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Cluster managers distribute workloads to resources
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Running example: kubernetes scheduler
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How are cluster managers built”?

Ad-hoc data Custom best-effort

structures for heuristics for decisions
cluster states

Scalability? Decision quality? Extensibility?

Challenging with complex  Can miss feasible solutions Hard to add new policies
constraints and features



DCM [HotOS'19, OSDI'20]
a declarative approach to cluster management

Developers specify what the cluster manager should achieve, not how
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This work [VLDB’23]

From enterprise clusters (102-103 nodes) to hyperscale clusters (10 nodes)
With a formal language C-SQL and query- optimization techniques
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Optimizations inspired by QO:
* Incremental view maintenance




C-SQL: SQL variant for constraint optimization
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C-SQL: SQL variant for constraint optimization
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C-SQL: SQL variant for constraint optimization
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C-SQL: SQL variant for constraint optimization

Boolean NuTeric
<checkOrOptimize> <expr> | <expr>
<constraint> identifier

-----------------------------
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* L 4
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<problem> <constraint> [ , <constraint> ]*

------------------------------------

------------------------------------

Will address with QO-inspired techniques



#1 Optimizing relation evaluation with IVM

<constraint> ::= CREATE CONSTRAINT identifier AS

---------------------------------

78 L4
-------------------------------

Goal: sub-second overall latency for 50K-node cluster
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#1 Optimizing relation evaluation with IVM

<constraint> CREATE CONSTRAINT identifier AS

---------------------------------

78 L4
-------------------------------

Opportunity: In a datacenter with O(100K) pods, a typical scheduling decision
might only involve O(100) pods at a time, triggered by job arrivals or completions

=> make the work proportional to size of the changes, not the size of the databases

Solution: Automatically incrementalize the computation with IVM engine DDlog!"!

» Support SQL features such as joins, aggregates, GROUP BY, HAVING, OVER, and UNION
« Significant engineering efforts (11K LoC) to build a SQL-frontend and SQL-to-DDlog compiler [2]

[1] Differential Datalog: https://github.com/vmware/differential-datalog
[2] Code available at: https://github.com/vmware/differential-datalog/tree/master/sql
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Evaluation #1: Improved Performance

Workload: 2019 Azure public tracelll, pod arrival rate sped up by 10x
Environment: simulated cluster with 500 nodes

Result: p95 latency reduces from >5 seconds to 1.7ms (3000x speedup)
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Added benefit of [VM: code simplification

Before DDlog, users simulate VM for performance via
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~2.8x reduction in code size from ~185 lines per policy to ~64 lines



#2 Optimizing with pushdowns

<constraint> identifier

<checkOrOptimize>:FROM <relation>

Opportunity: Certain constraints can be moved to relations without affecting correctness
Net effect: Reduce the optimization problem size

pod affinity
(pods.has pod affinity = false)
(pods .node («r))
pods

Feasibility-preserving
constraint pushdown
pod affinity
(pods .node («r))
pods
pods.has pod affinity = true



—valuation #2: Effect of Constraint Pushdown

Environment: simulated cluster with 500, 5k and 50k nodes
Result: sub-second scheduling latency at 50K node cluster size (reduced
optimization problem sizes by over 300x without affecting correctness)
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Scaling DCM with Query Optimization Technigques

C-SQL: SQL-variant for constraint optimization

<constraint> identifier

--------------------------------

--------------------------------

Two query optimization inspired techniques
* Incremental view maintenance for relation evaluation
« Making work proportional to size of the changes, not the size of the databases
» Predicate Pushdown for
« Pushing down constraints to reduce optimization problem size

Net effect: sub-second scheduling latency on 50k-node clusters

Code available at: https://github.com/vmware/declarative-cluster-management/releases/tag/vidb23



https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23

