factors have an influence on conservation values. 
Furthermore, in different contexts, different issues should be targeted for 
conservation. 

In mapping conservation values, several different uncertainties exist. We 
were able to show that different habitat type valuation, habitat type 
classification, and complementarity and connectivity calculations give different 
results. For habitat type valuation, it was found that if consideration of 
naturalness is included in the valuation, the results differ from when 
naturalness is not valued. Using naturalness correction is somewhat 
problematic, however, since arbitrary decisions must be made when 
differentiating the value between natural and non-natural habitat types. There 
are also some uncertainties in habitat type valuation. For instance, calcareous 
rocky areas had a lower conservation value than non-calcareous rocky areas, 
even though calcareous rocky areas are regarded as having a high conservation 
value in Finland. Of the threatened species that live on rock outcrops, three-
fourths live on calcareous areas (Rassi et al. 2010). The reason why calcareous 
rocky areas were not highly valued in our analysis might be that species 
literature only identifies species that require calcareous habitats, even though 
several other species live on these habitats as well. 
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Different complementarity and connectivity mapping methods yielded 
rather different results. First, the differences between landscape metric and 
spatial conservation prioritization approaches were significant. The landscape 
metric approach was dependent on patches (i.e. delineated segments). Patches 
can suffer from an artefact effect: landscape metric results change when patches 
change (Mas et al. 2010) and the inner heterogeneity of patches is not taken into 
account (McGarigal et al. 2009). Hence, it is crucial that patches are mapped 
realistically. However, as was discussed above in evaluation of segmentation, 
differently delineated segments are only different representations of reality. 

Because the spatial conservation prioritization approach that was used 
was not dependent on patches, it can be considered as more realistic. 
Additionally, maps produced by means of spatial conservation prioritization 
were visually more appealing. Nevertheless, it is necessary to choose if habitat 
type similarities are taken into account. When similarity was included, high-
value habitat types were preferred. It is entirely context-specific if more high-
value habitats or other different habitat types are identified as needing to be 
protected. Additionally, the uncertainties of habitat valuation increase when 
habitat type connectivity and complementarity are mapped. 

The conservation value maps were different from the ecosystem service 
maps. All mapped ecosystem services were mostly produced in forest areas, 
however, whereas habitat type values were assigned to all habitat types in the 
area. Ecosystem services were mapped more realistically than by using simple 
look-up tables (see Costanza 1997, Troy and Wilson 2006, Burkhard et al. 2012). 
Comparisons between ecosystem services and other conservation values might 
be important. Nonetheless, when conservation decisions are made, 
conservation could target areas that produce many different ecosystem services 
and are also valuable on the basis of species composition and naturalness. 

We recommend that at least three types of questions be asked when 
conservation values are mapped. First, it should be discussed why nature 
should be conserved in the first place. In different contexts, there are different 
reasons to conserve nature. It is necessary in some cases to protect the most 
natural areas and in other places the areas that provide most benefits to humans 
over the long term. Second, it is important to discuss what should be mapped. 
Naturalness or biodiversity cannot be mapped as such; instead, some surrogate 
must be used. Third, the method of mapping should be chosen. Even if what 
needs to be mapped is known, there are different alternatives of how to map 
(e.g. as regards datasets and specific methodologies).  

In future studies, areas that are the most valuable based on different 
approaches could be mapped and thus targeted for conservation. Alternatively, 
potential exists in fuzzy approaches in which uncertainties are taken into 
account. For instance, based on a certain measure, an area might be assessed in 
terms of potential conservation value and likelihood of the area actually having 
that value. Additionally, more dynamic approaches, which take into account 
ecological processes and changes in landscapes, ought to be developed. In 
terms of comparisons and combinations, additional ecosystem services should 
be mapped. Approaches for mapping many different ecosystem services 
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already exist, but most of these approaches are not spatially explicit in a fine 
scale. The usefulness of habitat type maps for mapping conservation values 
could be tested. For instance, fieldwork might be targeted at areas with high 
conservation values. Another potential research topic is comparisons between 
conservation value maps based on habitat type and SDM-based maps of 
showing areas that are potentially species rich. 

5.4 Discussing what explains species richness (IV) 

Most of the variation in species richness was explained through mean altitude 
and different landscape type features. Mean altitude does not, however, have a 
climatic effect on the study area, since altitudinal differences are less than 100 m. 
Instead, most of the nutrients and productive soil are washed and eroded from 
hilltops into lower altitudes. Additionally, human influence has been most 
pronounced at lower altitudes, due to more productive soils and closer proximity 
to water bodies. In other studies (e.g. Honnay et al. 2003, Wania et al. 2006), 
human influence has been found to have a positive relationship with plant 
species richness. Furthermore, areas with higher landscape variability often also 
have stronger human influence (e.g. Honnay et al. 2003, Wania et al. 2006). 

Perhaps surprisingly, HTC was not a better explanatory feature than CLC 
or SH. In some of the comparisons, it was actually a bit worse. This is surprising 
since HTC has an ecological background (i.e. it is based on the habitat type 
preferences of species). On the other hand, different landscape variability 
measures gave complementary information, all of which was needed for the 
model to have the highest explanatory and predictive capability. 

Geodiversity features did not have as strong explanatory power as 
topographic and landscape features. In a previous study, geodiversity measures 
were better explanatory features than climatic and topographic features (Hjort 
et al. 2012). In that study, however, landscape features were not included and 
the study areas were predominantly natural. The inclusion of landscape 
features is somewhat problematic, since humans have a significant influence on 
landscape but not on topography or geodiversity. Geodiversity and topography 
may, therefore, set the stage for and be the ultimate factors behind species 
richness (see Anderson and Ferree 2010, Beier and Brost 2010). Landscape, on 
the other hand, is a more proximate cause. In other words, landscape 
composition and human influence are not random but found in a framework set 
by topography and geodiversity. This can partly be seen in the difference 
between native and total species richness: the relative importance of 
topography and geodiversity was greater when it came to explaining native 
species richness. Moreover, in a previous study, geodiversity was positively 
linked with habitat richness (Ja ková and Romportl 2008). 

In future studies, instead of explaining species richness, explanations can 
target specific species, rare or threatened species richness, or rarity corrected 
species richness. New explanatory features that were not included here could 
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also be added to the model. One of these is a geodiversity measure of 
geomorphological diversity, included in the analysis of Hjort et al. (2012). 
Additionally, other models than GLMs and GAMs could be used and compared 
with each other. For instance, although there are some comparisons between 
different approaches when taking spatial autocorrelation into account (e.g. 
Beale et al. 2010), these comparisons are not thorough. In SDMs, fuzzy 
approaches can also be used with uncertainties being taken into account, for 
example by maps that show the reliability of mapped distributions (Rocchini et 
al. 2011b). 

5.5 Synthesizing results 

Habitat type or other thematic maps, such as land cover maps, are widely used 
in different tasks, for instance in mapping ecosystem services (Egoh et al. 2012, 
Maes et al. 2012, Crossman et al. 2013) or biodiversity patterns (e.g. Kerr and 
Ostrovsky 2003, Turner et al. 2003, Gillespie et al. 2008). 

According to Newton et al. (2009), the use of remotely sensed thematic 
land cover maps is widespread in landscape ecology (i.e. studies in which the 
relationship between spatial pattern and ecological processes is analyzed). 
However, maps are used uncritically; for instance, their accuracy is not 
discussed and other remotely sensed variables are not used. In this study, a 
critical approach has been taken in how successfully patches can be delineated 
(I) and habitat types can be classified (II), how different conservation value 
maps are produced when different habitat type maps are used as a starting 
point (III), and if different thematic maps work to explain biodiversity patterns 
(IV). Additionally, in the ecosystem service mapping (III), habitat type maps 
were only used in part, as direct biomass and timber volume estimates were 
also used. In landscape ecology, the role of discrete thematic patches has been 
partially questioned. As an alternative, the analysis of continuous surfaces of 
DTMs or remotely sensed datasets, for example, has been suggested (McGarigal 
et al. 2009). In this study, continuous surfaces were used in the form of DTM to 
explain species richness (IV) and also in the form of different layers to map 
habitat types (I, II, III). As was already suggested above, fuzziness or the 
internal variability of thematic classes should be taken into account in future 
studies. Otherwise, continuous surfaces could also be more widely used (e.g. to 
produce conservation value maps). Although patches were not visible in output 
spatial conservation prioritization maps (III), the input habitat type maps were 
composed of patches. 

When thematic maps and patches are produced, OBIA methods are 
superior compared to pixel-based methods (e.g. Blaschke et al. 2014). The 
delineation of patches is initially performed in the segmentation phase. 
However, segmentations only delineate prototypes of landscape objects or 
patches. Furthermore, segments do not exist autonomously in the images; they 
are produced by human cognition. While delineated segments are prototypes of 
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landscape objects, they are also only initial representations of image objects. For 
segments to be more meaningful image objects, they are often combined or 
modified. To act as landscape objects, segments are thematically combined and 
associated with classes such as habitat types (Castilla and Hay 2008). As was 
discussed in publication I, segments are very different according to different 
segmentations. Moreover, different segmentations produce different habitat 
type maps (I), which respectively entail different conservation value maps (III). 
Therefore, when conservation value maps are produced, efforts should be made 
at every stage (i.e. segmentation, classification, conservation value mapping) to 
be rigorous. Nevertheless, human cognition and decision-making play a part at 
every point. Therefore, while subjectivity cannot be removed from the mapping 
process, there should be awareness of how it affects the process. 

In III and IV, species richness, conservation values and ecosystem services 
were considered separately. This differs from what was discussed in the 
introduction, however. As Fig. 1 points out, both ecosystem services and species 
richness (or diversity) are constituents of conservation values. In this manner, 
ecosystem service maps (III), together with species richness maps (IV), are also 
conservation value maps. 

Yet the species richness maps drawn in publication IV are drastically 
different from the conservation value maps drawn in publication III. The reason 
behind this difference is threefold. First, the spatial scale differs. The grain size 
(i.e. the finest spatial resolution (see Turner et al. 2001)) in the species richness 
maps (IV) is 1000 m, whereas in the conservation value maps (III) the grain size 
is 10 m. Therefore, a single species richness survey quadrat contains 10,000 
conservation value map cells. In different scales, different processes occur 
(Levin 1992). Thus, there exist problems of how to combine, or even to compare, 
these two maps. Second, in the conservation value maps, other considerations 
than species richness were taken into account. These include habitat type 
connectivity and complementarity, together with habitat type valuation based 
on naturalness and rarity. Third, it is problematic if species richness can be used 
as a proxy for conservation values. As discussed before, species richness is often 
highest in human-dominated cultural landscapes (e.g. Honnay et al. 2003), 
whereas conservation values, depending how they are defined, are often 
highest in more natural landscapes. Additionally, rarity of species is not taken 
into account in pure species richness, even though rarity is a major 
consideration in many of the conservation value assessments (see e.g. Margules 
and Usher 1981, Williams et al. 1996). In brief, the species richness maps and 
conservation value maps drawn in this study tell different stories. 

Nonetheless, there are ways to combine conservation value and species 
richness. First, according to species richness modeling, landscape diversity 
explains species richness. Hence, it is advisable to take habitat type 
complementarity into account when mapping conservation values. In this way, 
the maximum number of species and habitats can be protected. Second, high-
conservation value areas can also be areas with high species richness or with 
elements that can cause high species richness. For instance, areas which have 
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high geodiversity have a high conservation value (see e.g. Anderson and Ferree 
2010, Beier and Brost 2010, Ruddock et al. 2013). Third, species richness and other 
factors that contribute to conservation values have connections. For instance, 
there is a plethora of literature that discusses the relationship between species 
richness (or, more generally speaking, biodiversity) and ecosystem services. For a 
good synthesis, see Mace et al. (2012). Overall, it is important to sort out factors 
that explain species richness. Although it is problematic to use species richness 
per se as a conservation value, considerations of species richness help in mapping 
the different elements that are important for conservation. 

When mapping conservation values, it is important to choose if the 
current conservation value or the future conservation value should be targeted. 
In a changing climate, it has been argued that areas with the elements to 
provide high biodiversity in the future should be targeted (Anderson and 
Ferree 2010, Beier and Brost 2010, Ruddock et al. 2013). The same could also be 
applied to other constituents of conservation value. For example, if there is a 
desire to protect nature so that the supply of ecosystem services is secured, it 
should be analyzed where the supply of services will be high in the future. 
Habitat type maps can also be used in these kinds of mapping tasks. Instead of 
mapping current habitat types based on present vegetation, maps of potential 
future habitat type distribution could be drawn. 

Ideally the spatial distribution of conservation values could be mapped by 
mapping all the constituents of conservation values. This is a daunting task, 
however, since there are numerous constituents, and creating visual 
representations of them on maps is difficult. Moreover, several (often arbitrary) 
decisions need to be made when weighting different constituents. All in all, new 
tools for mapping different conservation values (e.g. species richness and 
ecosystem services) in various landscapes are needed. Many of these tools can be 
based on habitat type maps or on object-based image analysis methodologies. 

5.6 Putting the findings into a planning context 

In this research, several limitations and conditions of the results and 
methodologies used have been raised. While it is indeed problematic to use a 
conservation value map drawn in publication III for planning decisions per se, 
the use of a conservation value map, for example, would not be as problematic 
if it were combined with fieldwork. In other words, a conservation value map 
can be used for the purpose of determining fieldwork targets (see e.g. Rossi and 
Kuitunen 1996, Hilli and Kuitunen 2005). Instead of using random sampling, 
fieldwork could be performed in the most valuable locations shown on a 
conservation value map or in other interesting locations. Therefore, although 
the developed methods can be used to predict potential locations for 
conservation, they should always be accompanied by expert evaluation. 

The limitations and conditions raised in this thesis should be taken into 
account when planning decisions are made. It should be understood that maps 
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are not the truth, but they represent and simplify the truth. In map production, 
arbitrary decisions often have and will be made, and these have an effect on the 
map. The effect of these decisions should be understood and also documented 
when maps are produced. Furthermore, maps from intermediate phases are 
almost as important as the final maps. For instance, instead of using only a final 
conservation value map or habitat type map, SWI and CHM maps or satellite 
images can be used to make conservation decisions and so forth. 

When maps are used in real-world decisions, the adopted workflow could 
be something similar to the workflow sketched out in Fig. 9. This kind of 
workflow could also be an ideal workflow for research purposes. The workflow 
is not intended to be used in planning per se; instead, the workflow should 
provide information that can aid in making planning decisions. The workflow is, 
in addition, rudimentary. In other words, it has not been tested, it could be 
thought out more thoroughly, and it has not been sketched out in a process 
involving other researchers or stakeholders. That is, problems related to land use, 
such as the degradation of the ecosystem functioning, are “no technical solution 
problems” (see Hardin 1968). In other words, there are no technical solutions of 
how to solve these problems, and using only natural science in the solutions is 
not enough. In research, therefore, approaches should be transdisciplinary (i.e. 
there should be an integration of academic researchers from the humanities or 
social sciences and the natural sciences, as well as non-academic participants). In 
transdisciplinary research, integrative theory and knowledge between science 
and society are created; hence, disciplines are merged (see Fry et al. 2007). 

In Fig. 9, the workflow is framed inside a context. Three types of contexts 
are mentioned: spatial context refers to the location where research is 
performed, environmental context refers to the carrying capacity of the Earth 
(see e.g. Rockström et al. 2009), and socio-political context includes the planning 
context, together with local and wider society, culture, and economics. These 
contexts should be taken into account and analyzed when mapping is 
performed. The workflow starts with three questions: why, what and how (III, 
Section 5.3). After this, the workflow resembles what was sketched in Fig. 3 and 
is the most applicable to conservation value mapping based on habitat types. 
However, it can also be applied to other types of conservation value mapping 
tasks. After it has been decided how the mapping should be done, all relevant 
spatial and non-spatial data from the area should be collected. If needed, some 
fieldwork should be performed for the data to be used, for example, in accuracy 
assessments. After data gathering, the following phases are segmentation, 
classification and conservation value mapping based on the valuation of habitat 
types. As an alternative to habitat types, some other features (such as habitats 
or habitat quality) can also be mapped. In these three phases, uncertainties 
should be taken into account. Uncertainties are included in the workflow in 
each phase. Segmentations should be evaluated, checked if they resemble the 
needs of the study, and potential problematic aspects should be acknowledged. 
The accuracy of classification should be assessed overall, in relation to habitat 
types and in relation to different locations. Habitat type classification should 
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also be subsequently adjusted if the accuracy in regard to some parts or habitat 
types is not reasonable. To perceive uncertainties in conservation value maps, 
some external reference data can be used. These data can be, for instance, 
species richness inventory data. In both habitat type classification and 
conservation value mapping, fuzzy approaches should be adopted (see Sections 
5.2, 5.3 and 5.4). Finally, when conservation value maps are drawn, they need to 
be evaluated by experts and verified with fieldwork. 

 

 

FIGURE 9  A simplified and ideal workflow showing how conservation values could be 
mapped in a research project whose results are intended for planning 
purposes. 
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6 CONCLUSION 

In this research, new methods for mapping habitat types and conservation 
values were developed. The approach was critical and comparative. 
Uncertainties and potential limitations were discussed in each of the different 
tasks. In addition, comparisons were made between methodologies, datasets 
and approaches. 

At the core of the thesis was an object-based classification approach for 
habitat types. It was found that this classification works relatively well. 
Nevertheless, there remain problems of how to delineate and classify areas in a 
natural environment. First, boundaries in nature are not always self-evident 
and their locations are open to interpretations. It was argued that choosing the 
best segmentation is often arbitrary and supervised evaluation measures are 
sub-optimal for judging segmentation quality in large natural areas. Second, 
thematic classification of natural environment is also open to interpretation. The 
heterogeneity within and between different habitat types should be taken into 
account when habitat type maps are constructed. Nevertheless, different 
datasets, layers, features and approaches are required when mapping all of the 
relevant habitat types and for the sake of the highest level of classification 
accuracy. Both ALS data and spectral images are needed, and several types of 
features must be calculated from them. When the different uncertainties are 
taken into account, habitat type maps can be used widely for different 
purposes. 

When habitat type maps are converted into conservation value maps, 
several decisions need to be made, such as if species richness, rarity, landscape 
naturalness or ecosystem services should be targeted in the mapping. It was 
shown that maps where only potential species richness and rarity, species 
richness, rarity and naturalness, or ecosystem services were mapped were 
different. Additionally, other less significant decisions must be made (e.g. 
regarding mapping methodology and weighting of different issues). In the 
analysis, conservation value maps were different if habitat type mapping or 
connectivity and complementarity mapping methods were changed. Hence, it 
was pointed out that different decisions can have large effects on the resulting 
maps. Therefore, reasoning is needed for why, what and how to map 
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conservation values. Nonetheless, conservation value maps are potentially 
effective tools for guiding conservation decisions. 

It was discovered that most of the variation in vascular plant species 
richness could be explained by landscape and topography, while the relative 
role of geodiversity was small. Although habitat type maps performed slightly 
worse than two other landscape type classifications in terms of explaining and 
predicting species richness, different landscape type classifications provided 
complementary information. Species richness had a positive relationship with 
habitat type heterogeneity. Hence, when current levels of species richness are 
sought to be maintained, habitat type heterogeneity and complementarity 
should be taken into account in planning decisions. On the other hand, because 
habitat type heterogeneity is often highest in human-dominated areas, other 
aspects (e.g. naturalness and ecosystem services) should be considered at the 
same time. Furthermore, since climate change is expected to have an effect on 
species distribution patterns, it is vital to acknowledge ultimate factors that 
control species distribution, such as geodiversity and topography. This was also 
partially suggested by the fact that the relative roles of topography and 
geodiversity were greater in explaining native species richness 

The methods developed here can be used for planning, but with care. The 
uncertainties must be taken into account and ground reference data should be 
used. Finally, it is important to remember that all planning and mapping occurs 
in a context that limits and directs how the mapping should be performed. 
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

Elinympäristötyyppien ja suojeluarvojen kartoitus kaukokartoitusaineisto-
jen ja paikkatietomenetelmien avulla 
 
Tutkimuksessa kehitettiin uusia menetelmiä elinympäristötyyppien ja suojelu-
arvojen kartoitukseen. Toisin sanoen elinympäristötyyppien ja suojeluarvojen 
alueellisesta jakaumasta luotiin karttoja. Uuden kehittämisen lisäksi tutkimuk-
sessa hyödynnettiin jo kehitettyjä menetelmiä ja kehitettiin niitä tarkoitukseen 
sopiviksi. Näkökulma oli kriittinen ja vertaileva, eli eri lähestymistapoja, ai-
neistoja ja menetelmiä vertailtiin. 

Tutkimusalueita oli kaksi: Keljon alue Jyväskylän lounaispuolella ja Luo-
pioisten alue Tampereen kaakkoispuolella. Alueet ovat pääosin metsäisiä mutta 
sisältävät myös muita maankäyttötyyppejä kuten vesistöjä, maatalousalueita ja 
soita. Käytetyt aineistot olivat kaukokartoitus- ja paikkatietoaineistoja, joista 
tärkeimpiä olivat laserkeilausaineistot, ilmakuvat ja tarkkaresoluutioiset satel-
liittikuvat.  

Tutkimus jakautui neljään osatutkimukseen. Kahdessa ensimmäisessä osa-
tutkimuksessa tutkimusmenetelmät perustuivat kaukokartoitusaineistojen ob-
jektiperustaiseen kuva-analyysiin, jossa yksittäisten kuva-alkioiden sijaan tar-
kastellaan homogeenisia objekteja. Objektit luotiin analyysin ensimmäisessä 
vaiheessa segmentoinnissa eli automaattisesti tapahtuvassa yhtenäisten kuva-
objektien kuvioinnissa. Toisessa vaiheessa objektit luokiteltiin elinympäristö-
tyyppeihin. Kolmannessa ja neljännessä osatutkimuksessa objektiperustaisen 
kuva-analyysin avulla kehitettyä elinympäristöluokittelua sovellettiin suojelu-
arvojen kartoittamisessa ja lajirunsauden selittämisessä. 

Ensimmäisessä osatutkimuksessa tarkoituksena oli löytää segmentointi-
menetelmä, joka on käyttökelpoinen boreaalisessa metsämaisemassa. Lisäksi 
artikkelissa vertailtiin erilaisia tapoja, joilla segmentoinnin hyvyyttä voidaan 
arvioida ja verrata kenttätyönä tehtyyn maisemakuviointiin. Kaiken kaikkiaan 
vertailussa oli mukana 252 erilaista segmentointia. Tutkimuksessa havaittiin, 
että segmentoinnin hyvyyden arviointiin kehitetyt ohjatut arviointimittarit 
antoivat ristiriitaisia tuloksia eikä niiden avulla voitu päätellä, mikä segmen-
tointi olisi paras. Vastaavasti segmentoinnin visuaalinen ihmistyönä tehtävä 
arviointi oli aikaa vievää eikä sen avulla pystytty tarkastelemaan erilaisia 
segmentointeja kattavasti. Kuitenkin visuaalisesti parhaalta näyttävä segmen-
tointi antoi parhaan luokittelutarkkuuden elinympäristöluokittelussa, vaikka-
kin myös muilla mielekkäillä segmentoinneilla saatiin lähes yhtä hyviä tuloksia. 

Toisessa osatutkimuksessa kehitettiin elinympäristötyyppien luokittelu-
menetelmää eteenpäin. Jokaisesta segmentistä eli kuvaobjektista laskettiin 328 
erilaista piirrettä, jotka kuvasivat esimerkiksi kohteen heijastavuutta, heijasta-
vuuden eroja, puuston rakennetta ja maaston muotoja. Tämän jälkeen kuva-
objektit luokiteltiin eri elinympäristötyyppeihin käyttämällä automaattista luo-
kittelumenetelmää. Osatutkimuksessa vertailtiin erilaisia luokitteluja, joissa osa 
piirretyypeistä oli jätetty pois. Parhaassa luokittelussa 79 % alueesta luokittui 
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niihin elinympäristötyyppeihin, jotka kyseisissä sijainneissa maastokartoituk-
sen perusteella tulkittiin olevan. Osatutkimuksessa havaittiin, että luokittelussa 
tarvitaan paljon erilaisia piirteitä, jotta luokittelutarkkuus olisi korkein mahdol-
linen ja jotta kaikki elinympäristötyypit saataisiin mahdollisimman hyvin luoki-
teltua. 

Kolmannessa osatutkimuksessa kehitettyä elinympäristöluokittelua käy-
tettiin suojeluarvojen kartoittamisessa. Kartoitetuille elinympäristöille määritet-
tiin arvo potentiaalisen lajirunsauden, lajiston harvinaisuuden ja elinympäristö-
tyypin luonnonmukaisuuden avulla. Suojeluarvojen kartoittamisessa otettiin 
lisäksi huomioon elinympäristötyyppien sisäinen kytkeytyvyys ja toisiaan 
täydentävyys. Osatutkimuksessa vertailtiin, miten suojeluarvokartat muuttu-
vat, kun elinympäristöluokittelua, elinympäristötyyppien arvotustapaa tai kyt-
keytyvyyden ja täydentävyyden laskentatapaa vaihdetaan. Lisäksi suojeluarvo-
karttoja vertailtiin kolmeen ekosysteemipalvelukarttaan, jotka kuvastivat po-
tentiaalista puun ja varastoidun hiilen määrää sekä maiseman virkistysarvoa. 
Osatutkimuksessa havaittiin, että erilaisilla kartoitustavoilla saadaan luotua 
hyvinkin erilaisia suojeluarvokarttoja. Vastaavasti kaikki suojeluarvokartat 
poikkesivat melko paljon ekosysteemipalvelukartoista. Siten erityistä huomiota 
on kiinnitettävä, miksi, mitä ja miten suojeluarvoja kartoitetaan. 

Neljännessä osatutkimuksessa selitettiin ja ennustettiin neliökilometriruu-
tujen putkilokasvilajirunsautta. Selittävinä tekijöinä käytettiin aikaisemmissa 
osatutkimuksissa luotua elinympäristöluokittelua, muita maiseman vaihtele-
vuutta kuvaavia muuttujia, maan muotojen vaihtelevuutta ja geologista moni-
muotoisuutta. Kokonaislajirunsaudesta pystyttiin selittämään noin 75 % ja alku-
peräisten kasvien lajirunsaudesta noin 68 %. Maisemamuuttujat ja maanmuoto-
jen vaihtelevuus selittivät runsauden vaihtelusta suurimman osan. Geologisen 
monimuotoisuuden rooli oli selvästi pienempi. Yksittäisistä muuttujista tär-
keimmiksi osoittautuivat ruudun keskimääräinen korkeus merenpinnasta ja 
maisematyyppien lukumäärä ruudussa. Korkeuden lisäys vähensi ja maisema-
tyyppien runsaus lisäsi lajirunsautta. Kehitetty elinympäristöluokittelu selitti 
runsauden vaihtelusta hieman vähemmän kuin vertailussa mukana olleet muut 
maisemamuuttujat. Osatutkimuksessa pohdittiin, että maan muodot ja geologi-
nen monimuotoisuus ovat mahdollisesti lajirunsautta sääteleviä perimmäisiä 
syitä ja ne määrittelevät lajirunsauden lisäksi myös maisematekijöiden alueel-
lista jakautumista. 

Kaiken kaikkiaan tutkimuksessa havaittiin, että objektiperustainen elin-
ympäristöluokittelu toimii hyvin ja sitä pystyy käyttämään laajasti erilaisissa 
tehtävissä. Sen käyttämisessä tulee kuitenkin huomioida epävarmuustekijät, 
jotka osin aiheutuvat luonnon monitulkintaisuudesta. Lisäksi suojeluarvokart-
toja luotaessa tulee ottaa huomioon elinympäristötyyppien ja maanmuotojen 
vaihtelevuus, jos tarkoituksena on säilyttää nykyisenkaltainen lajirunsaus. 
Toisaalta lajirunsauden lisäksi usein halutaan huomioida myös muita tekijöitä, 
kuten lajiston harvinaisuus, maiseman luonnonmukaisuus ja potentiaalinen 
ekosysteemipalveluiden tuotanto. 
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Kehitettyjä menetelmiä karttojen luomiseksi voidaan käyttää maankäytön 
suunnittelun tukena, jos lopullisten karttojen ja välivaihekarttojen lisäksi asian-
tuntijat arvioivat epävarmuutta aiheuttavia tekijöitä ja suorittavat riittävät 
maastokartoitukset. Maankäytön suunnittelussa tulee luonnollisesti ottaa huo-
mioon myös kulttuurinen, yhteiskunnallinen ja alueellinen asiayhteys, jossa 
karttoja käytetään. 
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Segmentation goodness evaluation is a set of approaches meant for deciding which
segmentation is good. In this study, we tested different supervised segmentation eval-
uation measures and visual interpretation in the case of boreal forest habitat mapping
in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar dig-
ital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution.
The segmentation methods tested were the fractal net evolution approach (FNEA) and
IDRISI watershed segmentation. Overall, 252 different segmentation methods, layers,
and parameter combinations were tested. We also used eight different habitat delin-
eations as reference polygons against which 252 different segmentations were tested.
The ranking order of segmentations depended on the chosen supervised evaluation mea-
sure; hence, no single segmentation could be ranked as the best. In visual interpretation
among the several different segmentations that we found rather good, we selected only
one as the best. In the literature, it has been noted that better segmentation leads to
higher classification accuracy. We tested this argument by classifying 12 of our segmen-
tations with the random forest classifier. It was found out that there is no straightforward
answer to the argument, since the definition of good segmentation is inconsistent. The
highest classification accuracy (0.72) was obtained with segmentation that was regarded
as one of the best in visual interpretation. However, almost similarly high classification
accuracies were obtained with other segmentations. We conclude that one has to decide
what one wants from segmentation and use segmentation evaluation measures with care.

1. Introduction

Since the early 2000s, with the rise of object-based image analysis (OBIA) methodology
(Blaschke 2010), segmentation goodness evaluation has been an emerging topic within the
remote-sensing literature (Clinton et al. 2010; Marpu et al. 2010). Evaluation has been
concentrated on segmentation method development and comparison as well as parameter
optimization.

Generally in segmentation, the objective is to partition imagery into regions that are
meaningful and thus either mimic real-world objects (Zhang, Fritts, and Goldman 2008;
Clinton et al. 2010) or minimize intra-segment and maximize inter-segment heterogene-
ity (Zhang, Fritts, and Goldman 2008; Hou et al. 2013). Remote-sensing segmentation
methods are a special case of more general image segmentation methods, which can
be divided into two complementary groups: similarity or region-based segmentation and
discontinuity-based segmentation. In region-based segmentation, a similarity measure is
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used to determine suitable regions. In discontinuity-based segmentation, discontinuities of
the images, usually boundaries, are detected (Zhang 1997; Gonzales and Woods 2002).
Some methods combine concepts from both groups. For instance, in watershed segmenta-
tion, dividing lines between basin areas are sought by flooding the image (Gonzales and
Woods 2002).

Within remote sensing, several segmentation implementations have been region based.
Arguably, the most widely used remote-sensing segmentation method has been the fractal
net evolution approach (FNEA) developed by Baatz and Schäpe (2000), and implemented
in eCognition software (Trimble, Sunnyvale, CA, USA). FNEA has been used as a bench-
mark segmentation against which other methods have been compared. Although some
authors have claimed to have developed better methods (Derivaux et al. 2010; Li et al.
2010; Li, Huo, and Fang 2010; Wang, Jensen, and Im 2010), FNEA has been a good
performer in method comparisons (Neubert and Meinel 2003; Meinel and Neubert 2004;
Carleer, Debeir, and Wolff 2005; Neubert, Herold, and Meinel 2008; Marpu et al. 2010)
and seems to still be the standard method (e.g. Bar Massada et al. 2012; Duro, Franklin,
and Dubé 2012). In addition, many other standard remote-sensing analysis products such as
ENVI (Exelis, McLean, VA, USA), ERDAS Imagine (Intergraph, Huntsville, AL, USA),
and IDRISI Selva (Clark Labs, Worcester, MA, USA) have included segmentation methods
in their newer versions. Yet, there are also numerous other methods, algorithms, and soft-
ware applications for segmenting remotely sensed data. To analyse the goodness of these
methods, segmentation evaluation has been performed (Zhang 1996; Clinton et al. 2010;
Marpu et al. 2010).

Segmentation evaluation can be divided into two major categories: subjective (visual)
evaluation and objective evaluation. Objective evaluation can be further divided into
system-level, which evaluates the overall system in which segmentation is performed, and
direct evaluation (Zhang, Fritts, and Goldman 2008). As an example, final classification
output can be regarded as a system when assessing segmentation quality (Smith 2010;
Wang, Jensen, and Im 2010; Gao et al. 2011). Direct evaluation can be either analytical
or empirical, of which the former evaluates the method itself and the latter its results.
Empirical methods consist of supervised and unsupervised methods, i.e. if ground truth
is used as a reference or not (Zhang, Fritts, and Goldman 2008).

In remote sensing, both analytical methods (Hay et al. 2003) and unsupervised meth-
ods (Espindola et al. 2006; Corcoran, Winstanley, and Mooney 2010; Drăguţ, Tiede, and
Levick 2010; Yue et al. 2012; Hou et al. 2013) have been used in segmentation evaluation.
For instance, Corcoran, Winstanley, and Mooney (2010) evaluated segmentation goodness
by measuring the contrast between segments that share a boundary. However, evaluation
has largely been performed using supervised methods, more specifically either area-based
or location-based measures. From these two, area-based measures evaluate whether either
segmentation is too coarse (under-segmentation) or too fine (over-segmentation). Over-
and under-segmentation measures can also be combined. Location-based measures, on the
other hand, are based on distances between segment centroids and reference polygon cen-
troids or distances between boundary pixels. For a good review of these measures and
an evaluation of different measures, see Clinton et al. (2010). These goodness measures
are applicable especially when mapping clearly bordered urban features (Tian and Chen
2007; Zhan et al. 2005; Weidner 2008; Clinton et al. 2010), agricultural areas (Lucieer and
Stein 2002; Möller, Lymburner, and Volk 2007; Wang, Jensen, and Im 2010), or larger
land-use/land-cover types (Weidner 2008). Yet, goodness measures have also been used
in natural area segmentations (Carleer, Debeir, and Wolff 2005; Ke, Quackenbush, and Im
2010; Bar Massada et al. 2012). Some supervised segmentation evaluation methods use a
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larger set of reference polygons inside a larger area (e.g. Clinton et al. 2010), whereas oth-
ers use only a couple of distinct reference polygons and semi-automated approaches (e.g.
Marpu et al. 2010).

Segmentation evaluation can be used to compare different types of segmentation meth-
ods, i.e. region-based segmentation against discontinuity-based segmentation (Carleer,
Debeir, and Wolff 2005). In addition, evaluation can be made between different segmen-
tation methods or software, or inside a segmentation method as parameter optimization
(Marpu et al. 2010). Although similar methods can be used in all these problems, task-
specific methodology for the problems has also been developed, especially for parameter
optimization. For instance, genetic algorithms have been used in optimizing segmentation
to match reference delineation (Feitosa et al. 2006; Chabrier et al. 2008). Optimization has
also been used without supervised goodness measures based on unsupervised evaluation.
For instance, Drăguţ, Tiede, and Levick (2010) developed a scale parameter optimization
tool that measures the rate of change of local variance inside a scene. Optimal scale param-
eters are those that have a local maximum of rate of change. Similarly, Espindola et al.
(2006), Gao et al. (2011), and Yue et al. (2012) tried to combine low intra-segment vari-
ance and low inter-segment autocorrelation. On the other hand, Kim, Madden, and Warner
(2008, 2009) hypothesized that optimal scales should only have low spatial autocorrela-
tion between segments; Wang, Sousa, and Gong (2004) maximized Battacharya distance
between candidate segments. Finally, Smith (2010) optimized the segmentation scale by
minimizing classification error in a random forest classifier.

Forest inventory or forest habitat mapping is only one instance of where segmentation
is often used. Yet, forest inventories are increasingly dependent on automatic segmenta-
tions (Pekkarinen 2002; Hay et al. 2005; Castilla, Hay, and Ruiz-Gallardo 2008; Mustonen,
Packalén, and Kangas 2008; Wulder et al. 2008; Falkowski et al. 2009; Kim, Madden, and
Warner 2009; Ke, Quackenbush, and Im 2010; Hou et al. 2013). Segmentations used in for-
est inventory are usually made with feature values calculated from aerial or satellite images;
however, the usage of light detection and ranging (lidar) data has recently become popu-
lar (Mustonen, Packalén, and Kangas 2008; Ke, Quackenbush, and Im 2010; Breidenbach
et al. 2011; Eysn et al. 2012; Hou et al. 2013). It has been noted that the synergy between
imagery and lidar provides promising segmentation results and the selection of input data
affects segmentation quality (Geerling et al. 2007, 2009; Mustonen, Packalén, and Kangas
2008; Ke, Quackenbush, and Im 2010; Hou et al. 2013). Despite this, studies incorporating
different data sets remain scarce, both in forest inventory and in other applications.

In forest inventory or habitat mapping, segmentation goodness evaluations have been
performed both qualitatively (Leckie et al. 2003; Wulder et al. 2008) and quantitatively
using unsupervised (Kim, Madden, and Warner 2008, 2009; Hou et al. 2013) or supervised
methods (Radoux and Defourny 2007; Ke, Quackenbush, and Im 2010). Some evalua-
tions have been based on the thematic quality of segments against reference polygons
(Pekkarinen 2002; Mustonen, Packalén, and Kangas 2008). Wulder et al. (2008) criticize
quantitative evaluation because the used ground truth is a subjective delineation of forest
patches; hence, real truth does not exist. Therefore, objects in forests are not as clearly
separable as, e.g., urban features. Furthermore, in urban features, supervised evaluation
has been criticized because of inaccurate ground truth (Corcoran, Winstanley, and Mooney
2010). In this work, we wanted to test whether supervised segmentation evaluation methods
are applicable to forested areas on a larger set of reference polygons.

It has been stated and tested that segmentation goodness affects classification accuracy
directly in OBIA classification (Kim, Madden, and Warner 2009; Clinton et al. 2010; Ke,
Quackenbush, and Im 2010; Gao et al. 2011). Although there are numerous approaches and
measures to evaluate segmentation goodness, the evaluation of goodness measures has not
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been thorough. In this article, we will test whether the widely used supervised segmentation
goodness measures are applicable in boreal forest habitat-type mapping and whether best
segmentation leads to best classification accuracy. We test supervised methods instead of
unsupervised methods, because our objective is to determine a segmentation that matches
habitat-type patches that are delineated using fieldwork. Furthermore, we try to find a seg-
mentation method, parameter value, and image/data layer combination that best suits our
purposes. To do this, we tested two different methods (FNEA region-based segmentation
and IDRISI watershed segmentation), several parameter combinations, and different lay-
ers derived from WorldView-2 imagery and lidar data. We also tested whether different
methods are habitat type, reference polygon, or area sensitive.

2. Methods

2.1. Study area and reference polygons

We studied a 7 km2 rural-forested area southwest of the city of Jyväskylä located in
Southern Finland. The area belongs to southern boreal vegetation zone (Ahti, Hämet-Ahti,
and Jalas 1968). The geographic coordinates (WGS84) of the site are 62◦ 10′ 30′′ N–
62◦ 13′ 30′′ N and 25◦ 29′ 0′′ E–25◦ 38′ 0′′ E. The study area mainly consists of both
coniferous and deciduous forest habitats, mires, and agricultural area. The main tree species
of the study area are the Scots pine (Pinus sylvestris), Norwegian spruce (Picea abies), and
birches (Betula pubescens and Betula verrucosa). The study area was divided into three
subareas with slightly varying land cover. The subareas were classified into 25 different
habitat types (Table 1), which were mapped by fieldwork during June–August 2011. Habitat
patches were used as reference polygons in segmentation goodness measures.

Most of the studied forest area is under heavy forestry and clear-cuts, which create
a human-induced dynamic. Yet, two of the three delineated subareas included also one
protected area, which covered 100 and 25 ha of these subareas, respectively. Protected areas
were dominated by a semi-natural, over 100 year-old, forest. The larger protected area is
part of a NATURA 2000 area. Inside the NATURA area and our study area, several different

Table 1. Different habitat types that were mapped during fieldwork when the reference polygons
were drawn and that were used in the classification part of the research.

Habitat type Number of age groups/management possibilities

Xeric (pine-dominated) forests 4: clear-cut, sapling stand, young, mature
Mesic (spruce-dominated) forests 5: clear-cut, sapling stand, young, mature, natural
Herb-rich (mixed/deciduous) forests 4: sapling stand, young, mature, natural
Bare rock 1
Pine mires 1
Spruce mires 2: not drained, drained
Open mires 1
Water (lakes and streams) 1
Small creeks 1
Springs 1
Grasslands 1
Fields 1
Roads 1
Yards 1
Sand pits 1



International Journal of Remote Sensing 8607

NATURA 2000 habitats are found. NATURA 2000 habitats were not mapped per se, but
they were included in some of our mapped habitat types.

The three studied subareas were selected from different parts of a larger area southwest
of Jyväskylä so that they included several different habitat types and different landscape
configurations. Each subarea was delineated into habitat patches, resulting in a total of
628 habitat patches. Subarea 1 (Sallaajärvi) included small- to medium-sized patches of
different-aged, mostly mesic forests, some spruce mires, small streams, meadows, lakes,
and yards. The area also comprised some old fields, which have been afforested. Moreover,
in the middle of the area, there is a 250 ha conservation area with a semi-natural forest.
Subarea 2 (Kuusimäki) included large areas of protected old mesic forests with spruce
mire patches. Moreover, this subarea had some open and pine mires, small lakes and fields,
yards, and forests of different ages around the old forest. Subarea 3 (Lapinmäki) included
areas of bare rock surrounded by mesic forest, and with yards, fields, and lakes on the
fringes.

During fieldwork, patches were drawn into paper printouts of orthophotographs, which
included 5 m contour lines derived from a topographic map. Additionally, Trimble GeoXT
and Juno SB Global Positioning System (Trimble, Sunnyvale, CA, USA) devices with dif-
ferential location corrections were used to check accurate location and to delineate patches,
which were difficult to distinguish from aerial images. ArcGIS 9.3.1 (Esri, Redlands, CA,
USA) editor was used when patches were manually drawn into a digital format. Patches
were initially mapped as they were in the terrain. Later, some recent clear-cuts were modi-
fied to be of the same age and forest type as the neighbouring forest patches to match the
state of the forest in the used satellite image and lidar data.

As alternative reference polygons, we used a forestry planning data set created for the
City of Jyväskylä and a biotope classification data set created by the Finnish Forest and
Park Service (FFPS) (Vesterbacka 2010). In the forestry planning data set, polygons are
drawn first from aerial imagery, and after initial drawing, polygons are double-checked
using fieldwork. This data was from subarea 1 only. FFPS biotope data is also generated
using fieldwork and aerial imagery and it was from subarea 2 only.

2.2. Remotely sensed data

Our primary data consisted of eight-band multispectral 2 m resolution WorldView-
2 (WV-2) satellite image taken on 14 July 2010 and lidar data with a minimum of
0.5 points per m2 from May 2010. Additionally, we used 20 cm resolution aerial images
(orthophotographs) taken in 2007 in assisting the drawing of reference polygons.

The WV-2 image, taken by Digital Globe Inc., consists of eight bands: coastal
blue (band 1, 400–450 nm), blue (2, 450–510 nm), green (3, 510–580 nm), yellow (4,
585–625 nm), red (5, 630–690 nm), red-edge (6, 705–745 nm), NIR1 (7, 770–895 nm),
and NIR2 (8, 860–1040 nm) in 2 m resolution, and a panchromatic band (450–800 nm)
in 50 cm resolution. The image was delivered radiometrically and sensor corrected, pro-
jected to a plane with average terrain elevation. In our pre-processing phase, the image was
first orthorectified using a 5 m resolution digital elevation model derived from lidar data.
In georeferencing, 13 ground control points from block features (buildings, etc.), which
were scattered all over the study area, were taken from orthophotographs and the near-
est neighbour sampling method was used. In visual interpretation, the differences between
orthophotographs, lidar data, and orthorectified WV-2 were at maximum a couple of metres.
From WV-2, we used all multispectral bands in 2 m resolution.
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Lidar data was created by the National Land Survey of Finland. Flying altitude is on
average 2000 m. The used scan angle was ±20◦ and the laser pulse footprint on the ground
was approximately 50 cm. The mean error in elevation information is at maximum 15 cm
and in planar information at maximum 60 cm. Data was delivered automatically classified
to ground hits, low vegetation hits, low error hits, and unclassified hits.

Lidar point clouds were first triangulated and after that rasterized using LAS tools
(Rapidlasso, Gilching, Germany) (Isenburg 2011). We first derived two layers in 2 m reso-
lution from lidar: digital terrain model (DTM) and digital surface model (DSM). In DTM,
only ground hits were used; whereas in DSM, the point cloud was first thinned to 1 m res-
olution to include the highest hits. Then we subtracted DTM from DSM to create a canopy
height model (CHM). CHM was further manipulated to include values only between 0 and
40 m to filter out unrealistic values. The CHM still had some wrong values below 40 m,
but these could not be corrected easily.

From DTM, using SAGA GIS (System for Automated Geoscientific Analyses geo-
graphical information system), we calculated the SAGA wetness index (SWI) in 2 m
resolution to model soil moisture, and thus, potential places for mires. SWI is a modifi-
cation of the topographic wetness index (TWI). It has been noted that in wetland mapping,
standard TWI performed worse than some other models, mainly because in these studies
TWI underestimated the extent and contiguity of wetlands (Grabs et al. 2009; Murphy,
Ogilvie, and Arp 2009). This might be because standard TWI concentrates large values to
stream networks where water flow is concentrated. This underestimation problem is over-
come in SWI, which assumes homogeneous hydrologic conditions in flat areas and predicts
larger moisture values for cells with small vertical distance to streams (Böhner and Selige
2006, Equations (1) and (2)):

αM = αmaxt−βexp(tβ) for α < αmaxt−βexp(tβ). (1)

The specific catchment area (α) used in TWI is defined as the pixel’s upslope contributing
area per contour unit width, whereas αM is the modified catchment area used in SWI.
In calculating α, slope angle β (in radians) and neighbouring cell maximum αmax are taken
into account unless the results remain unchanged. Parameter t is a value for suction, so
that lower values, e.g. under 10, lead to stronger suction and stronger spreading of large
α values, and conversely higher values lead to weaker suction. After counting αM, SWI is
calculated with the standard equation given in the following:

SWI = ln

(
αM

tan β

)
. (2)

Before calculations, DTM was filled to remove uncertainties, missing values, and false val-
ues from the data. Before the filling, values in DTM in known and evident places of bridges
and culverts were manipulated to let imagined water to flow through road banks in those
locations. To angle β, 0.0174532 rad was added so that division by 0 was avoided. In flow
direction calculations, we used the multiple flow direction method proposed by Freeman
(1991). In this method, the slope value is raised to the power of 1.1. Thus, steeper slopes
are weighted only a little. It has been noted that in relatively flat areas, multiple flow direc-
tion methods, in which the slope value is raised by a low exponent (e.g. 0.5–2), give good
results in TWI calculation (Güntner, Seibert, and Uhlenbrook 2004; Sørensen, Zinko, and
Seibert 2006; Kopecký and Čížková 2010). Furthermore, parameter t in Equation (1) was
decided to be default 10 after visual interpretation of SWI with different t values.
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Before segmentation, SWI was quantized to 32 classes using equal intervals and CHM
was quantized to 40 classes (nearest integer). WV-2 layers were first filtered using a
3 × 3 window and a median filter. After filtering, layers were quantized to 256 classes.

2.3. Segmentation methods

Data were segmented using different data sets, methods and parameters. To compare dif-
ferent types of segmentation methods, two segmentation methods were used: the watershed
segmentation method and the region-based segmentation method. Brief introductions of
the segmentation methods used and their parameters are given next.

Watershed segmentation was implemented in IDRISI Taiga software (Clark Labs,
Worcester, MA, USA). In IDRISI segmentation, a variance image is derived from each
layer by moving window analysis. A weighted average of variance images is the final sur-
face image for watershed delineation. Both the size of the moving window as well as the
weights of averaging can be adjusted by the user. The values of this surface image are
treated as elevation values, as in a digital elevation model (DEM), and pixels are grouped
into watersheds. After watershed delineation, watersheds are merged iteratively. Pairs of
segments are merged if they are the most similar segments to each other in the neighbour-
hood and if their difference is smaller than a similarity tolerance adjusted by the user. The
difference is evaluated by two aspects: the mean value and the standard deviation. The
weights for the mean and for the standard deviation are set by the user.

Our region-based segmentation method was the widely used segmentation method of
eCognition software, FNEA (Baatz and Schäpe 2001; Benz et al. 2004). FNEA segmenta-
tion was carried out using TerraLib 4.2.0 C++ GIS library (Câmara et al. 2008). In FNEA,
regions are formed by merging pixels, i.e. in the beginning, each pixel is treated as a
region. In segmentation, three user parameters can be adjusted: scale parameter and weights
between colour and shape (wcolour + wshape = 1) as well as between smoothness and com-
pactness (wsmooth + wcompt = wshape). The scale parameter controls the average object size.
The more weight is given to colour (or spectral) homogeneity, the less weight is given to a
specific shape, i.e. spatial homogeneity. Smoothness and compactness define the shape as
follows. Smoothness is the ratio of the border length of the segment and border length of
the bounding box of the segment. Compactness, on the other hand, is the ratio of the border
length of the segment and the square root of the number of pixels in the segment. Hence,
they are not antagonistic, but the weight is defined between them. Finally, the weights for
the different layers are set by the user.

2.4. Initial work for segmentation goodness evaluation

In segmentation, several issues affect the final segmentation goodness: segmentation
method used, parameterization including weights for the layers (e.g. Marpu et al. 2010),
used layers (e.g. Ke, Quackenbush, and Im 2010), (re)classification of the layers, trans-
formations made for the layers, and filtering of the layers (e.g. Carleer, Debeir, and Wolff
2005). Easily thousands of different combinations can be tested. Therefore, we first carried
out initial trial-and-error testing and visual interpretation for different types of segmenta-
tions. We segmented single layers, reclassified and filtered the layers, and tried different
parameter combinations and segmentation methods. In our initial analysis, the objective
was to determine good segmentation methods that could be further evaluated using the
evaluation measures. In addition, we wanted to scale our layers so that they could be used
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in the same segmentations; in other words, the segments that are produced in single-layer
segmentations should be approximately of the same size. Needless to say, our initial evalu-
ation was not thorough but it was good enough to find good segmentation methods. It was
not possible to test all of the possible combinations, but we found a set of segmentations
that were probably among the best that are available.

2.5. Used parameter and layer combinations

Four different layer combinations were tested: (a) WV-2 layers only, (b) lidar layers only,
(c) WV-2 bands 2, 3, 5, 7 (blue, green, red, NIR1) and lidar layers, and (d) all layers.
IDRISI segmentation was performed using a window size of 5. Similarity tolerance was
varied between 20 and 70 with intervals of 5. Three different combinations of mean and
variance weights were used: mean 0.5, variance 0.5; mean 0.9, variance 0.1; and mean
0.1, variance 0.9. Hence, overall, 33 IDRISI segmentations were performed for all layer
combinations. FNEA segmentation was performed by varying the scale parameter between
5 and 50 with intervals of 5, and using colour parameter values of 0.25, 0.5, and 0.75.
Therefore, 30 different FNEA segmentations were performed for all layer combinations.
In all segmentations, all layers were given equal weight.

2.6. Different reference polygons

We tested different segmentation methods using eight different reference polygon sets.
First, all reference polygons from the whole study area were used. Second, three sets
including all reference polygons from three different subareas separately. Third, two sets
including reference polygons of only one habitat type: one set included all mires and one set
included water. Finally, we tested segmentation quality against two other reference polygon
sets (FFPS biotope and forestry planning data) (Figure 1).

2.7. Goodness evaluation measures

Segmentation goodness was evaluated using several different supervised measures
(Table 2), reviewed by Clinton et al. (2010) with a Java tool that they developed. For more
clarification and equations, refer to Clinton et al. (2010) and the original publications listed
in Table 2. All measures were calculated as a mean of all reference polygons inside a refer-
ence polygon set. The value for a specific reference polygon was calculated as a mean (or
standard deviation) of the values of those segments that met at least one out of the following
four criteria: (1) the centroid of the segment is inside the reference polygon; (2) the centroid
of the reference polygon is inside the segment; (3) the shared area of the segment and the
reference polygon is over 0.5 of the segment area; and (4) the shared area of the segment
and the reference polygon is over 0.5 of the reference polygon area (Clinton et al. 2010).
Some of the measures were weighted by the reference objects (Table 2). Furthermore, we
calculated combined measures as proposed by Clinton et al. (2010) and which all included
measures from single authors only (Table 3). Some of the combined measures were calcu-
lated as root mean square (RMS) individual criterion values, whereas some of them were
simple sum calculations. In RMS calculations, all measures were adjusted so that ideal seg-
mentation was set to 0. Finally, a combined measure, COMBINED, was calculated, which
was an RMS of all basic area and location-based measures as suggested by Clinton et al.
(2010). However, QLoc was not included since it was the same measure as RPsub. Before



International Journal of Remote Sensing 8611

25° 30′ 0″ E 25° 32′ 0″ E

0 0.5

N

1 2 km

25° 34′ 0″ E 25° 36′ 0″ E

25° 30′ 0″ E 25° 32′ 0″ E 25° 34′ 0″ E 25° 36′ 0″ E

62° 13′ 0″ N

62° 12′ 0″ N

62° 11′ 0″ N

62° 13′ 0″ N

62° 12′ 0″ N

62° 11′ 0″ N

Figure 1. Different reference polygons used. Reference polygons drawn in our fieldwork are marked
with black borders. Subarea 1 is located in the eastern, subarea 2 in the northwestern and subarea
3 in the southern part of the whole area. Waterbodies are coloured blue and mires yellow. Forestry
planning polygons are marked with magenta outlines and FFPS polygons with green outlines. FNEA
segmentations were performed inside the black rectangles, whereas IDRISI segmentations were also
performed in the areas between the black rectangles.

RMS calculation in COMBINED, all measures were scaled to [0,1] by dividing each value
with the maximum and setting the ideal segmentation to 0.

Furthermore, we measured segmentation goodness using visual interpretation. In visual
interpretation, we focussed especially on whether the segmentation methods find the bound-
aries of some reference polygons and habitat types. Hence, we were more worried about
under-segmentation than over-segmentation. Additionally, we checked whether the differ-
ent kinds of habitat types are segmented and whether the segmentation produces objects
that are meaningful entities and can be easily used in classification and planning (Hay
et al. 2005). Therefore, segments should not be too complex (Mustonen, Packalén, and
Kangas 2008). Owing to the large number of different segmentations, our visual interpre-
tation was not thorough; instead, we tried to determine some general trends from different
segmentation methods as well as from layer and parameter combinations.

2.8. Classifications

After segmentation evaluation, we selected 12 segmentations for classification.
Segmentations were selected using subjective evaluation, so that meaningful evaluation
of segmentation performance versus classification accuracy could be made and some of the
segmentations could be compared to each other. Both good and not as good segmentations,
based on evaluation measures and visual interpretation, were selected. In classification, we
calculated the mean values of each layer per segment. In all classifications, all layers were
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Table 2. Simple segmentation goodness evaluation measures that were used in segmentation evalu-
ation. Column MEASURES refers to what the method should measure. Column SOURCE refers to
the article where the measure was first used. Column WEIGHTED refers to whether the measure is
weighted by a reference object.

Method Measures Source Weighted Note

Under-merging Under-segmentation Yang et al. (1995)
Over-merging Over-segmentation Yang et al. (1995)
AFI Area match Lucieer and Stein (2002)
Count-over Over-segmentation Lucieer and Stein (2002) Based on

AFI
Count-under Under-segmentation Lucieer and Stein (2002) Based on

AFI
SimSize mean Area match Zhan et al. (2005) X
SimSize sd Area match Zhan et al. (2005) X
RAsuper Under-segmentation Möller, Lymburner, and

Volk (2007)
X

RAsub Over-segmentation Möller, Lymburner, and
Volk (2007)

X

QR Area match Weidner (2008) X
Over-segmentation Over-segmentation Clinton et al. (2010) X
Under-segmentation Under-segmentation Clinton et al. (2010) X
RPsuper Distance to centroid Möller et al. (2007) X
RPsub Distance to centroid Möller et al. (2007) X
QLoc mean Distance to centroid Zhan et al. (2005) X = RPsub
QLoc sd Distance to centroid Zhan et al. (2005) X

Table 3. Combined segmentation goodness evaluation measures that were used in segmentation
evaluation. Column INCLUDES refers to the simple measures that are included in the respective
combined measure. Column CALCULATION refers to how the combined measure was calculated.

Method Includes Calculation

M RAsuper, RAsub, RPsuper, RPsub RMS
ZH1 SimSize mean, SimSize std, QLoc mean, QLoc std RMS
ZH2 SimSize mean, QLoc mean RMS
D Over-segmentation, Under-segmentation RMS
Over-under Count-over, Count-under SUM
MergeSum Over-merging, Under-merging SUM
COMBINED All other simple measures than QLoc mean RMS, normalized

always used irrespective of which layer combination a–d was used in the segmentation
phase.

Supervised classification was performed using the random forest classifier (Breiman
2001) with R package randomForest (Liaw and Wiener 2002) in R version 2.15.2
(R Development Core Team 2012). Random forest classification has been used in remote
sensing and OBIA with good results (Lawrence, Wood, and Sheley 2006; Rodriguez-
Galiano et al. 2012). Random forest is an ensemble classifier that combines several
bootstrapped classification trees. In the final classification, there is a majority vote over
all trees. Trees are randomized at each node by selecting only a subset of variables, of
which the best split is chosen. When a tree is built, approximately two-thirds of the data are
selected for training the classifier and the rest are called out of bag (OOB) test data. OOB
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data are used to estimate the error rate, which is averaged over all trees to obtain an error
rate for the entire classification. Because of OOB, independent test data or cross-validation
are not required when random forest is used (Breiman 2001; Breiman and Cutler 2007),
which has been confirmed in remote-sensing studies (Lawrence, Wood, and Sheley 2006;
Rodriguez-Galiano et al. 2012).

When random forest was performed, 500 trees were built and the number of features at
each split was given the default value of the square root of all features. We used our own
reference polygons over all three subareas as training data, not the FP or the FFPS data. The
training set in the random forest run consisted of all those segments that had a minimum
of 60 % coverage of one reference habitat type. Classification accuracies were calculated
using all reference polygons with simple cross-tabulation matrices.

3. Results

3.1. Segmentation goodness based on evaluation measures

Based on all area and COMBINED measures, the best segmentation was obtained with
FNEA with layer set b, scale parameter 25, and colour parameter 0.5 (Tables 4 and 5).
However, choosing this segmentation as the best was contradictory, since no other seg-
mentation evaluation measure ranked it as the best method. Besides, it ranked between
4 and 94 when COMBINED measure and other reference polygons other than all area
were used. Hence, different segmentations were chosen as the best or being among the best
when different goodness measures or reference polygons were used (Table 4). Some of
the measures (Under-merging, Over-merging, Count-over, SimSize sd, RAsuper, RAsub,
Over-segmentation, Under-segmentation), nonetheless, provided rather consistent results,
i.e. the same segmentation proved to be the best or one of the best using different refer-
ence polygon sets. Other measures, on the other hand, had larger variation in their results.
Consistency in results can be considered a downside, since reference sets were different,
as illustrated in Figure 1. For instance, individual measures may prefer the segmentation
result, which is as fine or as coarse as possible. On the other hand, consistency can also be
considered an asset if some of the segmentations are truly better despite the reference set
used, i.e. those segmentations contain almost all meaningful patch boundaries.

Some overall evaluations can be made from segmentations ranked as the best (Table 6).
First, FNEA segmentation outperformed IDRISI segmentation, since FNEA was ranked
best 140 times as against the 44 times of IDRISI. Second, layer set b outperformed other
layer sets. Therefore, it could be considered that FNEA with layer set b provides the best
results. To avoid under-segmentation, low scale parameters should be used. On the con-
trary, high scale parameters should be selected when over-segmentation is not desired.
Segmentations with an intermediate scale or similarity parameter value were not ranked as
best as often as segmentations with high or low parameter values. Yet, different combined
measures as well as AFI, RP measures, SimSize mean, QLoc mean, QLoc sd, and QR usu-
ally preferred intermediate-scale parameter values. For instance, when all area reference
polygons were used, the COMBINED measure favoured intermediate-scale parameter val-
ues; however, it ranked those segmentations with low scale parameter values as the worst
(Table 5). In FNEA segmentations, a high value for the colour parameter provided more
often best segmentations than low or intermediate values for colour. In IDRISI segmenta-
tions, on the other hand, a high mean and low variance combination resulted in the largest
number of best segmentations.

When correlations between different goodness measure results were evaluated
(Table 7), it was found that correlations range from large negative correlations to high



Table 4. Best segmentations according to different measures and reference polygons. Segmentation methods are marked as follows. Text refers to method, letter after the text to
layer combination a–d (see text), s to scale (FNEA) or similarity parameter (IDRISI), c to colour parameter, m to weight given to mean, and v to weight given to variance.

Measure All area SA1 SA2 SA3 Water Mires FP FFPS

Under-merging FNEA_d_s5_c.75 FNEA_d_s5_c.75 FNEA_a_s5_c.75 FNEA_a_s5_c.75 FNEA_a_s5_c.5 FNEA_d_s5_c.75 FNEA_c_s5_c.75 FNEA_a_s5_c.5
Over-merging FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_b_s50_c.5 FNEA_b_s50_c.5 IDRISI_b_s70_m1_v9 FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_c_s50_c.75
AFI IDRISI_a_s25_m9_v1 IDRISI_a_s25_m1_v9 IDRISI_d_s20_m9_v1 IDRISI_c_s35_m1_v9 IDRISI_d_s70_m5_v5 FNEA_b_s5_c.25 IDRISI_a_s45_m5_v5 IDRISI_b_s35_m9_v1
Count-over FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_c_s50_c.25* FNEA_b_s50_c.5 FNEA_d_s45_c.25* FNEA_b_s50_c.5* FNEA_b_s50_c.75*
Count-under IDRISI_a_s20_m1_v9* IDRISI_a_s25_m1_v9* IDRISI_a_s20_m9_v1* IDRISI_b_s50_m9_v1 FNEA_b_s25_c.25* IDRISI_a_s40_m1_v9* IDRISI_a_s70_m1_v9* IDRISI_a_s70_m1_v9*
SimSize mean FNEA_b_s30_c.75 FNEA_b_s30_c.75 FNEA_d_s30_c.75 IDRISI_c_s65_m9_v1 FNEA_b_s45_c.75 IDRISI_c_s55_m9_v1 FNEA_c_s30_c.25 FNEA_d_s40_c.25
SimSize sd FNEA_a_s5_c.75 FNEA_b_s5_c.75 FNEA_a_s5_c.75 FNEA_a_s5_c.75 FNEA_a_s5_c.5 FNEA_b_s50_c.25 FNEA_a_s5_c.75 FNEA_d_s5_c.75
RAsuper FNEA_b_s5_c.75 FNEA_b_s5_c.75 FNEA_b_s5_c.75 FNEA_a_s5_c.75 FNEA_c_s5_c.5 FNEA_d_s5_c.75 FNEA_b_s5_c.75 FNEA_b_s5_c.75
RAsub FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_b_s50_c.5 FNEA_b_s50_c.25 FNEA_b_s50_c.5 FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_b_s50_c.25
QR FNEA_b_s35_c.75 FNEA_b_s30_c.75 FNEA_c_s30_c.75 FNEA_a_s45_c.75 IDRISI_b_s65_m9_v1 IDRISI_a_s45_m1_v9 FNEA_c_s45_c.75 FNEA_d_s40_c.75
Over-segmentation FNEA_b_s50_c.5 FNEA_b_s50_c.25 FNEA_b_s50_c.5 FNEA_b_s50_c.5 IDRISI_b_s70_m1_v9 FNEA_b_s50_c.25 FNEA_b_s50_c.25 FNEA_c_s50_c.75
Under-segmentation FNEA_b_s5_c.75 FNEA_b_s5_c.75 FNEA_b_s5_c.75 FNEA_b_s5_c.75 IDRISI_a_s20_m5_v5 FNEA_b_s5_c.75 FNEA_b_s5_c.75 FNEA_b_s5_c.75
RPsuper IDRISI_d_s55_m9_v1 FNEA_b_s20_c.5 FNEA_d_s20_c.5 FNEA_b_s15_c.5 IDRISI_b_s65_m9_v1 FNEA_d_s10_c.25 FNEA_d_s30_c.75 IDRISI_d_s60_m9_v1
RPsub FNEA_b_s35_c.75 IDRISI_b_s55_m5_v5 FNEA_a_s40_c.75 FNEA_c_s40_c.75 IDRISI_b_s65_m9_v1 FNEA_b_s15_c.25 FNEA_c_s30_c.75 FNEA_d_s40_c.75
QLoc mean FNEA_b_s35_c.75 IDRISI_b_s55_m5_v5 FNEA_a_s40_c.75 FNEA_c_s40_c.75 IDRISI_b_s65_m9_v1 FNEA_b_s15_c.25 FNEA_c_s30_c.75 FNEA_d_s40_c.75
QLoc sd FNEA_a_s45_c.25 IDRISI_b_s65_m9_v1 FNEA_c_s45_c.75 FNEA_c_s40_c.75 IDRISI_b_s65_m1_v9 FNEA_b_s20_c.25 FNEA_c_s30_c.75 FNEA_c_s50_c.25
M FNEA_c_s25_c.75 IDRISI_b_s45_m9_v1 FNEA_a_s5_c.5 FNEA_b_s20_c.75 FNEA_c_s45_c.75 FNEA_d_s5_c.75 FNEA_b_s5_c.75 FNEA_a_s25_c.5
ZH1 FNEA_d_s50_c.25 FNEA_d_s50_c.25 FNEA_c_s5_c.25 FNEA_b_s45_c.5 IDRISI_b_s40_m5_v5 FNEA_b_s50_c.25 FNEA_a_s5_c.25 FNEA_a_s45_c.25
ZH2 FNEA_b_s35_c.75 IDRISI_b_s60_m9_v1 FNEA_d_s30_c.75 FNEA_c_s40_c.75 FNEA_b_s45_c.75 IDRISI_c_s55_m9_v1 FNEA_c_s30_c.25 FNEA_d_s45_c.25
D FNEA_d_s35_c.5 FNEA_d_s35_c.5 FNEA_d_s35_c.5 FNEA_b_s35_c.75 IDRISI_b_s70_m1_v9 FNEA_b_s20_c.75 FNEA_c_s35_c.75 FNEA_d_s40_c.5
Over-under IDRISI_b_s70_m9_v1 IDRISI_b_s65_m1_v9 IDRISI_a_s70_m5_v5 IDRISI_b_s70_m9_v1 FNEA_b_s50_c.5 IDRISI_a_s70_m9_v1 FNEA_c_s50_c.75 IDRISI_a_s70_m1_v9
MergeSum FNEA_b_s15_c.5 FNEA_b_s15_c.5 FNEA_a_s15_c.75 FNEA_b_s20_c.75 IDRISI_b_s65_m9_v1 FNEA_b_s10_c.25 FNEA_c_s25_c.5 FNEA_d_s25_c.25
COMBINED FNEA_b_s25_c.5 IDRISI_b_s50_m5_v5 FNEA_b_s45_c.75 FNEA_b_s30_c.75 IDRISI_b_s70_m1_v9 FNEA_a_s40_c.5 FNEA_b_s45_c.5 FNEA_a_s35_c.25

Note: * = tie with other segmentations that are not indicated here. Segmentation that is shown ranked best using the OverUnder evaluation method.
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Table 5. Twenty best and 10 worst segmentations based on all area reference
polygons and COMBINED measure. Segmentation methods are named as in
Table 4.

Segmentation Combined

1 FNEA_b_s25_c.5 0.646
2 FNEA_b_s25_c.75 0.649
3 FNEA_b_s30_c.75 0.650
4 FNEA_c_s25_c.75 0.650
5 FNEA_d_s25_c.75 0.651
6 IDRISI_b_s55_m9_v1 0.652
7 FNEA_a_s30_c.75 0.652
8 IDRISI_b_s65_m9_v1 0.652
9 IDRISI_d_s65_m9_v1 0.652
10 FNEA_d_s30_c.75 0.652
11 IDRISI_b_s50_m5_v5 0.653
12 FNEA_b_s20_c.5 0.653
13 IDRISI_b_s55_m5_v5 0.653
14 IDRISI_b_s60_m9_v1 0.653
15 IDRISI_b_s50_m9_v1 0.653
16 IDRISI_c_s60_m5_v5 0.653
17 IDRISI_a_s60_m1_v9 0.653
18 IDRISI_a_s70_m9_v1 0.653
19 IDRISI_d_s65_m5_v5 0.654
20 IDRISI_a_s60_m5_v5 0.654
. . .
243 IDRISI_c_s20_m9_v1 0.770
244 FNEA_a_s5_c.25 0.771
245 FNEA_c_s5_c.5 0.782
246 FNEA_d_s5_c.5 0.789
247 FNEA_a_s5_c.5 0.796
248 FNEA_b_s5_c.5 0.797
249 FNEA_c_s5_c.75 0.801
250 FNEA_d_s5_c.75 0.805
251 FNEA_a_s5_c.75 0.811
252 FNEA_b_s5_c.75 0.813

positive correlations. Hence, the measures provided different results and preferred different
issues in segmentation. It can also be seen that measures that measure over-segmentation
had positive correlations with the COMBINED measure, whereas under-segmentation mea-
sures had negative correlations (for over- and under-segmentation measures, see Table 2).
Some measures (RPsuper, MergeSum, M, ZH1) had even both positive and negative cor-
relations. Correlations depended on the reference polygons used; however, correlations
between the COMBINED measure based on different reference polygons were rather high
and positive (Table 8). Only water has correlations below 0.75.

3.2. Segmentation goodness based on visual interpretation

In visual interpretation, it was found that segmentations based on layer set b (lidar data
only) were especially successful in delineating mires and small streams. In addition, the
problem of shadow effect in WV-2 imagery was overcome when lidar data were used.
On the other hand, the shorelines of waterbodies were insufficiently delineated with lidar
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Table 6. Best segmentations based on different measures sorted by segmentation method, layer
combinations, and different parameter options. Numbers refer to the number of segmentations that
were regarded as best.

All segmentations FNEA segmentations IDRISI segmentations

Value Count Value Count Value Count
Methods FNEA 140 Scale 5 36 Similarity 20 4

IDRISI 44 10 2 25 3
15 6 30 0

Layers a 35 20 6 35 2
b 93 25 6 40 2
c 28 30 13 45 3
d 28 35 10 50 2

40 12 55 5
45 13 60 2
50 36 65 9

70 12
Colour 0.25 40

0.5 30 Mean/var 0.1/0.9 15
0.75 70 0.5/0.5 8

0.9/0.1 21

Table 7. Correlations between the COMBINED goodness measure and individual goodness mea-
sures based on different reference polygons. SA refers to subarea, FP refers to forestry planning data,
and FFPS refers to FFPS data.

Measure ALL SA1 SA2 SA3 Water Mires FP FFPS

Under-merging −0.24 −0.39 −0.63 −0.13 −0.63 −0.61 −0.69 −0.33
Over-merging 0.89 0.90 0.95 0.90 0.88 0.97 0.91 0.90
AFI −0.22 −0.36 −0.63 −0.10 −0.40 −0.61 −0.54 −0.24
Count-over 0.69 0.78 0.91 0.73 0.87 0.91 0.88 0.71
Count-under −0.25 −0.31 −0.73 −0.31 −0.53 −0.62 −0.53 −0.10
SimSize mean 0.89 0.91 0.91 0.89 0.85 0.29 0.92 0.82
SimSize sd −0.91 −0.93 −0.93 −0.91 −0.94 −0.34 −0.93 −0.85
RAsuper −0.79 −0.86 −0.94 −0.83 −0.95 −0.93 −0.96 −0.86
RAsub 0.43 0.54 0.80 0.53 0.86 0.75 0.85 0.52
QR 0.91 0.94 0.93 0.92 0.95 0.35 0.95 0.90
Over-segmentation 0.48 0.60 0.79 0.56 0.81 0.84 0.84 0.50
Under-segmentation −0.52 −0.65 −0.82 −0.58 −0.79 −0.86 −0.87 −0.63
RPsuper 0.85 0.67 0.52 0.78 0.88 −0.55 0.74 0.96
RPsub 0.86 0.94 0.88 0.94 0.95 0.01 0.92 0.87
QLoc mean 0.86 0.94 0.88 0.94 0.95 0.01 0.92 0.87
QLoc sd 0.63 0.68 0.80 0.79 0.80 0.30 0.80 0.72
M 0.98 0.98 −0.88 0.97 −0.50 −0.72 −0.90 0.97
ZH1 0.66 0.60 −0.83 0.84 0.76 −0.29 −0.87 0.83
ZH2 0.89 0.96 0.92 0.94 0.94 0.29 0.92 0.89
D 0.77 0.82 0.88 0.81 0.83 0.36 0.90 0.65
OverUnder 0.76 0.84 0.90 0.78 0.91 0.86 0.89 0.75
MergeSum 0.41 0.50 −0.34 0.69 0.86 −0.52 0.85 0.90

data only. Moreover, boundaries between deciduous and coniferous forests were better
delineated using WV-2 imagery. However, more gradual boundaries, for instance, between
mesic and xeric forests, could not be easily segmented using any method or layer combi-
nation. In visual interpretation, we could not decide between layer sets c and d. Although
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Table 8. Correlations between the COMBINED measure values based on different reference
polygons.

ALL SA1 SA2 SA3 Water Mires FP FFPS

ALL 1.00 0.89 0.85 0.94 0.64 0.84 0.78 0.94
SA1 0.89 1.00 0.83 0.84 0.59 0.83 0.79 0.88
SA2 0.85 0.83 1.00 0.87 0.82 0.97 0.97 0.89
SA3 0.94 0.84 0.87 1.00 0.73 0.87 0.83 0.88
Water 0.64 0.59 0.82 0.73 1.00 0.80 0.80 0.63
Mires 0.84 0.83 0.97 0.87 0.80 1.00 0.95 0.85
FP 0.78 0.79 0.97 0.83 0.80 0.95 1.00 0.84
FFPS 0.94 0.88 0.89 0.88 0.63 0.85 0.84 1.00

segmentation outputs were slightly different, the differences were minor. Similar observa-
tions were made when different IDRISI mean/variance weight alternatives were compared.
Furthermore, to delineate some small objects, small values of scale or similarity parameters
were required. In finding meaningful and simple entities, it was found that FNEA segmen-
tation with low (0.25) or intermediate (0.5) weight for colour had better results compared
to the other segmentation methods. Putting a little weight to colour had its downside, on
the other hand. In other words, segment boundaries did not necessarily follow natural or
data boundaries but segments were equally sized objects with often arbitrary boundaries.
Nevertheless, FNEA segmentations with a large weight for colour and IDRISI segmen-
tations were unnecessarily complex. Additionally, in IDRISI segmentations, boundaries
often criss-crossed the reference polygon boundaries. Using visual interpretation, we chose
FNEA segmentation with layer combination c, scale parameter 10, and colour parameter
0.5 as the best one (Figure 2(c)). This selection was, yet, more or less arbitrary, since many
different segmentation options provided quite similar results. Furthermore, since there were
numerous segmentation options, visual interpretation was not thoroughly reliable in deter-
mining the best parameter values. Hence, choosing the best segmentation method using
visual interpretation was tricky.

3.3. Classification results

Classification accuracies between classifications derived from different segmentations var-
ied to a certain extent (Table 9, some of the segmentations in Figure 2). Best accuracy
(0.72) was achieved using the best segmentation in visual interpretation (Figure 2(c)),
whereas the worst accuracy (0.60) was obtained using segmentation that was ranked high
using some of the measures (Figure 2(h)). Several segmentations produced reasonably
good results compared to the best classification method. Some of these segmentations were
selected based on measures and some by using visual interpretation. On the other hand, best
segmentation based on the COMBINED measure and all area (Figure 2(e)) was not among
the best segmentations in classification accuracy analysis. It can be observed that fine or
moderately fine segmentations led to better classification accuracies. Vice versa, coarse
segmentation led to poorer accuracies. On the other hand, too fine segmentations can lead
to a salt-and-pepper effect (Figure 2(b)) and thus possibly also worsen classification accu-
racy. Moreover, in visual interpretation, it became evident that classifications performed
with FNEA segmentations and scale parameter value 5 suffered from this effect more than
classifications performed with segmentations with scale value 10. The best classification



8618 A. Räsänen et al.

(a) (b) (c)

(d)

(f) (g) (h)

(e)
0 100 200 400 m

Figure 2. Reference polygons and a visually chosen set of different segmentations drawn on a WV-2
false colour image (red, band 7/NIR1; green, band 5/red; blue, band 3/green) in the background.
(a) reference polygons, (b) FNEA_b_s5_c.75, (c) FNEA_c_s10_c.5, (d) FNEA_a_s20_c.75, (e)
FNEA_b_s25_c.5, (f ) FNEA_c_s50_c.75, (g) IDRISI_d_s30_m9v1, and (h) IDRISI_b_s70_m9v1.
Images are from the southern part of subarea 2. Satellite imagery © 2010 Digital Globe Inc.
Reproduced by permission.

Table 9. Classification accuracies derived from classifications based on different segmentations.
Segmentations are marked as in Table 2. In addition, criteria why each segmentation was chosen to
the classification analyses are given.

Segmentation ACC Why segmentation was selected to classification

FNEA_b_s5_c.75 0.69 BEST in avoiding under-segmentation, WORST based on
COMBINATION and ALL AREA

FNEA_c_s5_c.75 0.69 Comparison against FNEA_b_s5_c.75
FNEA_a_s10_c.5 0.71 WV-2 layers only, comparison against FNEA_c_s10_c.5
FNEA_c_s10_c.5 0.72 BEST segmentation based on visual interpretation
FNEA_d_s15_c.25 0.71 GOOD in visual interpretation
FNEA_a_s20_c.75 0.69 Segmentation based on WV-2 data only, OK visually
FNEA_b_s25_c.5 0.66 BEST segmentation based on COMBINATION and ALL AREA,

OK visually
FNEA_d_s35_c.5 0.66 BEST based on D and ALL AREA
FNEA_c_s50_c.75 0.65 GOOD in avoiding over-segmentation, GOOD in visual boundary

evaluation
IDRISI_d_s30_m9v1 0.70 OK in visual interpretation, small segments
IDRISI_c_s40_m5v5 0.69 OK in visual interpretation, quite small segments
IDRISI_b_s70_m9v1 0.60 BEST based on OverUnder and ALL AREA, BAD in visual

interpretation
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accuracies were achieved using segmentations with both lidar and WV-2 layers. This might
be because boundaries were best detected using both data types in segmentation. Yet, clas-
sification using only segmentations performed with lidar or WV-2 data were nevertheless
not as accurate. In all, classification accuracy evaluation was not thorough; in other words,
good classification accuracies can be obtained using segmentations that were not among
the 12 segmentations tested here. Moreover, some measures may be good in selecting
segmentations that maximize classification accuracy.

4. Discussion

4.1. Segmentation goodness compared to classification accuracy

One of our study objectives was to test whether better segmentation leads to better classi-
fication accuracy, as has been argued by others (Kim, Madden, and Warner 2009; Clinton
et al. 2010; Ke, Quackenbush, and Im 2010; Gao et al. 2011). After our analysis, it is
obvious that there is no straightforward answer to this question. Although it is self-evident
that good segmentation is needed for good classification, there is no adequate definition
of what makes a good segmentation. After classification analysis, one can easily state that
the best segmentation was the segmentation with the best classification accuracy. There
is no method, however, to test before classification which segmentation will provide the
best classification accuracy. This is also illustrated by the studies of Kim, Madden, and
Warner (2009) and Gao et al. (2011). Although they both claim that optimal segmentation
produced the best classification output, their definitions of optimal segmentation were con-
tradictory. Kim, Madden, and Warner (2009) minimized spatial autocorrelation between
different segments, whereas Gao et al. (2011) sought for segmentations that combined low
inter-segment autocorrelation and intra-segment variance. Furthermore, Gao et al. (2011)
had the lowest inter-segment autocorrelation at the coarsest scale, which did not produce
the best classification accuracy. On the other hand, the tasks in these studies were different,
since Kim, Madden, and Warner (2009) used 4 m resolution IKONOS data in forest-type
mapping, whereas Gao et al. (2011) used 25 m Landsat ETM+ data in a mixed mountainous
shrub–forest–grassland landscape.

Based on the ambivalence of what segmentation is good, we propose that the good-
ness of segmentation should be defined in each case. In other words, one should know and
clarify what one wants from segmentation, and critically evaluate whether the best segmen-
tation can be selected based on the evaluation criteria. In our case, good segmentation was
segmentation with (1) meaningful and not too complex segments, (2) boundaries parallel to
reference polygon boundaries even for the smallest reference polygons, but (3) as coarse as
possible. Considering the best segmentation based on some measure does not automatically
lead to the best classification accuracy, as has been already noted by Verbeeck, Hermy, and
van Orshoven (2012). Nevertheless, the classification accuracies between different classifi-
cations were rather small in our case study. This might point to the robustness of the OBIA
methodology: good classification accuracy can be obtained even if the segmentation is not
the best possible. On the other hand, the classification outputs that had better classification
accuracies were visually more appealing. Boundaries were more often in the right places,
different habitat types could be mapped, and patches were not too small.

Many authors have argued that over-segmentation is a smaller problem than under-
segmentation in post-segmentation classification (e.g. Weidner 2008; Marpu et al. 2010).
However, in the analysis by Verbeeck, Hermy, and van Orshoven (2012), it was found
out that more under-segmented output gave better classification accuracy than more over-
segmented output. Our results suggest that both arguments are partly correct. In other
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words, both over-segmentation and under-segmentation are problematic in classification,
as found by Kim, Madden, and Warner (2009) and Gao et al. (2011). First, segmentation
cannot be very coarse, since smaller objects are thus easily under-segmented. Second, if
segmentation is too fine, a salt-and-pepper effect is obtained, which can lead to worse clas-
sification accuracy as has been found in OBIA versus pixel-based classification studies
(e.g. Bock et al. 2005; Whiteside, Boggs, and Maier 2011). In addition, objects are more
meaningful when they are not too small (Blaschke 2010). Yet, the better classification accu-
racy of OBIA is not automatic and some smaller, but rare, objects may be easily missed in
OBIA classification (Dingle Robertson and King 2011). Overall, it has been noted that in
single-scale segmentation, optimal segmentation is class-dependent, i.e. some classes can
be poorly segmented even if the overall segmentation is optimal. Hence, multi-scale seg-
mentation has been offered as a solution to this problem (Hay et al. 2003; Kim et al. 2011;
dos Santos et al. 2012).

4.2. Object and patch delineation

We found that some habitat patches were not segmented properly using any of the meth-
ods, layers, or parameter combinations. For instance, stream-sided habitats or mires were
often poorly delineated. Therefore, some extra analysis is required, such as stream network
mapping (Räsänen et al., Forthcoming), other ancillary information or expert knowledge
(Mustonen, Packalén, and Kangas 2008), or segmentation post-modification to delineate
some of the patches correctly. It can even be asked whether the segmentation goodness
over difficult patch delineation can even be calculated. For instance, Radoux and Defourny
(2007) delineated only those patches that could be seen from the imagery. Therefore, it
is not realistic to expect that segmentation delineates those objects that cannot be easily
seen from the data that is segmented. Lidar data, however, helped in finding some of the
tricky features, such as mires. On the other hand, segmentations with lidar data and four
WV-2 layers were not significantly different compared to segmentations with lidar data and
eight WV-2 layers. Besides, our study reasserted earlier studies that the problematic shadow
effect of aerial or satellite imagery can be mitigated using lidar data (Geerling et al. 2007;
Mustonen, Packalén, and Kangas 2008; Ke, Quackenbush, and Im 2010). Segmentations
based on imagery only, nonetheless, produced classifications with almost as high classifica-
tion accuracies as segmentations based on both imagery and lidar data. There can be at least
two possible reasons for this small difference. First, segmentation based only on imagery
may have other benefits compared to segmentation using both data types. Second, the pro-
portion of shadow areas over all area can be rather small, especially with data resolution
not higher than 2 m.

One major question in segmentation evaluation is whether it is better to delineate
meaningful objects with meaningful thematic quality and maximum homogeneity (e.g.
Mustonen, Packalén, and Kangas 2008) or to find segmentation that mimics field obser-
vations. Some authors (Wulder et al. 2008; Corcoran, Winstanley, and Mooney 2010)
have questioned the rationality of supervised segmentation evaluation, especially in nat-
ural environments. It is true that nature is not easy to interpret. Different mappers classify
habitat patches differently and also delineate patch boundaries differently. Yet, according
to Cherrill and McClean (1995, 1999), the former type of error was more common in
habitat mapping in the UK. Nevertheless, boundaries are not easy to draw and their loca-
tions depend on the study scale (Lang et al. 2010). In our analysis, there were differences
between boundary locations when our field data was compared to either FP or FFPS data.
There were some differences between optimal segmentations based on different reference
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polygons. These differences were mostly minor, and approximately the same kinds of
segmentations were preferred irrespective of the reference data. Moreover, correlations
between COMBINED measures based on different reference data were rather high (SA1 to
FP 0.79 and SA2 to FFPS 0.89). Furthermore, segmentation evaluation based on thematic
quality is not unproblematic either. Although the segmentation has good thematic quality,
the segmentation boundaries do not necessarily match with habitat-type boundaries that
exist in nature. This can lead to difficulties in habitat classification, if it is performed, and
eventually to differences in planning decisions.

On a more general level, one can question whether automated segmentation is worse
than manual delineation when it cannot find the boundaries that are manually delineated.
Delineations are different, it is true, but it is not straightforward to judge either one of
them better. For instance, automated delineation often produces more complex objects.
Complexity of the objects, however, can be both good and bad. Although complexities hin-
der usage in the operational context, complexity can be reduced using GIS techniques.
Furthermore, complex boundaries can be even truer, since natural boundaries are not
always straight (Wulder et al. 2008). Therefore, automated and manual delineations are
two different interpretations and both of them can be either good or bad depending on the
segmentation method, mapper skills, or the operational context. In other words, the question
is not necessarily whether one of them is correct or incorrect but whether it is appropriate
or inappropriate (Lang et al. 2010).

4.3. How to evaluate and measure segmentation goodness?

According to our analysis, the FNEA was a better segmentation method than the water-
shed segmentation method in IDRISI Taiga. Still, IDRISI’s segmentation method also
provided good results. As already noted earlier, FNEA has produced good results in seg-
mentation evaluations and is a standard method in OBIA studies. However, we cannot
give any percentage or any other quantitative evaluation that indicates how much better
FNEA is compared to IDRISI, contrary to values given, for instance, by Li, Huo, and
Fang (2010). Li, Huo, and Fang (2010) classified different types of objects as correctly
delineated, acceptably delineated, and wrongly delineated. From these classifications, they
calculated the performances of different segmentations and also the percentage difference
of performance. In our framework, such quantitative difference evaluation would be more
or less artificial, since in our study different measures of segmentation goodness gave dif-
ferent results. This inconsistency has also been noted by Clinton et al. (2010). Partly, this
inconsistency can be explained in terms of over- and under-segmentation; i.e. deliberately
avoiding one of them often results in getting the other. However, evaluation measures that
should quantify the same phenomenon can produce different results. One explanation of
this is that we tested several different segmentations, of which some were rather similar
to each other. Furthermore, these measures are somewhat dependent on the training data
set used. One should, thus, be careful when selecting the reference data. On the other hand,
some of the measures were robust, i.e. produced similar results irrespective of the reference
data. Additionally, the general picture was more or less similar with different reference
polygons.

According to classification accuracies derived in our study, the best segmentation was
found using visual interpretation. Therefore, it could be argued that supervised segmenta-
tion goodness evaluation measures evaluated by Clinton et al. (2010) are not good. On the
other hand, we knew what we wanted from visual interpretation and fixed our objectives
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based on these needs. Automated supervised segmentation goodness evaluation measures,
on the contrary, were just selected based on what has been done before. Therefore, we knew
better what we wanted from segmentation when we evaluated them visually: meaningful
objects and boundaries. Yet, we would have included our own automated and supervised
evaluation method in our analysis if we had found a successful way to carry out automated
evaluation. One reason why supervised segmentation goodness evaluation measures partly
failed in our analysis could be that we used continuous reference polygon data and objects
that were difficult to delineate. On the other hand, segmentation goodness measures did not
work that well on waterbodies either, although waterbodies are usually easy to delineate
and are not bordered by each other. Based on measures, best segmentations for waterbod-
ies were usually segmentations using lidar data or segmentations as fine as possible. In our
visual interpretation, it was, nonetheless, found that waterbodies cannot be delineated using
lidar data alone. A segmentation that could be good in waterbody delineation was ranked
best only by evaluation measure M. Nevertheless, we cannot say that supervised evalua-
tion measures are completely useless. On the contrary, one should know what evaluation
measures favour and what one wants from segmentation before using evaluation measures.
Moreover, visual interpretation is subjective, tedious and time-consuming (Zhang, Fritts,
and Goldman 2008). It can be even practically impossible if several different segmentations
over large areas are to be evaluated.

Automated segmentation goodness evaluation could be carried out using landscape or
shape metrics and thus unsupervised evaluation (Neubert and Meinel 2003; Meinel and
Neubert 2004; Neubert, Herold, and Meinel 2008; Li et al. 2010; Ji et al. 2012). This is
problematic though, since for instance the FNEA method uses shape metrics as parame-
ters which the user can modify. Hence, using shape metrics also in evaluation could lead
to circular reasoning. Another possible solution in finding good segmentation evaluation
measures could be focusing on boundaries. In other words, it could be examined whether
boundaries drawn in the reference map are found in segmentation. For instance, Neubert
and Herold (2008) measured what proportion of a segment’s perimeter is inside a specific
reference polygon’s buffer zone. In a similar vein, Lucieer and Stein (2002) proposed a
boundary-based measure, and Clinton et al. (2010) included a modification of this mea-
sure in their analysis. Whereas Lucieer and Stein (2002) calculated the shortest distances
from reference polygons to any boundary pixel in segmentation, Clinton et al. (2010) aver-
aged all distances to all segments inside the reference polygon. Of these measures, the
original measure by Lucieer and Stein (2002) is more attractive, since boundaries inside a
reference polygon can disappear in classification but boundaries near a reference polygon
cannot be moved. However, Lucieer and Stein (2002) noted that the finest segmentations
ranked the best using this evaluation. Taking this into account, they modified the original
measure to take the length of boundary into account. These kinds of modifications, on the
other hand, are difficult to design, because they easily favour either under-segmentation
or over-segmentation. Furthermore, boundaries of natural objects are not exact. Hence,
it is not always meaningful to find the ‘real’ boundaries but boundaries that are visible
in data.

Finally, unsupervised segmentation evaluation methods that often measure inter-
segment and intra-segment homogeneity or heterogeneity have been found useful in
segmentation evaluation (Kim, Madden, and Warner 2009; Gao et al. 2011; Yue et al. 2012;
Hou et al. 2013). Although in our case the objective was to find segmentation that mimics
reference polygons, it could be interesting to test whether unsupervised methods work well
in this kind of task.
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5. Conclusion

We tested different supervised segmentation goodness evaluation measures and visual inter-
pretation to determine a good segmentation for boreal forest habitat mapping. Although the
different supervised segmentation goodness measures were fast to calculate from several
segmentations, they provided inconsistent results. In other words, different segmentations
stood out as being best when different measures were used. Visual interpretation, on the
other hand, was tedious and segmentations could not be evaluated thoroughly in reasonable
time. Although we selected only one segmentation as being the best based on visual inter-
pretation, other segmentations were visually good. In classification analysis, the visually
selected segmentation provided the best classification accuracy but differences between
different segmentations were rather small. Better segmentation may lead to better classi-
fication, but there are several different definitions for good segmentation. Therefore, the
relationship between segmentation and classification is not straightforward. We propose
that the goodness of segmentation should be defined in each case separately and evaluation
measures should be selected based on that definition. In our case, good segmentation was
segmentation with (1) meaningful and not too complex segments, (2) boundaries parallel
to reference polygon boundaries even for the smallest reference polygons, but (3) as coarse
as possible. There were, however, no evaluation measures to determine these kinds of seg-
mentations automatically. Overall, the best segmentations were FNEA segmentations with
both imagery and lidar data. We conclude that different segmentation evaluation methods
should be used with care, especially in natural environment mappings. When segmentation
evaluation is rigorously used, however, it can assist in finding a more optimal segmentation.
Quantitative segmentation evaluation might provide better results in urban environments;
however, a more thorough testing is needed to support this claim.
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