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Abstract. We study the sequence of nontrivial zeros of the Riemann zeta-function
with respect to sequences of zeros of other related functions, namely, the Hurwitz
zeta-function and the derivative of Riemann’s zeta-function. Finally, we investigate
connections of the nontrivial zeros with the periodic zeta-function. On the basis of
computation we derive several classifications of the nontrivial zeros of the Riemann
zeta-function and state problems which might be of interest for a better understanding
for the distribution of those zeros.
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1 INTRODUCTION

Let s = σ+it denote a complex variable. For σ > 1, the Riemann zeta-function
is given by

ζ(s) =

∞∑
n=1

1

ns
.

This function can be analytically continued to the whole complex plane except
for a simple pole at s = 1 with residue 1. Trivial zeros of ζ(s) are located
at the negative even integers. The remaining, so-called nontrivial zeros lie
in the critical strip 0 < σ < 1. In this paper we discuss several relations
of those nontrivial zeros with respect to zeros of related functions. In the
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following section we distinguish between ‘stable’ and ‘unstable’ zeros based on
the trajectories of zeros of the Hurwitz zeta-function, notions introduced in [2].
In Section 3 we investigate how the nontrivial zeros are related via trajectories
with those of ζ ′(s). Section 4 is devoted to a classification of zeros by properties
of the periodic zeta-function.

2 Stable and Unstable Zeros

For σ > 1, the Hurwitz zeta-function is given by

ζ(s, α) =

∞∑
n=0

1

(n+ α)s
,

where α is a parameter from the interval (0, 1]. The Hurwitz zeta-function can
be continued analytically to the whole complex plane except for a simple pole
at s = 1 with residue 1. For α = 1 the Hurwitz zeta-function becomes the
Riemann zeta-function ζ(s) = ζ(s, 1). As a matter of fact, we have further

ζ(s, 1/2) = (2s − 1)ζ(s). (2.1)
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Figure 1. Trajectories of several zeros of ζ(s, α), 0.5 ≤ α ≤ 1; the 30-th zero of ζ(s) = ζ(s, 1)
is plotted in green, the 35-th in pink.

Consider Figure 1, where several zeros trajectories of ζ(s, α) are shown, as
α varies in the range 0.5 ≤ α ≤ 1. For example, it shows that the trajectories
which start at the 30-th and the 33-rd zero of ζ(s) = ζ(s, 1) end at zeros of
ζ(s, 1/2) on the line σ = 1. We recall some notions introduced in [2]. We call
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a zero ρ of ζ(s) stable if its trajectory ends on the critical line as α → 1/2;
otherwise the zero is called unstable. Denoting the zeros of ζ(s) with positive
ordinate by ρn = βn + iγn (in ascending order), we find among the first 501
zeros the following unstable zeros, indicated by their index n:

1, 3, 6, 9, 13, 17, 21, 26, 30, 33, 40, 44, 50, 54, 61, 67, 70, 78, 79,
90, 93, 101, 109, 112, 117, 124, 134, 139, 147, 149, 153, 165, 167,
175, 186, 189, 197, 201, 214, 218, 219, 234, 235, 240, 253, 255, 266,
270, 275, 282, 288, 299, 300, 313, 317, 334, 342, 344, 355, 359, 370,
371, 384, 387, 394, 409, 418, 422, 431, 434, 444, 450, 459, 465, 477,
489, 493, 500, 501.

Note that in [2] the list of unstable zeros is correct only up to the 288th zero.
Here we present the corrected list of unstable zeros. We are grateful to Jonathan
Sondow whose notes helped to find inaccuracies in the previous list of unstable
zeros.

Figure 1 suggests that the zeros for α = 1 should migrate to zeros of smaller
imaginary part at α = 1/2. The number of nontrivial zeros of ζ(s) and ζ(s, 1/2)
up to T is asymptotically equal to

T

2π
log

T

2πe
+O(log T ) and

T

2π
log

T

2πe
+

T

2π
log 2 +O(log T ),

respectively (see [3]), and T
2π log 2+O(1) many of these zeros of ζ(s, 1/2) lie on

the line σ = 0, namely exactly those of the factor 2s−1 in (2.1). Therefore, we
may expect that the number of unstable zeros up to T is asymptotically equal
to

T
log 2

2π

(
1− log 2

log T
2πe

)
.

On average, we conjecture that about

1

log 2
log

T

2πe

stable zeros lie in between two consecutive unstable zeros with imaginary part
approximately equal to T . We do not expect many pairs of consecutive unstable
zeros. Among the first 501 zeros (with positive real part) we have found only
six pairs of such unstable twins:

78, 79, 218, 219, 234, 235, 299, 300, 370, 371, and 500, 501.

The computations in this section are based on numerical solutions of the dif-
ferential equation

∂z0(α)

∂α
= −

∂ζ(z,α)
∂α

∂ζ(z,α)
∂z

,

where z = z0(α), ζ(z0(α), α) = 0. For the initial condition the zeros of ζ(s, 1)
have been used, resp. zeros of ζ(s, 1/2) to check the calculations.

Math. Model. Anal., X(x):1–10, 20xx.
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3 Multiple a-Values and Zeros

Let ρ′ be a zero of the derivative of the Riemann zeta-function ζ ′(s) and let
a = ζ(ρ′). Then ρ′ is a multiple a-value of ζ(s).

We consider a trajectory s(x), defined by the equation

ζ(s(x))− ax = 0, (3.1)

where x ∈ [0, 1], s(1) = ρ′ and s(0) must be a zero of ζ(s). Concerning
trajectory s(x) we have the following proposition.

Proposition 1. Let a 6= 0 be a complex number. For x = x0 let s0 be a zero
of multiplicity m of

fx(s) := ζ(s)− ax.

Let D(s0) be a closed disc with center at s0 in which the function fx0(s) has
no other zeros except s0. Then there exists some δ > 0 such that any function
fx(s) with x ∈ (x0 − δ, x0 + δ) has exactly m zeros (counted with multiplicities)
in the disc D(s0). Moreover, if m = 1, then there is a function s(x), defined
for x ∈ (x0− δ, x0+ δ), which is continuous at x = x0 and satisfies the relation
(3.1).

Proof. For any s 6= 1 the function fx(s) is continuous in x. Hence, the propo-
sition follows from Rouché’s theorem.

Since ρ′ is a multiple a-value of ζ(s), we expect at least two solutions s1(x)
and s2(x) of the equation (3.1), with s1(1) = s2(1) = ρ′ and s1(0) 6= s2(0).

To find a trajectory s(x) we solve numerically the differential equation

∂ζ (s(x))

∂s(x)
· ∂s(x)

∂x
− a = 0, (3.2)

with initial condition s(0) = ρ, where ρ is an appropriate ζ(s) zero, which
we find experimentally. Note, that we cannot start with the initial condition
s(1) = ρ′, as ρ′ is a multiple value of ζ(s).

We enumerate zeros of ζ ′(s) in −1 ≤ σ ≤ 3, t > 0, in ascending order with
respect to their imaginary parts: ρ′1, ρ

′
2, . . . . Similarly we enumerate nontrivial

zeros of ζ(s): ρ1, ρ2, . . . as we did in the previous section.
Now we consider Equation (3.1) for a = ζ(ρ′1) = 0.92... + i0.03..., where

ρ′1 = 2.46... + i23.29... is the first zero of the derivative of the Riemann zeta-
function. We look for two solutions of the differential equation (3.2), each
of which starts at some zero of the Riemann zeta-function and ends at ρ′1.
After some experiments we find solutions s1(x) and s2(x), where x ∈ [0, 1],
s1(0) = ρ2, s2(0) = ρ3 and s1(1) = s2(1) = ρ′1 (see Figure 2). Based on this we
introduce the notation (2, 3)1 and say that zeros ρ2 and ρ3 of ζ(s) are related
by the zero ρ′1 of ζ ′(s).

Below we give relations between zeros of Riemann zeta-function initialized
by all derivative zeros up to ρ′103 = 0.97... + i294.03.... Usually a zero of the
derivative is related with two consecutive (and nearest) zeros of the Riemann
zeta-function, however, there are exceptions. We use bold characters to indicate
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Figure 2. Parametric graphics of two solutions s1(x) and s2(x) (with parameter x ∈ [0, 1])
of the equation (3.1) for a = ζ(ρ′1). The solution s1(x) connects the second zero ρ2 = s1(0)
(lowest dot in the figure) of ζ(s) with the first zero ρ′1 = s1(1) (small square) of ζ′(s). The
second solution s2(x) connects the third zero ρ3 = s2(0) (upper dot) of ζ(s) with ρ′1 = s1(1).
For this relation between ρ2, ρ3 and ρ′1 we use the short notation (2, 3)1.

two not consequent zeros of ζ(s) which are related by some zero of ζ ′(s), for
example (27, 29)19. Italic characters are used for two consequent zeros of ζ(s)
if they are ‘enclosed’ by another pair of related zeros, for example (27 , 28 )18
is ‘enclosed’ by (27, 29)19(see Figure 3).

(2, 3)1, (4, 5)2, (6, 7)3, (7, 8)4, (9, 10)5, (10, 11)6, (12, 13)7, (13, 14)8,
(15, 16)9, (16, 17)10, (17, 18)11, (19, 20)12, (20, 21)13, (22, 23)14, (23, 24)15,
(24, 25)16, (26, 27)17, (27 , 28 )18 , (27, 29)19, (30, 31)20, (31, 32)21,
(32, 33)22, (34, 35)23, (35, 36)24, (36, 37)25, (38, 40)26, (39 , 40 )27 ,
(40, 41)28, (42, 43)29, (43, 44)30, (44, 45)31, (45, 46)32, (47, 48)33,
(48, 49)34, (49, 50)35, (51, 52)36, (52, 53)37, (53, 54)38, (54, 55)39, (56, 57)40,
(57 , 58 )41 , (57 , 59)42 , (57, 60)43, (61, 62)44, (62, 63)45, (63, 64)46,
(65, 66)47, (66, 67)48, (67, 68)49, (68, 69)50, (70, 72)51, (71 , 72 )52 ,
(72 , 73 )53 , (72, 74)54, (75, 76)55, (76, 77)56, (77, 78)57, (78, 79)58,
(80, 81)59, (81, 82)60, (82, 83)61, (84, 87)62, (85 , 87)63 , (86 , 87 )64 ,
(87, 88)65, (88, 89)66, (90, 91)67, (91 , 92 )68 , (91, 93)69, (93, 94)70,
(95, 97)71, (96 , 97 )72 , (97, 98)73, (98, 99)74, (100, 101)75, (101, 102)76,
(102, 103)77, (103, 104)78, (104, 105)79, (106, 107)80, (107, 108)81, (108 , 109 )82 ,
(108, 110)83, (111, 112)84, (112, 114)85, (113 , 114 )86 , (114, 115)87,
(116, 118)88, (117 , 118 )89 , (118 , 119 )90 , (118 , 120)91 , (118, 121)92,
(122, 124)93, (123 , 124 )94 , (124, 125)95, (125, 126)96, (127, 128)97,
(128, 129)98, (129, 130)99, (130, 131)100, (131, 132)101, (133, 134)102,
(134, 135)103.

Furthermore, we consider several zeros with large imaginary part. Here
we present relations between zeros of the Riemann zeta-function initialized by
all derivative zeros from ρ′2140 = 1.47... + i3001.26... up to ρ′2194 = 0.89... +
i3062.32....

(2470, 2474)2140, (2470 , 2471 )2141 , (2472 , 2473 )2142 , (2473 , 2474 )2143 ,
(2474 , 2475 )2144 , (2474 , 2476)2145 , (2476 , 2477 )2146 , (2474, 2478)2147,

Math. Model. Anal., X(x):1–10, 20xx.
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Figure 3. Graphics corresponds to the list (26, 27)17, (27 , 28 )18 , (27, 29)19. Dots denote
26th – 29th zeros of ζ(s). Small squares denote 17th, 18th and 19th zeros of ζ′(s). We see
that the consecutive zeros ρ26 and ρ27 are related by ρ′17. Nonconsecutive zeros ρ27 and ρ29
are related by ρ′19. The triple (27 , 28 )18 is ‘enclosed’ by the triple (27, 29)19.

(2479, 2480)2148, (2480, 2481)2149, (2481 , 2482 )2150 , (2481, 2484)2151,
(2483 , 2484 )2152 , (2484, 2485)2153, (2485, 2486)2154, (2486, 2487)2155,
(2488, 2490)2156, (2489 , 2490 )2157 , (2490, 2491)2158, (2491, 2492)2159,
(2492, 2493)2160, (2493, 2494)2161, (2495, 2496)2162, (2496, 2502)2163,
(2497 , 2500)2164 , (2498 , 2499 )2165 , (2499 , 2500 )2166 , (2500 , 2502)2167 ,
(2501 , 2502 )2168 , (2502, 2503)2169, (2503, 2504)2170, (2504, 2505)2171,
(2506, 2507)2172, (2507, 2508)2173, (2508, 2509)2174, (2509 , 2510 )2175 ,
(2509, 2512)2176, (2511 , 2512 )2177 , (2512, 2513)2178, (2514, 2515)2179,
(2515, 2519)2180, (2516 , 2519)2181 , (2517 , 2518 )2182 , (2518 , 2519 )2183 ,
(2519, 2520)2184, (2520, 2521)2185, (2521, 2522)2186, (2523, 2525)2187,
(2524 , 2525 )2188 , (2525, 2527)2189, (2526 , 2527 )2190 , (2527 , 2528 )2191 ,
(2527, 2530)2192, (2529 , 2530 )2193 , (2530, 2531)2194.

Here we find quite complicated system of related zeros, see Figure 4.
We note that the above connection between zeros of the Riemann zeta-

function and zeros of its derivative first appeared in the proof of Speiser’s
classical equivalent for the Riemann hypothesis.

Theorem [A. Speiser]. The Riemann Hypothesis is true if and only if all
zeros of the derivative ζ ′(s) in the right half-plane have real-part ≥ 1/2.

Proof. Suppose that ζ ′(ρ′) = 0, where <(ρ′) < 1/2. We have to find a zero
of the function on the left of the critical line. We can assume that ζ(ρ′) 6=
0, because if this were the case we would have already finished. Since the
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Figure 4. Graphics corresponds to the list (2496, 2502)2163, (2497 , 2500)2164 ,
(2498 , 2499 )2165 , (2499 , 2500 )2166 , (2500 , 2502)2167 , (2501 , 2502 )2168 . Dots denote
2496th – 2502nd zeros of ζ(s). Small squares denote 2163rd – 2168th zeros of ζ′(s). The
triple (2496, 2502)2163‘encloses’ five over triples.

derivative vanishes, there exist two opposite lines, of constant argument and
along which |ζ(s)| decreases. We follow these two lines, and we must reach a
zero, because |ζ(s)| decreases. If it is on the left of the critical line, we have
finished, while, in the other case, we will reach the critical line. A complete
proof can be found in Speiser [5] and Arias-de-Reyna [1], respectively. ut

If we consider the nontrivial zeros of the zeta-function as vertices and each
trajectory as an edge, we obtain an infinite graph which we shall call the ζ-
graph. This ζ-graph encodes a lot of interesting information about the zero-
distribution. For instance, the above calculations suggest that this graph is not
connected. The number of connected components seems to be approximately
equal to the surplus of zeros of the derivative over zeta zeros, which is, up to
an error of size O(log T ),

T

2π
log 2 =

T

2π
log

T

πe
− T

2π
log

T

2πe

(see [3]). We may ask whether all possible constellations appear; for example,
we find all types of edges (n, n + k)m with k = 1, . . . , 4 in our data set and
there is no reason why for some given value k ≥ 5 we shall not find such an
edge. Actually, the following heuristic reasoning gives support. By Voronin’s
famous universality theorem (see Voronin [6], resp. [3]), the Riemann zeta-
function can approximate any non-vanishing analytic function f(s), defined on
a compact subset K of 1

2 < σ < 1 with connected complement, uniformly by
certain vertical shifts ζ(s + iτ). If we construct a target-function f such that

Math. Model. Anal., X(x):1–10, 20xx.
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its f -graph (defined in an analogous manner as for ζ) contains an edge we want
to find for ζ, then universality provides a shift with

max
s∈K

|ζ(s+ iτ)− f(s)| < ε,

and we may hope to find the edge in the ζ-graph shifted by τ . Of course, this
is not a proof, however, it provides an approach to search for edges. Unfor-
tunately, the universality theorem is not effective, meaning the only estimates
for τ are astronomical. For the construction of the appropriate target-function,
however, we may restrict on polynomials.

4 Extrema and Zeros

The periodic zeta-function is for σ > 1 defined by

L(s, λ) =

∞∑
n=1

e2πiλn

ns
,

where λ ∈ R. For λ 6∈ Z this function has an analytic continuation to the whole
complex plane. It is easily seen that L(s, 1) = ζ(s) and

ζ(s, 1/2) = (2s − 1)ζ(s). (4.1)

The periodic zeta-function is connected to the polylogarithm

Lis(z) =

∞∑
n=1

zn

ns
.

The last expression defines an analytic function of z in the cut plane for any s
not a positive integer (see [4]). Then by L(s, λ) = Lis(exp(2πiλ)) we get, for
0 < λ < 1 and s 6∈ N,

∂L(s, λ)

∂λ
= 2πiL(s− 1, λ)

and

∂<L(s, λ)
∂λ

= −2π=L(s− 1, λ) and
∂=L(s, λ)

∂λ
= 2π<L(s− 1, λ).

This leads to the following

Proposition 2. Let 0 < <ρ < 1. Then ρ is a nontrivial zero of the Riemann
zeta-function if and only if

∂<L(ρ+ 1, λ)

∂λ

∣∣∣
λ= 1

2

= 0 and
∂=L(ρ+ 1, λ)

∂λ

∣∣∣
λ= 1

2

= 0.

We see that both functions, R(λ) = <L(ρ+1, λ) and I(λ) = =L(ρ+1, λ), have
critical points at λ = 1/2. We say that the nontrivial zero ρ of the Riemann
zeta-function has signature (+, 0) if R(λ) has a local maximum at λ = 1/2 and
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Figure 5. Graphics of real (red) and imaginary (green) parts of L(ρ2, λ), λ ∈ [0.4, 0.6],
where ρ2 = 1/2 + 21.02... is a second nontrivial zero of the Riemann zeta-function. Each
function has a maximum at λ = 1/2. Thus the zero ρ2 has the signature (+,+).

I(λ) has an inflection at λ = 1/2. Other signatures are (−,−), (−, 0), (−,+),
(0,−), (0,+), (+,−), (+,+). See Figure 5 for the signature of the second
zero of the Riemann zeta-function. Note that the signature (0, 0) is impossible
because

∂2<L(ρ+ 1, λ)

∂λ2
= −4π2<L(ρ− 1, λ), (4.2)

∂2=L(ρ+ 1, λ)

∂λ2
= −4π2=L(ρ− 1, λ) (4.3)

and the Riemann zeta function has no nontrivial zeros to the left-hand side of
σ = 0.

Next we give signatures of the first ten nontrivial zeros of the Riemann
zeta-function.

(+,−), (+,+), (+,−), (+,−), (+,+), (+,+), (+,−), (+,−),
(+,−), (+,+).

For calculations of signatures the second derivative test (see formulas (4.2) and
(4.3)) is convenient. In the table below we consider how often each signature
appears. For example, in the first thousand of nontrivial zeros 37% of zeros
have signature (+,+), 37% – (+,−), 13% – (−,+), and 13% – (−,−). In the
table below percents are rounded to integers.

Math. Model. Anal., X(x):1–10, 20xx.
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Range of zeros (+,+) (+,−) (−,+) (−,−)
1–1000 37% 37% 13% 13%
1001–2000 35% 36% 14% 15%
2001–3000 36% 33% 15% 16%
3001–4000 32% 35% 18% 16%
4001–5000 34% 34% 16% 17%
5001–6000 34% 33% 17% 17%
6001–7000 33% 32% 17% 18%
7001–8000 32% 33% 18% 17%
8001–9000 34% 34% 16% 16%
9001–10 000 31% 34% 19% 17%

Note that up to 10 000-th zero there are no zeros with signatures (+, 0), (0,+),
(0,−), (−, 0). We expect that each of the sign patterns appears 25 percent when
sufficiently many zeros are considered; for low ranges of zeros the preference of
patterns starting with ’+’ might be related to the dominance of the constant
term 1 in approximations by Dirichlet polynomials.
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