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Abstract. In this manuscript, we have shown that for every n ≥ 1, n,m ∈ N there are

coefficients Am,0,Am,1, . . . ,Am,m such that the polynomial identity holds

n2m+1 =

n∑
k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mkm(n− k)m

In particular, the coefficients Am,r can be evaluated in both ways, by constructing and

solving a certain system of linear equations or by deriving a recurrence relation; all these

approaches are examined providing examples. To validate the results, there are supplemen-

tary Mathematica programs available.
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1. Introduction

Considering the table of forward finite differences of the polynomial n3

n n3 ∆(n3) ∆2(n3) ∆3(n3)

0 0 1 6 6

1 1 7 12 6

2 8 19 18 6

3 27 37 24 6

4 64 61 30 6

5 125 91 36

6 216 127

7 343

Table 1. Table of finite differences of the polynomial n3.

We can easily observe that finite differences 1 of the polynomial n3 may be expressed

according to the following relation, via rearrangement of the terms

∆(03) = 1 + 6 · 0

∆(13) = 1 + 6 · 0 + 6 · 1

∆(23) = 1 + 6 · 0 + 6 · 1 + 6 · 2

∆(33) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3

...

∆(n3) = 1 + 6 · 0 + 6 · 1 + 6 · 2 + 6 · 3 + · · ·+ 6 · n

(1.1)

1One may assume that it is possible to reach the form n2m+1 =
∑n

k=1 Am,0k
0(n−k)0+Am,1(n−k)1+· · ·+

Am,mkm(n−k)m simply taking finite differences of the odd-powered polynomial n2m+1 up to order of 2m+1

and interpolating it backwards similarly as it is shown in the equation (1.1). However, my observations do

not provide any evidence that such assumption is correct. Interestingly enough is that we could have been

arrived to the pure differential approach of the relation (1.4) then.
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Furthermore, the polynomial n3 is equivalent to

n3 = [1 + 6 · 0] + [1 + 6 · 0 + 6 · 1] + [1 + 6 · 0 + 6 · 1 + 6 · 2] + · · ·

+ [1 + 6 · 0 + 6 · 1 + 6 · 2 + · · ·+ 6 · (n− 1)]

Rearranging the above equation, we get

n3 = n+ (n− 0) · 6 · 0 + (n− 1) · 6 · 1 + (n− 2) · 6 · 2 + · · ·+ 1 · 6 · (n− 1)

Therefore, we can consider the polynomial n3 as

n3 =
n∑

k=1

6k(n− k) + 1 (1.2)

Assume that equation (1.2) has the following implicit form

n3 =
n∑

k=1

A1,1k
1(n− k)1 +A1,0k

0(n− k)0, (1.3)

where A1,1 = 6 and A1,0 = 1, respectively. Note that here the power of 3 is actually defined

by 2m + 1 where m = 1. So, is there a generalization of the relation (1.3) for all positive

odd powers 2m+ 1, m = 0, 1, 2, . . . ? Therefore, let us propose a conjecture

Conjecture 1.1. For every n ≥ 1, n,m ∈ N there are coefficients Am,0,Am,1, . . . ,Am,m

such that

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m (1.4)

2. Approach via a system of linear equations

One approach to proving the conjecture was proposed by Albert Tkaczyk in his series of

the preprints [1, 2] and extended further at [3]. The main idea is to construct and solve a

system of linear equations. Such a system of linear equations is constructed by expanding the

definition of the coefficients Am,r applying Binomial theorem [4] and Faulhaber’s formula [5].

Consider the definition of the coefficients Am,r

n2m+1 =
m∑
r=0

Am,r

n∑
k=1

kr(n− k)r (2.1)
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Expanding the (n− k)r part via Binomial theorem, we get

n2m+1 =
m∑
r=0

Am,r

n∑
k=1

kr(n− k)r

=
m∑
r=0

Am,r

n∑
k=1

kr

[
r∑

t=0

(−1)t
(
r

t

)
nr−tkt

]

=
m∑
r=0

Am,r

[
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

]
Applying the Faulhaber’s formula to the sum

∑n
k=1 k

t+r we get

n2m+1 =
m∑
r=0

Am,r

[
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

]

= Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
+Am,4

[
1

630
(−21n+ 20n3 + n9)

]
+Am,5

[
1

2772
(−210n+ 231n3 − 22n5 + n11)

]
+Am,6

[
1

60060
(−15202n+ 18200n3 − 3003n5 + 5n13)

]
+Am,7

[
1

51480
(−60060n+ 76010n3 − 16380n5 + 429n7 + n15)

]
+Am,8

[
1

218790
(−1551693n+ 2042040n3 − 516868n5 + 26520n7 + n17)

]
+ · · ·

(2.2)

Given a fixed integer m, the coefficients Am,r can be determined via a system of linear

equations. Consider an example

Example 2.1. Let be m = 1 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
− n3 = 0

Multiplying by 6 right-hand side and left-hand side, we get

6A1,0n+A1,1(−n+ n3)− 6n3 = 0
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Opening brackets and rearranging the terms gives

6A1,0 −A1,1n+A1,1n
3 − 6n3 = 0

Combining the common terms yields

n(6A1,0 −A1,1) + n3(A1,1 − 6) = 0

Therefore, the system of linear equations follows
6A1,0 −A1,1 = 0

A1,1 − 6 = 0

Solving it, we get 
A1,1 = 6

A1,0 = 1

So that odd-power identity (2.1) holds

n3 =
n∑

k=1

6k(n− k) + 1

It is also clearly seen why the above identity is true evaluating the terms 6k(n− k) + 1 over

0 ≤ k ≤ n as the following table shows

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 7 1

3 1 13 13 1

4 1 19 25 19 1

5 1 25 37 37 25 1

6 1 31 49 55 49 31 1

7 1 37 61 73 73 61 37 1

Table 2. Values of 6k(n− k) + 1. See the OEIS entry: A287326 [6].

https://oeis.org/A287326
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Example 2.2. Let be m = 2 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
− n5 = 0

Multiplying by 30 right-hand side and left-hand side, we get

30A2,0n+ 5A2,1(−n+ n3) +A2,2(−n+ n5)− 30n5 = 0

Opening brackets and rearranging the terms gives

30A2,0 − 5A2,1n+ 5A2,1n
3 −A2,2n+A2,2n

5 − 30n5 = 0

Combining the common terms yields

n(30A2,0 − 5A2,1 −A2,2) + 5A2,1n
3 + n5(A2,2 − 30) = 0

Therefore, the system of linear equations follows
30A2,0 − 5A2,1 −A2,2 = 0

A2,1 = 0

A2,2 − 30 = 0

Solving it, we get 
A2,2 = 30

A2,1 = 0

A2,0 = 1

So that odd-power identity (2.1) holds

n5 =
n∑

k=1

30k2(n− k)2 + 1

It is also clearly seen why the above identity is true evaluating the terms 30k2(n − k)2 + 1

over 0 ≤ k ≤ n as the following table shows
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n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 31 1

3 1 121 121 1

4 1 271 481 271 1

5 1 481 1081 1081 481 1

6 1 751 1921 2431 1921 751 1

7 1 1081 3001 4321 4321 3001 1081 1

Table 3. Values of 30k2(n− k)2 + 1. See the OEIS entry A300656 [7].

Example 2.3. Let be m = 3 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
−n7 = 0

Multiplying by 420 right-hand side and left-hand side, we get

420A3,0n+ 70A2,1(−n+ n3) + 14A2,2(−n+ n5) +A3,3(−10n+ 7n3 + 3n7)− 420n7 = 0

Opening brackets and rearranging the terms gives

420A3,0n− 70A3,1 + 70A3,1n
3 − 14A3,2n+ 14A3,2n

5

− 10A3,3n+ 7A3,3n
3 + 3A3,3n

7 − 420n7 = 0

Combining the common terms yields

n(420A3,0 − 70A3,1 − 14A3,2 − 10A3,3)

+ n3(70A3,1 + 7A3,3) + n514A3,2 + n7(3A3,3 − 420) = 0

Therefore, the system of linear equations follows

420A3,0 − 70A3,1 − 14A3,2 − 10A3,3 = 0

70A3,1 + 7A3,3 = 0

A3,2 − 30 = 0

3A3,3 − 420 = 0

https://oeis.org/A300656
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Solving it, we get 

A3,3 = 140

A3,2 = 0

A3,1 = − 7
70
A3,3 = −14

A3,0 =
(70A3,1+10A3,3)

420
= 1

So that odd-power identity (2.1) holds

n7 =
n∑

k=1

140k3(n− k)3 − 14k(n− k) + 1

It is also clearly seen why the above identity is true evaluating the terms 140k3(n − k)3 −

14k(n− k) + 1 over 0 ≤ k ≤ n as the OEIS sequence A300785 [8] shows

n/k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 1 127 1

3 1 1093 1093 1

4 1 3739 8905 3739 1

5 1 8905 30157 30157 8905 1

6 1 17431 71569 101935 71569 17431 1

7 1 30157 139861 241753 241753 139861 30157 1

Table 4. Values of 140k3(n−k)3−14k(n−k)+1. See the OEIS entry A300785 [8].

Example 2.4. Let be m = 4 so that we have the following relation defined by (2.2)

Am,0n+Am,1

[
1

6
(−n+ n3)

]
+Am,2

[
1

30
(−n+ n5)

]
+Am,3

[
1

420
(−10n+ 7n3 + 3n7)

]
+Am,4

[
1

630
(−21n+ 20n3 + n9)

]
− n9 = 0

https://oeis.org/A300785
https://oeis.org/A300785
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Multiplying by 630 right-hand side and left-hand side, we get

630A4,0n+ 105A4,1(−n+ n3) + 21A4,2(−n+ n5)

+
3

2
A4,3(−10n+ 7n3 + 3n7)

+A4,4(−21n+ 20n3 + n9)− 630n9 = 0

Opening brackets and rearranging the terms gives

630A4,0n− 105A4,1n+ 105A4,1n
3 − 21A4,2n+ 21A4,2n

5

− 3

2
A4,3 · 10n+

3

2
A4,3 · 7n3 +

3

2
A4,3 · 3n7

− 21A4,4n+ 20A4,4n
3 +A4,4n

9 − 630n9 = 0

Combining the common terms yields

n(630A4,0 − 105A4,1 − 21A4,2 − 15A4,3 − 21A4,4)

+ n3

(
105A4,1 +

21

2
A4,3 + 20A4,4

)
+ n5(21A4,2)

+ n7

(
9

2
A4,3

)
+ n9(A4,4 − 630) = 0

Therefore, the system of linear equations follows

630A4,0 − 105A4,1 − 21A4,2 − 15A4,3 − 21A4,4 = 0

105A4,1 +
21
2
A4,3 + 20A4,4 = 0

A4,2 = 0

A4,3 = 0

A4,4 − 630 = 0
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Solving it, we get 

A4,4 = 630

A4,3 = 0

A4,2 = 0

A4,1 = − 20
105

A4,4 = −120

A4,0 =
105A4,1+21A4,4

630
= 1

So that odd-power identity (2.1) holds

n9 =
n∑

k=1

630k4(n− k)4 − 120k(n− k) + 1

3. Finding a recurrence relation

Another approach to determine the coefficients Am,r was proposed by Dr. Max Alek-

seyev in MathOverflow discussion [9]. Generally, the idea was to determine the coefficients

Am,r recursively starting from the base case Am,m up to Am,r−1, . . . ,Am,0 via previously

determined values. Consider the Faulhaber’s formula

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

it is very important to note that the summation bound is p while binomial coefficient upper

index is p+1. It means that we cannot skip summation bounds unless we use some trick as

n∑
k=1

kp =
1

p+ 1

p∑
j=0

(
p+ 1

j

)
Bjn

p+1−j =

[
1

p+ 1

p+1∑
j=0

(
p+ 1

j

)
Bjn

p+1−j

]
−Bp+1

=

[
1

p+ 1

∑
j

(
p+ 1

j

)
Bjn

p+1−j

]
−Bp+1
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Using the Faulhaber’s formula
∑n

k=1 k
p =

[
1

p+1

∑
j

(
p+1
j

)
Bjn

p+1−j
]
−Bp+1 we get

n∑
k=1

kr(n− k)r =
r∑

t=0

(−1)t
(
r

t

)
nr−t

n∑
k=1

kt+r

=
r∑

t=0

(−1)t
(
r

t

)
nr−t

[
1

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

t+r+1−j −Bt+r+1

]

=
r∑

t=0

(
r

t

)[
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −Bt+r+1n
r−t

]

=
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1

∑
j

(
t+ r + 1

j

)
Bjn

2r+1−j −
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

=
∑
j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
Bjn

2r+1−j −
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

=
∑
j

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)
−

r∑
t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

Now, we notice that

∑
t

(
r

t

)
(−1)t

r + t+ 1

(
r + t+ 1

j

)
=


1

(2r+1)(2rr )
, if j = 0;

(−1)r

j

(
r

2r−j+1

)
, if j > 0.

(3.1)

An elegant proof of the above binomial identity is provided in [10]. In particular, the equa-

tion (3.1) is zero for 0 < t ≤ j. So that taking j = 0 we have

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
j≥1

Bjn
2r+1−j

∑
t

(
r

t

)
(−1)t

t+ r + 1

(
t+ r + 1

j

)]

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
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Now let’s simplify the double summation by applying the identity (3.1)

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
j≥1

(−1)r

j

(
r

2r − j + 1

)
Bjn

2r+1−j

]
︸ ︷︷ ︸

(⋆)

−

[
r∑

t=0

(
r

t

)
(−1)t

t+ r + 1
Bt+r+1n

r−t

]
︸ ︷︷ ︸

(⋄)

Hence, introducing ℓ = 2r− j + 1 to (⋆) and ℓ = r− t to (⋄) we collapse the common terms

of the above equation so that we get

n∑
k=1

kr(n− k)r =
1

(2r + 1)
(
2r
r

)n2r+1 +

[∑
ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

]

−

[∑
ℓ

(
r

ℓ

)
(−1)r−ℓ

2r + 1− ℓ
B2r+1−ℓn

ℓ

]

=
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ

Using the definition of Am,r, we obtain the following identity for polynomials in n∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
r

Am,r

∑
odd ℓ

(−1)r

2r + 1− ℓ

(
r

ℓ

)
B2r+1−ℓn

ℓ ≡ n2m+1

Replacing odd ℓ by d we get∑
r

Am,r
1

(2r + 1)
(
2r
r

)n2r+1 + 2
∑
r

Am,r

∑
d

(−1)r

2r − 2d

(
r

2d+ 1

)
B2r−2dn

2d+1 ≡ n2m+1

∑
r

Am,r

[
1

(2r + 1)
(
2r
r

)n2r+1

]
+ 2

∑
r

Am,r

[∑
d

(−1)r

2r − 2d

(
r

2d+ 1

)
B2r−2dn

2d+1

]
− n2m+1 = 0(3.2)

Taking the coefficient of n2m+1 in (3.2), we get

Am,m = (2m+ 1)

(
2m

m

)
and taking the coefficient of n2d+1 for an integer d in the range m/2 ≤ d < m, we get

Am,d = 0
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Taking the coefficient of n2d+1 for d in the range m/4 ≤ d < m/2 we get

Am,d
1

(2d+ 1)
(
2d
d

) + 2(2m+ 1)

(
2m

m

)(
m

2d+ 1

)
(−1)m

2m− 2d
B2m−2d = 0

i.e

Am,d = (−1)m−1 (2m+ 1)!

d!d!m!(m− 2d− 1)!

1

m− d
B2m−2d

Continue similarly we can express Am,r for each integer r in range m/2s+1 ≤ r < m/2s

(iterating consecutively s = 1, 2, . . .) via previously determined values of Am,d as follows

Am,r = (2r + 1)

(
2r

r

) m∑
d≥2r+1

Am,d

(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Finally, the coefficient Am,r is defined recursively as

Am,r :=


(2r + 1)

(
2r
r

)
, if r = m;

(2r + 1)
(
2r
r

)∑m
d≥2r+1Am,d

(
d

2r+1

) (−1)d−1

d−r
B2d−2r, if 0 ≤ r < m;

0, if r < 0 or r > m,

(3.3)

where Bt are Bernoulli numbers [11]. It is assumed that B1 =
1
2
. For example,

m/r 0 1 2 3 4 5 6 7

0 1

1 1 6

2 1 0 30

3 1 -14 0 140

4 1 -120 0 0 630

5 1 -1386 660 0 0 2772

6 1 -21840 18018 0 0 0 12012

7 1 -450054 491400 -60060 0 0 0 51480

Table 5. Coefficients Am,r. See OEIS sequences [12, 13].

The coefficients Am,r are also registered in the OEIS [12, 13]. It is as well interesting to

notice that row sums of the Am,r give powers of 2

m∑
r=0

Am,r = 22m+1
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4. Recurrence relation: examples

Consider the definition (3.3) of the coefficients Am,r, it can be written as

Am,r :=



(2r + 1)
(
2r
r

)
, if r = m;∑m

d≥2r+1Am,d (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r︸ ︷︷ ︸

T (d,r)

, if 0 ≤ r < m;

0, if r < 0 or r > m,

Therefore, let be a definition of the real coefficient T (d, r)

Definition 4.1. Real coefficient T (d, r)

T (d, r) = (2r + 1)

(
2r

r

)(
d

2r + 1

)
(−1)d−1

d− r
B2d−2r

Example 4.2. Let be m = 2 so first we get A2,2

A2,2 = 5

(
4

2

)
= 30

Then A2,1 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

1 ≤ d < 2. Finally, the coefficient A2,0 is

A2,0 =
2∑

d≥1

A2,d · T (d, 0) = A2,1 · T (1, 0) +A2,2 · T (2, 0)

= 30 · 1

30
= 1

Example 4.3. Let be m = 3 so that first we get A3,3

A3,3 = 7

(
6

3

)
= 140

Then A3,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that zero for d in

2 ≤ d < 3. The A3,1 coefficient is non-zero and calculated as

A3,1 =
3∑

d≥3

A3,d · T (d, 1) = A3,3 · T (3, 1) = 140 ·
(
− 1

10

)
= −14
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Finally, the coefficient A3,0 is

A3,0 =
3∑

d≥1

A3,d · T (d, 0) = A3,1 · T (1, 0) +A3,2 · T (2, 0) +A3,3 · T (3, 0)

= −14 · 1
6
+ 140 · 1

42
= 1

Example 4.4. Let be m = 4 so that first we get A4,4

A4,4 = 9

(
8

4

)
= 630

Then A4,3 = 0 and A4,2 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 2 ≤ d < 4. The value of the coefficient A4,1 is non-zero and calculated as

A4,1 =
4∑

d≥3

A4,d · T (d, 1) = A4,3 · T (3, 1) +A4,4 · T (4, 1) = 630 ·
(
− 4

21

)
= −120

Finally, the coefficient A4,0 is

A4,0 =
4∑

d≥1

A4,d · T (d, 0) = A4,1 · T (1, 0) +A4,4 · T (4, 0) = −120 · 1
6
+ 630 · 1

30
= 1

Example 4.5. Let be m = 5 so that first we get A5,5

A5,5 = 11

(
10

5

)
= 2772

Then A5,4 = 0 and A5,3 = 0 because Am,d is zero in the range m/2 ≤ d < m means that

zero for d in 3 ≤ d < 5. The value of the coefficient A5,2 is non-zero and calculated as

A5,2 =
5∑

d≥5

A5,d · T (d, 2) = A5,5 · T (5, 2) = 2772 · 5

21
= 660

The value of the coefficient A5,1 is non-zero and calculated as

A5,1 =
5∑

d≥3

A5,d · T (d, 1) = A5,3 · T (3, 1) +A5,4 · T (4, 1) +A5,5 · T (5, 1)

= 2772 ·
(
−1

2

)
= −1386
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Finally, the coefficient A5,0 is

A5,0 =
5∑

d≥1

A5,d · T (d, 0) = A5,1 · T (1, 0) +A5,2 · T (2, 0) +A5,5 · T (5, 0)

= −1386 · 1
6
+ 660 · 1

30
+ 2772 · 5

66
= 1

As expected.

5. Conclusions

In this manuscript, we have shown that for every n ≥ 1, n,m ∈ N there are coefficients

Am,0,Am,1, . . . ,Am,m such that the polynomial identity holds

n2m+1 =
n∑

k=1

Am,0k
0(n− k)0 +Am,1(n− k)1 + · · ·+Am,mk

m(n− k)m

In particular, the coefficientsAm,r can be evaluated in both ways, by constructing and solving

a certain system of linear equations or by deriving a recurrence relation; all these approaches

are examined providing examples in the sections (2) and (3). Moreover, to validate the

results, supplementary Mathematica programs are available at [14].
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