Scaling a Declarative Cluster
Manager Architecture
with Query Optimization Techniques

Kexin Rong™2, Mihai Budiu3, Athinagoras Skiadopoulos?,
Lalith Suresh3, Amy Tai°

1 Georgia Tech, 2 VMware Research, 3 Feldera*, 4 Stanford, © Google
*Work done while at VMware

VLDB2023

Cluster managers distribute workloads to resources

/ .\

kubernetes

% Training =
>
%@ Inference

Workloads Containerize Cluster Managers
Hard to build ®

OPENSHIFT

D CRED EEED EERD

Infrastructure

2

Running example: kubernetes scheduler

’ ’ ’ ’ Pods

Kubernetes
Scheduler

Nodes

N
Place us on the Do NOT place us
same rack! on the same rack!

e
S X

[}Strbute us evenly! }

POD
= 2GB RAM

Kubernetes
Scheduler

= 16GB disk
= 1 core

30 types of hard and
SOft constraints

NP-Hard
Multi-dimensional
bin-packing with

constraints

Nodes

How are cluster managers built”?

Ad-hoc data Custom best-effort

structures for heuristics for decisions
cluster states

Scalability? Decision quality? Extensibility?

Challenging with complex Can miss feasible solutions Hard to add new policies
constraints and features

DCM [HotOS'19, OSDI'20]
a declarative approach to cluster management

Developers specify what the cluster manager should achieve, not how

Cluster State Generated Constraint 0
Database Code Solver [ﬁ“
. . _ placement than

Constraints Kubernetes Scheduler
(500 node scale)

- *

This work [VLDB’23]

From enterprise clusters (102-103 nodes) to hyperscale clusters (10 nodes)
With a formal language C-SQL and query- optimization techniques

Cluster state

Database

Constraints

'-E

Generated

Code

5

Constraint
G iniZinc|
In

Solver

* Predicate Pushdown

A

Optimizations inspired by QO:
* Incremental view maintenance

C-SQL: SQL variant for constraint optimization

Variable
Columns

(@Variaﬁt“!r 8N Key
| |
Pod NOde! Mem Overload

n ® | False

¥ ® | True
7 © | False

Each row In the variable column is a
variable in the constraint solver

C-SQL: SQL variant for constraint optimization

[@Variable]
3
Hard Pod | Node
?

Cconstraints

--
*
4

i CHECK pods.node IN ;
: (SELECT node i Constraint: conditions
FROM nodes i that each row satisfies
WHERE nodes.mem overload = false) :

*
*>

C-SQL: SQL variant for constraint optimization

~ Node
160G
Soft % e
Cconstraints ec

Jom + Aggregate]

CREATE CONSTRAINT load balance AS

--

| Node| spere Mem copaciy

Eﬁaﬁ"'"s"g;;E;;:é’;ﬁ;’é’i%{i&;{ﬁgéé o ;
® ? « @Variable
®
10

C-SQL: SQL variant for constraint optimization

Boolean NuTeric
<checkOrOptimize> <expr> | <expr>
<constraint> identifier

.

<checkOrOptimize>:FROM i<relation> i, Standard
: S

* L 4

<problem> <constraint> [, <constraint>]*

Will address with QO-inspired techniques

#1 Optimizing relation evaluation with IVM

<constraint> ::= CREATE CONSTRAINT identifier AS

78 L4

Goal: sub-second overall latency for 50K-node cluster

1.0~
------- DCM (10x)" "~~~ """ """ T TTTT T P95 latency >5 sec

0.8 (500 node cluster)
0.6

0.4-
0.2-

Empirical CDF

0.0 —— R— I]
109 101 102 103 104

Database Latency (ms)

Workload: 2019 Azure public trace, pod arrival rate sped up by 10x 12

#1 Optimizing relation evaluation with IVM

<constraint> CREATE CONSTRAINT identifier AS

78 L4

Opportunity: In a datacenter with O(100K) pods, a typical scheduling decision
might only involve O(100) pods at a time, triggered by job arrivals or completions

=> make the work proportional to size of the changes, not the size of the databases

Solution: Automatically incrementalize the computation with IVM engine DDlog!"!

» Support SQL features such as joins, aggregates, GROUP BY, HAVING, OVER, and UNION
« Significant engineering efforts (11K LoC) to build a SQL-frontend and SQL-to-DDlog compiler [2]

[1] Differential Datalog: https://github.com/vmware/differential-datalog
[2] Code available at: https://github.com/vmware/differential-datalog/tree/master/sql

13

https://github.com/vmware/differential-datalog
https://github.com/vmware/differential-datalog/tree/master/sql

Evaluation #1: Improved Performance

Workload: 2019 Azure public tracelll, pod arrival rate sped up by 10x
Environment: simulated cluster with 500 nodes

Result: p95 latency reduces from >5 seconds to 1.7ms (3000x speedup)

____________________________ - - P95 latency
IE 0.4+ —— DCM (10x)
UEJ 0.2 j —— +ivm (10x)

10 10 102 1038 10%
Database Latency (ms)

Added benefit of [VM: code simplification

Before DDlog, users simulate VM for performance via

{ PoD ANTI-AFFINITY()
. (_LMATCH ExPRESSIONS

(o)

and triggers

EXPRESSIONS

@ Baseline ;
split-view [March O

PoD LABELS D

-I \\ /Ii\ J

s> PoDs D
- v

[NODES]

vV o INTER POD (D
4 ANTI-AFFINITY
1 MATCHES VIEW

o, T
. U MATCHING (D
Pobs VIEwW
o, T
PENDING | o, T
0,1 PoDs VIEW |
FIXED) o, T
o, T
PoDs VIEW J

~2.8x reduction in code size from ~185 lines per policy to ~64 lines

#2 Optimizing with pushdowns

<constraint> identifier

<checkOrOptimize>:FROM <relation>

Opportunity: Certain constraints can be moved to relations without affecting correctness
Net effect: Reduce the optimization problem size

pod affinity
(pods.has pod affinity = false)
(pods .node («r))
pods

Feasibility-preserving
constraint pushdown
pod affinity
(pods .node («r))
pods
pods.has pod affinity = true

—valuation #2: Effect of Constraint Pushdown

Environment: simulated cluster with 500, 5k and 50k nodes
Result: sub-second scheduling latency at 50K node cluster size (reduced
optimization problem sizes by over 300x without affecting correctness)

B +ivm B +ivm+pushdown

- simple g - complex -
7 102 S IR (RS Y I S | ___ 1sec
-
lo

5 _ - i wer is better
= . ﬂ“ |

500 5000 50000 ' 500 5000 50000
nodes # nodes

Scaling DCM with Query Optimization Technigques

C-SQL: SQL-variant for constraint optimization

<constraint> identifier

Two query optimization inspired techniques
* Incremental view maintenance for relation evaluation
« Making work proportional to size of the changes, not the size of the databases
» Predicate Pushdown for
« Pushing down constraints to reduce optimization problem size

Net effect: sub-second scheduling latency on 50k-node clusters

Code available at: https://github.com/vmware/declarative-cluster-management/releases/tag/vidb23

https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23

