Attend Before you Act Leveraging human visual attention for continual learning

Khimya Khetarpal, Doina Precup

Khimya Khetarpal, Doina Precup

Attend Before you Act

Motivation

Khimya Khetarpal, Doina Precup

Attend Before you Act

Where do humans look in an image?

Khimya Khetarpal, Doina Precup

Attend Before you Act

Where do humans look in an image?

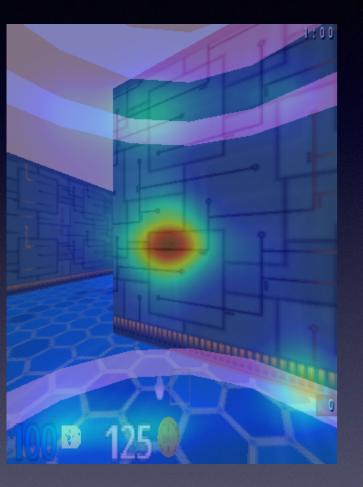
Khimya Khetarpal, Doina Precup

Attend Before you Act

Where do we look in an image?

Khimya Khetarpal, Doina Precup

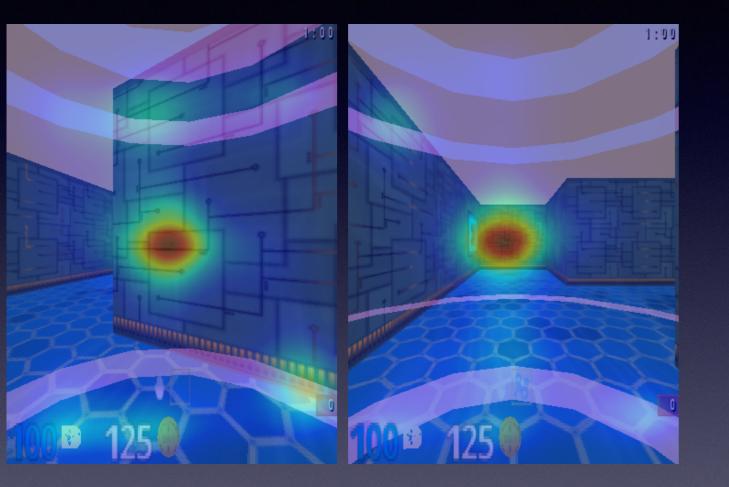
Attend Before you Act



Time

Khimya Khetarpal, Doina Precup

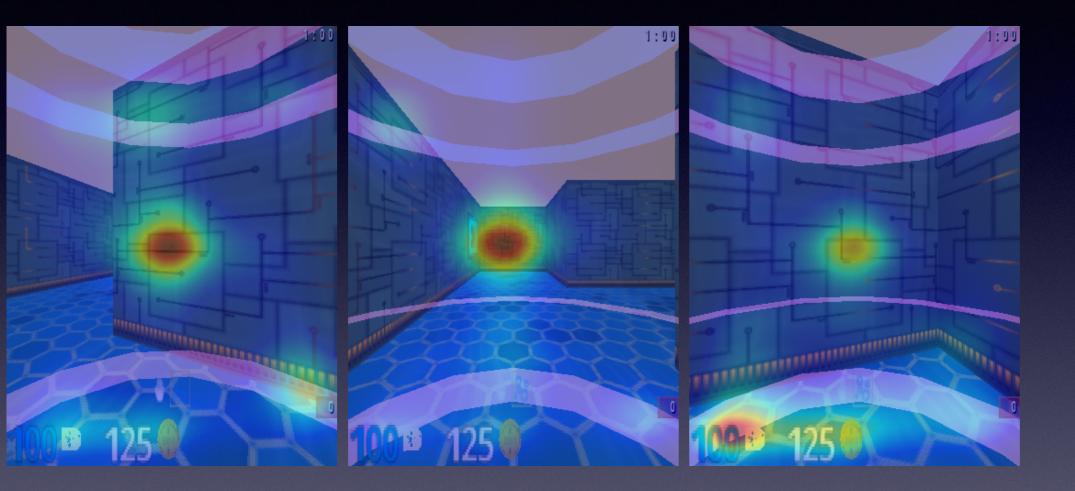
Attend Before you Act



Time

Khimya Khetarpal, Doina Precup

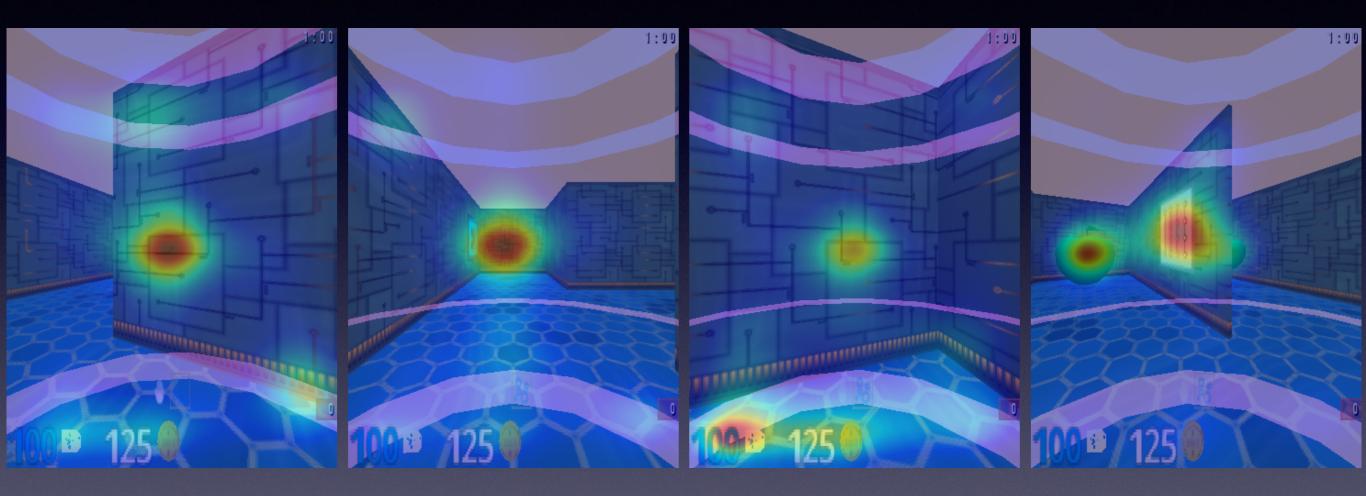
Attend Before you Act



Time

Khimya Khetarpal, Doina Precup

Attend Before you Act



Time

Khimya Khetarpal, Doina Precup

Attend Before you Act

This Work

• Does foveating around the regions where humans look helps the reinforcement learning process in the context of continual learning?

This Work

- Does foveating around the regions where humans look helps the reinforcement learning process in the context of continual learning?
- Explore leveraging where humans look in an image as an implicit indication of what is salient for decision making.

This Work

- Does foveating around the regions where humans look helps the reinforcement learning process in the context of continual learning?
- Explore leveraging where humans look in an image as an implicit indication of what is salient for decision making.

Hypothesize: Knowing where to look in a task aids continual learning

Khimya Khetarpal, Doina Precup

Attend Before you Act

Khimya Khetarpal, Doina Precup

Attend Before you Act

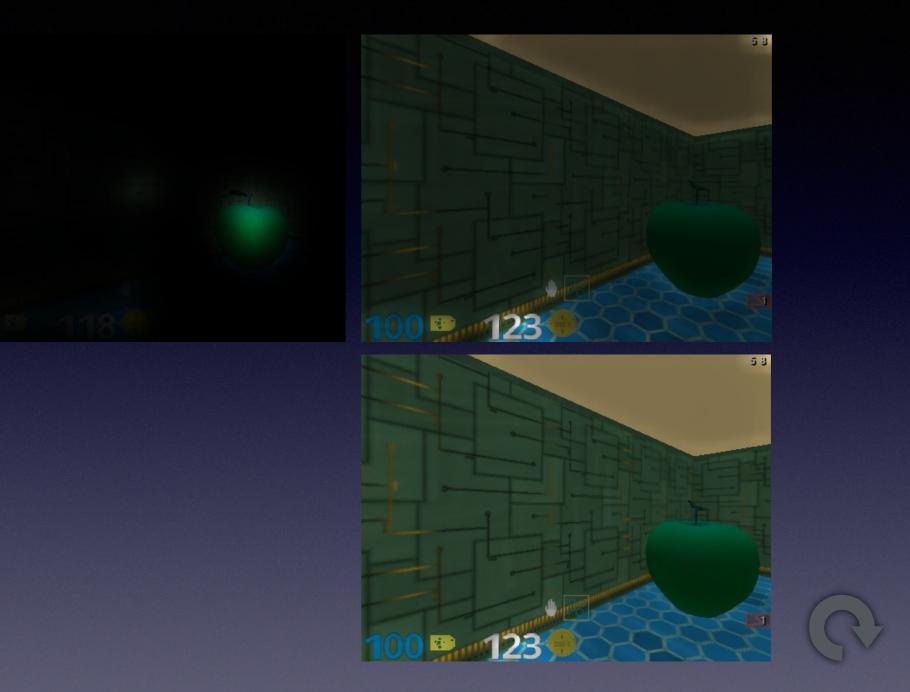
Khimya Khetarpal, Doina Precup

Attend Before you Act

R

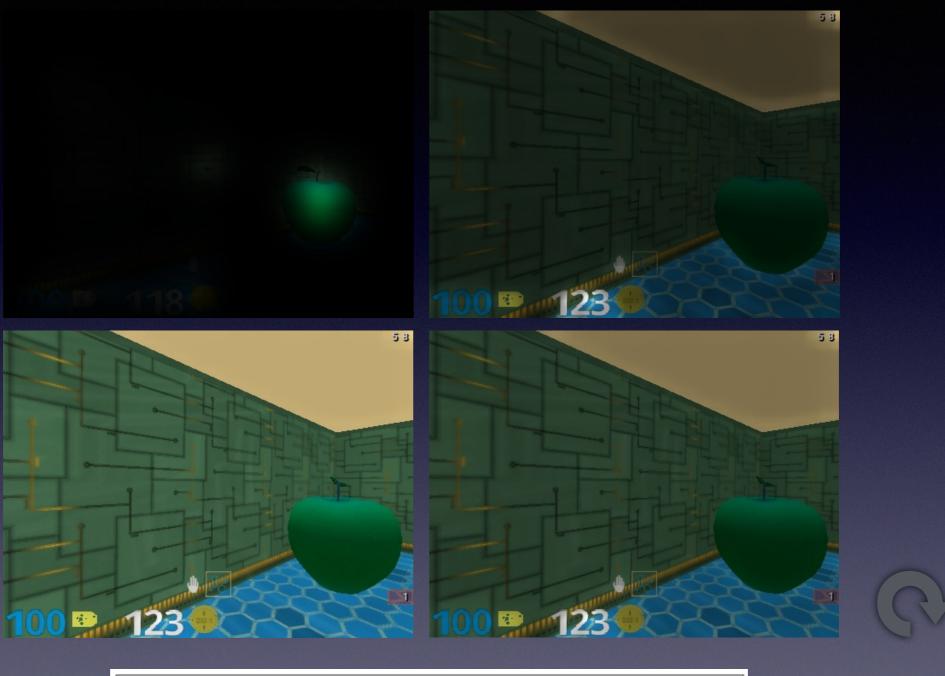
Khimya Khetarpal, Doina Precup

Attend Before you Act



Khimya Khetarpal, Doina Precup

Attend Before you Act

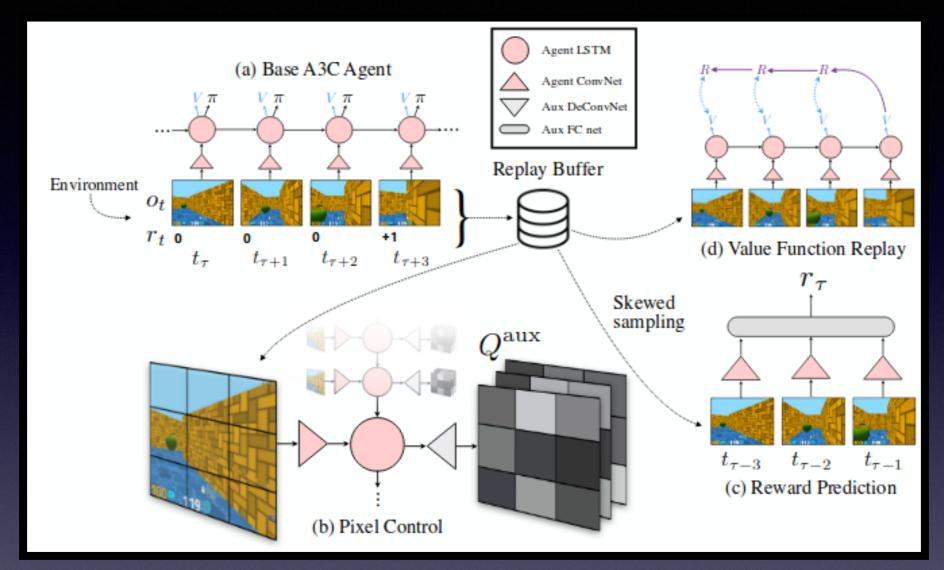


$$I(x,y)=I(x,y)+\Big(S(x,y)+lpha(1-S(x,y))\Big)$$

Khimya Khetarpal, Doina Precup

Attend Before you Act

Baseline

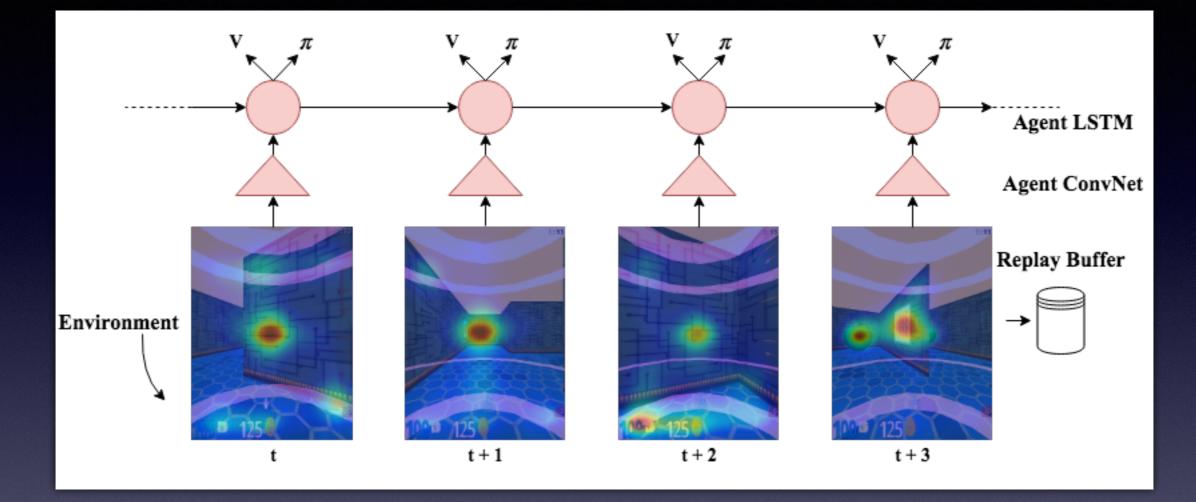


• Baseline: UNREAL agent [Jaderberg et al., 2016] [https://github.com/miyosuda/unreal]

Khimya Khetarpal, Doina Precup

Attend Before you Act

Visually Attentive UNREAL agent



- The Visually-Attentive UNREAL agent attends around the salient regions in each image and then acts
- Real time Spectral Residual method [Hou & Zhang, 2007] for generating salient regions in frames

Khimya Khetarpal, Doina Precup

Attend Before you Act

Visually Attentive UNREAL agent

Algorithm 1 Visually Attentive UNREAL Agent

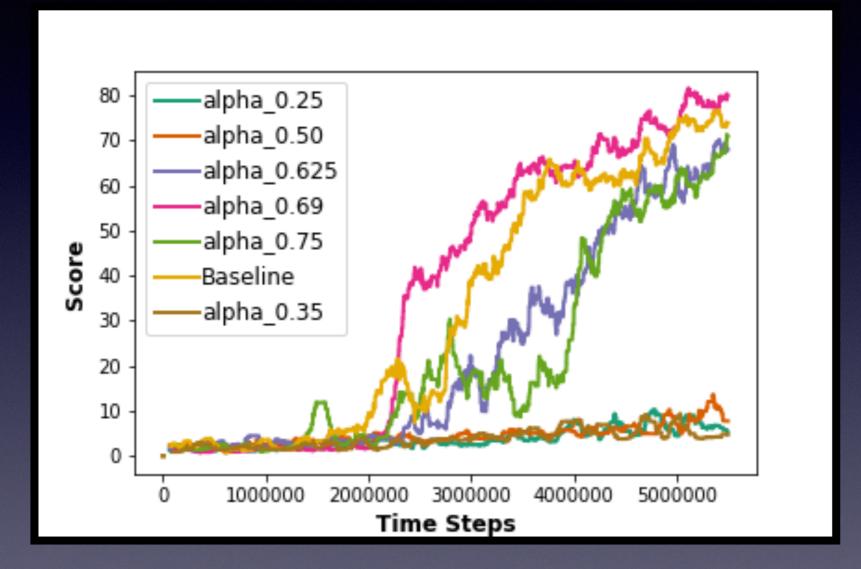
 α is factor controlling the foveation $I \leftarrow Obtain original Input Image of 360 * 480$ from the Lab environment $S \leftarrow SpectralSaliencyMethod (I)$ $FoveatedImage \leftarrow SaliencyOverlay (I, S, \alpha)$ Process Base A3C CNN-LSTM (Foveated Image) Process Auxiliary Tasks (Foveated Image)

$$egin{aligned} I(x,y) = I(x,y) + igl(S(x,y) + lpha(1-S(x,y))igr) \end{aligned}$$

Khimya Khetarpal, Doina Precup

Attend Before you Act

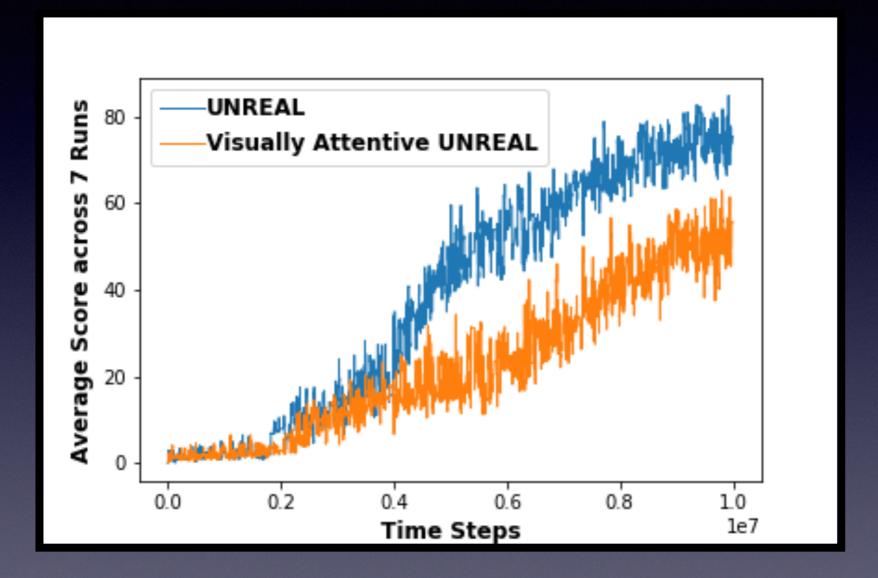
Learning with varying degrees of foveation



Khimya Khetarpal, Doina Precup

Attend Before you Act

Best value of alpha vs baseline



Khimya Khetarpal, Doina Precup

Attend Before you Act

Continual Learning

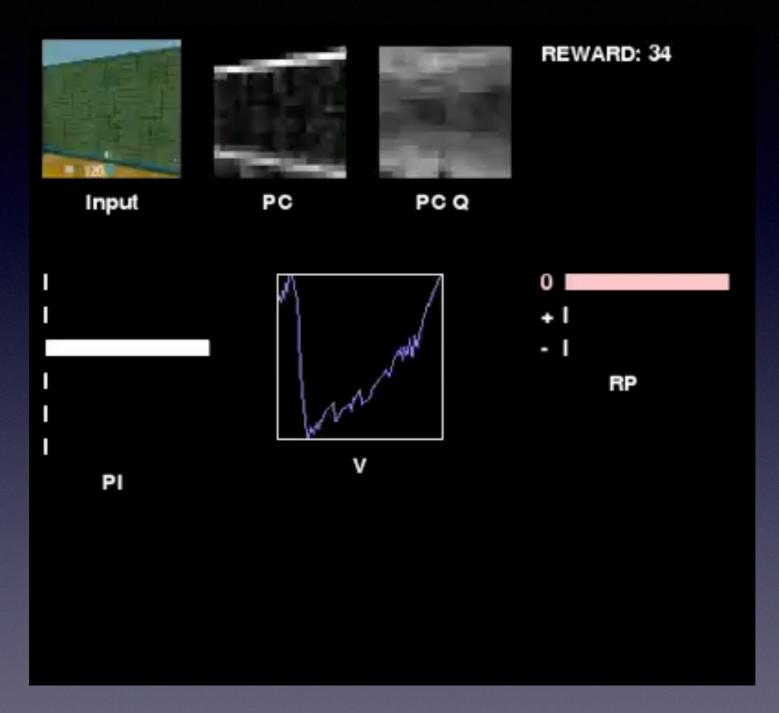
Average performance over 25 games				
Agent	Testing	Continual Learning		
		Easy	Moderate	Difficult
UNREAL	96.92 (8.08)	101.96 (9.65)	92.64 (12.35)	39.16 (11.14)
Visually Attentive UNREAL Agent	95.92 (10.88)	96.96 (9.39)	83.52 (10.09)	40.52 (14.67)

- Easy: Gaussian noise
- Moderate: Tinting of images at random with same hue of 0.25
- **Difficult:** Tinting of images at random with different hue for each tinted frame

Khimya Khetarpal, Doina Precup

Attend Before you Act

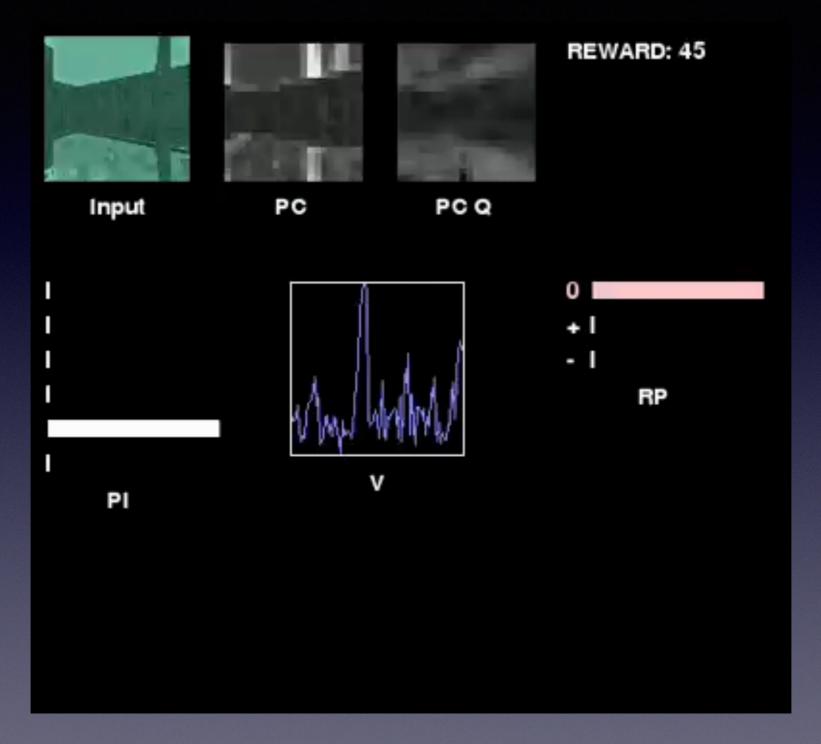
Continual Learning - Moderate



Khimya Khetarpal, Doina Precup

Attend Before you Act

Continual Learning - Difficult



Khimya Khetarpal, Doina Precup

Attend Before you Act

Findings

 <u>Visually-Attentive UNREAL agent</u> is still able to perform as well as the baseline and is relatively <u>more robust to distractors</u> in both easy and moderate categories of evaluation.

Findings

 <u>Visually-Attentive UNREAL agent</u> is still able to perform as well as the baseline and is relatively <u>more robust to distractors</u> in both easy and moderate categories of evaluation.

• Our approach can be used as a wrapper around <u>any</u> saliency model, so it would be easy to try better approaches

Findings

 <u>Visually-Attentive UNREAL agent</u> is still able to perform as well as the baseline and is relatively <u>more robust to distractors</u> in both easy and moderate categories of evaluation.

• Our approach can be used as a wrapper around <u>any</u> saliency model, so it would be easy to try better approaches

• The performance evaluation on perturbations in the train setting demonstrate promising results for further analysis of continual learning with visual attention.

Khimya Khetarpal, Doina Precup

Attend Before you Act

Human visual attention could be interpreted as

- A source of *intrinsic motivation* and *curiosity*. [Ref: what we see is what we need, Kulkarni et al.]
- A source of *subgoals* humans target while at a complex task.

Khimya Khetarpal, Doina Precup

Attend Before you Act

Future Work

• Study a setting where agents *actively learn to control where to attend*, rather than using a static attention model.

- Start with an *initial belief of where humans look across n tasks*, and work towards learning with those limited labels about concepts, relations and world models in an interactive way
- Connections to *specialization* in terms of *states of interest* in a hierarchical reinforcement learning framework

Khimya Khetarpal, Doina Precup

Attend Before you Act

Recent Related Work

- Greydanus, Sam, et al. "Visualizing and Understanding Atari Agents." *arXiv preprint arXiv:1711.00138* (2017).
- Dubey, Rachit, et al. "Investigating Human Priors for Playing Video Games." *arXiv preprint arXiv:1802.10217* (2018).

Khimya Khetarpal, Doina Precup

Attend Before you Act

Thank you

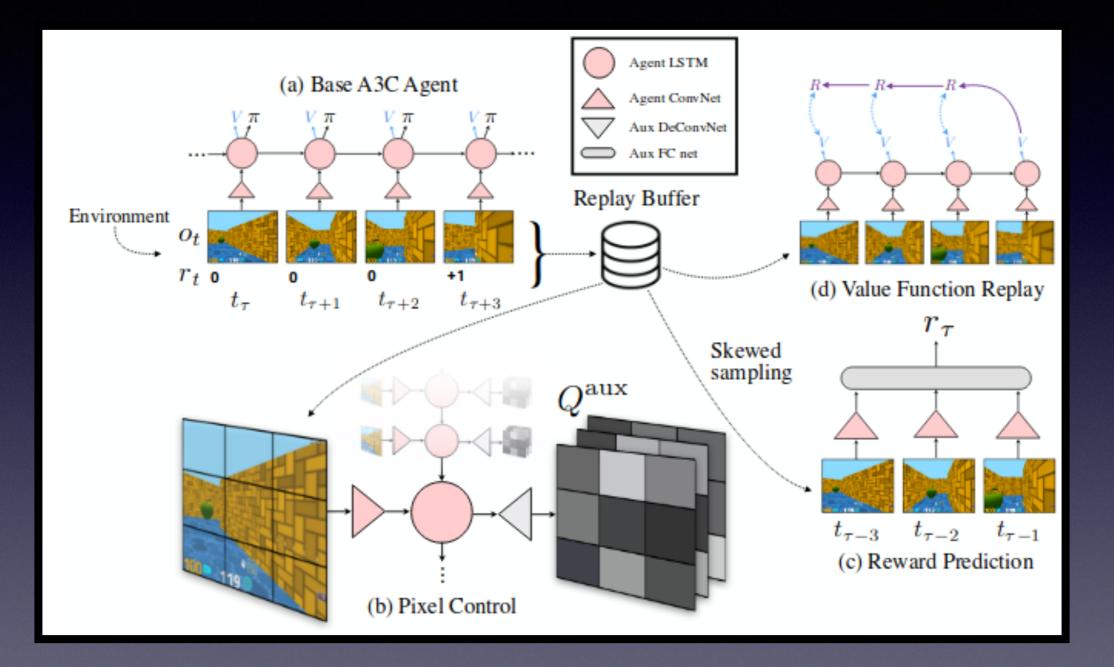
Questions / Feedback ?

https://sites.google.com/view/attendbeforeyouact

Khimya Khetarpal, Doina Precup

Attend Before you Act

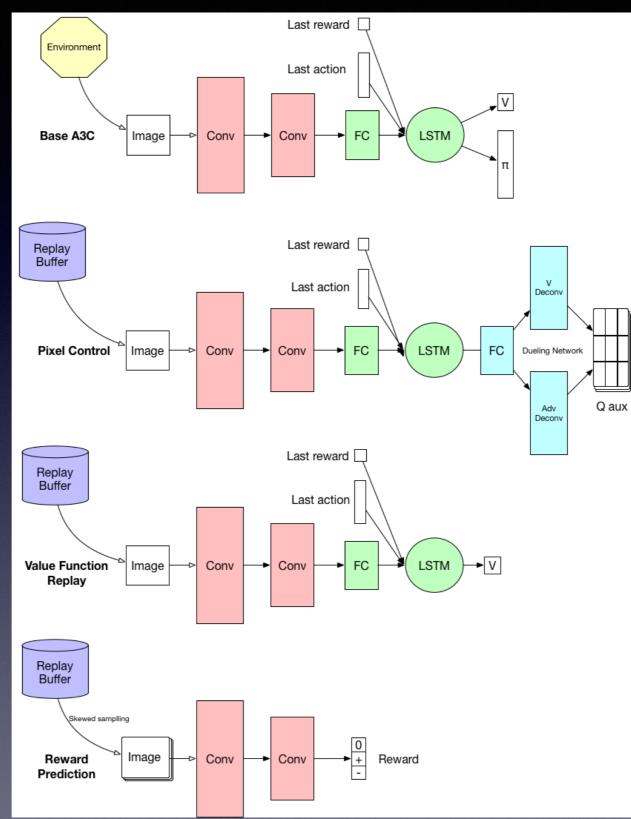
Extra Slides



Khimya Khetarpal, Doina Precup

Attend Before you Act

Extra Slides



Khimya Khetarpal, Doina Precup

Attend Before you Act

Extra Slides

• Compute the average frequency domain and subtract it from a specific image domain to obtain the spectral residual

- The log spectrum of each image is analyzed to obtain the spectral residual
- This is then transformed to a spatial domain with the location of the porto-objects
- Proto objects are pre-attentive structures with limited spatial and temporal coherence with thin a visual stimuli which generate the perception of an object when attended to

Khimya Khetarpal, Doina Precup

Attend Before you Act