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Abstract 

  Neighbourhood reductions for a class of location problems known as the 

vertex (or discrete) and planar (or continuous) p-centre problems are presented. 

A brief review of these two forms of the p-centre problem is first provided 

followed by those respective reduction schemes that have shown to be 

promising. These reduction schemes have the power of transforming optimal or 

near optimal methods such as metaheuristics or relaxation-based procedures, 

that were considered relatively slow, into efficient and exciting ones that are 

now able to find optimal solutions or tight lower/upper bounds for larger 

instances. Research highlights of neighbourhood reduction for global and 

combinatorial optimisation problems in general and for related location 

problems in particular are also given.  
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1. Introduction  

The objective of the p-centre problem is to select p sites to locate new facilities in 

order to minimise the maximum distance or travel time between a set of demand points and 

the facilities closest to them. This problem, originally formulated on a graph by Hakimi 

(1964), is usually categorised as either the vertex p-centre problem or the absolute (or planar) 

p-centre problem. In the former, which is the discrete case, the optimal facilities are selected 

from a given set of potential sites (vertices) which can be either the demand points or other 

known sites. However, in the latter case the facilities can be located anywhere in the plane.   

An illustrative example for the vertex 1-centre problem and its counterpart the planar 

1-centre is given in Figure 1, where four fixed points (or vertices) are located at (0,0), (1,0), 

(0,1) and (1,2). Here the optimal solution locates the single facility at (0, 1) for the discrete 

case with resulting minimum objective function value of 2 , the Euclidean distance from 

(0,1) to (1,2) or (1,0).  Meanwhile the optimal planar location is at (0.5,1) situated half way 

between the two points (0,0) and (1,2)  that are furthest apart with objective function value 

now reduced to
5

2
. 

 

            Figure 1: A vertex and planar 1-centre problem with 4 fixed points. 
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When the aim is to locate facilities on a network, and the possible sites are restricted 

to the vertices of the network (i.e., the discrete case), the problem is known as the general p-

centre problem, whereas if the facilities are also allowed to be located at any points on the 

edges of the network, the problem is then referred to as the general absolute p-centre 

problem. For instance, for the case of one centre, in the former the idea is to choose the 

vertex that has the smallest distance to its furthest vertex, whereas for the latter the idea is to 

find a point along an edge that leads to the smallest distance to the furthest vertex.  This latter 

class of location problems is not discussed here, but more details including illustrative 

examples can be found in Eiselt and Sandblom (2004). For a general discussion and analysis 

on continuous location problems, the reader will find the chapter by Drezner (2011) to be 

interesting and informative.  

Heuristic search embodies the field of practical optimization for solving combinatorial 

(discrete) and global (continuous) optimization problems. The word 'heuristic' derives from 

a Greek word meaning ‘I discover or find’. In brief, it can be considered as a combination of 

mathematical logic, statistical ideas, computer science experience and insight of the problem. 

Heuristic search aims to provide good quality solutions in a reasonable amount of computing 

time while not necessarily guaranteeing an optimal solution. Heuristics are used when exact 

methods fail due to either entrapment at local optima or excessive use of memory or 

computing time. Heuristic search can be classified under several categories. For instance, 

Salhi (2017) provided the following one: improving only heuristics, not necessarily-

improving heuristics, population-based heuristics and hybridization. To enhance the 

efficiency of these approaches, neighbourhood reductions and data structures are usually 

constructed and embedded into the search. The first one attempts to avoid unnecessary 

calculations whereas the latter attempts to store information that can be used in subsequent 

iterations. In this chapter we concentrate on the former. 

Neighbourhood reduction aims to eliminate moves or checks that cannot lead to an 

optimal solution for the case of exact methods, or are unlikely to affect the global best 

solution in the case of heuristics. It is challenging to design powerful neighbourhood 

reduction schemes that can cut computing time as much as possible without (or slightly) 

affecting the quality of the solution.   Determining a good balance between the depth of the 

cut and the retention of solution quality at a reasonably high level is a challenging issue. 

Having good insight into the structure of the problem is useful as this helps in defining and 
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designing the right neighbourhood reduction scheme. This mechanism, also known as 

reduction test, can be either dynamic which adapts as the search progresses, or deterministic 

which is usually defined from the outset. For more information on this research design issue, 

see Salhi (2017). 

 

This chapter is organized into three parts:  

(i) a brief review of both vertex and planar p-centre problems with a focus on the 

contributions by Drezner;  

(ii) a review of some neighbourhood reductions that are observed to be very useful for 

solving the vertex and planar p- centre problems; and  

(iii) a discussion of some key research items on neighbourhood reduction that could be 

worth exploring. 

 

 

2. The p-centre problem  
 

We organise this section into two subsections. The first deals with the (discrete) vertex p-

centre problem, while the second discusses the (continuous) planar p-centre problem. 

 

2.1 The vertex p-centre problem  

The vertex p-centre problem, also known as the multi-facility minimax location problem, 

aims to optimally locate p facilities among a finite number of potential sites and to assign 

demand points to these open facilities in order to minimise the maximum distance between 

demand points and their nearest facility. There are two main formulations, as a binary linear 

program (BLP), and as a set covering problem (SCP).  

 

2.1.1 The BLP formulation 

Let 

( , )I J   :  the set of demand points (or customers)  ( {1,..., })i I n    and set of potential 

facility sites  ( {1,..., })j J m  ,  

( , )d i j  :  the distance between customer i and potential site j (Euclidian distance is used in 

our study); 

p    :      the required number of facilities; 
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1 if customer is assigned to a facility at location 

0 otherwise                                                             
ij

i j
Y


 


   

1 if a facility is opened at location 

0 otherwise                                      
j

j
X


 


 

Z :   the maximum distance between the customers and their closest facilities. 

 

The problem (BLP) is then formulated  as follows: 

 

Minimize Z   (1) 

Subject to 

 1ij

j J

Y i I


    (2) 

 j

j J

X p


   (3) 

 0 ,ij jY X i I j J       (4) 

 ( , ) ij

j J

Z d i j Y i I


    (5) 

 {0,1}jX j J    (6) 

 {0,1} ,ijY i I j J     (7) 

 

The objective (1) refers to the minimization of the maximum distance between a customer 

and its nearest facility. Constraints (2) guarantee that each customer is assigned to exactly 

one facility; constraint (3) limits the number of open facilities to be p; while constraints (4) 

ensure that a customer can only be allocated to an open facility. Constraints (5) define the 

maximum distance between a customer and its closest facility. Constraints (6) and (7) refer to 

the binary type of the decision variables. Note that the binary type constraints on the Yij in (7) 

can be replaced by non-negativity constraints without affecting the optimal solution, since the 

minimization objective will force customers to be assigned to their nearest facilities. 

The p-centre problem is known to be NP-hard (Kariv and Hakimi, 1979). Thus it follows 

that only small to medium size instances of this problem can be solved optimally using 

commercial optimization software such as CPLEX, LINDO, GUROBI or Xpress-MP, and it 

becomes more difficult to tackle for relatively large instances. One idea is to aggregate 

customers leading to a smaller problem which is more manageable. However, it is worth 

noting that such an aggregation-based approach, if not considered carefully, could lead to 
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poorer quality solutions due to the loss of information. Another approach is to address the 

problem in its entirety by adopting powerful metaheuristics or mat-heuristics. For instance, 

Irawan, Salhi and Drezner (2016) develop a powerful hybridisation of VNS and ILP  

formulations by embedding intelligent neighbourhood reduction schemes.  

 

2.1.2.   A set covering-based model  

The minimax problem can also be solved optimally using a Set Covering Problem 

(SCP)-based approach. Given a covering distance (or response time) D , SCP aims to find the 

minimum number of facilities and their locations so that each customer is served by a facility 

within D distance from it.  

Let   

1 if customer  can be covered by a facility sited at (i.e., ( , ) )

0 otherwise                                                                                                      
ij

i I j J d i j D
a

  
 


 

The SCP can be formulated as follows: 

Minimize              j

j J

X


    (8) 

Subject to 

 1ij j

j J

a X i I


     (9) 

 {0,1}jX j J           (10) 

The objective (8) is to minimise the number of opened facilities. Constraints (9) guarantee 

that each customer is covered by at least one facility located within the threshold D and 

constraints (10) refer to the binary variables.  

The minimax problem is optimally tackled by recursively solving a sequence of SCPs for 

given values of D  using a binary search.  For instance, Daskin (2000) adopted this 

approach, initially presented by Minieka (1970), on a general graph with all edge 

distances restricted  to integers. Efficient exact algorithms for solving the vertex p-centre 

problem include, for example, Ilhan and Pinar (2001), Elloumi, Labbe and Pochet (2004), Al-

Khedairi and Salhi (2005), Salhi and Al-Khedairi (2010), and Irawan, Salhi and Drezner 

(2016). The latter ones incorporate neighbourhood reductions which are discussed in 

Subsection 3.2. 

 



7 
 

2.2 The planar p-centre problem 

 

Continuous location problems are about generating sites for one or more facilities in the 

plane.  Though the obtained solutions may not be feasible as some facilities may end up in 

the middle of a city or a lake, they can still be used as greenfield solutions (ideal solutions). 

Given that the continuous problem can be a good approximation of its discrete counterpart 

especially when the network has a large number of potential sites,  getting the ideal solution 

could  provide valuable information for decision makers when selecting  the final sites. As 

the data gathering task for a large network can be very expensive to conduct, the continuous 

model may also be used to reduce the number of potential sites to a few promising ones, thus 

making  the problem more manageable.  

From a theoretical view point, the continuous p-centre problem is also interesting as it 

has a geometrical interpretation. For example, the single unweighted facility location 

problem (i.e., 1p  ) reduces to finding the smallest circle that encloses all the customers, 

with the centre of the circle being the location of the new facility. In a similar way, the 

continuous p-centre problem with p > 1 may be interpreted as finding the centres of p circles 

that encompass all the customers where the radius of the largest circle is made as small as 

possible.  

The (weighted) p-centre problem can also be described as a MinMaxMin type problem with 

formulation given by Drezner (1984a): 

 

 

where the additional notation is defined as: 

      ( , )i i iP a b :  the given location of demand point ( 1,...., )i i n  

      0iw  :  the weight of demand point ( 1,...., )i i n    

     ( , )j j jX x y : the unknown location of new facility j with
2; 1,...,jX j p   

     
1( ,...., )pX X X : the vector of decision variables containing these p facility locations  

      ( , )i jd P X : the Euclidean distance between  iP  and 
jX ( 1,...., ; 1,...., )i n j p          

Note that the unweighted model is normally considered as in the discrete p-centre problem 

given above with equal weights ( 1, 1,..., ).iw i n      

1,..., 1,...,
( ) [ ( , )]i i j

i n j p
Min Z X Max w Min d P X

 

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       The single facility minimax location problem (1-centre) in continuous space has a long 

history. The English mathematician James Joseph Sylvester (1814-1897) first posed the 

problem in 1857, and then a few years later, in 1860, put forward an algorithm to solve it. 

The problem was dormant for over a century until Elzinga and Hearn (1972) presented an 

optimal geometrical-based algorithm that runs in polynomial time.  Since then, other authors 

attempted some speed up procedures, such as Hearn and Vijal (2002), Xu, Freund and Sun 

(2003), and Elshaikh, Salhi and Nagy (2015), and references therein. Some of these 

enhancements use simple but effective reduction schemes,  which are discussed in Subsection 

4.1. For an informative review including the history of this problem, see Drezner (2011) 

and references therein . 

There is, however, a relative shortage of studies dealing with the problem for larger values of 

p (see Plastria (2002), and Callaghan, Salhi and Brimberg (2018)). Chen (1983) is among the 

first to tackle the p-centre problem in the plane. The problem is shown to be NP-hard in 

Megiddo & Supowit (1984). For a fixed value of p, the problem can be solved in polynomial 

time 2( )O n p as shown by Drezner (1984a), though it requires an excessive amount of 

computational effort for larger values of n and p. Due to the non-convexity of the objective 

which is a function of the location variables, this problem also falls in the realm of “global 

optimization”. 

For the case of the 2-centre problem with Euclidean distances in the plane ( . ., 2)i e p  , there is 

an interesting optimal algorithm by Drezner (1984b). The idea is that the entire customer set 

can be split into two separate sub-problems by a straight line, where each can be optimally 

solved as a 1-centre problem. However, as there 
( 1)

2

n n 
 possibilities, the problem becomes 

difficult though still polynomial. The method can be extended to larger p, where more than 

one line would be needed, but this problem becomes much more difficult. A scheme on how 

to proceed from one set of p lines (p clusters) to another is an exciting exercise that could be 

worth exploring. 

 

Constructive heuristics were the first to emerge for larger values of p. These use the iterative 

locate-allocate procedure initially proposed by Cooper (1964) for the Weber problem for 

local improvement, and   are based on the commonly used add, drop and swap moves. For 

instance, Drezner (1984a), and Eiselt and Charlesworth (1986) were among the first to 

develop such methods.  
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Drezner (1984a) also devised a nice optimal algorithm using the idea of Z -maximal 

circles. For a given Z , all maximal circles are defined and either a corresponding set covering 

problem or a feasibility problem is solved. Starting from a lower bound for Z , successive 

problems are solved until a feasible solution is found (i.e., the solution has p circles with each 

customer being encompassed by at least one circle). This optimal algorithm was originally 

very slow but has since developed into a fast and powerful  approach that can solve large 

instances to optimality. This is achieved by incorporating suitable neighbourhood reductions 

into the search which are discussed in Subsection 4.3.1.  

 Several years later, Chen and Chen (2009) developed a relaxation method based on Chen 

and Handler (1987) to optimally solve the problem. The idea is to start by solving a reduced 

problem containing a subset of demand points from the original problem and then gradually 

adding some points to the current subset until the optimal solution is feasible for the original 

problem. This interesting relaxation-based approach is also revisited and its efficiency much 

enhanced in Subsection 4.3.2.  

 

 

3 Neighbourhood reduction for the vertex p-centre problem 

 

We first present basic reduction schemes which can be embedded efficiently into the brute 

force approach, also known as the complete enumeration technique. These are followed by 

those more advanced neighbourhood reductions that are adopted primarily for optimal 

methods,  metaheuristics and mat-heuristics for the case of the p-centre problem. 

 

3.1 Brute force approach    

 

The idea is to evaluate all combinations of p possible facility sites out of the n  potential sites. 

For each combination allocate each customer to its nearest facility, leading to p clusters, and 

choose the one that yields the maximum distance from the allocated customers to the centre 

(their nearest facility).  The optimal solution is one with the minimum of these maxima. This 

complete enumeration technique (CET), though naive, can be used to guarantee the optimal 

solution for small values of p (< 5), even when n is around 100, without the use of 

commercial optimisers or even the use of any heuristic. This simple and rudimentary 
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approach if applied blindly will evaluate all the 
!

!( )!

n

p

n
C

p n p



combinations, and will fail 

rapidly when  5p   even for 100n  .  

However, with simple reduction rules, we can improve its efficiency drastically still without 

recourse to advanced methods. The following four rules, which are given in Al-Harbi (2010), 

are briefly discussed here.  

 

(a)  CET is coded in p nested loops (in an ordered fashion) leading to any two successive 

configurations being different by one facility only. In the allocation process, for a given 

customer i  we have two options whether this customer has lost its initial facility and hence 

needs to be checked against all p facilities including the new one; otherwise one comparison 

between its original assignment and the new one is evaluated. For example, the instance 

(Pmed1) from the ORLIB with 100n  and 5p   required 506 secs, whereas with this simple 

reduction it needed only 348 secs. The CET and simple reduction were coded in C++ and 

performed on a PC i7 with 1.5GHz processor and 512 MB of RAM.  However, for the 

instance Pmed6 ( 200; 5)n p  , both versions were unable to obtain the optimal solution 

after 5 hours of CPU time. Here, the blind approach exploited 42% of the total number of 

combinations whereas the enhanced one used 70% instead, leading to better chances of 

obtaining an improved solution, though optimality cannot obviously be guaranteed. 

(b) Besides (a), we can also record the second closest facility for each customer. Though 

this adds extra computational storage, it reduces the overall computing time. Using the same 

example with 100 and 5n p  , this simple recording task enables the optimal solution to be 

found within 321 secs. For 200 and p=5n  , though the optimal solution is still not 

guaranteed,  77% of combinations were now evaluated. 

(c) Note that both operators ((a) and (b)) are not only applicable to this problem but are 

commonly used in many other combinatorial problems where an assignment is required.  We 

take into account additional insights unique to the p-centre problem. Given the objective is to 

minimize the maximum coverage, it is clear that  once we have one feasible solution with a 

value of Z , this can be used to terminate the evaluation of a given configuration if one 

customer happens to have its distance to its nearest facility larger than Z .  In other words, 

there is no need to continue checking the other customers for this particular configuration. 

The upper bound Z can be updated as the search proceeds. This reduction scheme 

systematically leads to rejecting several inferior configurations early on leading to a massive 
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reduction in the overall computing time. This basic rejection scheme obtains the optimal 

solutions for both instances (Pmed1 and Pmed6) within the maximum 5 hours allowed 

(18000 secs), requiring only 54 secs and 11546 secs, respectively.  

(d) This is an extension of (c) where for each customer 1,...,i n , a set of facilities 

{ 1,..., | ( ( , ) }iF j n d i j Z    is constructed (usually updated as the search goes on). If a 

given configuration does not contain at least one facility in iF  , there is no need to continue 

the allocation of other customers as this configuration is inferior. This dynamic reduction 

rule, which is based on the current Z , renders the brute force even faster by obtaining the 

optimal solutions for Pmed1 and Pmed6 in 47 secs and 2634 secs only, respectively. This rule 

dominates the one that also states that for a given customer, a facility configuration that 

includes one of its furthest ( 1)p facilities is systematically inferior and hence needs to be 

discarded.  

 

The above rules demonstrate that the information in a given problem may be used to 

eliminate several redundant computations if appropriate neighbourhood reductions are 

designed. However, even with such elimination rules, the brute force approach is still limited 

to smaller values of n and p. Having said that, the effective use of neighbourhood reduction is 

still able to reduce  by as much as some 90% the time attributed to  unnecessary 

computations. The impact is even more significant when these reduction schemes are 

embedded within powerful meta-heuristics or optimal algorithms as will be shown in the rest 

of this chapter.   

 

3.2 Set covering-based approach 

The approach using SCP, as given by Daskin (2000), is shown in Figure 2. In this section, 

we revisit some of its steps to enhance its efficiency. 
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Step 1- Set 0L  and
,

( , )i j
i j

U Max d P P .  

Step 2- Compute the coverage distance 
2

L U
D


  

Step 3- Solve the Set Covering Problem (SCP) using D as the covering distance and let 

v  be the optimal number of facilities obtained.  

Step 4- If  v p (i.e., the solution is feasible for the p-centre problem),  set  U D ; 

            else (ie.,  v p , the solution is infeasible) set L D .  

Step 5- If 1U L  , record U as the optimal solution and stop, otherwise  go to Step 2. 

   Figure 2: The basic SCP algorithm 

Revisiting Steps 1 and 5 

For instance, Al-Khedhairi and Salhi (2005) proposed some basic changes in Step 1 when 

initialising the bounds  and L U by re-defining   

( , ) and ( , )i j i j
j i i j

L Max Mind P P U Min Max d P P  .  

Also, to guarantee that the elements of the distance matrix in Step 2 are used only, D  is 

redefined slightly by setting ( )
2

L U
D G


  where ( )G x  represents the nearest value to x

in the distance matrix.  

In addition, to terminate the search as early as possible in Step 5 and avoid redundant 

checks, the set { ( , ) : ( , ) }i j i jS d P P L d P P U   is introduced. If S   (ie., there are no 

distance values between L and U ), the search terminates even if 1U L  , with the 

optimal solution being .U  In addition, if |S|=1, there is one element left to assess only, 

say D and go to step 3. The optimal solution either remains at U  or D  if the new SCP 

solution happens to be feasible. These schemes are tested on all instances of the OR-Lib 

( 100 to 900,  and 5 to 90)n p  where a 15% average reduction in the number of SCP 

calls is obtained. For the TSP-Lib data set ( 1060 and 10,20,...,150)n p  , a more 

significant average reduction of over 28% is recorded. 

Further tightening of U and L in Step 1 

In step 1, a simple tightening of U  can be found easily just by running a multi-start 

approach and choosing ( ( , ), )i j H
i j

U Min Min Max d P P Z  with HZ being the best solution of 

all the runs.  For instance, when ( ,500)Max n  multi starts are adopted, the above results 
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for the OR-Lib and TSP-Lib improved even more leading to an average reduction in the 

number of iterations from the original implementation of 23% and 41% respectively.  

A further tightening of  and U L  can be obtained by using the solution from a powerful 

metaheuristic HZ as U  leading to a potential lower bound L U with 0.7 or 0.8  . The 

tighter HZ is, the closer   is to 1. The power of this setting is that even if U fails to be a 

`true’ lower bound, its value will automatically become the upper bound instead, and the 

lower bound is recomputed again as L U with  kept the same or slightly reduced until 

a range ( , )L U  is derived. It is worth noting that there are no redundant calculations when 

assessing the SCP for L. Salhi and Al-Khedhairi (2010) proposed this implementation 

with interesting results using a multi-level heuristic originally proposed by Salhi and Sari 

(1997).  Recently, Irawan, Salhi and Drezner (2016) adopted the above methodology with 

two distinct changes. The upper bound in step 1 is obtained by VNS instead (see Hansen 

et al, 2010), and also an ordered list of the distance matrix is constructed to easily identify 

the elements in the set S . As the upper bound produced by VNS in Step 1 may be close to 

the optimal solution,   can be set in the range [0.8-0.9] leading to an even tighter L U . 

Note that the value of L  must also exist in the distance matrix, and hence, is set to the nearest 

such value to U .  

Other tightening of L 

An interesting two phase approach which shares some similarities with the SCP is based 

on solving the feasibility of the following covering problem (CP) instead (Ilhan and Pinar, 

2001). Note that the notation remains as given in Subsection 2.1. 

     {   1ij j

j J

a X i I


   ; j

j J

X p


 ; {0,1}jX j J     }     

The idea is that if a relaxed CP (i.e., 0 1jX j J    ) which is much quicker to solve 

does not provide a feasible solution for a given D, there is no need to solve the integer 

problem. This phase one is similar to SCP in Figure 2, except that Step 3 is based on solving 

the relaxed CP. Once a feasible solution is obtained in phase one, phase two is activated 

where CP is solved with the corresponding D. If the integer problem is not feasible, then a 

tight lower bound L D  can be used. Note that phase two in Ilhan and Pinar (2001) does not 

follow the SCP algorithm given in Figure 2 but attempts to solve the integer CP by gradually 
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increasing D to the next minimum in the distance matrix until an integer solution of CP is 

found. 

 

3.3 Variable neighbourhood search based reduction 

    Irawan, Salhi and Drezner (2016) introduce some elimination rules to avoid computing 

unnecessary moves when adopting variable neighbourhood search (VNS) for solving the 

discrete location problem.  In brief, VNS is a metaheuristic originally developed by 

Mladenovic and Hansen (1997) for tackling combinatorial and global optimisation problems. 

VNS attempts to avoid local optimality by systematically changing neighbourhoods in a 

shake (or perturbation) operation, usually starting from the smallest (easiest to compute) to 

the largest one. The idea is to start with an initial local solution, and then generate a random 

point in its first neighbourhood (a shake). A local search is then applied from this 

neighbouring point. If the new local solution is an improvement, a move is made to it, and the 

search reverts back to the first neighbourhood; otherwise a random point in the next 

neighbourhood (usually a larger one) of the current solution is generated (the neighbourhood 

change step), and the process repeats. The cycle of shaking and local search from the smallest 

to largest neighbourhood or to the next improvement, whichever comes first, is repeated until 

typically a specified limit on execution time is reached. Salhi (2017) classified metaheuristics 

into four classes, namely, improvement-only heuristics (composite heuristics, multi-level 

heuristics, GRASP, perturbation methods, large neighbourhood search, iterated local search, 

guided local search, etc), not necessarily improving heuristics (simulated annealing, tabu 

search, threshold accepting, etc), population based (genetic algorithm, scatter search, particle 

swarm, ant colony, bee algorithms, etc) and hybridisation (between heuristics, or between 

heuristics and exact methods). Basic VNS generates a sequence of improved local solutions 

and hence falls into the first category above.  

 

Irawan, Salhi and Drezner (2016) speeded up the VNS implementation in both the shaking 

process and the local search by avoiding the evaluation of non promising calculations. The 

local search, which is a vertex substitution heuristic, implements a swap move by closing an 

open facility and replacing it with a closed one. However, instead of removing a facility 

randomly from the current facility configuration, the facility (say facility j ) whose radius (the 

distance between a facility and its furthest customer) is the largest, say D, is chosen.  
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Let  

{ 1,..., | ( , ) }jE i n d i j D   : be the set of customers served by facility j and 

( ( , ))
j

j
i E

C Arg Max d i j


 : be the customer whose distance is D from facility j , 

{ 1,...., | ( , ) ( , ) }
2

j j j j

D
V E i n d C i D d C i      :  be the subset of potential sites from 

which to randomly choose an open facility to replace facility .j   

 

In this case, the location of the new open facility is restricted so as not to be too close to 

customer jC . This concept of using forbidden regions is shown to be effective when solving 

the multi-source Weber problem (Gamal and Salhi, 2001) and its capacitated version (Luis et 

al., 2009).  Here, the threshold distance is set to 
2

D
 though this can vary; see Figure 3 which 

is adapted from Irawan, Salhi and Drezner(2016). This reduction scheme considers a fraction 

of the customer sites only, which can in turn reduce the search space considerably and lead to 

a substantial cut on the computing time. This can be significant given the local search in VNS 

is applied a large number of times. 

 

 

 

Figure 3:  The restricted but guided neighbourhood within VNS 

This approach, when integrated as part of a matheuristic, shows to be effective at 

tackling very large instances up to 71,000 and 25,50,75 and 100n p   for both the 

conditional and unconditional vertex p-centre problems, see Irawan, Salhi and Drezner 

(2016). 

D 

Neighbourhood area 

Customer   (the furthest customer from ) 

The facility  which serves  

0.5D 

D

j 
jC
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4  Reduction schemes for the planar p-centre problem 

The planar p-centre problem has received relatively less attention compared to its counterpart 

the vertex p-centre problem especially when it comes to optimal methods.  In this section, we 

first explore elimination techniques for the 1-centre problem though this can be solved 

optimally in polynomial time. We then present speed-up procedures for the commonly used 

metaheuristics followed by those devoted to the optimal and relaxation-based methods.  

 

4.1 The 1-centre problem  

 

The problem of determining the optimal location in continuous space for a given cluster of 

customers turns into finding the centre of the smallest circle that encompasses all the 

customers. As a circle can be identified by one, two or three critical points only, Elzinga and 

Hearn (1972) used this concept  to develop an 2( )O n  geometrical-based optimal algorithm to 

solve the problem. The idea is to start with two demand points chosen randomly and find the 

corresponding optimal centre and the radius of the circle. If all demand points are 

encompassed by the circle, the search terminates; otherwise another point is added and a new 

circle with the optimal centre for the three points is constructed. If the circle does not cover 

all demand points, a new uncovered point is added again while one of the three points that 

becomes redundant is removed. This process continues until a circle that covers all points is 

found. There are a few studies that looked at this issue. Recently, Elshaikh, Salhi and Nagy 

(2015) introduced two simple but effective reduction rules into the Elzinga and Hearn (EH) 

algorithm.  

 

(a) In the starting step, instead of choosing any two points, the four points that make up 

the smallest rectangle that covers all the points are first identified. For each pair, the 

corresponding circle is found and the largest one is chosen with its critical points as 

the starting solution.  

(b) When selecting the new point to add to the already existing circle with centre X  and 

radius Z , instead of choosing the new point randomly, the one with the largest 

(weighted) distance to the current centre is selected instead, i.e., 

*

1,...,
Arg (w d(P ,X)>Z)i i

i n
P Max


 .  
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When tested on a set of randomly generated instances in a square  (0,100)x(0,100)  with

100 to 1000n  , the enhanced EH algorithm required about 30% and 20% of the computing 

time of the original version for the unweighted and the weighted cases, respectively.  More 

details on the experiments including other less promising rules can be found in Elshaikh 

(2014). One may assume that there is no need to speed up such a quick polynomial 

procedure. This will be obviously true if the aim is to solve the problem once or a small 

number of times only. However, in the p-centre problem, this task embedded within a 

metaheuristic or an optimal method will be called upon several times, and therefore, in our 

view the enhancement is quite worthwhile. For example, to demonstrate the benefit of these 

two reduction tests, Elshaikh, Salhi and Nagy (2015) perform an extensive experiment using 

a simple multi-start with 100 iterations on the 1002 n TSPLib instance with 5 to 25p   in 

increments of 5. It is found that over 32% less updating within EH is required leading to a 

reduction of over 25% in computational time.  

 

4.2 Reduction within Heuristic-based approaches  

  

We discuss the recent neighbourhood strategies that have proved to be promising when 

embedded within the powerful metaheuristics used for the p-centre problem.  

 

4.2.1 VNS-based heuristics 

 

In the shaking process within VNS, a certain number ( maxK ) of neighbourhood structures is 

defined max( ( ); 1,..., )kN X k K . For the p-centre problem, these can be either (a) customer 

based or (b) facility based.  

 

In (a), ( )kN X  can be defined by reallocating k  demand points from their original facilities to 

other ones either randomly or following a certain strategy. Due to the characteristics of the 

planar p-centre problem, the number of critical points that define the largest circle obtains

max 3K  . The re-allocation of one of these points will in most cases reduce the radius of the 

largest circle (except in the case of ties). Note that other circles may increase their radii after 

this allocate-locate procedure, but the solution is accepted as long as Z  is reduced.  
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In (b), ( )kN X is defined by relocating k  facilities max( 1,..., )k K p   from the current 

solution. Instead of randomly removing k  facilities, the following removal scheme that 

guides the search more effectively is performed. As the problem is linked to the largest circle 

and its surrounding circles, it is therefore important to take into account these characteristics 

when designing the neighbourhood reductions.  Two aspects are worth considering here. The 

first one is connected to the largest circle and the second is linked to those facilities deemed 

non-promising.  For simplicity, consider the largest circle as 1C and let  

kCT : the centre of circle ; 1,...,kC k p  

1( , ); 1,...,s sd CT CT s p   : the distance between the centre of 1C and the centre of sC    

1,...
( ), 1,... 1

( ) s
s p

s l l k

k Arg Min



 


  

  and  

( )kC : the thk  nearest circle to 1C with (1) 1   referring to 1C . 

The process starts removing the facility at 1CT (i.e., circle 1C ) and assigning it somewhere 

else as will be discussed shortly. If after a local search the solution is not improved, both 

facilities located at 1CT and 
(2)CT 1 (2)(i.e., both circles and C )C   are then removed, and the 

process continues until all facilities 
(1) (2) ( )(i.e., all circles C ,C ,...C )p   are removed if 

necessary. If the solution is improved, the information is updated (i.e., , ( ), 1,...,kCT k k p  ) 

and as in VNS, we revert back to the removal of the facility at 1CT again. 

 

The second aspect is based on identifying those non-promising facilities for removal. In our 

case a facility is considered as non-promising if it encompasses its critical points only (i.e., 

there are no interior points within the circle). This identification will lead to a saving of 

( )q q p  facilities which can then be added around the critical points of the largest circle 

one at a time. For example, Elshaikh, Salhi and Nagy (2015) conducted an experiment for 

TSPLib with n = 439 and p = 10, 20,…, 100, where a 9% average improvement was obtained. 

In particular, for the case of 100p  , a 34% improvement was observed with 7 facilities 

being identified as non-promising. Most of the improvements were found with 50p  .  

 

In both cases, the re-assignment of facilities is also performed using the characteristics of the 

p-centre problem. Instead of inserting a removed facility either randomly anywhere in the 

plane or at fixed customer sites, the following attractor scheme for insertion is adopted. Using 
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the largest circle again with radius Z , for each of its critical points (generally 3 or fewer), it 

can be shown that there is no other facility within distance Z of any of these critical points. 

This observation is important as it shows that at least one new facility has to be located 

somewhere inside this region. This statement can be shown empirically but it is also 

mathematically proven in Mladenovic, Labbe and Hansen (2003). It is therefore important to 

consider these areas where the new locations will be sited. Within VNS, each time a facility 

is removed and relocated, the local search is adopted. If the solution is improved, the 

following updating takes place by defining the largest circle, the neighbourhood for removal 

and the new area where to locate. For example, when the q non promising facilities are saved, 

one facility at a time is located randomly in those areas near the critical points of the largest 

circle, the reallocation process is then used based on avoiding unnecessary repetition of 

computations.  That is, only affected circles have their centres and radii recalculated using 

their earlier respective centres and radii as the starting solution. The allocation of customers 

is also performed effectively by considering whether or not a customer lost its original 

facility.  The process is repeated until there are no non-promising facilities remaining or the 

solution cannot improve anymore. This enhancement, when tested for the 439n TSPLib

data set, shows a significant improvement. over its original implementation. 

The effect of this neighbourhood reduction has also helped to identify adaptively the best 

value of maxK  as well as the best neighbourhood structures ( )kN X  that are worth examining. 

A VNS-based heuristic with all the above ingredients was able to obtain for the first time 

optimal solutions for larger TSP-Lib instances,  see Elshaikh, Salhi and Nagy (2015) for more 

details. 

 

4.2.2 Perturbation-based metaheuristics 

 

The idea is to perturb the current feasible solution by allowing it to have up to q   

facilities over or below p . This up and down shifting, which is repeated several times, has the 

tendency to retain those very promising facilities in the defined set. Salhi (1997) originally 

put forward this approach for the p median problem which is now successively adopted and 

extended for the p -centre problem (Elshaikh et al. (2016).  The operators ‘add’, ‘drop’ and 

‘swap’ are adopted here. The first operator applies when the solution has or p q p  facilities 

to reach or p p q  facilities, whereas the second operator is used when the solution has 
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or p p q  to reach or p q p  facilities. The last operator is activated when the solution has 

exactly p  facilities. The ‘add’ and ‘drop’ moves are implemented based on the following 

neighbourhood reductions.  

We define the
thk covering circle 2

1{ ( , ) | ( , ) }k kCC P x y d P CT     , 1,...,k q with k  

facilities being either removed (the ‘drop’ move) from kCC  or added (the ‘add’ move) to 

kCC .  Both the removal and the addition mechanisms are performed using either k q  in 

one go or gradually adding or removing one facility at a time until it reaches either

, or p q p p q  , see Figure 4 for an illustration. Note that the value of q  can be made 

dynamic using some form of learning. Besides, this value does not have to remain the same 

when the search goes over or under the value of 1 2 (i.e., ; )p p q p q  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the swap move, a facility in 1CC  is removed and relocated randomly in the continuous 

space also in 1CC where a local search is then activated. Note that the Elzinga-Hearn 

algorithm or its equivalent (see Subsection 4.1) is applied at each solution to obtain the 

optimal centre for each cluster irrespective whether or not the solution is feasible in terms of 

the number of facilities. These guided schemes reduce the computing time considerably 

enabling large TSPLib instances with over 1300 nodes and 10,...,100p   to be solved 

efficiently; see Elshaikh et al. (2016) for these encouraging results.  

Full cycle 

 

Figure 4: A perturbation-based metaheuristic  
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4.2.3 Guiding the Search through Forbidden Regions  

In the local search, extra care is needed when locating the removed facilities in the 

continuous space. Here, a new location chosen randomly on the plane may end up by chance 

being too close to one of the already selected facilities. Given the search is on the plane,  one 

way forward is to construct a small area around each of the existing locations and make them 

tabu or forbidden. The idea of using forbidden regions is also adopted during the construction 

of the initial solution where the idea is to avoid having facilities that are too close to each 

other. This is explored successfully by Gamal and Salhi (2001) for the multi-source Weber 

problem (MSWP).  In brief, during the construction phase of the initial solution or during the 

local search, any new continuous location, which lies in these forbidden regions, will be 

excluded from being selected. This useful information guides the search by avoiding these 

specified non-promising areas, thus reducing unnecessary computational efforts that would 

have been wasted otherwise.  

In our experiments, a forbidden region is defined as the area enclosed by a circle with its 

centre at an already chosen location. The radius of the thk  forbidden area ( )kR  is defined as 

k kR R with kR being the radius of its original circle and parameter set close to zero, say

0.05  . This setting could also be made adaptive by increasing  (say 2  ) or 

decreasing it (say / 2  ) depending on whether the number of rejections is low or high, 

respectively, as demonstrated by Luis et al. (2009) for the capacitated MSWP. Elshaikh 

(2014) adapted the reformulation local search (RLS) which  was originally proposed by 

Brimberg et al., (2014) for the MSWP by incorporating forbidden regions and other attributes.  

For example, when tested on the 439n TSPLib  instance with 10,20,...,100p  , the best 

average deviation is reduced from 3.114% to 2.647%, besides guaranteeing several optimal 

solutions, especially when p ≤ 40.  In brief, RLS is a new local search that aims to shift 

between discrete and continuous space while augmenting the discrete problem with the newly 

found continuous points (see Brimberg et al. (2014, 2017) for more details).  
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4.3 Optimal and Relaxation-based algorithms 

 

We concentrate on two types of algorithms namely the optimal method of Drezner 

(1984a) and the reverse relaxation technique of Chen and Chen (2009). Neighbourhood 

reductions are designed for each of these algorithms making them more effective and suitable 

for solving larger instances either optimally or by providing tight lower bounds which could 

also be used for benchmarking purposes if necessary. 

  

4.3.1 Drezner’s optimal algorithm 

 

Drezner (1984a) designed an optimal algorithm based on the idea of Z-maximal circles. A 

circle is defined as maximal based on a given upper bound, Z.  

Let the number of potential circles with n  demand points be defined by 

1 2 3( ) | ( ) | | ( ) | | ( ) |cN n n n n       with  

1( ) :n  set of null circles
1 1(| ( ) | )nn C n   ,  

2 ( ) :n  set of circles made up of 2 critical points 
2 2(| ( ) | ( 1) / 2)nn C n n    , and  

3 ( )n : set of circles made up of 3 critical points making an acute triangle   

        
3 3(| ( ) | ( 1)( 2) / 6)nn C n n n      

Also let 

jE  be the subset of customers encompassed by circle
jC  and ( )jr E  its radius.  

jC  is said to be Z-maximal (or maximal for short) if its radius ( )jr E Z  and for any 

demand point ; ( { })j ji E r E i Z   . 

First, for a given value of Z  the set of maximal circles is defined by     

  { ; 1,..., ( ) | ( ) ( { }) }Z j c j j jC j N n r E Z r E i Z i E          . 

Drezner proposed two approaches; one uses the set covering problem while the other is 

based on a feasibility problem. In the former, the problem is similar to the SCP given in 

Subsection 2.1.2 except that for a given Z , the set of potential circles becomes Z ,         

The feasibility problem ( ( ))FP Z on the other hand is defined as:  

Find {0,1}, , such that 1 1,...., and 
j Z j Z

j j Z ij j j

C C

X C a X i n X p
 

         

With 
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1 if maximal circle C  is chosen

0 otherwise                               

j

jX


 


        

and 
1 if customer  is encompassed by maximal circle C  (i.e., )

0 otherwise                                                                                   

j j

ij

i i E
a


 


 

 

For both formulations when the solution is found, the new value of Z  is set to 

( ( ) | 1)j jZ Max r E X   which then defines the new Z .  The process continues until there 

is no feasible solution leading to the optimal solution having the last value of Z . It was 

found empirically that the use of ( ( ))FP Z  is much more effective than using the set covering 

problem. For instance, very recently Callaghan et al., (2017) showed that for the 

439n TSPLib  instance with 90p  , the optimal solution was found in just below 3 hours 

(and using 393 calls to the model) using ( ( ))FP Z , whereas the SCP-based method needed 

about 38 hours and 4580 calls. This observation was noted even more emphatically for the 

575n TSPLib instance where the optimal solution was obtained after 30 hours using

( )FP Z , whereas the former stopped after 2 days of running with one feasible solution only 

and a 20% gap from the optimal solution. Callaghan et al. (2017) were able to speed up 

considerably the optimal method of Drezner (1984a), namely, the one using ( )FP Z . This 

was achieved by incorporating efficient neighbourhood reduction mechanisms thereby 

enabling several larger instances to be solved for the first time to optimality.  

To respond to this challenge, a look-alike p-centre formulation ( )opP Z , which also considers

( ( ))FP Z , is first proposed. 

           s.t.  

Minimize 

1 1,...., ; ; {0,1}; ( ( ))

 and  ( ) for all 

j Z j Z

ij j j j j Z F

C C

j j Z

R

a X i n X p X C P Z

X r C R j

 

      

 

   

When testing the 439n TSPLib instance for 90p   using ( )opP Z  the optimal solution was 

obtained about 7 times faster than with ( )FP Z . Though it is relatively harder to solve ( )opP Z

than ( )FP Z , the former produces tighter Z  values leading to less calls, each requiring the long 

computational burden in defining Z .  These results demonstrate that though a reduction in 

computing time is achieved, there are two issues that could help to speed up the search. These 

include        
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(i) An efficient identification of Z from one iteration (or call) to the next and  

(ii) A scheme to find a good compromise solution as a feasible solution may not 

reflect the quality of the solution while an optimal solution may take too long 

to find. 

The following neighbourhood reductions aim to respond to (i) and (ii).  

(a) To check if 
jC  is Z -maximal we normally need to determine for every demand point i if 

( { })jr E i Z  by using the EH algorithm or similar. However, in our situation if at any 

iteration k of EH the radius found, say  ( { })j kr E i Z   then we exit EH and check for 

the next i .  There is no need to complete EH until the end as 

( { }) ( { })j j kr E i r E i Z k     . In addition, when EH is applied, in our situation, the 

search starts with the critical points forming circle 
jC  instead. This implementation cuts 

the computational burden considerably. These critical points are stored in a data structure 

when determining circles in 1 2 3,  and     at the very beginning so no extra 

computational time is really required. 

(b) It is also observed that a large number of Z -maximal circles remain maximal from one 

iteration to the next. For instance, for 439n TSPLib and 100p  , on average less than 

20% of the circles need to be tested at each iteration (Callaghan, Salhi and Nagy, 2017). 

It is therefore crucial to identify these circles as quickly as possible. Let tZ  be the value 

of Z  at iteration t ; then a maximal circle at iteration t  remains maximal at iteration 1t    

if 
1( )j tr E Z   according to Lemma 1 in Callaghan et al. (2017). This leads to not 

checking the expensive part which is
1( { })j tr E i Z i    as 1t tZ Z  . 

(c) It is important to detect whether a circle is maximal or not quickly so as to avoid 

performing an unnecessary full check. According to Lemma 2 in Callaghan et al. (2017), 

if | ( , )j i ji E d P CT Z    then 
jC   is not Z -maximal. Also there are some points that do 

not need to be checked. For instance if  and ( , ) 2j i ji E d P CT Z  there is no need to find 

( { })jr E i as ( { })jr E i Z   (see Lemma 3 in Callaghan et al., 2017).  In other words, 

if ( , ) 2i j jd P CT Z i E   , 
jC  is systematically Z -maximal. This leads to performing 

the check for those points in { | ( , ) 2 }j i ji E Z d P CT Z    only. If this set is empty and 
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Lemma 2 does not apply, then
jC is Z -maximal. In other words, there is no need to check 

it. 

(d) It is also useful to identify information from previous non-maximal circles. For instance, 

if a circle 
jC  at iteration t  is found non-maximal, it means there was at least one point 

1 ji E , say the qth  point to be evaluated, that led to 
1( { })j tr E i Z  . In the next 

iteration, it is important to start with 1i  to check whether or not 
1 1( { })j tr E i Z   . This 

means the first ( 1)q  points are ignored leading to a saving of ( 1)q  unnecessary 

checks each involving the use of EH or its equivalent. This is considerable when applied 

to all circles.  

For example, when these neighbourhood reduction schemes (a-d) are implemented for the 

439n TSPLib instance for 70,80,90 and100p  , a massive reduction in computational time 

is recorded. Individually (c) yields about 84% reduction, followed by (d) with a similar 

amount of 83%, with (a) producing just below 51% and finally (b) resulting in 26%. When all 

four are combined together following the ranked order of their individual performances c-d-

a-b, the following cumulative percentage reductions of 84%, 90%, 96% and 97% are 

recorded. This shows that only a tiny 3% of the total time is required there by demonstrating 

the power of these neighbourhood reductions, which also enable the enhanced algorithm to 

solve to optimality larger instances.  

To tackle (b) a detailed analysis showed that CPLEX consumes approximately 30% and 80% 

on average of the CPU time (Callaghan et al., 2017) for 439n TSPLib  and 575n TSPLib

, respectively. The higher values are found with larger values of p , reaching 99% for the 

largest problem. This was also noted to occur at the latter iterations mainly to guarantee 

optimality of ( )opP Z at a given .Z  In order to alleviate this issue, a scheme that adaptively 

guides the level of usage of CPLEX is added. This scheme aims to terminate CPLEX earlier 

if a   compromise solution is considered to be good. To achieve this, a moving average over 

the last m  iterations is recorded for both the computing time for identifying the maximal 

circles which we denote by (max)CPU  and the time for running CPLEX denoted by

( )CPU cplex . We define the ratio of these two times as
(max)

( )

CPU

CPU cplex
  . If 1,   this shows 

that the time for identifying maximal circles is relatively higher. In this case, we solve the 
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problem to optimality. However, if it is not the case, we set two additional levels for the 

duality gap as 

1.0       if 0.4

(%) 0.5    if  0.4 1

0            otherwsie  

GAP








  



   

The above reduction schemes have contributed significantly in determining several optimal 

solutions for large instances up to 1323n   and 10,20,....100p  for the first time. 

4.3.2 Relaxation-based approaches 

The idea is to relax the original problem by successively solving small sub problems that 

gradually increase in size until an optimal solution is found. Handler and Mirchandani (1979) 

originally discussed this idea of relaxation, but Chen and Handler (1987) proposed an 

algorithm where at each iteration, a demand point is added and the new augmented sub 

problem is then solved again. The search continues until an optimal solution for the sub 

problem happens to be feasible for the original problem.  Chen and Chen (2009) revisited the 

problem by adding k  demand points at a time. Three relaxation-based algorithms known as 

the improved, the binary and the reverse relaxation algorithms were presented. Callaghan 

(2016) performed an extensive experiment and concluded that the reverse relaxation 

algorithm is the most promising. This led to the design of three neighbourhood reductions to 

speed up this algorithm so it can be used to solve larger instances either optimally or by 

providing tight lower bounds (Callaghan et al., 2018). For convenience, the reverse relaxation 

algorithm is briefly summarised in Figure 5 as some of its steps form the basis of the 

following neighbourhood reductions. 

 

a- In Step 1, the initial subset is randomly chosen which may not be easy to replicate and 

may lead to either fast or slow convergence. One way forward is to construct such a 

subset deterministically reflecting the characteristics of the p -centre problem. As 

shown by Chen and Handler (1987), the smallest possible value of | |SUB  required to 

yield  a solution of p circles is to have at least    

1 2 3
3

( ) with ( )  r r r

SUB c c
r

Min Min N r p N r C C C


      . 
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1- Set the lower bound LB , the value of k , the set of potential circles (| | )cJ J N  and 

choose randomly a subset of demand points SUB  ( | |SUB n ). 

2- Compute ( 1,...,| |; 1,..., )ij ca i SUB j N   based on LB and solve the corresponding set 

covering problem.  

3- If the solution X  is feasible (i.e., j

j J

X p


 ) go to step 4;  

Otherwise set the new value of LB  to the smallest radius of a circle in SUB that is 

larger than LB , and go to Step 2. 

4- If X is feasible for the original problem, the optimal solution is X and stop. 

Otherwise add k  furthest demand points to SUB  and go to step 2. 

 

Figure 5: Main steps of Chen and Chen’s algorithm (2009) 

 

The idea is to use the vertices of the convex hull as a guide and let CH denote 

such a subset.  It can be shown that these points are not all necessarily critical points. 

We construct SUB as follows: Let 1i  be the furthest point to CH  and set  1{ }.SUB i  

If | |SUB p  , allocate all demand points to their nearest point in SUB  and identify 

the largest cluster.  Choose the next point to add to SUB  as the furthest point from 

this largest cluster, say 2i  and set 2{ }SUB SUB i  . This mechanism is repeated 

until | | SUBSUB Min  where the construction of the circles is performed. If the 

solution is not feasible in SUB  (i.e., there are not enough circles) , continue the 

addition of new points in the same way until a feasible solution is found. 

  

b- In Step 4, the added k points need not be necessarily the furthest points. For instance 

in the worst scenario, all or most of the furthest k  points may belong to the same 

elongated cluster as shown in Figure 6 where four points ( 1 2 3 4, , ,P P P P ) are close to 

each other forming a small cluster, denoted by cluster 1. Once 1P   (the furthest from 

the solution) is added (in bold), a new much improved solution can be found showing 

that its contribution is important. However, the addition of the other three points, 

2 3 4,  and PP P ,will not affect this new solution and their inclusion will only add 

unnecessary computations. It is therefore  important to identify such a cluster so these 
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three points do not need to be part of .SUB  This rule can be applied to other clusters 

to identify the more representative points to add. The addition of the k  new points 

can be performed either by including one point at a time followed by the evaluation of 

the new solution configuration or by adding all the k  points in one go. 

To speed up the search even more, artificial circles are constructed whose centres 

remain the centres of the existing circles but whose radii are increased to Z. These are 

the dotted circles shown in Figure 6. The checking is based on those uncovered points 

away from the artificial circles instead of using all the initial uncovered points. As an 

example when tested on the 439n TSPLib  instance for 10,20,....,100p  , this 

neighbourhood reduction eliminates over 10% of computing time. 

 

        

Figure 6: Effect of point clusters and artificial circle in the addition of the new points 

 

c- Also, the value of k in Step 4 does not have to remain constant at each iteration and 

for all instances. This parameter can be made dynamic at a given iteration t . Let t

uncN   

denote the number of uncovered points at iteration t . We can then define

( ) ( , )t

unck t f p N . 

d- In Step 3, LB is updated by taking the next radius larger than the current value of LB . 

Though this is mathematically correct and will end up with the final value, the search 

may use too many updates many of which turn out to be unnecessary. Instead of 
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choosing the next largest, we adopt a jump-based scheme to select the thjump  largest. 

A similar but simpler idea was initially proposed and successfully implemented for 

the vertex p-centre problem by Al-Khedhari and Salhi  (2005) where a jump of two 

was used. This is extended by defining the jump as a function of a predefined 

maximum jump size, and the ratio 
t

uncN

n
. This jump-based scheme systematically 

learns as the search progresses. Note that the obtained solution may provide an upper 

bound instead of a lower bound. In this case, a backtracking is required by evaluating 

the values of LB  between ( )LB t  which was definitely a lower bound and ( 1)LB t 

which happens to be an upper bound. Here at most ( ( ) 1)jump t   jumps may be 

required to guarantee optimality.  

 

These neighbourhood reductions were found very promising when compared to the original 

implementation. For instance, when tested on the 439n TSPLib  instance with 10p  , 20, 

…, 100 , an average reduction in computing time of nearly 90%, with the smallest being just 

over 50% and the largest nearly 97%,  was observed.  

The incorporation of all the above reduction schemes enables the algorithm to solve most of 

the larger instances optimally within 3 hours of computing time. For those instances where 

the optimal solution could not be guaranteed, a tight lower bound was recorded, which may 

be used in the future for assessing new heuristics.  

 

5 Neighbourhood reduction highlights and conclusions 

 

 In this chapter, a brief review of both the vertex and planar p-centre problems is given 

with an emphasis on contributions made by Zvi Drezner. Several neighbourhood reductions 

especially designed for these two location problems are then discussed with the aim to 

enhance the efficiency of existing algorithms or in assisting at designing a more effective 

heuristic or optimal algorithm. For the vertex p  centre problem, a series of neighbourhood 

reduction rules are presented that have enhanced the performance of existing optimal 

algorithms considerably thus enabling the exact solution of well-known ORLib instances 

( 100 to 900)n   and the 1060n  TSPLib instance to be obtained in much faster time than 
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before. Similarly, for the continuous p -centre problem, four TSPLib instances varying in size 

from 439 to 1323n   with 10,20,...,100p   are used as a platform to demonstrate the 

effectiveness of the proposed neighbourhood reduction schemes. Enhanced VNS and 

perturbation heuristics are now much more effective than before. Also, Drezner’s optimal 

algorithm and the relaxation-based methods of Chen and Chen are now able to provide 

optimal solutions for the first time for many of the largest instances tested, and tight lower 

bounds for the rest.  

 

The implementation of these exact methods using the neighbourhood reduction schemes 

discussed in this chapter can be made even faster if a tighter initial solution is provided, say by 

a powerful metaheuristic. In addition, as these schemes tend to cut on computational time by 

avoiding time wastage, if the same allowed computing time is used as the stopping criterion 

for the enhanced version, the new solution might easily improve on the original one as many 

more iterations would be performed leading to more moves being evaluated.  

It is also interesting to observe that in Subsection 4.3.1(c), the checking area in Lemma 3 and 

the recording of the points that define non maximal circles can be made slightly tighter as 

recently pointed out by Plastria (2017). 

There exist a few variations of the p-centre problem. In the conditional p-centre problem 

some (say q) facilities already exist and the objective is to locate p new facilities in addition 

to the existing q facilities. Minieka (1980) presented the problem while Drezner (1989, 1995) 

defined it formally as the (p, q) centre problem, and put forward a binary search to solve it. 

Chen and Chen (2010) also adapted their algorithm discussed in Subsection 4.3 to tackle this 

problem. Another related problem is when each demand point needs to be covered by at least 

 facilities. This problem, initially proposed by Krumke (1995), is known as the  -

neighbourhood p-centre problem, and has its applications in the case of facility disruption. 

Chen & Chen (2013) used Minieka's algorithm and modified their relaxation method 

described in Subsection 4.3 to solve this problem. Very recently, Callaghan, Salhi and 

Brimberg (2018) studied both variants by adapting the powerful reduction schemes discussed 

in Subsection 4.3 so that larger problems can now be solved to optimality for the first time.   

 

One possible extension is to adapt the neighbourhood reductions used for the continuous 

problem in Subsection 4.3 that rely on maximal circles, cluster points and artificial circles, to 
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the discrete problem though this case can be solved by other means.  It is also worth noting 

that reduction schemes do exist for other combinatorial and global optimisation problems. In 

general the more constrained the problem is, the more significant the impact of 

neighbourhood reduction can be. For example, in the vehicle routing problem, a saving on 

CPU time of up to 85% was recorded without a significant loss in solution quality (Salhi and 

Sari, 1997; Sze et al.,2016; Sze et al., 2017).  

It is necessary to mention in conclusion that the use of neighbourhood reduction techniques 

may adversely affect the solution quality. The aim is therefore to construct such schemes 

which only exclude moves that have a high probability of not harming the quality of the 

solution. This risk presents an exciting challenge of finding the right balance between a 

strong neighbourhood reduction (remove as much as possible) and maintaining solution 

quality.  
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