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Abstract. Automatic segmentation of kidney and its tumors is an es-
sential but challenging step for extracting quantitative imaging biomark-
ers for accurate tumor detection, diagnosis, prognosis and treatment
assessment. Kidney Tumor Segmentation Challenge (KiTS) provides a
common platform for comparing different automatic algorithms on ab-
dominal CT images in tasks of 1) kidney segmentation and 2) kidney
tumor segmentation . We participate this challenge by developing a fully
automatic framework based on deep neural networks. By observing that
clinicians usually contour organs and tumors in the axial view while eval-
uating the contours in 3D space, we adopt a 3-step hierarchical structure
with hybrid 2D and 3D models. In the first step, a simple 2D U-Net model
is trained to obtain a quick but coarse segmentation of the kidney re-
gion on the entire 3D CT volume; then another 2D U-Net using residual
blocks with channel-wise attention is applied to each kidney region for
kidney and tumor segmentation. At last, the segmented tumor is refined
by a 3D model for final tumor segmentation. Our framework was trained
using the 210 challenge training cases provided by KiTS. By 5-fold evalu-
ation, our method achieved an average Dice Similarity Coefficient (DSC)
of 0.970 on kidneys and 0.756 on kidney tumors, respectively.

1 Introduction

Kidney cancer is one of the most rapidly increasing cancers in terms of incidence
and mortality worldwide, raising from 208,000 diagnoses and 102,000 deaths in
2002 to more than 400,000 diagnoses and 175,000 deaths in 2018 (1; 2). Al-
though the increasing use of CT abdominal imaging has allowed kidney tumor
be detected, diagnosed, and treated in the early stage, which has contributed to
the disease’s increased overall survival (3), proper interpretation of CT images is
normally time-consuming and prone to suffer from inter- and intra-observer vari-
abilities. Meanwhile, the current scoring systems, such as RENAL and PADUA,
can only characterizes relatively simple and easy-to-extract tumor features from
CT images, which limits the predictive power of imaging studies. As the result,
computerized analysis have been of great demand to assist clinicians for better
interpretation of abdominal CT images for kidney cancer. Specially, automati-
cally segmenting kidney and viable tumors from other tissue is an essential step
in quantitative image analysis of abdominal CT images.
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In order to accelerate the research and development of reliable methods for
automatic kidney and kidney tumor segmentation, MICCAI 2019 Kidney Tu-
mor Segmentation Challenge (KiTS) provides a common platform for comparing
different automatic algorithms on abdominal CT images in tasks of 1) kidney
segmentation and 2) kidney tumor segmentation . We participate this challenge
by developing a fully automatic framework based on deep neural networks. By
observing that clinicians usually contour organs and tumors in the axial view
while evaluating the contours in 3D space, we adopt a 3-step hierarchical struc-
ture with hybrid 2D and 3D models. In the first step, a simple 2D U-Net model
is trained to obtain a quick but coarse segmentation of the kidney region on
the entire 3D CT volume; then another 2D U-Net using residual blocks with
channel-wise attention is applied to each kidney region for kidney and tumor
segmentation. At last, the segmented tumor is refined by a 3D model for final
tumor segmentation.

2 Datasets and preprocessing

Only KiTS challenge datasets (4) were used for model training and testing. The
KiTS datasets consist of 300 multi-phase abdominal CT images provided by
University of Minnesota, in which 210 cases were used for training and the rest
of 90 for testing. The datasets have significant variations in image quality, spatial
resolution and field-of-view, with in-plan resolution ranging from 0.44 × 0.44 to
1.04 × 1.04 mm and slice thickness from 0.5 to 5.0 mm. Each axial slice has
identical size of 512 × 512, but the number of slices in each scan varies from 29
to 1059.

As for pre-processing, we simply truncated the voxel values of all CT scans to
the range of [-135, 215] HU to eliminate the irrelevant image information. This
HU range is the default setting for reviewing abdominal CT images in 3D Slicer
(www.slicer.org). Our 2D models are based on 2D slices and the CT volume
is processed slice-by-slice, with the two most adjacent slices concatenated as
additional input channels. Different resampling strategies are applied at different
hierarchical levels and will be described below.

3 Methods

3.1 Basic network structure

We use U-Net (5) as the basic network structure of our framework, as shown
in Fig. 1. Convolution and max-pooling are employed to aggregate contextual
information of CT images in the encoding pathway, and transpose convolution
is used to recover the original resolution in the decoding pathway. Each convolu-
tional layer is followed by batch normalization and rectified linear unit (ReLU) to
facilitate gradient back-propagation. Long-range skip connections, which bridge
across the encoding blocks and the decoding blocks, are also created to allow
high resolution features from encoding pathway be used as additional inputs to
the convolutional layers in the decoding pathway.
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Fig. 1. Architecture of U-Net. This architecture employs convolution and max-pooling
to aggregate contextual information, and uses transpose convolution and long-range
skip connection for better determination of seed locations. The numbers under each
block represent the dimensions of its feature output, in which the first dimension de-
notes the feature channel.

3.2 Localizer network

This network is used to locate the kidney regions by performing a fast but coarse
kidney segmentation on the entire CT volume, thus we just use a simple U-Net
for this purpose. This model includes 100 layers and 2.9 M trainable parameters
and its architectural details can be found in Fig. 1. For each CT volume, the
axial slice size was firstly reduced to 160 × 160 by down-sampling and then the
entire image volume was resampled with slice thickness of 3 mm. We found that
not all the slices in a CT volume were needed in training localizer, so only the
slices with kidneys, as well as the 2 slices superior and inferior to the kidneys
were included in the model training. The kidney and tumor labels were merged
as a single kidney label to provide the ground truth during model training. A
simple square error was used as loss function.

During testing, the new CT images were pre-processed following the same
procedure as training data preparation, then the trained localizer network was
applied to each slice of the entire CT volume. Once all slices were segmented, a
threshold of 0.5 was applied to the output and a 3D connect-component labeling
was performed. A volume size threshold of 100 ml was used and the largest one
or two connected component were selected as the initial kidney regions.

3.3 Segmenter network

An accurate kidney localization enables us to perform a fine kidney and tumor
segmentation with more advanced model while reducing computational time.
Specifically, we first resampled the original image to 0.6 × 0.6 × 2.0 mm, then
extracted a 256× 256 region of interest (ROI) from the kidney location in every
slice within 5 slices of the kidney region. Besides the original image intensity,
a 3D regional histogram equalization was implemented to enhance the contrast
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between tumors and the surrounding kidney tissues, in which only those vox-
els inside the initial kidney mask were considered in constructing intensity his-
togram. Note that we processed each kidney independently, resulting in around
27,000 training samples for model training.

We enhanced the U-Net in the following four aspects: 1) We replaced the
original convolution blocks with residual blocks (6) to allow a better information
flowing, each of which includes three convolution layers; 2) We added a squeeze-
excitation layer (7) at the end of each residual block in the encoding pathway to
calibrate the channel-wise response; 3) We added deep supervision at each level
of decoding pathway to improve the training stability; 4) We generalized the
Jaccard distance loss (8), which we developed in our previous work for single
object segmentation, to multiple objects, and combined it to cross entropy as the
loss function of segmenter training. This model includes 253 layers with about
20 M trainable parameters.

During testing, kidney VOI was extracted based on the initial kidney mask
obtained from localizer network, then the trained segmenter was applied to each
slice in the VOI to yield a 3D probability map. A testing time augmentation was
also applied for better segmentation.

3.4 Refiner network

In the past two steps, we employed 2D models to emphasize the contextual
information integration in axial planes. While the regional information in z (su-
perior/inferior) direction can be incorporated into the models by adding the
most two adjacent planes as additional input features, this integration is not
sufficient to catch a larger scale contextual information in this direction.

We extended the 2D segmenter network to a fully 3D model to further refine
the tumor segmentation. We resampled the original image to 0.6 × 0.6 × 2.0
mm, and extracted a 32 × 128 × 128 volume of interest (VOI) from each tumor
candidate that was generated from the segmenter. The VOI was centered at
the centroid of tumor candidate and a sliding-window strategy with stride of
16 in z direction was used if the tumor candidate can not be fully covered by
VOI. Meanwhile, the tumor candidate mask itself also served as an additional
input channel to refiner model. Eventually, we obtained over 700 VOIs for model
training.

Considering the number of VOIs and computational resource available for
model training, we made the following modifications on the segmenter network
structure: 1) We employed an anisotropic down-sampling method to perform
max-pooling only in x− y plane in the first two residual blocks; 2) We reduced
the number of convolution layers in each residual block from three to two; 3) We
removed deep supervision in the decoding pathway; 4) We replaced the batch
normalization with group normalization (9) considering that only small batch
size can be used for 3D operations. This model includes 146 layers with about
11 M trainable parameters.

During testing, the tumors obtained from the refiner network were added to
the results from segmenter to yield a final segmentation.
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3.5 Implementation

Our framework was implemented with Python using Pytorch (v.0.4) package.
Training each network took 300 iterations from scratch using Adam stochastic
optimization method. The initial learning rate was set as 0.003, and learning rate
decay and early stopping strategies were utilized when validation loss stopped
decreasing. The batch size was 16 for 2.D model training and 4 for 3D model. In
order to reduce overfitting, we randomly flipped the input volume in left/right,
superior/inferior, and anterior/posterior directions on the fly for data augmenta-
tion. We used 5-fold cross validation to evaluate the performance of our model on
the training dataset, in which a few hyper-parameters were also experimentally
determined via grid search. All the experiments were conducted on a workstation
with four Nvidia GTX 1080 TI GPUs.

4 Experiments

Since the ground truth of testing dataset is not released, here we report the
results from 5-fold cross validation. Table 1 shows the segmentation results in
terms of Dice similarity coefficient (DSC) for localizer network, and table 2 is
for segmenter network. Table 3 shows the results after refiner network. When
applying the trained models on the challenge testing dataset, a bagging-type en-
semble strategy was implemented to combine the outputs of five refiner networks
to further improve the segmentation performance.

Table 1. Segmentation results (DSC) of localizer network in 5-fold cross validation.

fold-0 fold-1 fold-2 fold-3 fold-4

Kidney 0.949 0.948 0.952 0.939 0.945

Table 2. Segmentation results (DSC) of segmenter network in 5-fold cross validation.

fold-0 fold-1 fold-2 fold-3 fold-4

Kidney 0.967 0.966 0.966 0.952 0.964
Tumor 0.746 0.702 0.701 0.643 0.727
Average 0.857 0.834 0.834 0.798 0.844



6 Y. Yuan

Table 3. Segmentation results (DSC) of refiner network in 5-fold cross validation.

fold-0 fold-1 fold-2 fold-3 fold-4

Kidney 0.970 0.968 0.972 0.968 0.9701
Tumor 0.795 0.737 0.775 0.732 0.742
Average 0.882 0.853 0.874 0.850 0.856
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