Self-Supervised Attention-Aware Reinforcement Learning
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Introduction

e Recent works try to obtain object keypoints in an unsupervised manner. However, current
unsupervised keypoints detection methods including the Transporter are limited 1n that they
do not deal with variable number of objects, scale, and classes of objects.

* Furthermore, the use of object-oriented representation for deep RL has not been highly
explored.

 We propose to learn attention masks to understand the scene 1n a self-supervised manner
and show 1t 1s easy to plug in the attention module for existing deep RL methods for policy
learning.

Self-Supervised Attention Module
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The core 1dea 1s to employ a self-supervised loss through an auto-encoder architecture with a
bottleneck. The module tries to reconstruct the target image x; by using minimal information
(features of foreground regions) from the target image x;, and other needed information from
source 1mage .

Attention-aware Reinforcement Learning
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Experiments & Results

Single-task Learning. Average (over 5 random seeds) test scores during learning of A2C with/without the our self-supervised attention mask.
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Multi-task Learning. Comparison between the baseline method A2C, A2C with the self-supervised attention module, A2C with the the
universal attention module jointly trained on three games.
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Transfer Learning. Qualitative results of extracted object keypoints from learned
mask.
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Comparison between the baseline method A2C and A2C with the fix =
attention module trained on JourneyEscape, showing that the attention
module has the ability to transfer across games.
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Use Non-Maximum Suppression (NMS) to get object keypoints from
learned attention masks.



