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The problem

• double occurrence word – every letter occurs twice

w = ADEBAFCBCDEF

• want: color all letters red&blue, every letter once red and
once blue

ADEBAFCBCDEF 4 changes

• goal: minimize the number of color changes

ADEBAFCBCDEF 4 changes

ADEBAFCBCDEF 2 changes

γ(w) = 2
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Trivial observations

• w1 = A1A1A2A2 . . .AnAn γ(w1) = n

• w2 = A1A2 . . .AnA1A2 . . .An γ(w2) = 1

• Wn – set of words with letters A1, . . . ,An, each of them
twice.

Natural questions

• value for nontrivial cases?

• algorithms?

• random w ∈Wn?

• connection to some other parameters?

• motivation?
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Motivation and previous results

• paint shop: a factory where a sequence of cars needs to
be painted, for each sub-type we want one of each color, it
is practical not to change the color too often.
• necklace splitting: [Image by Wikipedia user Kilom691,

CC BY-SA 4.0]

Two (possibly more) thieves want to split a
necklace with various types of gem-stones, using minimum
number of cuts. N.Alon’s theorem is more general, here it
gives just γ(w) ≤ n for w ∈Wn.
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Hard problem

• APX-hard [Bonsma, Epping, Hochstättler (06); Meunier,
Sebő (09)]

• Thus, the decision problem is NP-complete.

• some polynomial instances identified by Meunier and Sebő
(09)
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Heuristics

Results by Andres&Hochstättler, 2010.

• greedy – g(w) – going from left to right, change color only
if you must.

Ew∈Wng(w) = Eng(w) = 0.5n + o(n)

• recursive greedy – rg(w) – remove the last letter, color
recursively, choose the better way for the extra letter

Enrg(w) = 0.4n + o(n)
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Lower bounds

Observation

γ(w) ≥ α(G(w))

where G(w) is the interval graph corresponding to the word w.

Scheinerman (1988) proved that for a random interval graph on
n vertices, α ≥ C

√
n. Thus:

Corollary

Enγ ≥ C
√

n
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Linear lower bound

Theorem

Enγ ≥ 0.214n − o(n)

This disproves a conjecture by Meunier, Neveu (2012). The
conjecture was also mentioned at MCW 2012 (Andres) and
MCW 2017 (Hochstättler).
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Lower bound proof

• w ∈Wn – a random element
• will show Pr[γ(w) ≤ k ] ≤ p.
• This will prove that Enγ ≥ (1− p)k .
• C≤k

n – colorings of 1, . . . ,2n using n red and n blue, with at
most k color changes.

Pr[γ(w) ≤ k ] = Pr[w has a legal coloring in C≤k
n ]

≤
∑

C∈C≤k
n

Pr[C is legal for w ]

=
∑

C∈C≤k
n

n!2

(2n)!/2n

= · · · ≤
√

4n
2n

(e · 2n
k

)k

p := the latter, k := 0.214n ... done.
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Concentration

Theorem
Let w be a random element of Wn. Let γn = Enγ.

Pr
[
|γ(w)− γn| ≥

√
n log n

]
≤ 2n−1/8
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Concentration

Theorem
Let w be a random element of Wn. Let γn = Enγ.

Pr
[
|γ(w)− γn| ≥

√
n log n

]
≤ 2n−1/8

Proof.

• Standard application of Azuma inequality.

• We let Xk be the expectation of γ(w) after the positions of
the letters A1, . . . ,Ak have been fixed.

• X0,X1, . . . ,Xn is a martingale.

• |Xk − Xk+1| ≤ 2.

• Azuma inequality gives the rest.
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Improved upper bounds – theorem

Theorem

γn ≤ (
2
5
− ε)n

for ε ≈ 1.64× 10−6.

Proof.
We run the recursive greedy algorithm, then observe that
there is a linear number of local changes.
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Improved upper bounds – star heuristic

We propose a new heuristics – star heuristics. According to
numerical evidence and rather convincing arguments, we
believe that

Ens ≤ 0.361n
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Improved upper bounds – star heuristic

We propose a new heuristics – star heuristics. According to
numerical evidence and rather convincing arguments, we
believe that

Ens ≤ 0.361n

1. Similarly as in the recursive greedy, we take away the last
letter and its second copy, we repeat.

2. We let the resulting words be wn = w ,wn−1, . . . ,w1 = AA.
3. Then we go forward, producing the coloring using red,

blue, and * with the following condition:
4. The two copies of a letter must either be red/blue, blue/red

or */*. We use the latter, if both red/blue and blue/red yield
the same number of color changes.
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Improved upper bounds – star heuristic

1. Similarly as in the recursive greedy, we take away the last
letter and its second copy, we repeat.

2. We let the resulting words be wn = w ,wn−1, . . . ,w1 = AA.

3. Then we go forward, producing the coloring using red,
blue, and * with the following condition:

4. The two copies of a letter must either be red/blue, blue/red
or */*. We use the latter, if both red/blue and blue/red yield
the same number of color changes.

5. To get the coloring of wk+1 from that of wk

• do the greedy consideration of the new letter (possibly
deciding about some *-colored letters).

• possibly recolor the penultimate letter (and its copy) by a *.
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Better bounds – open problem

Based on experiments (using a heuristics impossible to
analyze), we believe the true value of γn is around 0.3n.
However, we have only the following bounds proved rigorously

0.214 ≤ lim
γn

n
≤ 0.4− ε

We can imagine the upper bound can be decreased to around
0.361 with more work.
Question
What is lim γn

n ? Does the limit even exist?
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