POLYNOMIAL IDENTITY INVOLVING BINOMIAL THEOREM AND FAULHABER'S FORMULA

PETRO KOLOSOV

ABSTRACT. In this manuscript, we have shown that for every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \ldots, \mathbf{A}_{m,m}$ such that the polynomial identity holds

$$
n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \cdots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}
$$

In particular, the coefficients $\mathbf{A}_{m,r}$ can be evaluated in both ways, by constructing and solving a certain system of linear equations or by deriving a recurrence relation; all these approaches are examined providing examples. To validate the results, there are supplementary Mathematica programs available.

CONTENTS

2010 Mathematics Subject Classification. 26E70, 05A30.

Key words and phrases. Binomial theorem, Polynomial identities, Binomial coefficients, Bernoulli numbers, Pascal's triangle, Faulhaber's formula, Polynomials .

Date: October 18, 2024.

Sources: <https://github.com/kolosovpetro/PolynomialIdentityInvolvingBTandFaulhaber>

1. INTRODUCTION

Considering the table of forward finite differences of the polynomial n^3

Table 1. Table of finite differences of the polynomial n^3 .

We can easily observe that finite differences $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ of the polynomial n^3 may be expressed according to the following relation, via rearrangement of the terms

$$
\Delta(0^3) = 1 + 6 \cdot 0
$$

\n
$$
\Delta(1^3) = 1 + 6 \cdot 0 + 6 \cdot 1
$$

\n
$$
\Delta(2^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2
$$

\n
$$
\Delta(3^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3
$$

\n:
\n
$$
\Delta(n^3) = 1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + 6 \cdot 3 + \dots + 6 \cdot n
$$
 (1.1)

¹One may assume that it is possible to reach the form $n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^0(n-k)^0 + \mathbf{A}_{m,1}(n-k)^1 + \cdots$ $\mathbf{A}_{m,m}k^m(n-k)^m$ simply taking finite differences of the odd-powered polynomial n^{2m+1} up to order of $2m+1$ and interpolating it backwards similarly as it is shown in the equation [\(1.1\)](#page-1-2). However, my observations do not provide any evidence that such assumption is correct. Interestingly enough is that we could have been arrived to the pure differential approach of the relation [\(1.4\)](#page-2-1) then.

Furthermore, the polynomial n^3 is equivalent to

$$
n^3 = [1 + 6 \cdot 0] + [1 + 6 \cdot 0 + 6 \cdot 1] + [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2] + \cdots
$$

$$
+ [1 + 6 \cdot 0 + 6 \cdot 1 + 6 \cdot 2 + \cdots + 6 \cdot (n - 1)]
$$

Rearranging the above equation, we get

$$
n^3 = n + (n - 0) \cdot 6 \cdot 0 + (n - 1) \cdot 6 \cdot 1 + (n - 2) \cdot 6 \cdot 2 + \dots + 1 \cdot 6 \cdot (n - 1)
$$

Therefore, we can consider the polynomial n^3 as

$$
n^3 = \sum_{k=1}^{n} 6k(n-k) + 1
$$
\n(1.2)

Assume that equation [\(1.2\)](#page-2-2) has the following implicit form

$$
n^3 = \sum_{k=1}^{n} \mathbf{A}_{1,1} k^1 (n-k)^1 + \mathbf{A}_{1,0} k^0 (n-k)^0,
$$
\n(1.3)

where $\mathbf{A}_{1,1} = 6$ and $\mathbf{A}_{1,0} = 1$, respectively. Note that here the power of 3 is actually defined by $2m + 1$ where $m = 1$. So, is there a generalization of the relation (1.3) for all positive odd powers $2m + 1$, $m = 0, 1, 2, \ldots$? Therefore, let us propose a conjecture

Conjecture 1.1. For every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \ldots, \mathbf{A}_{m,m}$ such that

$$
n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \dots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}
$$
 (1.4)

2. Approach via a system of linear equations

One approach to proving the conjecture was proposed by Albert Tkaczyk in his series of the preprints $[1, 2]$ $[1, 2]$ $[1, 2]$ and extended further at $[3]$. The main idea is to construct and solve a system of linear equations. Such a system of linear equations is constructed by expanding the definition of the coefficients $\mathbf{A}_{m,r}$ applying Binomial theorem [\[4\]](#page-15-5) and Faulhaber's formula [\[5\]](#page-15-6). Consider the definition of the coefficients $A_{m,r}$

$$
n^{2m+1} = \sum_{r=0}^{m} \mathbf{A}_{m,r} \sum_{k=1}^{n} k^r (n-k)^r
$$
 (2.1)

Expanding the $(n - k)^r$ part via Binomial theorem, we get

$$
n^{2m+1} = \sum_{r=0}^{m} \mathbf{A}_{m,r} \sum_{k=1}^{n} k^{r} (n-k)^{r}
$$

=
$$
\sum_{r=0}^{m} \mathbf{A}_{m,r} \sum_{k=1}^{n} k^{r} \left[\sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} k^{t} \right]
$$

=
$$
\sum_{r=0}^{m} \mathbf{A}_{m,r} \left[\sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \sum_{k=1}^{n} k^{t+r} \right]
$$

Applying the Faulhaber's formula to the sum $\sum_{k=1}^{n} k^{t+r}$ we get

$$
n^{2m+1} = \sum_{r=0}^{m} \mathbf{A}_{m,r} \left[\sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \sum_{k=1}^{n} k^{t+r} \right]
$$

\n
$$
= \mathbf{A}_{m,0} n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n + n^{3}) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30} (-n + n^{5}) \right]
$$

\n
$$
+ \mathbf{A}_{m,3} \left[\frac{1}{420} (-10n + 7n^{3} + 3n^{7}) \right] + \mathbf{A}_{m,4} \left[\frac{1}{630} (-21n + 20n^{3} + n^{9}) \right]
$$

\n
$$
+ \mathbf{A}_{m,5} \left[\frac{1}{2772} (-210n + 231n^{3} - 22n^{5} + n^{11}) \right]
$$

\n
$$
+ \mathbf{A}_{m,6} \left[\frac{1}{60060} (-15202n + 18200n^{3} - 3003n^{5} + 5n^{13}) \right]
$$

\n
$$
+ \mathbf{A}_{m,7} \left[\frac{1}{51480} (-60060n + 76010n^{3} - 16380n^{5} + 429n^{7} + n^{15}) \right]
$$

\n
$$
+ \mathbf{A}_{m,8} \left[\frac{1}{218790} (-1551693n + 2042040n^{3} - 516868n^{5} + 26520n^{7} + n^{17}) \right] + \cdots
$$

Given a fixed integer m , the coefficients $A_{m,r}$ can be determined via a system of linear equations. Consider an example

Example 2.1. Let be $m = 1$ so that we have the following relation defined by (2.2)

$$
\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6}(-n + n^3) \right] - n^3 = 0
$$

Multiplying by 6 right-hand side and left-hand side, we get

$$
6\mathbf{A}_{1,0}n + \mathbf{A}_{1,1}(-n + n^3) - 6n^3 = 0
$$

Opening brackets and rearranging the terms gives

$$
6\mathbf{A}_{1,0} - \mathbf{A}_{1,1}n + \mathbf{A}_{1,1}n^3 - 6n^3 = 0
$$

Combining the common terms yields

$$
n(6\mathbf{A}_{1,0} - \mathbf{A}_{1,1}) + n^3(\mathbf{A}_{1,1} - 6) = 0
$$

Therefore, the system of linear equations follows

$$
\begin{cases} 6\mathbf{A}_{1,0} - \mathbf{A}_{1,1} = 0 \\ \mathbf{A}_{1,1} - 6 = 0 \end{cases}
$$

Solving it, we get

$$
\begin{cases} \mathbf{A}_{1,1} = 6\\ \mathbf{A}_{1,0} = 1 \end{cases}
$$

So that odd-power identity [\(2.1\)](#page-2-4) holds

$$
n^3 = \sum_{k=1}^{n} 6k(n-k) + 1
$$

It is also clearly seen why the above identity is true evaluating the terms $6k(n - k) + 1$ over $0 \leq k \leq n$ as the following table shows

n/k 0 \ 1 \ 2 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 7				

Table 2. Values of $6k(n − k) + 1$. See the OEIS entry: [A287326](https://oeis.org/A287326) [\[6\]](#page-15-7).

Example 2.2. Let be $m = 2$ so that we have the following relation defined by (2.2)

$$
\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6}(-n + n^3) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30}(-n + n^5) \right] - n^5 = 0
$$

Multiplying by 30 right-hand side and left-hand side, we get

$$
30\mathbf{A}_{2,0}n + 5\mathbf{A}_{2,1}(-n + n^3) + \mathbf{A}_{2,2}(-n + n^5) - 30n^5 = 0
$$

Opening brackets and rearranging the terms gives

$$
30\mathbf{A}_{2,0} - 5\mathbf{A}_{2,1}n + 5\mathbf{A}_{2,1}n^3 - \mathbf{A}_{2,2}n + \mathbf{A}_{2,2}n^5 - 30n^5 = 0
$$

Combining the common terms yields

$$
n(30\mathbf{A}_{2,0} - 5\mathbf{A}_{2,1} - \mathbf{A}_{2,2}) + 5\mathbf{A}_{2,1}n^3 + n^5(\mathbf{A}_{2,2} - 30) = 0
$$

Therefore, the system of linear equations follows

 λ

$$
\begin{cases}\n30\mathbf{A}_{2,0} - 5\mathbf{A}_{2,1} - \mathbf{A}_{2,2} = 0 \\
\mathbf{A}_{2,1} = 0 \\
\mathbf{A}_{2,2} - 30 = 0\n\end{cases}
$$

Solving it, we get

$$
\begin{cases} \mathbf{A}_{2,2} = 30 \\ \mathbf{A}_{2,1} = 0 \\ \mathbf{A}_{2,0} = 1 \end{cases}
$$

So that odd-power identity (2.1) holds

$$
n^5 = \sum_{k=1}^{n} 30k^2(n-k)^2 + 1
$$

It is also clearly seen why the above identity is true evaluating the terms $30k^2(n-k)^2+1$ over $0\leq k\leq n$ as the following table shows

n/k 0			$1 \t 2 \t 3$		$5\degree$	$6\degree$	
θ	\vert 1						
		$1 \mid 1 \mid 1$					
		$\begin{array}{c cc} 2 & 1 & 31 & 1 \end{array}$					
			$\begin{array}{c cc} 3 & 1 & 121 & 121 & 1 \end{array}$				
			$4 \mid 1 \quad 271 \quad 481 \quad 271 \quad 1$				
				$5 \begin{array}{ l} 1 \end{array}$ 481 1081 1081 481 1			
6					$\begin{array}{ ccc c c c c c c c } \hline 1 & 751 & 1921 & 2431 & 1921 & 751 & 1 \hline \end{array}$		
					1 1081 3001 4321 4321 3001 1081 1		

Table 3. Values of $30k^2(n-k)^2 + 1$. See the OEIS entry [A300656](https://oeis.org/A300656) [\[7\]](#page-16-0).

Example 2.3. Let be $m = 3$ so that we have the following relation defined by (2.2)

$$
\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6}(-n + n^3) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30}(-n + n^5) \right] + \mathbf{A}_{m,3} \left[\frac{1}{420}(-10n + 7n^3 + 3n^7) \right] - n^7 = 0
$$

Multiplying by 420 right-hand side and left-hand side, we get

$$
420\mathbf{A}_{3,0}n + 70\mathbf{A}_{2,1}(-n + n^3) + 14\mathbf{A}_{2,2}(-n + n^5) + \mathbf{A}_{3,3}(-10n + 7n^3 + 3n^7) - 420n^7 = 0
$$

Opening brackets and rearranging the terms gives

$$
420\mathbf{A}_{3,0}n - 70\mathbf{A}_{3,1} + 70\mathbf{A}_{3,1}n^3 - 14\mathbf{A}_{3,2}n + 14\mathbf{A}_{3,2}n^5
$$

$$
- 10\mathbf{A}_{3,3}n + 7\mathbf{A}_{3,3}n^3 + 3\mathbf{A}_{3,3}n^7 - 420n^7 = 0
$$

Combining the common terms yields

$$
n(420\mathbf{A}_{3,0} - 70\mathbf{A}_{3,1} - 14\mathbf{A}_{3,2} - 10\mathbf{A}_{3,3})
$$

+ $n^3(70\mathbf{A}_{3,1} + 7\mathbf{A}_{3,3}) + n^5 14\mathbf{A}_{3,2} + n^7(3\mathbf{A}_{3,3} - 420) = 0$

Therefore, the system of linear equations follows

$$
\begin{cases}\n420\mathbf{A}_{3,0} - 70\mathbf{A}_{3,1} - 14\mathbf{A}_{3,2} - 10\mathbf{A}_{3,3} = 0 \\
70\mathbf{A}_{3,1} + 7\mathbf{A}_{3,3} = 0 \\
\mathbf{A}_{3,2} - 30 = 0 \\
3\mathbf{A}_{3,3} - 420 = 0\n\end{cases}
$$

Solving it, we get

$$
\begin{cases}\n\mathbf{A}_{3,3} = 140 \\
\mathbf{A}_{3,2} = 0 \\
\mathbf{A}_{3,1} = -\frac{7}{70}\mathbf{A}_{3,3} = -14 \\
\mathbf{A}_{3,0} = \frac{(70\mathbf{A}_{3,1} + 10\mathbf{A}_{3,3})}{420} = 1\n\end{cases}
$$

So that odd-power identity (2.1) holds

$$
n^{7} = \sum_{k=1}^{n} 140k^{3}(n-k)^{3} - 14k(n-k) + 1
$$

It is also clearly seen why the above identity is true evaluating the terms $140k^3(n-k)^3$ – $14k(n - k) + 1$ over $0 \le k \le n$ as the OEIS sequence [A300785](https://oeis.org/A300785) [\[8\]](#page-16-1) shows

Table 4. Values of $140k^3(n-k)^3 - 14k(n-k) + 1$. See the OEIS entry [A300785](https://oeis.org/A300785) [\[8\]](#page-16-1).

Example 2.4. Let be $m = 4$ so that we have the following relation defined by (2.2)

$$
\mathbf{A}_{m,0}n + \mathbf{A}_{m,1} \left[\frac{1}{6} (-n + n^3) \right] + \mathbf{A}_{m,2} \left[\frac{1}{30} (-n + n^5) \right] \n+ \mathbf{A}_{m,3} \left[\frac{1}{420} (-10n + 7n^3 + 3n^7) \right] \n+ \mathbf{A}_{m,4} \left[\frac{1}{630} (-21n + 20n^3 + n^9) \right] - n^9 = 0
$$

Multiplying by 630 right-hand side and left-hand side, we get

$$
630\mathbf{A}_{4,0}n + 105\mathbf{A}_{4,1}(-n + n^3) + 21\mathbf{A}_{4,2}(-n + n^5)
$$

$$
+ \frac{3}{2}\mathbf{A}_{4,3}(-10n + 7n^3 + 3n^7)
$$

$$
+ \mathbf{A}_{4,4}(-21n + 20n^3 + n^9) - 630n^9 = 0
$$

Opening brackets and rearranging the terms gives

$$
630\mathbf{A}_{4,0}n - 105\mathbf{A}_{4,1}n + 105\mathbf{A}_{4,1}n^3 - 21\mathbf{A}_{4,2}n + 21\mathbf{A}_{4,2}n^5
$$

$$
- \frac{3}{2}\mathbf{A}_{4,3} \cdot 10n + \frac{3}{2}\mathbf{A}_{4,3} \cdot 7n^3 + \frac{3}{2}\mathbf{A}_{4,3} \cdot 3n^7
$$

$$
- 21\mathbf{A}_{4,4}n + 20\mathbf{A}_{4,4}n^3 + \mathbf{A}_{4,4}n^9 - 630n^9 = 0
$$

Combining the common terms yields

$$
n(630\mathbf{A}_{4,0} - 105\mathbf{A}_{4,1} - 21\mathbf{A}_{4,2} - 15\mathbf{A}_{4,3} - 21\mathbf{A}_{4,4})
$$

$$
+ n^3 \left(105\mathbf{A}_{4,1} + \frac{21}{2}\mathbf{A}_{4,3} + 20\mathbf{A}_{4,4}\right) + n^5 (21\mathbf{A}_{4,2})
$$

$$
+ n^7 \left(\frac{9}{2}\mathbf{A}_{4,3}\right) + n^9 (\mathbf{A}_{4,4} - 630) = 0
$$

Therefore, the system of linear equations follows

$$
\begin{cases}\n630\mathbf{A}_{4,0} - 105\mathbf{A}_{4,1} - 21\mathbf{A}_{4,2} - 15\mathbf{A}_{4,3} - 21\mathbf{A}_{4,4} = 0 \\
105\mathbf{A}_{4,1} + \frac{21}{2}\mathbf{A}_{4,3} + 20\mathbf{A}_{4,4} = 0 \\
\mathbf{A}_{4,2} = 0 \\
\mathbf{A}_{4,3} = 0 \\
\mathbf{A}_{4,4} - 630 = 0\n\end{cases}
$$

Solving it, we get

$$
\begin{cases}\n\mathbf{A}_{4,4} = 630 \\
\mathbf{A}_{4,3} = 0 \\
\mathbf{A}_{4,2} = 0 \\
\mathbf{A}_{4,1} = -\frac{20}{105} \mathbf{A}_{4,4} = -120 \\
\mathbf{A}_{4,0} = \frac{105 \mathbf{A}_{4,1} + 21 \mathbf{A}_{4,4}}{630} = 1\n\end{cases}
$$

So that odd-power identity [\(2.1\)](#page-2-4) holds

$$
n^9 = \sum_{k=1}^{n} 630k^4(n-k)^4 - 120k(n-k) + 1
$$

3. Finding a recurrence relation

Another approach to determine the coefficients $A_{m,r}$ was proposed by Dr. Max Alekseyev in MathOverflow discussion [\[9\]](#page-16-2). Generally, the idea was to determine the coefficients $\mathbf{A}_{m,r}$ recursively starting from the base case $\mathbf{A}_{m,m}$ up to $\mathbf{A}_{m,r-1}, \ldots, \mathbf{A}_{m,0}$ via previously determined values. Consider the Faulhaber's formula

$$
\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{j=0}^{p} {p+1 \choose j} B_{j} n^{p+1-j}
$$

it is very important to note that the summation bound is p while binomial coefficient upper index is $p + 1$. It means that we cannot skip summation bounds unless we use some trick as

$$
\sum_{k=1}^{n} k^{p} = \frac{1}{p+1} \sum_{j=0}^{p} {p+1 \choose j} B_{j} n^{p+1-j} = \left[\frac{1}{p+1} \sum_{j=0}^{p+1} {p+1 \choose j} B_{j} n^{p+1-j} \right] - B_{p+1}
$$

$$
= \left[\frac{1}{p+1} \sum_{j} {p+1 \choose j} B_{j} n^{p+1-j} \right] - B_{p+1}
$$

Using the Faulhaber's formula $\sum_{k=1}^{n} k^p = \left[\frac{1}{p+1}\right]$ $\frac{1}{p+1}\sum_{j} {p+1 \choose j}$ \int_{j}^{+1}) $B_j n^{p+1-j}$ – B_{p+1} we get

$$
\sum_{k=1}^{n} k^{r} (n-k)^{r} = \sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \sum_{k=1}^{n} k^{t+r}
$$
\n
$$
= \sum_{t=0}^{r} (-1)^{t} {r \choose t} n^{r-t} \left[\frac{1}{t+r+1} \sum_{j} {t+r+1 \choose j} B_{j} n^{t+r+1-j} - B_{t+r+1} \right]
$$
\n
$$
= \sum_{t=0}^{r} {r \choose t} \left[\frac{(-1)^{t}}{t+r+1} \sum_{j} {t+r+1 \choose j} B_{j} n^{2r+1-j} - B_{t+r+1} n^{r-t} \right]
$$
\n
$$
= \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} \sum_{j} {t+r+1 \choose j} B_{j} n^{2r+1-j} - \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}
$$
\n
$$
= \sum_{j} \sum_{t} {r \choose t} \frac{(-1)^{t}}{t+r+1} {t+r+1 \choose j} B_{j} n^{2r+1-j} - \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}
$$
\n
$$
= \sum_{j} B_{j} n^{2r+1-j} \sum_{t} {r \choose t} \frac{(-1)^{t}}{t+r+1} {t+r+1 \choose j} - \sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t}
$$

Now, we notice that

$$
\sum_{t} {r \choose t} \frac{(-1)^{t}}{r+t+1} {r+t+1 \choose j} = \begin{cases} \frac{1}{(2r+1)\binom{2r}{r}}, & \text{if } j = 0; \\ \frac{(-1)^{r}}{j} {r \choose 2r-j+1}, & \text{if } j > 0. \end{cases}
$$
(3.1)

An elegant proof of the above binomial identity is provided in [\[10\]](#page-16-3). In particular, the equa-tion [\(3.1\)](#page-10-0) is zero for $0 < t \leq j.$ So that taking $j=0$ we have

$$
\sum_{k=1}^{n} k^{r} (n-k)^{r} = \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + \left[\sum_{j\geq 1} B_{j} n^{2r+1-j} \sum_{t} \binom{r}{t} \frac{(-1)^{t}}{t+r+1} \binom{t+r+1}{j} \right]
$$

$$
- \left[\sum_{t=0}^{r} \binom{r}{t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t} \right]
$$

Now let's simplify the double summation by applying the identity [\(3.1\)](#page-10-0)

$$
\sum_{k=1}^{n} k^{r} (n-k)^{r} = \frac{1}{(2r+1) {2r \choose r}} n^{2r+1} + \underbrace{\left[\sum_{j\geq 1} \frac{(-1)^{r}}{j} {r \choose 2r-j+1} B_{j} n^{2r+1-j} \right]}_{(*)}
$$

$$
- \underbrace{\left[\sum_{t=0}^{r} {r \choose t} \frac{(-1)^{t}}{t+r+1} B_{t+r+1} n^{r-t} \right]}_{(\diamond)}
$$

Hence, introducing $\ell = 2r - j + 1$ to (\star) and $\ell = r - t$ to (\diamond) we collapse the common terms of the above equation so that we get

$$
\sum_{k=1}^{n} k^{r} (n-k)^{r} = \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + \left[\sum_{\ell} \frac{(-1)^{r}}{2r+1-\ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell} \right]
$$

$$
- \left[\sum_{\ell} \binom{r}{\ell} \frac{(-1)^{r-\ell}}{2r+1-\ell} B_{2r+1-\ell} n^{\ell} \right]
$$

$$
= \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + 2 \sum_{\text{odd }\ell} \frac{(-1)^{r}}{2r+1-\ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell}
$$

Using the definition of $\mathbf{A}_{m,r}$, we obtain the following identity for polynomials in n

$$
\sum_{r} \mathbf{A}_{m,r} \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + 2 \sum_{r} \mathbf{A}_{m,r} \sum_{\text{odd } \ell} \frac{(-1)^r}{2r+1-\ell} \binom{r}{\ell} B_{2r+1-\ell} n^{\ell} \equiv n^{2m+1}
$$

Replacing odd ℓ by d we get

$$
\sum_{r} \mathbf{A}_{m,r} \frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} + 2 \sum_{r} \mathbf{A}_{m,r} \sum_{d} \frac{(-1)^r}{2r-2d} \binom{r}{2d+1} B_{2r-2d} n^{2d+1} \equiv n^{2m+1}
$$
\n
$$
\sum_{r} \mathbf{A}_{m,r} \left[\frac{1}{(2r+1)\binom{2r}{r}} n^{2r+1} \right] + 2 \sum_{r} \mathbf{A}_{m,r} \left[\sum_{d} \frac{(-1)^r}{2r-2d} \binom{r}{2d+1} B_{2r-2d} n^{2d+1} \right] - n^{2m+1} (3.29)
$$

Taking the coefficient of n^{2m+1} in (3.2) , we get

$$
\mathbf{A}_{m,m} = (2m+1)\binom{2m}{m}
$$

and taking the coefficient of n^{2d+1} for an integer d in the range $m/2 \le d < m$, we get

 $\mathbf{A}_{m,d}=0$

Taking the coefficient of n^{2d+1} for d in the range $m/4 \leq d < m/2$ we get

$$
\mathbf{A}_{m,d} \frac{1}{(2d+1)\binom{2d}{d}} + 2(2m+1)\binom{2m}{m}\binom{m}{2d+1}\frac{(-1)^m}{2m-2d}B_{2m-2d} = 0
$$

i.e

$$
\mathbf{A}_{m,d} = (-1)^{m-1} \frac{(2m+1)!}{d!d!m!(m-2d-1)!} \frac{1}{m-d} B_{2m-2d}
$$

Continue similarly we can express $\mathbf{A}_{m,r}$ for each integer r in range $m/2^{s+1} \leq r \leq m/2^s$ (iterating consecutively $s = 1, 2, ...$) via previously determined values of $\mathbf{A}_{m,d}$ as follows

$$
\mathbf{A}_{m,r} = (2r+1) \binom{2r}{r} \sum_{d \ge 2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}
$$

Finally, the coefficient $\mathbf{A}_{m,r}$ is defined recursively as

$$
\mathbf{A}_{m,r} := \begin{cases} (2r+1)\binom{2r}{r}, & \text{if } r = m; \\ (2r+1)\binom{2r}{r} \sum_{d\geq 2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}, & \text{if } 0 \leq r < m; \\ 0, & \text{if } r < 0 \text{ or } r > m, \end{cases} \tag{3.3}
$$

where B_t are Bernoulli numbers [\[11\]](#page-16-4). It is assumed that $B_1 = \frac{1}{2}$ $\frac{1}{2}$. For example,

m/r	θ		$\overline{2}$	3	4	5	6	
$\boldsymbol{0}$	1							
$\mathbf{1}$	1	6						
$\overline{2}$	1	$\overline{0}$	30					
3	1	-14	θ	140				
$\overline{4}$	1	-120	$\overline{0}$	$\overline{0}$	630			
$\overline{5}$	1	-1386	660	θ	$\overline{0}$	2772		
6	1	-21840	18018	$\overline{0}$	θ	θ	12012	
$\overline{7}$	1	-450054	491400	-60060	θ	$\overline{0}$	0	51480

Table 5. Coefficients $A_{m,r}$. See OEIS sequences [\[12,](#page-16-5) [13\]](#page-16-6).

The coefficients $\mathbf{A}_{m,r}$ are also registered in the OEIS [\[12,](#page-16-5) [13\]](#page-16-6). It is as well interesting to notice that row sums of the $\mathbf{A}_{m,r}$ give powers of 2

$$
\sum_{r=0}^{m} \mathbf{A}_{m,r} = 2^{2m+1}
$$

4. Recurrence relation: examples

Consider the definition [\(3.3\)](#page-12-0) of the coefficients $\mathbf{A}_{m,r}$, it can be written as

$$
\mathbf{A}_{m,r} := \begin{cases} (2r+1)\binom{2r}{r}, & \text{if } r = m; \\ \sum_{d \ge 2r+1}^{m} \mathbf{A}_{m,d} \underbrace{(2r+1)\binom{2r}{r}\binom{d}{2r+1}\frac{(-1)^{d-1}}{d-r} B_{2d-2r}}_{T(d,r)}, & \text{if } 0 \le r < m; \\ 0, & \text{if } r < 0 \text{ or } r > m, \end{cases}
$$

Therefore, let be a definition of the real coefficient $T(d, r)$

Definition 4.1. Real coefficient $T(d, r)$

$$
T(d,r) = (2r+1) \binom{2r}{r} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r}
$$

Example 4.2. Let be $m = 2$ so first we get $A_{2,2}$

$$
\mathbf{A}_{2,2} = 5 \binom{4}{2} = 30
$$

Then $\mathbf{A}_{2,1} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $1 \leq d < 2$. Finally, the coefficient $\mathbf{A}_{2,0}$ is

$$
\mathbf{A}_{2,0} = \sum_{d\geq 1}^{2} \mathbf{A}_{2,d} \cdot T(d,0) = \mathbf{A}_{2,1} \cdot T(1,0) + \mathbf{A}_{2,2} \cdot T(2,0)
$$

$$
= 30 \cdot \frac{1}{30} = 1
$$

Example 4.3. Let be $m = 3$ so that first we get $A_{3,3}$

$$
\mathbf{A}_{3,3} = 7 \binom{6}{3} = 140
$$

Then $\mathbf{A}_{3,2} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $2 \leq d < 3$. The $\mathbf{A}_{3,1}$ coefficient is non-zero and calculated as

$$
\mathbf{A}_{3,1} = \sum_{d \ge 3}^{3} \mathbf{A}_{3,d} \cdot T(d, 1) = \mathbf{A}_{3,3} \cdot T(3, 1) = 140 \cdot \left(-\frac{1}{10}\right) = -14
$$

Finally, the coefficient $A_{3,0}$ is

$$
\mathbf{A}_{3,0} = \sum_{d\geq 1}^{3} \mathbf{A}_{3,d} \cdot T(d,0) = \mathbf{A}_{3,1} \cdot T(1,0) + \mathbf{A}_{3,2} \cdot T(2,0) + \mathbf{A}_{3,3} \cdot T(3,0)
$$

$$
= -14 \cdot \frac{1}{6} + 140 \cdot \frac{1}{42} = 1
$$

Example 4.4. Let be $m = 4$ so that first we get $A_{4,4}$

$$
\mathbf{A}_{4,4} = 9 \binom{8}{4} = 630
$$

Then $\mathbf{A}_{4,3} = 0$ and $\mathbf{A}_{4,2} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $2 \leq d < 4$. The value of the coefficient $A_{4,1}$ is non-zero and calculated as

$$
\mathbf{A}_{4,1} = \sum_{d \ge 3}^{4} \mathbf{A}_{4,d} \cdot T(d, 1) = \mathbf{A}_{4,3} \cdot T(3, 1) + \mathbf{A}_{4,4} \cdot T(4, 1) = 630 \cdot \left(-\frac{4}{21}\right) = -120
$$

Finally, the coefficient $\mathbf{A}_{4,0}$ is

$$
\mathbf{A}_{4,0} = \sum_{d \ge 1}^{4} \mathbf{A}_{4,d} \cdot T(d,0) = \mathbf{A}_{4,1} \cdot T(1,0) + \mathbf{A}_{4,4} \cdot T(4,0) = -120 \cdot \frac{1}{6} + 630 \cdot \frac{1}{30} = 1
$$

Example 4.5. Let be $m = 5$ so that first we get $A_{5,5}$

$$
\mathbf{A}_{5,5} = 11 \binom{10}{5} = 2772
$$

Then $\mathbf{A}_{5,4} = 0$ and $\mathbf{A}_{5,3} = 0$ because $\mathbf{A}_{m,d}$ is zero in the range $m/2 \leq d < m$ means that zero for d in $3 \leq d < 5$. The value of the coefficient $A_{5,2}$ is non-zero and calculated as

$$
\mathbf{A}_{5,2} = \sum_{d \ge 5}^{5} \mathbf{A}_{5,d} \cdot T(d,2) = \mathbf{A}_{5,5} \cdot T(5,2) = 2772 \cdot \frac{5}{21} = 660
$$

The value of the coefficient $A_{5,1}$ is non-zero and calculated as

$$
\mathbf{A}_{5,1} = \sum_{d \ge 3}^{5} \mathbf{A}_{5,d} \cdot T(d, 1) = \mathbf{A}_{5,3} \cdot T(3, 1) + \mathbf{A}_{5,4} \cdot T(4, 1) + \mathbf{A}_{5,5} \cdot T(5, 1)
$$

$$
= 2772 \cdot \left(-\frac{1}{2}\right) = -1386
$$

Finally, the coefficient $A_{5,0}$ is

$$
\mathbf{A}_{5,0} = \sum_{d\geq 1}^{5} \mathbf{A}_{5,d} \cdot T(d,0) = \mathbf{A}_{5,1} \cdot T(1,0) + \mathbf{A}_{5,2} \cdot T(2,0) + \mathbf{A}_{5,5} \cdot T(5,0)
$$

$$
= -1386 \cdot \frac{1}{6} + 660 \cdot \frac{1}{30} + 2772 \cdot \frac{5}{66} = 1
$$

As expected.

5. Conclusions

In this manuscript, we have shown that for every $n \geq 1$, $n, m \in \mathbb{N}$ there are coefficients $\mathbf{A}_{m,0}, \mathbf{A}_{m,1}, \ldots, \mathbf{A}_{m,m}$ such that the polynomial identity holds

$$
n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^{0} (n-k)^{0} + \mathbf{A}_{m,1} (n-k)^{1} + \cdots + \mathbf{A}_{m,m} k^{m} (n-k)^{m}
$$

In particular, the coefficients $\mathbf{A}_{m,r}$ can be evaluated in both ways, by constructing and solving a certain system of linear equations or by deriving a recurrence relation; all these approaches are examined providing examples in the sections [\(2\)](#page-2-0) and [\(3\)](#page-9-0). Moreover, to validate the results, supplementary Mathematica programs are available at [\[14\]](#page-16-7).

REFERENCES

- [1] Tkaczyk, Albert. About the problem of a triangle developing the polynomial function. Published electronically at [LinkedIn](https://www.linkedin.com/pulse/problem-triangle-developing-polynomial-function-fn-nm-albert-tkaczyk/), 2018.
- [2] Tkaczyk, Albert. On the problem of a triangle developing the polynomial function - continuation. Published electronically at [LinkedIn](https://www.linkedin.com/pulse/problem-triangle-developing-polynomial-function-f-n-m-albert-tkaczyk/), 2018.
- [3] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509– 513, 2022.
- [4] Milton Abramowitz, Irene A Stegun, and Robert H Romer. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1988.
- [5] Alan F Beardon. Sums of powers of integers. The American mathematical monthly, 103(3):201–213, 1996.
- [6] Petro Kolosov. Numerical triangle, row sums give third power, Entry A287326 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A287326>, 2017.
- [7] Petro Kolosov. Numerical triangle, row sums give fifth power, Entry A300656 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A300656>, 2018.
- [8] Petro Kolosov. Numerical triangle, row sums give seventh power, Entry A300785 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A300785>, 2018.
- [9] Alekseyev, Max. MathOverflow answer 297916/113033. Published electronically at [https://](https://mathoverflow.net/a/297916/113033) mathoverflow.net/a/297916/113033, 2018.
- [10] Scheuer, Markus. MathStackExchange answer 4724343/463487. Published electronically at [https://](https://math.stackexchange.com/a/4724343/463487) math.stackexchange.com/a/4724343/463487, 2023.
- [11] Harry Bateman. *Higher transcendental functions [volumes i-iii]*, volume 1. McGRAW-HILL book company, 1953.
- [12] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A302971>, 2018.
- [13] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences. Published electronically at <https://oeis.org/A304042>, 2018.
- [14] Kolosov, Petro. Polynomial identity involving Binomial Theorem and Faulhaber's formula Source files. Published electronically at [https://github.com/kolosovpetro/](https://github.com/kolosovpetro/PolynomialIdentityInvolvingBTandFaulhaber) [PolynomialIdentityInvolvingBTandFaulhaber](https://github.com/kolosovpetro/PolynomialIdentityInvolvingBTandFaulhaber), 2023.

Version: 1.0.4-tags-v1-0-3.5+tags/v1.0.3.9e8d96d

Email address: kolosovp94@gmail.com URL: https://kolosovpetro.github.io