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Abstract. Kidney tumor segmentation emerges as a new frontier of
computer vision in medical imaging. This is partly due to its challenging
manual annotation and great medical impact. Within the scope of the
Kidney Tumor Segmentation Challenge 2019, that is aiming at combined
kidney and tumor segmentation, this work proposes a novel combina-
tion of 3D U-Nets—collectively denoted TuNet—utilizing the resulting
kidney masks for the consecutive tumor segmentation. The proposed
method achieves a Sørensen-Dice coefficient score of 0.902 for the kid-
ney, and 0.408 for the tumor segmentation, computed from a five-fold
cross-validation on the 210 patients available in the data.

1 Introduction

Kidney cancer has an annual worldwide prevalence of over 400 000 new cases,
with over 175 000 deaths in 2018 [1]. The most common type of kidney can-
cer is renal cell carcinoma (RCC) [10]. In Sweden, the indicidence of RCC is
1 125 per 100 000 people, with a 0.75 % risk of developing or dying from the
disease [2]. Nephrectomy rates for RCC and metastatic RCC patients increased
in Sweden between 2000 and 2008 [13]. Renal tumors can present themselves
in a wide variety in terms of size, location and depth [8]. Interest has been de-
veloped to study the outcome of partial or radical nephrectomy with respect to
tumor morphology [7,9]. For this purpose, but also for reliable disease classifica-
tion and treatment planning, accurate segmentation of renal tumors in imaging
data is of the utmost importance. However, manual annotation is a challenging
and time-consuming process in practice, and one that is sensitive to errors and
inaccuracies.

In general medical image computer vision, one of the most popular and
promising methods in the last years has been Convolutional Neural Networks
(CNNs). CNNs learn from data that has been previously segmented, often manu-
ally. CNNs have achieved state-of-the-art performance in organ and lesion detec-
tion, localization, segmentation, and classification. However, the specific task of
kidney and kidney tumor segmentation is challenging due to the aforementioned
high degree of variability in tumor location and morphology. As a consequence,
the amount of literature that can be found on this topic is limited.
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One of the first attempts of using CNNs on this task was by Yang et al.
(2018) [15] who first used an atlas-based approach to extract two regions of inter-
est from the whole image, each containing one of the kidneys. These patches were
used as input to a deep fully connected 3D CNN. After additional post-processing
with a conditional random field, an average Sørensen-Dice coefficient (DSC) of
0.931 for the kidney and 0.779 for the tumor were achieved. The Crossbar-Net
by Yu et al. (2019) [16] used a stack of three rectangular patches in the axial
slice, making up what is denoted as a 2.5D data set. These patch shapes allowed
for more spatial context to be incorporated, and were used to train two sepa-
rate networks that combined their respective outcomes in a cascaded approach.
This method was designed to segment only the renal tumor, and did so with an
average DSC of 0.913.

The present work is developed for the Kidney Tumor Segmentation Chal-
lenge 2019 (KiTS19) [3]. Challenges in the field of medical image analysis invite
the research community to develop novel approaches to common tasks. Often
a data set is made publicly available to the participants, who use it to develop
and test their algorithms. The challenge’s organizers objectively evaluate and
compare the submitted methods. The goal of the KiTS19 challenge is to develop
methods that automatically segment kidneys and kidney tumors in computed
tomography (CT) images. The KiTS19 challenge is part of the MICCAI 2019
conference. We present here a method that exploits the property of this data
set that one structure is a subregion of the other. The encompassing kidney
and tumor region is first segmented using a variant of the popular U-Net [11].
The resulting probability map is concatenated with the original image and used
as input for a second network, similar in architecture, that predicts the tumor
segmentation. Separately, a third network is trained to produce a mask of the
whole region, that is fused with the predictions for the whole kidney region and
the tumor region. We denote this method TuNet: An End-to-end Hierarchical
Tumor Segmentation using Cascaded U-Nets (TuNet).

2 Proposed approach

Our method is a variation of the TuNet that we also used in the Brain Tu-
mors in Multimodal Magnetic Resonance Imaging Segmentation Challenge 2019
(BraTS19). The fundamental idea for our method was based on the work of
Wang et al. [14] who performed multi-class brain tumor segmentation by a cas-
cade of three networks. Their first network predicted the whole tumor region,
which was used as a bounding box to generate the input for the second network.
The second network in turn predicted the tumor core area from the input from
the first network, and the same method was repeated for a third network that
produced a prediction for the enhancing tumor core. The three outputs were fi-
nally coalesced into a single multi-label map. For solving other complex, multiple
interconnected problems, with a smaller-sized network, cascaded architectures
have been proposed before [6]. The combination of two 2.5D networks have sur-
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Fig. 1: The proposed Tu-Net model. The input CT image is used in a combination
of U-Nets. First independently in the Localization Network (L-Net), and then in
the network for whole kidney segmentation (W-Net) and finally using the kidney
output probability map together with the original image in the network for the
tumor segmentation (T-Net).

passed the accuracy of current state-of-the-art methods in handling automatic
detection from 4D microscopic data [6].

For this challenge we employed a similar hierarchical architecture, since the
tumor structure is always a sub-volume of the kidney + tumor structure. We
first trained a network called W-Net on the whole region, and concatenated the
resulting segmentation with the original image. This output was then used as the
input for a second network, called T-Net, that produced a mask for the tumor
only. Further, we extended the method of Wang et al. [14] by separately training
a localization network, denoted L-Net, that produced a crude mask of the whole
region. This mask was then finally fused by multiplying with the W-Net and
T-Net outputs, in order to eliminate false positives and isolated structures that
lie outside the main region of interest. A summary of the proposed method is
illustrated in Figure 1.
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Fig. 2: The Localization Network (L-net) architecture. The figure is simplified to
the single-slice case, however the convolutional layers were 3D.

2.1 Localization Network

The localization network, L-Net, was an end-to-end 3D variant of the U-Net, an
encoder-decoder architecture that has been proven powerful in semantic medical
image segmentation [11]. In order to fit the whole 3D image into the GPU mem-
ory at once, the volume was downsampled to the size of 128× 128× 64. It was
then fed into a traditional 3D U-Net to estimate roughly the region of interest
of the whole (kidney + tumor) region. The L-Net is illustrated in Figure 2. For
simplicity of illustration, it is shown with a 2D input and output.

2.2 Cascaded Architecture

The model architectures used for the whole region and tumor segmentation had
a similar U-Net architecture to the localization network. An additional feature
of both the W-Net and the T-Net was that in each convolution block in the
encoding path, the original input image was downsampled and concatenated
with the feature map of the respective layer. The rate of downsampling was
increased according to the dimensions of that layer.

As mentioned before, we employed a cascaded approach. The input of the
T-Net consisted of two channels: the input image, and the probability map of the
previous output. An illustration of the T-Net architecture is given in Figure 3.
The W-Net was analogous, but lacked the probability map as secondary input.
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Fig. 3: The W-Net and T-Net architecture. The figure is simplified to the single-
slice case, however the convolutional layers were 3D.

2.3 Squeeze-and-Excitation Block

After each convolution and concatenation block, we added an Squeeze-and-
Excitation block (SEB) as developed by Hu et al. (2018) [4]. Including SEB
is a computationally lightweight but effective method for incorporating channel-
wise interdependencies, and has shown to improve network performance by a
significant margin [12].

3 Experiments

The proposed method was implemented in the Keras library1 using TensorFlow2

as the backend. This research was conducted using the resources of the High
Performance Computing Center North (HPC2N), where the experiments were
run on NVIDIA Tesla V100 GPUs.

3.1 Material

The data set provided is pre- and postoperative, arterial phase abdominal CT
data from 300 randomly selected kidney cancer patients that underwent radi-
cal nephrectomy at the University of Minnesota Medical Center between 2010

1 https://keras.io
2 https://tensorflow.org

https://keras.io
https://tensorflow.org
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Fig. 4: Preprocessing and reconstruction pipeline method as applied on the
KiTS19 data set. Given are the resolutions and in parentheses the voxel dimen-
sions in mm. W , H, and D each denote that the volume shape is varied in width,
height, and/or depth, respectively. α, β, and γ each denote that the voxel spac-
ing is varied in width, height, and/or depth, respectively. [x1, x2, y1, y2, z1, z2]
denote the number of pixels padded above and below in the x, y and z direc-
tions, respectively.

and 2018 [3]. Medical students annotated under supervision the contours of the
whole kidney including any tumors and cysts, and contours of only the tumor
component excluding all kidney tissue. Afterwards, voxels with a radiodensity
of less than −30 HU were excluded from the kidney contours, as they were most
likely perinephric fat.

Of the complete data set, 210 samples were initially released for training and
validation on March 15, 2019. The remaining 90 samples were released without
ground truth on July 15. The submission deadline for the predictions on the
latter set was July 29.

3.2 Training Details

In addition to the experiments with single patch sizes, we also additionally de-
noised the data using a 3 × 3 × 3 median filter. This yielded a total of four
different experiments.

The loss function that was used contained two terms,

L = Lwhole + Ltumor, (1)
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where Lwhole and Ltumor denote the soft dice loss of the whole (kidney + tumor)
and tumor regions, respectively. Here, the soft dice loss for any structure was
defined as

Ldice =
−2

∑
i uivi∑

i ui +
∑

i vi + ε
, (2)

where ui is the SoftMax output produced by either the W-Net or the T-Net,
vi is a one-hot encoding of the ground truth segmentation map, and ε is a small
constant added to avoid division by zero.

For evaluation of the segmentation performance, we employed the DSC which
is defined as

D(X,Y ) =
2|X ∩ Y |
|X|+ |Y | , (3)

where X and Y denote the output segmentation and its corresponding ground
truth, respectively. We used five-fold cross-validation, and computed the mean
DSC over the folds.

We used the Adam optimizer [5] with a learning rate of 1 · 10−4 and mo-
mentum parameters of β1 = 0.9 and β2 = 0.999. We also used L2 regularization
(with parameter 1 · 10−5), applied to the kernel weight matrix, for all convolu-
tional layers to cope with overfitting. The activation function of the final layer
was the sigmoid function.

We trained 20 models for 200 epochs (see Table 1). To prevent overfitting,
we selected a patience period by dropping the learning rate by a factor of 0.2
if the validation loss did not improve over 6 epochs. In addition, the training
process was stopped if the validation loss did not improve after 15 epochs. The
training time was approximately 27 hours per model.

3.3 Patch Extraction

We employed a patch-based approach in which we set up the experiments with
a patch shape of 128× 128× 128. To extract more patches from each image, we
allowed a patch overlap of 96 × 96 × 96. The size of the patch shape was large
enough to contain each kidney, when centered.

3.4 Preprocessing and Augmentation

All images in the data set had 512× 512 resolution with varying slice counts in
the axial direction. The voxel sizes also varied between patients. A preprocessing
pipeline (see Figure 4) was set up to transform the data to uniform resolutions
and voxel sizes.

First, the data were resampled to equal voxel size of 256 × 256 × 128. The
volumes were then zero-padded to the size of the single largest volume after
resampling. In order to increase processing speed and lower the memory con-
sumption, the volumes were thereafter downsampled to size 256× 256× 128. As
a final step, the images were normalized to zero-mean and unit-variance.
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In order to augment the data set size and diversify the data, we employed
simple on-the-fly data augmentation by randomly rotating the images within a
range of −1 to 1 degrees.

3.5 Post-processing

Algorithm 1 shows our proposed post-processing pipeline. Each 3D probability
map for the whole region was binarized using a threshold T = 0.5, which in case
of an empty mask, was lowered to T = 0.1.

The corresponding probability map for the tumor region was first binarized
using the threshold T = 0.5 which was lowered based on the following three
cases: If the returned mask is empty, T is lowered to 0.1. If the returned mask is
not empty but it contains less than 100 pixels, the lowered threshold is T = 0.2,
and in any other case T is lowered to 0.3 to include more positives. The optimal
value for T was tuned using the training data set.

The binary masks for the whole and tumor regions were then refined using
a “region-growing” technique: given two thresholds. First, two binarized maps,
A and B, were generated using the larger and smaller threshold, respectively.
Second, the binary map, B, was labelled into different unconnected regions.
Third, if a segmented region was connected to the binary map, A, it was then
merged into A. The output of the refining step is the expanded region of A.

The refined binary masks were finally merged with the output of L-Net to
produce a multi-class prediction map.

3.6 Ensembling

The median denoising and SEB led to four experiments: the baseline method
(TuNet), the baseline on median denoised data (TuNet + median), the base-
line with Squeeze-and-Excitation blocks (TuNet + SEB), and the baseline with
Squeeze-and-Excitation blocks on median denoised data (TuNet + SEB + me-
dian). As a fifth experiment, an average ensemble technique was implemented,
using the output probability maps of the above mentioned models, as

pk =
1

M

M∑
m=1

fk, (4)

where pk ∈ R|K| and fk ∈ R|K| denote the final probability of label k and the
probability of label k generated by model m at an arbitrary voxel, respectively.
Here, K is the set of tumor labels, i.e. k = 1, 2.

Each model was trained five independent times, their ensemble network (En-
semble) is therefore using a total of 20 models. As a last experiment, this ensem-
ble model was used with an extra post-processing step (Ensemble + post-process)
described in Algorithm 1.
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Algorithm 1: Post-process

Result: Post-processed prediction map
1 set global threshold T = 0.5;
2 binarize probability maps of whole and tumor regions based on T ;
3 if number of non-zeros voxels of binarized whole region equals 0 then
4 set Twhole = 0.1;
5 binarize probability map of whole region based on Twhole;

6 else
7 set Twhole = 0.4;
8 refine whole region based on T and Twhole;

9 end
10 if number of non-zeros voxels of binarized tumor region equals 0 then
11 set Ttumor = 0.1;
12 binarize probability map of tumor region based on Ttumor;
13 if number of non-zeros voxels of binarized tumor region equals 0 then
14 set tumor equal to whole region;
15 else

16 end
17 refine tumor region based on T and Ttumor;

18 else
19 if number of non-zeros voxels of binarized tumor region smaller than 100

then
20 set Ttumor = 0.2;
21 refine tumor region based on T and Ttumor;

22 else
23 set Ttumor = 0.3;
24 refine tumor region based on T and Ttumor;

25 end

26 end
27 merge whole and tumor regions to produce multi-class prediction map;
28 multiply prediction map with output of L-Net to generate final output;

4 Results and Discussion

Evaluations are collected below for the results of the vanilla form of U-Nets [11],
for TuNet, its three variations: TuNet + median, TuNet + SEB, and TuNet
+ SEB + median, and the ensemble models: Ensemble and Ensemble + post-
process. They underwent evaluations based on the DSC metric, the best variation
was then also evaluated visually, see Figure 5.

4.1 Quantitative analysis

Table 1 shows the mean DSC score and standard deviation (SD) computed from
the five-folds of cross-validation on the training set. The baseline method pro-
duced acceptable scores for the whole region segmentation, while the significant
impairment of results for tumor segmentation are important to point out. They
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Table 1: Mean DSC and SD computed from the five-folds of cross-validation on
the training set. TuNet, median, SEB denote the baseline, with median denoising
and with Squeeze-and-Excitation block, respectively. Note that the results were
reported on the resampled output (size of 256× 256× 128, see Figure 4).

Sørensen-Dice coefficient
Model Kidney + Tumor Tumor Mean

U-Net 2D 0.776 (0.009) 0.174 (0.036) 0.475 (0.017)
U-Net 2D + median 0.781 (0.016) 0.172 (0.030) 0.476 (0.020)
U-Net 3D 0.793 (0.038) 0.154 (0.019) 0.474 (0.016)
U-Net 3D + median 0.809 (0.075) 0.192 (0.056) 0.501 (0.065)

TuNet 0.857 (0.029) 0.308 (0.034) 0.582 (0.030)
TuNet + median 0.878 (0.010) 0.346 (0.053) 0.612 (0.031)
TuNet + SEB 0.868 (0.020) 0.302 (0.035) 0.585 (0.023)
TuNet + SEB + median 0.864 (0.033) 0.292 (0.017) 0.578 (0.023)

Ensemble 0.894 (0.014) 0.331 (0.025) 0.612 (0.026)
Ensemble + post-process 0.902 (0.014) 0.408 (0.031) 0.655 (0.019)

are possibly due to the scarcity of tumors in the data set and because of their
spatial inconsistency, which the proposed network could not invalidate.

The SEB variations improved the DSC scores over the baseline method for
the whole region while impairing the tumor segmentation, leading to only a slight
effect on the mean score, whether using median denoised data or not.

However, the baseline method using median denoised data significantly im-
proved the DSC scores for both the whole and the tumor region, and although
the SD for the tumor masks also increased, the improvements and effects of
median denoising are still clear and important.

The Ensemble model reached the same mean score as the best of the other
variations, i.e. TuNet + median. The post-processing step significantly improved
the Ensemble model, making it the best-performing model of all models.

4.2 Qualitative analysis

Figure 5 demonstrates the inter-patient diversity of the structures in this data
set, where the results are produced using the Ensemble + post-process model.
The renal tumors can be present in left, right, or both kidneys, and their size
in the images can vary from several cubic centimeters to multiple times the vol-
ume of the kidney it is attached to. The intratumoral radiodensity can also be
either very homogeneous or very heterogeneous. This results in a challenging
segmentation task. The morphology of the kidneys is however relatively compa-
rable across patients and can therefore be annotated with a fairly consistent and
acceptable accuracy.
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Fig. 5: A comparison of the ground truth masks and the results of Ensemble +
post-process. The four examples show the input CT images, the ground truth
masks and the results of the proposed method. For both cases the masks show
the kidney+tumor region in red while the tumors are in green.

5 Conclusion

The KiTS19 Challenge is clearly justified given the difficulty of segmenting the
images in the data set. Initially the provided data set was in itself anticipated
to be insufficient for excelling results for this work. For training the proposed
TuNet architecture, we used only a simple on-the-fly data augmentation, and
still produced reasonable DSC scores for both the whole region and the tumor
region compared to their corresponding models using a simple U-Net in both 2D
and 3D.
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Two expansions of the TuNet method were evaluated. Using SEB has only
a slight effect on the mean scores, while median denoising the data leads to sig-
nificant improvements. An ensemble model using these variations with a simple
post-processing step outperformed all other models and reached impressive DSC
scores.
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