Attend Before you Act
Leveraging human visual attention for continual learning
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Where do humans look 1n an image?
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Why does 1t matter?
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This Work

* Does foveating around the regions where humans look helps the
reinforcement learning process in the context of continual learning?
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Varying Degrees of Foveation
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« Baseline: UNREAL agent [Jaderberg et al., 2016] [https://github.com/miyosuda/unreal ]
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https://github.com/miyosuda/unreal

Visually Attentive UNREAL agent

Agent LSTM

Agent ConvNet

Replav Buffer
Envn'onment

« The Visually-Attentive UNREAL agent attends around the salient regions in each image
and then acts

« Real time Spectral Residual method [Hou & Zhang, 2007] for generating salient regions in
frames
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Visually Attentive UNREAL agent

Algorithm 1 Visually Attentive UNREAL Agent

v is factor controlling the foveation

I «+ Obtain original Input Image of 360 * 480 from the Lab environment
S + SpectralSaliencyMethod (/)

FoveatedImage < SaliencyOverlay (I, S, «)

Process Base A3C CNN-LSTM (Foveated Image)

Process Auxiliary Tasks (Foveated Image)
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Learning with varying degrees of foveation

——alpha 0.25
——alpha_0.50
——alpha_0.625
——alpha_0.69
——alpha_0.75

Baseline
——alpha 0.35

1000000 2000000 3000000 4000000 5000000
Time Steps
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Best value of alpha vs baseline

——UNREAL
Visually Attentive UNREAL
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Continual Learning

UNREAL

96.92 (8.08)

101.96 (V.65)

(12.35)

39.16 (11.14)

Visually Attentive
UNREAL Agent

95.92 (10.88)

96.96 ()

(10.09)

40.52 (14.67)




Continual Learning - Moderate

REWARD: 34




Continual Learning - Ditficult

REWARD: 45

Input PC PCQ




Findings

* Visually-Attentive UNREAL agent 1s still able to perform as well as the
baseline and 1s relatively more robust to distractors in both easy and

moderate categories of evaluation.
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Human visual attention could be interpreted as

* A source of intrinsic motivation and curiosity. [Ref: what we see 1s
what we need, Kulkarni et al.]

* A source of subgoals humans target while at a complex task.




Future Work

 Study a setting where agents actively learn to control where to attend,
rather than using a static attention model.

 Start with an initial belief of where humans look across n tasks, and
work towards learning with those limited labels about concepts,
relations and world models in an interactive way




Recent Related Work

* Greydanus, Sam, et al. "Visualizing and Understanding Atar1 Agents."
arXiv preprint arXiv:1711.00138 (2017).

* Dubey, Rachit, et al. "Investigating Human Priors for Playing Video
Games." arXiv preprint arXiv:1802.10217 (2018).




Thank you



https://sites.google.com/view/attendbeforeyouact
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Last reward [ ]
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Extra Slides

* Compute the average frequency domain and subtract it from a specific
image domain to obtain the spectral residual

* The log spectrum of each image 1s analyzed to obtain the spectral
residual

* This 1s then transformed to a spatial domain with the location of the




