Glutathione (GSH) plays an essential role in the metabolism of melanoma. As changes in intracellu... more Glutathione (GSH) plays an essential role in the metabolism of melanoma. As changes in intracellular GSH content can modify the processes of cell proliferation and detoxification, this could determine the therapeutic response to some cancer treatment strategies. The purpose of this study was to test the effects of treatment with interleukin-2 (IL-2), alone and in combination with cyclophosphamide (CY), on survival of mice bearing B16 melanoma liver metastases, and to determine the influence of these therapeutic agents on the GSH metabolism of B16 cells. In the in vivo test system, B16 melanoma liver metastases were induced in C57BL/6 mice which were subsequently treated with IL-2, CY and CY plus IL-2. Survival time was used to determine the response to treatment. In the in vitro system, we evaluated the effects of IL-2, acrolein (an active metabolite of CY responsible for GSH depletion) and acrolein plus IL-2 on GSH levels and proliferation of B16 melanoma cells. Results indicated that, in vivo, all treatments increased mouse survival times with respect to control mice. However, the addition of IL-2 to CY therapy decreased survival time compared with treatment with CY alone. In vitro, whereas acrolein produced a GSH depletion and inhibited B16 cell proliferation, IL-2 increased GSH content and cell proliferation rate compared with untreated cells. Moreover, addition of IL-2 to cells preincubated with acrolein increased GSH levels and proliferation with respect to acrolein alone. In summary, the data suggest that GSH plays a critical role in the growth-promoting effects of IL-2 on B16F10 melanoma cells and in the antagonistic effect of IL-2 on CY inhibitory activity on these tumor cells.
Glutathione (GSH) is the major non-protein thiol in cells that plays a critical role against dama... more Glutathione (GSH) is the major non-protein thiol in cells that plays a critical role against damage from electrophilic agents such as alkylating drugs. Selective therapeutic GSH elevation in normal but not in tumour cells has been suggested as a means of protecting host tissues against more intense doses of chemotherapy. The present study investigated the response of B16 melanoma to treatment with the cysteine pro-drug L-2-oxothiazolidine-4-carboxylate (OTZ), alone and in combination with cyclophosphamide (CY). We found that OTZ decreased the GSH levels and proliferation rate of B16 melanoma cells in vitro, sensitizing them to the cytotoxic action of the activated metabolite of CY, acrolein (AC). In contrast to OTZ, the cysteine deliverer N-acetylcysteine (NAC) enhanced B16 melanoma cell proliferation by increasing GSH levels, and markedly decreased the sensitivity of these tumour cells to AC. In vivo studies showed the antitumoral activity of OTZ in B16 melanoma liver metastasis-induced mice, increasing their life span. We also observed that, whereas with CY treatment the GSH levels in peripheral blood mononuclear cells (PBMCs) were reduced and a dose-dependent leukopenia was produced, OTZ significantly increased PBMC GSH content, reducing toxicity and enhancing the survival of mice bearing established melanoma liver metastases treated with lethal dose CY. These results suggest a critical role for OTZ in protecting against alkylator agent-induced immunosuppression, which may allow the dose escalation of these cytostatic drugs to improve their therapeutic benefit in the treatment of malignant melanoma.
Podosomes are specialized adhesion sites found in rapidly migrating and invasive cells, most nota... more Podosomes are specialized adhesion sites found in rapidly migrating and invasive cells, most notably in cells from the myeloid lineage that participate in immune surveillance and phagocyte defence mechanisms. In this review, we describe the nature of leukocyte podosomes and the regulation of their turnover during migration by the key regulatory molecules Wiskott–Aldrich syndrome protein and WASP-interacting protein.
In immature dendritic cells (DCs) podosomes form and turn over behind the leading edge of migrati... more In immature dendritic cells (DCs) podosomes form and turn over behind the leading edge of migrating cells. The Arp2/3 complex activator Wiskott-Aldrich Syndrome Protein (WASP) localises to the actin core of forming podosomes together with WASP-Interacting Protein (WIP). A second weaker Arp2/3 activator, cortactin, is also found at podosomes where it has been proposed to participate in matrix metalloproteinase (MMP) secretion. We have previously shown that WIP(-/-) DCs are unable to make podosomes. WIP binds to cortactin and in this report we address whether WIP regulates cortactin-mediated MMP activity. Using DCs derived from splenic murine precursors, we found that wild-type cells were able to localise MMPs at podosomes where matrix degradation takes place. In contrast, WIP(-/-) DCs remain able to synthesise MMPs but do not degrade the extracellular matrix. Infection of WIP KO DCs with lentivirus expressing WIP restored both podosome formation and their ability to degrade the extracellular matrix, implicating WIP-induced podosomes as foci of functional MMP location. When WIP KO DCs were infected with a mutant form of WIP lacking the cortactin-binding domain (WIPΔ110-170) DCs were only able to elaborate disorganised podosomes that were unable to support MMP-mediated matrix degradation. Taken together, these results suggest a role for WIP not only in WASP-mediated actin polymerisation and podosome formation, but also in cortactin-mediated extracellular matrix degradation by MMPs.
Focal adhesions and podosomes are integrin-mediated cell-substratum contacts that can be visualiz... more Focal adhesions and podosomes are integrin-mediated cell-substratum contacts that can be visualized using interference reflection microscopy (IRM). Here, we have developed automated image-processing procedures to quantify adhesion turnover from IRM images of live cells. Using time sequences of images, we produce adhesion maps that reveal the spatial changes of adhesions and contain additional information on the time sequence of these changes. Such maps were used to characterize focal adhesion dynamics in mouse embryo fibroblasts lacking one or both alleles of the vinculin gene. Loss of vinculin expression resulted in increased assembly, disassembly and/or in increased translocation of focal adhesions, suggesting that vinculin is important for stabilizing focal adhesions. This method is also useful for studying the rapid dynamics of podosomes as observed in primary mouse dendritic cells.
Biochemical and Biophysical Research Communications, Jan 1, 2004
Ras signals for the transformation of mammalian cells are apparently transduced through Rho GTPas... more Ras signals for the transformation of mammalian cells are apparently transduced through Rho GTPases. The Rho GTPase family member Cdc42 generates independent signals that regulate the rearrangement of the actin cytoskeleton and the transcription of genes. However, the molecular mechanism of signal transduction from Cdc42 to the nucleus remains to be understood. The non-receptor tyrosine kinases ACK-1 and ACK-2 have been found to bind specifically to Cdc42. In this paper we studied whether ACKs transduce Cdc42 signals to the nucleus directly, or through other cytoplasmic proteins. Using immunocytochemistry and Western blot analysis, we found a nuclear localization of ACKs in semi-confluent glioblastoma (U251) cells, as opposed to a cytosolic localization in confluent cells. In agreement with the nuclear localization, a putative nuclear export signal was identified in ACK-1 and ACK-2. Furthermore, the interaction of Cdc42 with ACKs was shown to be essential for the nuclear localization of ACKs. Overexpression of ACK42 (a Cdc42 binding domain of ACK) inhibited cell growth and movement, indicating that Cdc42 signals are transduced to the nucleus through ACKs. This is the first report providing evidence of a novel role for ACKs in transducing Cdc42 signals directly to the nucleus.
The integrin-dependent migration of myeloid cells requires tight coordination between actin-based... more The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.
During development, astrocytes play an active role in directing axons to their final targets. Thi... more During development, astrocytes play an active role in directing axons to their final targets. This guidance has been attributed in part to the increased expression of guidance molecules, such as tenascin-C and chondroitin sulfate proteoglycans, by boundary-forming astrocytes. We have previously used a culture model of astrocyte boundaries to demonstrate that neurites growing on permissive astrocytes alter their trajectory as they encounter less-permissive astrocytes. The present study investigated the role of the protein kinase C (PKC) family of signal transduction molecules in this form of axonal guidance. Neurons were plated onto mixed astrocyte monolayers in the presence of agents that either downregulate the phorbol ester-sensitive PKC isoforms or inhibit PKC. Both downregulation and inhibition of PKC increased the percentage of neurons that crossed onto the nonpermissive astrocytes. On astrocyte monolayers, phorbol ester modulation of PKC but not PKC inhibitors resulted in a decrease in overall neurite extension. PKC inhibitors also caused a similar alteration in the neuronal response to cell-free boundaries, at concentrations that did not inhibit neurite extension. Thus, phorbol-ester-sensitive PKC isoforms direct the guidance of neurites by astrocyte-derived matrix molecules.
The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome ... more The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome formation in hematopoietic cells [1]. Given that 80% of identified Wiskott-Aldrich Syndrome patients result from mutations in the binding site for WASP-interacting-protein (WIP) [2], we examined the possible role of WIP in the regulation of podosome architecture and cell motility in dendritic cells (DCs). Our results show that WIP is essential both for the formation of actin cores containing WASP and cortactin and for the organization of integrin and integrin-associated proteins in circular arrays, specific characteristics of podosome structure. We also found that WIP is essential for the maintenance of the high turnover of adhesions and polarity in DCs. WIP exerts these functions by regulating calpain-mediated cleavage of WASP and by facilitating the localization of WASP to sites of actin polymerization at podosomes. Taken together, our results indicate that WIP is critical for the regulation of both the stability and localization of WASP in migrating DCs and suggest that WASP and WIP operate as a functional unit to control DC motility in response to changes in the extracellular environment.
Myeloid leukocytes are the first line of host defence. When they sense perturbations in tissue ho... more Myeloid leukocytes are the first line of host defence. When they sense perturbations in tissue homeostasis such as infection, inflammation and ischemia, they respond by trafficking. Whilst neutrophils and macrophages migrate to sites of infection, dendritic cells (DC) migrate from tissue-resident sites back into lymph nodes where they activate T and B lymphocytes. The directed migration of these leukocytes through peripheral tissues is thus crucial for their function. This article considers recent advances in our understanding of the adhesive and motile behaviour of macrophages and DC, with particular emphasis on the podosomes that appear to be required for normal migration through extracellular matrices.
No defects related to deficiency of the Wiskott-Aldrich Syndrome protein (WASp) have been describ... more No defects related to deficiency of the Wiskott-Aldrich Syndrome protein (WASp) have been described in osteoclasts. Here we show that there are significant morphologic and functional abnormalities. WASp-null cells spread over a much larger surface area and are highly polykaryotic. In their migratory phase, normal cells assemble clusters of podosomes behind their leading edges, whereas during the bone resorptive phase multiple podosomes are densely aggregated in well-defined actin rings forming the sealing zone. In comparison, WASp-null osteoclasts in either phase are markedly depleted of podosomes. On bone surfaces, this results in a failure to form actin rings at sealing zones. Complementation of WASp-null osteoclasts with an enhanced green fluorescent protein (eGFP)-WASp fusion protein restores normal cytoarchitecture. These structural disturbances translate into abnormal patterns of bone resorption both in vitro on bone slices and in vivo. Although physiologic steady-state levels of bone resorption are maintained, a major impairment is observed when WASp-null animals are exposed to a resorptive challenge. Our results provide clear evidence that WASp is a critical component of podosomes in osteoclasts and indicate a nonredundant role for WASp in the dynamic organization of these actin structures during bone resorption.
Glutathione (GSH) plays an essential role in the metabolism of melanoma. As changes in intracellu... more Glutathione (GSH) plays an essential role in the metabolism of melanoma. As changes in intracellular GSH content can modify the processes of cell proliferation and detoxification, this could determine the therapeutic response to some cancer treatment strategies. The purpose of this study was to test the effects of treatment with interleukin-2 (IL-2), alone and in combination with cyclophosphamide (CY), on survival of mice bearing B16 melanoma liver metastases, and to determine the influence of these therapeutic agents on the GSH metabolism of B16 cells. In the in vivo test system, B16 melanoma liver metastases were induced in C57BL/6 mice which were subsequently treated with IL-2, CY and CY plus IL-2. Survival time was used to determine the response to treatment. In the in vitro system, we evaluated the effects of IL-2, acrolein (an active metabolite of CY responsible for GSH depletion) and acrolein plus IL-2 on GSH levels and proliferation of B16 melanoma cells. Results indicated that, in vivo, all treatments increased mouse survival times with respect to control mice. However, the addition of IL-2 to CY therapy decreased survival time compared with treatment with CY alone. In vitro, whereas acrolein produced a GSH depletion and inhibited B16 cell proliferation, IL-2 increased GSH content and cell proliferation rate compared with untreated cells. Moreover, addition of IL-2 to cells preincubated with acrolein increased GSH levels and proliferation with respect to acrolein alone. In summary, the data suggest that GSH plays a critical role in the growth-promoting effects of IL-2 on B16F10 melanoma cells and in the antagonistic effect of IL-2 on CY inhibitory activity on these tumor cells.
Glutathione (GSH) is the major non-protein thiol in cells that plays a critical role against dama... more Glutathione (GSH) is the major non-protein thiol in cells that plays a critical role against damage from electrophilic agents such as alkylating drugs. Selective therapeutic GSH elevation in normal but not in tumour cells has been suggested as a means of protecting host tissues against more intense doses of chemotherapy. The present study investigated the response of B16 melanoma to treatment with the cysteine pro-drug L-2-oxothiazolidine-4-carboxylate (OTZ), alone and in combination with cyclophosphamide (CY). We found that OTZ decreased the GSH levels and proliferation rate of B16 melanoma cells in vitro, sensitizing them to the cytotoxic action of the activated metabolite of CY, acrolein (AC). In contrast to OTZ, the cysteine deliverer N-acetylcysteine (NAC) enhanced B16 melanoma cell proliferation by increasing GSH levels, and markedly decreased the sensitivity of these tumour cells to AC. In vivo studies showed the antitumoral activity of OTZ in B16 melanoma liver metastasis-induced mice, increasing their life span. We also observed that, whereas with CY treatment the GSH levels in peripheral blood mononuclear cells (PBMCs) were reduced and a dose-dependent leukopenia was produced, OTZ significantly increased PBMC GSH content, reducing toxicity and enhancing the survival of mice bearing established melanoma liver metastases treated with lethal dose CY. These results suggest a critical role for OTZ in protecting against alkylator agent-induced immunosuppression, which may allow the dose escalation of these cytostatic drugs to improve their therapeutic benefit in the treatment of malignant melanoma.
Podosomes are specialized adhesion sites found in rapidly migrating and invasive cells, most nota... more Podosomes are specialized adhesion sites found in rapidly migrating and invasive cells, most notably in cells from the myeloid lineage that participate in immune surveillance and phagocyte defence mechanisms. In this review, we describe the nature of leukocyte podosomes and the regulation of their turnover during migration by the key regulatory molecules Wiskott–Aldrich syndrome protein and WASP-interacting protein.
In immature dendritic cells (DCs) podosomes form and turn over behind the leading edge of migrati... more In immature dendritic cells (DCs) podosomes form and turn over behind the leading edge of migrating cells. The Arp2/3 complex activator Wiskott-Aldrich Syndrome Protein (WASP) localises to the actin core of forming podosomes together with WASP-Interacting Protein (WIP). A second weaker Arp2/3 activator, cortactin, is also found at podosomes where it has been proposed to participate in matrix metalloproteinase (MMP) secretion. We have previously shown that WIP(-/-) DCs are unable to make podosomes. WIP binds to cortactin and in this report we address whether WIP regulates cortactin-mediated MMP activity. Using DCs derived from splenic murine precursors, we found that wild-type cells were able to localise MMPs at podosomes where matrix degradation takes place. In contrast, WIP(-/-) DCs remain able to synthesise MMPs but do not degrade the extracellular matrix. Infection of WIP KO DCs with lentivirus expressing WIP restored both podosome formation and their ability to degrade the extracellular matrix, implicating WIP-induced podosomes as foci of functional MMP location. When WIP KO DCs were infected with a mutant form of WIP lacking the cortactin-binding domain (WIPΔ110-170) DCs were only able to elaborate disorganised podosomes that were unable to support MMP-mediated matrix degradation. Taken together, these results suggest a role for WIP not only in WASP-mediated actin polymerisation and podosome formation, but also in cortactin-mediated extracellular matrix degradation by MMPs.
Focal adhesions and podosomes are integrin-mediated cell-substratum contacts that can be visualiz... more Focal adhesions and podosomes are integrin-mediated cell-substratum contacts that can be visualized using interference reflection microscopy (IRM). Here, we have developed automated image-processing procedures to quantify adhesion turnover from IRM images of live cells. Using time sequences of images, we produce adhesion maps that reveal the spatial changes of adhesions and contain additional information on the time sequence of these changes. Such maps were used to characterize focal adhesion dynamics in mouse embryo fibroblasts lacking one or both alleles of the vinculin gene. Loss of vinculin expression resulted in increased assembly, disassembly and/or in increased translocation of focal adhesions, suggesting that vinculin is important for stabilizing focal adhesions. This method is also useful for studying the rapid dynamics of podosomes as observed in primary mouse dendritic cells.
Biochemical and Biophysical Research Communications, Jan 1, 2004
Ras signals for the transformation of mammalian cells are apparently transduced through Rho GTPas... more Ras signals for the transformation of mammalian cells are apparently transduced through Rho GTPases. The Rho GTPase family member Cdc42 generates independent signals that regulate the rearrangement of the actin cytoskeleton and the transcription of genes. However, the molecular mechanism of signal transduction from Cdc42 to the nucleus remains to be understood. The non-receptor tyrosine kinases ACK-1 and ACK-2 have been found to bind specifically to Cdc42. In this paper we studied whether ACKs transduce Cdc42 signals to the nucleus directly, or through other cytoplasmic proteins. Using immunocytochemistry and Western blot analysis, we found a nuclear localization of ACKs in semi-confluent glioblastoma (U251) cells, as opposed to a cytosolic localization in confluent cells. In agreement with the nuclear localization, a putative nuclear export signal was identified in ACK-1 and ACK-2. Furthermore, the interaction of Cdc42 with ACKs was shown to be essential for the nuclear localization of ACKs. Overexpression of ACK42 (a Cdc42 binding domain of ACK) inhibited cell growth and movement, indicating that Cdc42 signals are transduced to the nucleus through ACKs. This is the first report providing evidence of a novel role for ACKs in transducing Cdc42 signals directly to the nucleus.
The integrin-dependent migration of myeloid cells requires tight coordination between actin-based... more The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.
During development, astrocytes play an active role in directing axons to their final targets. Thi... more During development, astrocytes play an active role in directing axons to their final targets. This guidance has been attributed in part to the increased expression of guidance molecules, such as tenascin-C and chondroitin sulfate proteoglycans, by boundary-forming astrocytes. We have previously used a culture model of astrocyte boundaries to demonstrate that neurites growing on permissive astrocytes alter their trajectory as they encounter less-permissive astrocytes. The present study investigated the role of the protein kinase C (PKC) family of signal transduction molecules in this form of axonal guidance. Neurons were plated onto mixed astrocyte monolayers in the presence of agents that either downregulate the phorbol ester-sensitive PKC isoforms or inhibit PKC. Both downregulation and inhibition of PKC increased the percentage of neurons that crossed onto the nonpermissive astrocytes. On astrocyte monolayers, phorbol ester modulation of PKC but not PKC inhibitors resulted in a decrease in overall neurite extension. PKC inhibitors also caused a similar alteration in the neuronal response to cell-free boundaries, at concentrations that did not inhibit neurite extension. Thus, phorbol-ester-sensitive PKC isoforms direct the guidance of neurites by astrocyte-derived matrix molecules.
The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome ... more The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome formation in hematopoietic cells [1]. Given that 80% of identified Wiskott-Aldrich Syndrome patients result from mutations in the binding site for WASP-interacting-protein (WIP) [2], we examined the possible role of WIP in the regulation of podosome architecture and cell motility in dendritic cells (DCs). Our results show that WIP is essential both for the formation of actin cores containing WASP and cortactin and for the organization of integrin and integrin-associated proteins in circular arrays, specific characteristics of podosome structure. We also found that WIP is essential for the maintenance of the high turnover of adhesions and polarity in DCs. WIP exerts these functions by regulating calpain-mediated cleavage of WASP and by facilitating the localization of WASP to sites of actin polymerization at podosomes. Taken together, our results indicate that WIP is critical for the regulation of both the stability and localization of WASP in migrating DCs and suggest that WASP and WIP operate as a functional unit to control DC motility in response to changes in the extracellular environment.
Myeloid leukocytes are the first line of host defence. When they sense perturbations in tissue ho... more Myeloid leukocytes are the first line of host defence. When they sense perturbations in tissue homeostasis such as infection, inflammation and ischemia, they respond by trafficking. Whilst neutrophils and macrophages migrate to sites of infection, dendritic cells (DC) migrate from tissue-resident sites back into lymph nodes where they activate T and B lymphocytes. The directed migration of these leukocytes through peripheral tissues is thus crucial for their function. This article considers recent advances in our understanding of the adhesive and motile behaviour of macrophages and DC, with particular emphasis on the podosomes that appear to be required for normal migration through extracellular matrices.
No defects related to deficiency of the Wiskott-Aldrich Syndrome protein (WASp) have been describ... more No defects related to deficiency of the Wiskott-Aldrich Syndrome protein (WASp) have been described in osteoclasts. Here we show that there are significant morphologic and functional abnormalities. WASp-null cells spread over a much larger surface area and are highly polykaryotic. In their migratory phase, normal cells assemble clusters of podosomes behind their leading edges, whereas during the bone resorptive phase multiple podosomes are densely aggregated in well-defined actin rings forming the sealing zone. In comparison, WASp-null osteoclasts in either phase are markedly depleted of podosomes. On bone surfaces, this results in a failure to form actin rings at sealing zones. Complementation of WASp-null osteoclasts with an enhanced green fluorescent protein (eGFP)-WASp fusion protein restores normal cytoarchitecture. These structural disturbances translate into abnormal patterns of bone resorption both in vitro on bone slices and in vivo. Although physiologic steady-state levels of bone resorption are maintained, a major impairment is observed when WASp-null animals are exposed to a resorptive challenge. Our results provide clear evidence that WASp is a critical component of podosomes in osteoclasts and indicate a nonredundant role for WASp in the dynamic organization of these actin structures during bone resorption.
Uploads
Papers by Yolanda Calle