
DRAFT

DRAFT
Nonuniform Graph Partitioning

with Unrelated Weights∗

Konstantin Makarychev
Northwestern University

Yury Makarychev†

Toyota Technological Institute at Chicago

Abstract
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning

problem, recently introduced by Krauthgamer, Naor, Schwartz, and Talwar (2014). In this problem, we
are given a graph G = (V,E) on n vertices and k numbers ρ1, . . . , ρk. The goal is to partition V into k
disjoint sets P1, . . . , Pk satisfying |Pi| ≤ ρin so as to minimize the number of edges cut by the partition.

Our bi-criteria algorithm gives an O(
√

log |V | log k) approximation for the objective function in
general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution
satisfies relaxed capacity constraints |Pi| ≤ (5 + ε)ρin. This algorithm is an improvement upon the
O(log n)-approximation algorithm by Krauthgamer, Naor, Schwartz, and Talwar (2014). Our approxi-
mation ratio matches the best known ratio for the Minimum (Uniform) k-Partitioning problem.

We extend our results to the case of “unrelated weights” and to the case of “unrelated d-dimensional
weights”. In the former case, different vertices may have different weights, and the weight of a vertex
may depend on the set Pi the vertex is assigned to. In the latter case, each vertex u has a d-dimensional
weight r(u, i) = (r1(u, i), . . . , rd(u, i)) if u is assigned to Pi. Each set Pi has a d-dimensional capacity
c(i) = (c1(i), . . . , cd(i)). The goal is to find a partition such that

∑
u∈Pi

r(u, i) ≤ c(i) coordinate-wise.

1 Introduction

We study the Minimum Nonuniform Partitioning problem, which was recently proposed by Krauthgamer,
Naor, Schwartz, and Talwar (2014). We are given a graph G = (V,E), parameter k, and k numbers
(capacities) ρ1, . . . , ρk. The goal is to partition V into k pieces (bins) P1, . . . , Pk satisfying the capacity
constraints |Pi| ≤ ρi|V | so as to minimize the number of cut edges. The problem is a generalization of the
Minimum k-Partitioning problem studied by Krauthgamer, Naor, and Schwartz (2009), in which all bins
have equal capacity ρi = 1/k. Denote n = |V |.

The problem has many applications (see Krauthgamer et al. 2014). Consider an example in cloud
computing: Imagine that we need to distribute n computational tasks – vertices of the graph – among k
machines, each with capacity ρin. Different tasks communicate with each other. The amount of commu-
nication between tasks u and v equals the weight of the edges between the corresponding vertices u and v.
The goal is to distribute tasks among k machines subject to the capacity constraints so as to minimize the
total amount of communication between machines.1

The problem is quite challenging. Krauthgamer et al. (2014) note that many existing techniques do not
work for this problem. Particularly, it is not clear how to solve this problem on tree graphs2 and consequently
∗The conference version of this paper appeared at ICALP 2014.
†Supported by NSF CAREER award CCF-1150062 and NSF grant IIS-1302662.
1In this example, we need to solve a variant of the problem with edge weights.
2Our algorithm gives a constant factor bi-criteria approximation for trees.

1

DRAFT

DRAFT
how to use Räcke’s (2008) tree decomposition technique. Krauthgamer et al. (2014) give an O(log n)
bi-criteria approximation algorithm for the problem: the algorithm finds a partition P1, . . . , Pk such that
|Pi| ≤ O(ρin) for every i and the number of cut edges is O(log nOPT), where OPT is the cost of the
optimal solution. The algorithm first solves a configuration linear program and then uses a new sophisticated
method to round the fractional solution.

In this paper, we present a rather simple SDP basedO(
√

log n log k) bi-criteria approximation algorithm
for the problem. We note that our approximation guarantee matches that of the algorithm of Krauthgamer,
Naor, and Schwartz (2009) for the the Minimum k-Partitioning problem (which is a special case of Mini-
mum Nonuniform Partitioning, see above). Our algorithm uses a technique of “orthogonal separators” de-
veloped by Chlamtac, Makarychev, and Makarychev (2006) and later used by Bansal, Feige, Krauthgamer,
Makarychev, Nagarajan, Naor, and Schwartz (2014) for the Small Set Expansion problem. Using orthogonal
separators, it is relatively easy to get a distribution over partitions {P1, . . . , Pk} such that E[|Pi|] ≤ O(ρin)
for all i and the expected number of cut edges is O(

√
log n log(1/ρmin) OPT) where ρmin = mini ρi. The

problem is that for some i, Pi may be much larger than its expected size. The algorithm by Krauthgamer et
al. (2014) solves a similar problem by first simplifying the instance and then grouping parts Pi into “mega-
buckets”. We propose a simpler fix: Roughly speaking, if a set Pi contains too many vertices, we remove
some of these vertices from Pi and re-partition the removed vertices into k pieces again. Thus we ensure that
all capacity constraints are (approximately) satisfied. It turns out that every vertex gets removed a constant
number of times in expectation. Hence, the re-partitioning step increases the number of cut edges only by a
constant factor. Another problem is that 1/ρmin may be much larger than k. To deal with this problem, we
transform the SDP solution (eliminating “short” vectors) and redefine thresholds ρi so that 1/ρmin becomes
O(k).

Our technique is quite robust and allows us to solve more general versions of the problem, Nonuni-
form Graph Partitioning with unrelated weights and Nonuniform Graph Partitioning with unrelated d-
dimensional weights, which we discuss next.

Minimum Nonuniform Graph Partitioning with unrelated weights captures the variant of the problem
where we assign vertices (tasks/jobs) to unrelated machines and the weight of a vertex (the size of the
task/job) depends on the machine it is assigned to. Namely, in this variant of the problem, we assume that
a vertex u has weight µi(u) ≥ 0 if it is assigned to bin i. We require that the total weight of all vertices in
bin i is at most ρi. We denote the total weight of the vertices in a set S by µi(S); i.e., we think of µi as a
measure on V . By rescaling the weights µi(u) and capacities ρi, we may assume without loss of generality
that µi(V) = 1 for every i.

Definition 1.1 (Minimum Nonuniform Graph Partitioning with unrelated weights). We are given a graph
G = (V,E) on n vertices and a natural number k ≥ 2. Additionally, we are given k normalized measures
µ1, . . . , µk on V (satisfying µi(V) = 1) and k numbers ρ1, . . . , ρk ∈ (0, 1). The goal is to partition the
graph into k pieces (bins) P1, . . . , Pk such that µi(Pi) ≤ ρi so as to minimize the number of cut edges.
Some pieces Pi may be empty.

We will only consider instances of Minimum Nonuniform Graph Partitioning that have a feasible solu-
tion. We give an Oε(

√
log n log min(1/ρmin, k)) bi-criteria approximation algorithm for the problem (to

indicate that the hidden constant in the big-O notation may depend on ε, we use notation Oε()). If the
instance does not have a feasible solution, the algorithm either finds a solution satisfying relaxed capacity
constraints µi(Pi) ≤ 5(1 + ε)ρi or reports that the instance does not have a feasible solution.

Theorem 1.2. For every ε > 0, there exists a randomized polynomial-time algorithm that given a feasible
instance of Minimum Nonuniform Graph Partitioning with unrelated weights finds a partition P1, . . . , Pk of

2

DRAFT

DRAFT
V satisfying µi(Pi) ≤ 5(1 + ε)ρi. The expected cost of the solution is at most D · OPT, where OPT is
the optimal value, D = Oε(

√
log n log min(1/ρmin, k)) and ρmin = mini ρi. For graphs excluding a fixed

minor, D = Oε(1).

Nonuniform Graph Partitioning with unrelated d-dimensional weights further generalizes the problem.
In this variant of the problem, we assume that we have d resources (e.g. CPU speed, random access memory,
disk space, network). Each piece Pi has cj(i) units of resource j ∈ {1, . . . , d}, and each vertex u requires
rj(u, i) units of resource j ∈ {1, . . . , d} when it is assigned to piece Pi. We need to partition V so that
the capacity constraints for all resources are satisfied. The d-dimensional version of Minimum (uniform)
k-Partitioning was previously studied by Amir et al. (2014). In their problem, all ρi = 1/k are the same,
and rj’s do not depend on i.

Definition 1.3 (Minimum Nonuniform Graph Partitioning with unrelated d-dimensional weights). We are
given a graphG = (V,E) on n vertices. Additionally, we are given non-negative numbers cj(i) and rj(u, i)
for i ∈ {1, . . . , k}, j ∈ {1, . . . , d}, u ∈ V . The goal is to find a partition of V into P1, . . . , Pk subject to
the capacity constraints

∑
u∈V rj(u, i) ≤ cj(i) for every i and j so as to minimize the number of cut edges.

We present a bi-criteria approximation algorithm for this problem.

Theorem 1.4. For every ε > 0, there exists a randomized polynomial-time algorithm that given a feasible
instance of Minimum Nonuniform Graph Partitioning with unrelated d-dimensional weights finds a partition
P1, . . . , Pk of V satisfying ∑

v∈V
rj(v, i) ≤ 5d(1 + ε)cj(i) for every i and j.

The expected cost of the solution is at mostD·OPT, where OPT is the optimal value,D = Oε(
√

log n log k).
For graphs excluding a fixed minor D = Oε(1).

This result is a simple corollary of Theorem 1.2: we let µ′i(u) = maxj(rj(u, i)/cj(i)) and then apply
our result to measures µi(u) = µ′i(u)/µ′i(V) (we describe the details in Section 4).

We remark that our algorithms work if edges in the graph have arbitrary positive weights. However, for
simplicity of exposition, we describe the algorithms for the setting where all edge weights are equal to one.
To deal with arbitrary edge weights, we only need to change the SDP objective function.

Our paper strengthens the result by Krauthgamer et al. (2014) in two ways. First, it improves the ap-
proximation factor fromO(log n) toO(

√
log n log k). Second, it studies considerably more general variants

of the problem, Minimum Nonuniform Partitioning with unrelated weights and Minimum Nonuniform Par-
titioning with unrelated d-dimensional weights. We believe that these variants are very natural. Indeed, one
of the main motivations for the Minimum Nonuniform Partitioning problem is its applications to scheduling
and load balancing: in these applications, the goal is to assign tasks to machines so as to minimize the total
amount of communication between different machines, subject to the capacity constraints. The constraints
that we study in the paper are very general and analogous to those that are often considered in the schedul-
ing literature. We note that the method developed by Krauthgamer et al. (2014) does not handle these more
general variants of the problem.

2 Algorithm

SDP Relaxation. Our relaxation for the problem is based on the SDP relaxation for the Small Set Expansion
(SSE) problem of Bansal et al. (2014). We write the SSE relaxation for every cluster Pi and then add

3

DRAFT

DRAFT
consistency constraints similar to constraints used in Unique Games. For every vertex u and index i ∈
{1, . . . , k}, we introduce a vector ūi. In the integral solution, this vector is simply the indicator variable for
the event “u ∈ Pi”. It is easy to see that in the integral case, the number of cut edges equals (1) (see below).
Indeed, if u and v lie in the same Pj , then ūi = v̄i for all i; if u lies in Pj′ and v lies in Pj′′ (for j′ 6= j′′) then
‖ūi − v̄i‖2 = 1 for i ∈ {j′, j′′} and ‖ūi − v̄i‖2 = 0 for i /∈ {j′, j′′}. The SDP objective is to minimize (1).

We add constraint (2) saying that µi(Pi) ≤ ρi. We further add spreading constraints (3) from Bansal
et al. (2014) (see also Louis and Makarychev (2014)). The spreading constraints above are satisfied in the
integral solution: If u /∈ Pi, then ūi = 0 and both sides of the inequality equal 0. If u ∈ Pi, then the
left-hand side equals µi(Pi), and the right hand side equals ρi.

We write standard `22-triangle inequalities (4) and (5). Finally, we add consistency constraints. Every
vertex u must be assigned to one and only one Pi, hence constraint (6) is satisfied. We obtain the following
SDP relaxation.

SDP Relaxation

min
1

2

k∑
i=1

∑
(u,v)∈E

‖ūi − v̄i‖2 (1)

subject to ∑
u∈V
‖ūi‖2µi(u) ≤ ρi for all i ∈ [k] (2)∑

v∈V
〈ūi, v̄i〉µi(v) ≤ ‖ūi‖2ρi for all u ∈ V, i ∈ [k] (3)

‖ūi − v̄i‖2 + ‖v̄i − w̄i‖2 ≥ ‖ūi − w̄i‖2 for all u, v, w ∈ V, i ∈ [k] (4)

0 ≤ 〈ūi, v̄i〉 ≤ ‖ūi‖2 for all u, v ∈ V, i ∈ [k] (5)
k∑
i=1

‖ūi‖2 = 1 for all u ∈ V (6)

Small Set Expansion and Orthogonal Separators. Our algorithm uses a technique called “orthogonal
separators”. The notion of orthogonal separators was introduced in Chlamtac, Makarychev, and Makarychev
(2006), where it was used in an algorithm for Unique Games. Later, Bansal et al. (2014) showed that the
following holds. If an SDP solution satisfies constraints (2), (3), (4), and (5), then for every ε ∈ (0, 1),
δ ∈ (0, 1), and i ∈ [k], there exist a distortionDi = Oε(

√
log n log(1/(δρi))), and a probability distribution

over subsets of V such that for a random set Si ⊂ V (“orthogonal separator”) drawn from this distribution,
we have for α = 1/n,

• µi(Si) ≤ (1 + ε)ρi (always);

• For all u, Pr(u ∈ Si) ∈ [(1− δ)α‖ūi‖2, α‖ūi‖2];

• For all (u, v) ∈ E, Pr(u ∈ Si, v /∈ Si) ≤ αDi · ‖ūi − v̄i‖2.

This statement was proved in Bansal et al. (2014) implicitly, so for completeness we prove it in Section 5
— see Theorem 5.1. We let D = maxiDi. For graphs excluding a fixed minor and bounded genus graphs,
D = Oε(1).

4

DRAFT

DRAFT
partitioned

vertices

P1(t)

5(1 + ε)ρ1

P2(t)

5(1 + ε)ρ2

Si(t) ∩A(t)

Pi(t)

5(1 + ε)ρi

reactivated

reactivated

Pk(t)

5(1 + ε)ρk

.

partitioned
vertices

P1(t+ 1)

5(1 + ε)ρ1

P2(t+ 1)

5(1 + ε)ρ2

Si(t) ∩A(t)

Pi(t+ 1)

reactivated

reactivated

5(1 + ε)ρi

Pk(t+ 1)

5(1 + ε)ρk

.

Figure 1: The figure shows how we update sets Pi(t) in iteration t. In this figure, rectangles represent layers
of vertices in sets Pi(t) (on the left) and Pi(t + 1) (on the right). All vertices in these layers are inactive
(they are already partitioned). Blue horizontal lines show capacity constraints. In the example shown in the
figure, we add set Si(t) ∩ A(t) to Pi(t). The measure of the obtained set is greater than 5(1 + ε)ρi, and so
we remove the two bottom layers from Pi(t) ∪ (Si(t) ∩ A(t)) (the removed layers are shown in blue). We
get a set of measure at most 5(1 + ε)ρi. Vertices in the removed layers are reactivated after the iteration is
over.

Algorithm. Let us examine a somewhat naı̈ve algorithm for the problem inspired by the algorithm of
Bansal et al. (2014) for Small Set Expansion. We shall maintain the set of active (yet unassigned) vertices
A(t). Initially, all vertices are active, i.e. A(0) = V . At every step t, we pick a random index i ∈ {1, . . . , k}
and sample an orthogonal separator Si(t) as described above. We assign all active vertices from Si(t) to bin
i:

Pi(t+ 1) = Pi(t) ∪ (Si(t) ∩A(t)),

and mark all newly assigned vertices as inactive, i.e., we let A(t+ 1) = A(t) \ Si(t). Other bins remain the
same: Pj(t + 1) = Pj(t) for j 6= i. We stop when the set of active vertices A(t) is empty. We output the
partition P = {P1(T), . . . , Pk(T)}, where T is the index of the last iteration.

We can show that the number of edges cut by the algorithm is at most O(D · OPT), where D is the
distortion of orthogonal separators. Furthermore, the expected weight of each Pi isO(ρi). However, weights
of some pieces may significantly deviate from the expectation and may be much larger than ρi. So we need
to alter the algorithm to guarantee that all sizes are bounded by O(ρi) simultaneously. We face a problem
similar to the one Krauthgamer, Naor, Schwartz, and Talwar (2014) had to solve in their paper. Their solution
is rather complex and does not seem to work in the weighted case. Here, we propose a very simple fix for
the naı̈ve algorithm we presented above. We shall store vertices in every bin in layers. When we add new
vertices to a bin at some iteration, we put them in a new layer on top of already stored vertices. Now, if the
weight of bin i is greater than 5(1+ε)ρi, we remove bottom layers from this bin so that its weight is at most
5(1 + ε)ρi. Then we mark the removed vertices as active and proceed to the next iteration. It is clear that
this algorithm always returns a solution satisfying µi(Pi) ≤ 5(1 + ε)ρi for all i. But now we need to prove
that the algorithm terminates, and that the expected number of cut edges is still bounded by O(D ·OPT).

Before proceeding to the analysis, we describe the algorithm in detail.

5

DRAFT

DRAFT
Algorithm for Nonuniform Partitioning with Unrelated Weights

Input: a graph G = (V,E) on n vertices; a positive integer k ≤ n; a sequence of numbers ρ1, . . . , ρk ∈
(0, 1) (with ρ1 + · · ·+ ρk ≥ 1); weights µi : V → R+ (with µi(V) = 1).

Output: a partition of vertices into disjoint sets P1, . . . , Pk such that µi(Pi) ≤ 5(1 + ε)ρi.

• The algorithm maintains a partition of V into a set of active vertices A(t) and k sets P1(t), . . . Pk(t),
which we call bins. For every inactive vertex u /∈ A(t), we remember its depth in the bin it belongs
to. We denote the depth by depthu(t). If u ∈ A(t), then we let depthu(t) =⊥.

• Initially, set A(0) = V ; and Pi(0) = ∅, depthu(t) =⊥ for all i; t = 0.

• Solve the SDP relaxation. If it is not feasible, return that the problem does not have a feasible solution
and terminate.

• while A(t) 6= ∅

1. Pick an index i ∈ {1, . . . , k} uniformly at random.

2. Sample an orthogonal separator Si(t) ⊂ V with δ = ε/4 as described in Section 2.

3. Add all active vertices from Si(t) to bin i as follows. If µi(Pi(t)∪ (Si(t)∩A(t))) ≤ 5(1+ε)ρi,
then simply let:

Pi(t+ 1) = Pi(t) ∪ (Si(t) ∩A(t)).

Otherwise, find the largest depth h such that the set

P hi (t+ 1) = {u ∈ Pi(t) : depthu(t) ≤ h} ∪ (Si(t) ∩A(t))

has size at most 5(1 + ε)ρi and let Pi(t+ 1) = P hi (t+ 1). (In other words, put the vertices from
Si(t) ∩ A(t) into bin i and then remove vertices from the bottom layers of the bin so that the
weight of the bin is at most 5(1 + ε)ρi.)

4. For all j 6= i, let Pj(t+ 1) = Pj(t).

5. If A(t) ∩ Si(t) 6= ∅ (and, consequently, we put at least one new vertex into bin i at the current
iteration), then set the depth of all newly stored vertices to 1; increase the depth of all other
vertices in bin i by 1.

6. Update the set of active vertices: let A(t + 1) = V \
⋃
j Pj(t + 1) and depthu(t + 1) =⊥ for

u ∈ A(t+ 1). Let t = t+ 1.

• Set T = t and return the partition P1(T), . . . , Pk(T).

Note that Step 3 is well defined. We can always find an index h such that µi(Pi(t + 1)) ≤ 5(1 + ε)ρi,
because for h = 0, we have Pi(t+ 1) = Si(t) ∩A(t) and thus

µ(Pi(t+ 1)) = µi(Si(t) ∩A(t)) ≤ µi(Si(t)) ≤ (1 + ε)ρi < 5(1 + ε)ρi,

by the first property of orthogonal separators.

6

DRAFT

DRAFT
Analysis. We will first prove Theorem 2.1, which states that the algorithm has approximation factor

D = Oε(
√

log n log(1/ρmin)) on arbitrary graphs, and D = Oε(1) on graphs excluding a minor. Then we
will show how to obtain D = Oε(

√
log n log k) approximation on arbitrary graphs (see Section 3). To this

end, we will transform the SDP solution and redefine measures µi and capacities ρi so that ρmin ≥ δ/k, then
apply Theorem 2.1. The new SDP solution will satisfy all SDP constraints except possibly for constraint (6);
it will however satisfy a relaxed constraint (where as above δ = ε/4):

k∑
i=1

‖ūi‖2 ∈ [1− δ, 1] for all u ∈ V. (6′)

Thus in Theorem 2.1, we will assume only that the solution satisfies the SDP relaxation with constraint (6)
replaced by constraint (6′).

Theorem 2.1. Given a feasible solution to the SDP with with constraint (6) replaced by constraint (6′), the
algorithm returns a partition P1, . . . , Pk satisfying µi(Pi) ≤ 5(1 + ε)ρi. The expected number of iterations
of the algorithm is at most E[T] ≤ 4n2k, and the expected number of cut edges is at most O(D · SDP),
where D = Oε(

√
log n log(1/ρmin)) is the distortion of orthogonal separators, ρmin = mini ρi , and SDP

is the cost of the SDP solution. If the SDP solution is optimal, then the expected number of cut edges is at
most O(D ·OPT).

Further, there is a variant of this algorithm for graphs excluding a fixed minor. The algorithm finds a
partition P1, . . . , Pk of cost at most O(D ·OPT), where D = Oε(1) (the constant depends on the excluded
minor); the partition satisfies µi(Pi) ≤ 5(1 + ε)ρi.

Remark 2.1. The algorithm A from Theorem 2.1 is a randomized algorithm: it always finds a feasible
solution (a solution with µi(Pi) ≤ 5(1 + ε)ρi), the expected cost of the solution is αASDP = O(D ·OPT)
(where αA = O(D)), and the expected number of iterations the algorithm performs is upper bounded by
4n2k. The algorithm can be easily converted to an algorithm A′ that always runs in polynomial-time and
that succeeds with high probability. If it succeeds, it outputs a feasible solution of cost O(D · OPT); if it
fails, it outputs ⊥ (⊥ is a special symbol that indicates that the algorithm failed). The algorithm A′ works
as follows. It executes A. If A does not stop after 4n4k iterations, A′ terminates and outputs ⊥. Otherwise,
it compares the value of the solution that A found with 3αA SDP: If the cost is less than 3αA SDP, the
algorithm outputs the solution; otherwise it outputs ⊥. Clearly the algorithm always runs in polynomial
time, and if it succeeds it finds a solution of cost at most 3αAOPT = O(D ·OPT). By Markov’s inequality,
the probability that the algorithm fails is at most 1/n2 + 1/3 < 1/2. By running the algorithm n times,
we can make the failure probability exponentially small (note that we need the algorithm to succeed at least
once).

As we mentioned earlier, the algorithm always returns a valid partition. We need to verify that the
algorithm terminates in expected polynomial time, and that it produces cuts of expected cost at most O(D ·
SDP).

The state of the algorithm at iteration t is determined by the sets A(t), P1(t), . . . , Pk(t) and the depths
of the elements. We denote the state by C(t) = {A(t), P1(t), . . . , Pk(t),depth(t)}. Observe that the
probability distribution of the index i and set Si(t) the algorithm picks at iteration t does not depend on t.
Thus, the probability that the algorithm is in the state C∗ at iteration (t+ 1) depends only on the state of the
algorithm at iteration t. That is, for every two states C∗ and C∗∗ and every two iterations t1 and t2, we have

Pr(C(t1 + 1) = C∗ | C(t1) = C∗∗) = Pr(C(t2 + 1) = C∗ | C(t2) = C∗∗).

7

DRAFT

DRAFT
Thus, the states of the algorithm form a Markov chain. The number of possible states is finite (since the
depth of every vertex is bounded by n). To simplify the notation, we assume that for t ≥ T , C(t) = C(T).
This is consistent with the definition of the algorithm — if we did not stop the algorithm at time T , it would
simply idle, since A(t) = ∅, and thus Si(t) ∩A(t) = ∅ for t ≥ T .

We are interested in the probability that an inactive vertex u which lies in the top layer of one of the
bins (i.e., u /∈ A(t) and depthu(t) = 1) is removed from that bin within m iterations. Consider a state C∗
in which a vertex u lies in the top layer of bin i. We let

f(m,u, C∗) = Pr(∃t ∈ [t0, t0 +m] s.t. u ∈ A(t) | C(t0) = C∗).

That is, f(m,u, C∗) is the probability that u is removed from bin i at one of the iterations t ∈ [t0, t0 + m]
given that at iteration t0 the state of the algorithm is C∗. Note that the probability above does not depend on
t0 and thus f(m,u, C∗) is well defined. Let U(u, i) be the set of all states C = {A,P1, . . . , Pk, depth} such
that u ∈ Pi and depthu = 1. Let

f(m) = max
u∈V

i∈{1,...,k}

max
C∗∈U(u,i)

f(m,u, C∗).

Our first lemma gives a bound, in terms of f(m), on the expected number of iterations at which a vertex
u is active.

Lemma 2.2. For every possible state of the algorithm C∗, every vertex u, natural number t0, and m ≥ 1,

t0+m∑
t=t0

Pr(u ∈ A(t) | C(t0) = C∗) ≤ k

(1− 2δ)α(1− f(m− 1))
. (7)

Proof. The left-hand side of inequality (7) equals the expected number (conditioned on C(t0) = C∗) of
iterations t in the interval [t0, t0 + m] at which u is active, i.e., u ∈ A(t). The goal is to upper bound this
quantity.

We split the interval [t0, t0 +m] into alternating intervals at which u is active and at which u is inactive.
We call former intervals active intervals. We denote the length of the j-th active interval by aj . If there are
fewer than j active intervals in [t, t0 +m], then we let aj = 0. We need to bound

∑∞
j=1 E[aj | C(t0) = C∗].

∞∑
j=1

E[aj | C(t0) = C∗] =

∞∑
j=1

E[aj | aj > 0, C(t0) = C∗] Pr(aj > 0 | C(t0) = C∗).

We first estimate E[aj | aj > 0, C(t0) = C∗], i.e. the expected length of the j-th active interval given that
the j-th active interval exists. At every iteration t when u is active, u is thrown into bin Pi with probability
at least (1− δ)α‖ūi‖2 by property 2 of orthogonal separators. Hence, it is thrown into one of the bins with
probability at least (here, we use that the SDP solution satisfies constraint (6′))

1

k

k∑
i=1

(1− δ)α‖ūi‖2 ≥
(1− 2δ)α

k
.

So the expected number of iterations passed since u becomes active till u is put into one of the bins and thus
becomes inactive is at most k/((1−2δ)α). We get the bound E[aj | aj > 0, C(t0) = C∗] ≤ k/((1−2δ)α).

8

DRAFT

DRAFT
We estimate Pr(aj > 0 | C(t0) = C∗). For j = 1, we use the trivial bound Pr(a1 > 0 | C(t0) = C∗) ≤

1. To get a bound for j > 1, we consider Pr(aj > 0 | aj−1 > 0, C(t0) = C∗) – the conditional probability
that the interval [t0, t0 + m] contains at least j active intervals given that it contains at least j − 1 active
intervals. Assume aj−1 > 0. Let τ be the right end of the (j − 1)-st active interval. If τ < t0 + m, then u
is active at the iteration τ and inactive at the iteration τ + 1. Therefore, if τ < t0 +m, then for some bin i,
we have u ∈ Pi(τ + 1) and depthu(τ + 1) = 1. The probability that u is reactivated till iteration t0 + m,
i.e., the probability that for some τ ′ ∈ [(τ + 1), t0 + m], u ∈ A(τ ′) is at most f(m − 1), since the length
of the interval [(τ + 1), t0 + m] is at most (m − 1). Consequently, Pr(aj > 0 | aj−1 > 0, C(t0) = C∗) ≤
f(m− 1) Pr(τ < m | C(t0) = C∗) ≤ f(m− 1). Hence, for j ≥ 1, we have

Pr(aj > 0 | C(t0) = C∗) ≤
j−1∏
j′=1

Pr(aj′+1 > 0 | aj′ > 0) ≤ f(m− 1)j−1.

Combining the bounds on E[aj | aj > 0, C(t0) = C∗] and Pr(aj > 0, C(t0) = C∗) we get the following
inequality

∞∑
j=1

E[aj | C(t0) = C∗] ≤
∞∑
j=1

k

(1− 2δ)α
f(m− 1)j−1 =

k

(1− 2δ)α(1− f(m− 1))
.

We now show that f(m) ≤ 1/2 for all m.

Lemma 2.3. For all natural m, f(m) ≤ 1/2.

Proof. We prove this lemma by induction on m. For m = 0, the statement is trivial as f(0) = 0.
Consider an arbitrary state C∗, bin i∗, vertex u, and iteration t0. Suppose that C(t0) = C∗, u ∈ Pi∗(t0)

and depthu(t0) = 1, i.e., u lies in the top layer in bin i∗. We need to estimate the probability that u is
removed from bin i∗ till iteration t0 +m. The vertex u is removed from bin i∗ if and only if at some iteration
t ∈ {t0, . . . , t0 + m − 1}, u is “pushed away” from the bin by new vertices (see Step 2 of the algorithm).
This happens only if the weight of vertices added to bin i∗ at iterations {t0, . . . , t0 +m− 1} plus the weight
of vertices in the first layer of the bin at iteration t0 exceeds 5(1 + ε)ρi. Since the weight of vertices in the
first layer is at most (1 + ε)ρi, the weight of vertices added to bin i∗ at iterations {t0, . . . , t0 +m− 1} must
be greater than 4(1 + ε)ρi∗ .

We compute the expected weight of vertices thrown in bin i∗ at iterations t ∈ {t0, . . . , t0 +m− 1}. Let
us introduce some notation: M = {t0, . . . , t0 + m − 1}; i(t) is the index i chosen by the algorithm at the
iteration t. Let XM,i∗ be the weight of the vertices thrown in bin i∗ at iterations t ∈M . Then,

E
[
XM,i∗ | C(t0) = C∗

]
= E

[∑
t∈M

s.t. i(t)=i∗

µi∗
(
Si∗(t) ∩A(t)

)
| C(t0) = C∗

]

=
∑
t∈M

∑
v∈V

Pr
(
i(t) = i∗ and v ∈ Si∗(t) ∩A(t) | C(t0) = C∗

)
µi∗(v). (8)

The event {i(t) = i∗ and v ∈ Si∗(t)} is independent from the event {v ∈ A(t) and C(t0) = C∗}. Thus,

Pr
(
i(t) = i∗ and v ∈ Si∗(t) ∩A(t) | C(t0) = C∗

)
= Pr

(
i(t) = i∗ and v ∈ Si∗(t)

)
· Pr

(
v ∈ A(t) | C(t0) = C∗

)
.

9

DRAFT

DRAFT
Since i(t) is chosen uniformly at random in {1, . . . , k}, we have Pr(i(t) = i∗) = 1/k. Then, by property 2
of orthogonal separators, Pr(v ∈ Si∗(t) | i(t) = i∗) ≤ α‖v̄i∗‖2. We get

Pr
(
i(t) = i∗ and v ∈ Si∗(t) ∩A(t) | C(t0) = C∗

)
≤ α‖v̄i∗‖2

k
· Pr

(
v ∈ A(t) | C(t0) = C∗

)
.

We now plug this expression in (8) and use Lemma 2.2,

E[XM,i∗ | C(t0) = C∗] ≤
∑
v∈V

α‖v̄i∗‖2µi∗(v)

k
·
∑
t∈M

Pr
(
v ∈ A(t) | C(t0) = C∗

)
≤
∑
v∈V

α‖v̄i∗‖2µi∗(v)

k
· k

(1− 2δ)α(1− f(m− 1))

=
∑
v∈V

‖v̄i∗‖2µi∗(v)

(1− 2δ)(1− f(m− 1))
.

Finally, observe that 1 − f(m − 1) ≥ 1/2 by the inductive hypothesis, and
∑

v∈V ‖v̄i∗‖2µi∗(v) ≤ ρi∗ by
the SDP constraint (2). Hence, E[XM,i∗ | C(t0) = C∗] ≤ 2ρi∗/(1− 2δ). By Markov’s inequality,

Pr
(
XM,i∗ ≥ 4(1 + ε)ρi∗

)
≤ 2ρi∗

4(1− 2δ)(1 + ε)ρi∗
≤ 1

2
,

since δ = ε/4. This concludes the proof of Lemma 2.3.

As an immediate corollary of Lemmas 2.2 and 2.3, we get that for all u ∈ V ,

∞∑
t=0

Pr(u ∈ A(t)) = lim
m→∞

m∑
t=0

Pr(u ∈ A(t)) ≤ 2k

(1− 2δ)α
≤ 4k

α
. (9)

Proof of Theorem 2.1. We now prove Theorem 2.1. We first bound the expected running time. At every
iteration of the algorithm t < T , the set A(t) is not empty. Hence, using (9), we get

E[T] ≤ E
[∞∑
t=0

|A(t)|
]

=
∑
v∈V

∞∑
t=0

Pr(v ∈ A(t)) ≤ n · 4k

α
= 4kn2.

We now upper bound the expected size of the cut. For every edge (u, v) ∈ E, we estimate the probability
that (u, v) is cut. Suppose that (u, v) is cut. Then, u and v belong to distinct sets Pi(T). Consider the
iteration t at which u and v are separated the first time. A priori, there are two possible cases:

1. At iteration t, u and v are active, but only one of the vertices u or v is added to some set Pi(t + 1);
the other vertex remains in the set A(t+ 1).

2. At iteration t, u and v are in some set Pi(t), but only one of the vertices u or v is removed from the
set Pi(t+ 1).

It is easy to see that, in fact, the second case is not possible, since if u and v were never separated before
iteration t, then u and v must have the same depth (i.e., depthu(t) = depthv(t)) and thus u and v may be
removed from bin i only together.

10

DRAFT

DRAFT
Consider the first case, and assume that u ∈ Pi(t)(t + 1) and v ∈ A(t + 1). Here, as in the proof of

Lemma 2.3, we denote the index i chosen at iteration t by i(t). Since u ∈ Pi(t)(t+ 1) and v ∈ A(t+ 1), we
have u ∈ Si(t)(t) and v /∈ Si(t)(t). Write

Pr(u, v ∈ A(t); u ∈ Si(t)(t); v /∈ Si(t)(t)) =

= Pr(u, v ∈ A(t)) · Pr(u ∈ Si(t)(t); v /∈ Si(t)(t))

= Pr(u, v ∈ A(t)) ·
k∑
i=1

Pr(u ∈ Si(t); v /∈ Si(t) | i(t) = i) · Pr(i(t) = i)

= Pr(u, v ∈ A(t)) ·
k∑
i=1

Pr(u ∈ Si(t); v /∈ Si(t) | i(t) = i)

k
.

We bound Pr(u, v ∈ A(t)) ≤ Pr(u ∈ A(t)) and use the third property of orthogonal separators, Pr(u ∈
Si(t); v /∈ Si(t)) ≤ αD ‖ūi − v̄i‖2, to get

Pr(u, v ∈ A(t); u ∈ Si(t)(t); v /∈ Si(t)(t)) ≤ Pr(u ∈ A(t)) ·
(1

k

k∑
i=1

αD ‖ūi − v̄i‖2
)
.

By swapping the roles of u and v, we get a bound on Pr(u, v ∈ A(t), v ∈ Si(t)(t), u /∈ Si(t)(t)). Combining

the bounds, we get that the probability that u and v are separated at iteration t is upper bounded by
(

Pr(u ∈

A(t)) + Pr(v ∈ A(t))
)
·
(

1
k

∑k
i=1 αD ‖ūi − v̄i‖2

)
. The probability that the edge (u, v) is ever cut is at

most

(∞∑
t=0

Pr(u ∈ A(t)) + Pr(v ∈ A(t))
)
·
(1

k

k∑
i=1

αD ‖ūi − v̄i‖2
)
≤

≤ 8k

α

(1

k

k∑
i=1

αD ‖ūi − v̄i‖2
)

= 8

k∑
i=1

D ‖ūi − v̄i‖2.

Here, we used inequality (9) to bound the first term on the left-hand side. The desired bound on the expected
number of cut edges follows:

E[number of cut edges] =
∑

(u,v)∈E

Pr((u, v) is cut) ≤ 8
∑

(u,v)∈E

k∑
i=1

D ‖ūi − v̄i‖2 = 16D · SDP.

3 O(
√
log n log k) approximation

Informal Discussion. In this section, we describe a bi-citeria Oε(
√

log n log k) approximation algorithm for
Minimum Nonuniform Graph Partitioning. In Theorem 2.1, we showed how to get anOε(

√
log n log 1/ρmin)-

approximation. Thus, to get an Oε(
√

log n log k) approximation, it suffices to modify our instance so that
ρ′min ≥ 1/poly(k). Let P ∗1 , . . . , P

∗
k be the unknown optimal partition. Consider i for which ρi < δ/k. Sup-

pose for a moment that we could guess a set Ai containing P ∗i such that µi(P ∗i)/µi(Ai) ≥ δ/k. Then, we

11

DRAFT

DRAFT
would restrict Pi to be a subset of Ai: We would define a new “conditional” measure µ′i(u) = µi(u)/µi(Ai)
for u ∈ Ai and µ′i(u) = 0 for u /∈ Ai and let ρ′i = ρi/µi(Ai). We would also set ūi = 0 for all u /∈ Ai thus
forcing the algorithm to pick vertices for Pi from the set Ai. Note that in the integral solution ūi = 0 for
u /∈ Ai so ūi = 0 is a valid constraint. Since µi(P ∗i)/µi(Ai) ≥ δ/k, we get

ρ′i = ρi/µi(Ai) ≥ µ(P ∗i)/µi(Ai) ≥ δ/k.

By applying the above transformation to all i with ρi < δ/k, we would get an instance with ρmin ≥ δ/k. It
is easy to check that any feasible solution to the new problem is a feasible solution to the original problem
as well.

Of course, the challenge is that we cannot guess such set Ai. Instead, we solve the SDP and define Ai
using the SDP solution. Roughly speaking, we let Ai = {u : ‖ūi‖2 ≥ δ/k}. Then, as before, we redefine
the measure µi and zero out vectors ūi with u /∈ Ai. The analogue of the measure of the optimal set P ∗i will
be now the measure of the fractional solution defined as

∑
u∈Ai

µi(u)‖ūi‖2
µ(Ai)

. We have

∑
u∈Ai

µi(u)‖ūi‖2 ≥
∑
u∈Ai

µi(u) · δ
k

=
δ

k
· µ(Ai).

That is, the measure of the fractional solution is at most δ/k times the measure of Ai. This is a sufficient
condition for the algorithm from Theorem 2.1 (see details below). The transformed SDP solution does not
satisfy constraint (6), but it satisfies constraint (6′) which also suffices for our algorithm. The only remaining
problem is that by zeroing out some vectors ūi we can increase the SDP value. We take care of this issue by
picking a random threshold θ ≈ δ and letting Ai = {u : ‖ūi‖2 ≥ θ/k}. We will now proceed to a formal
proof.

Theorem 3.1. There is a randomized polynomial-time algorithm that given a feasible instance of Min-
imum Nonuniform Graph Partitioning with unrelated weights returns a partition P1, . . . , Pk of V satis-
fying µi(Pi) ≤ 5(1 + ε)ρi such that the expected number of cut edges is at most O(D · OPT), where
D = Oε(

√
log n log k).

Proof. We perform three steps. First we solve the SDP relaxation, then transform its solution and change
measures µi, and finally apply Theorem 2.1 to the obtained SDP solution.

We start with describing how we transform the solution. We set δ = ε/4 as before. Then we choose a
threshold θ uniformly at random from [δ/2, δ]. We let ũi = ūi if ‖ūi‖2 ≥ θ/k and ũi = 0, otherwise. It
is immediate that the solution ũi satisfies all SDP constraints except possibly constraint (6). Note, however,
that it satisfies constraint (6′):

k∑
i=1

‖ũi‖2 =

k∑
i=1

‖ūi‖2 −
∑

i:‖ũi‖2<θ/k

‖ũi‖2 = 1−
∑

i:‖ũi‖2<θ/k

‖ũi‖2 ∈ [1− δ, 1].

Consider two vertices u and v. Assume without loss of generality that ‖ūi‖2 ≤ ‖v̄i‖2. By SDP constraint (5),
‖v̄i‖2 − ‖ūi‖2 ≤ ‖ūi − v̄i‖2. If either ‖ūi‖2 ≤ ‖v̄i‖2 < θ/k or θ/k ≤ ‖ūi‖2 ≤ ‖v̄i‖2, then we have
‖ũi − ṽi‖ ≤ ‖ūi − v̄i‖. Otherwise, ‖ūi‖2 < θ/k ≤ ‖v̄i‖2 and

‖ũi − ṽi‖2 = ‖v̄i‖2 ≤ ‖ūi − v̄i‖2 + ‖ūi‖2 ≤ ‖ūi − v̄i‖2 + δ/k.

Therefore,
E[‖ũi − ṽi‖2] ≤ ‖ūi − v̄i‖2 + (δ/k) Pr

(
‖ūi‖2 < θ/k ≤ ‖v̄i‖2

)
.

12

DRAFT

DRAFT
To upper bound Pr

(
‖ūi‖2 < θ/k ≤ ‖v̄i‖2

)
, note that the random variable θ is distributed uniformly on

(δ/2, δ), so its probability density is bounded from above by 2/δ. Thus,

Pr
(
‖ūi‖2 < θ/k ≤ ‖v̄i‖2

)
≤ (2k/δ) · (‖v̄i‖2 − ‖ūi‖2) ≤ (2k/δ) · ‖ūi − v̄i‖2,

We have,
E[‖ũi − ṽi‖2] ≤ ‖ūi − v̄i‖2 + (δ/k) · (2k/δ) · ‖ūi − v̄i‖2 = 3‖ūi − v̄i‖2.

We conclude that the expected SDP value of solution ũi is at most 3 SDP ≤ 3 OPT (where SDP is the cost
of the original SDP solution).

Now we modify measures µi and capacities ci. For every i ∈ [k], let Ai = {u : ũi 6= 0}. Define

µ′i(Z) = µi(Z ∩Ai)/µi(Ai) for Z ⊆ V,
ρ̃i = ρi/µi(Ai)

(if µi(Ai) = 0 we let µ̃i = µi and ρ̃i = 1, essentially removing the capacity constraint for Pi). We have
µ̃i(V) = µi(Ai)/µi(Ai) = 1. By (2), we get

ρi ≥
∑
u∈V
‖ūi‖2µi(u) ≥

∑
u∈V
‖ũi‖2µi(u) =

∑
u∈Ai

‖ũi‖2µi(u) ≥
∑
u∈Ai

δ

2k
· µi(u) =

δµi(Ai)

2k
.

Therefore, ρ̃i = ρi/µi(Ai) ≥ δ/(2k), and ρ̃min = min ρ̃i ≥ δ/(2k) ≥ ε/(8k) (if µi(Ai) = 0 then
ρ̃i = 1 > δ/(2k)).

Note that since each ρi increases by a factor of 1/µi(Ai) and each µi(u) increases by a factor at most
1/µi(Ai), vectors ũi satisfy SDP constraints (2) and (3), in which µi and ρi are replaced with µ̃i and
ρ̃i, respectively (assuming that µi(Ai) 6= 0; if µi(Ai) = 0, the constraints clearly hold). We run the
algorithm from Theorem 2.1 on vectors ũi with measures µ̃i and capacities ρ̃i. The algorithm finds a
partition P1, . . . , Pk that cuts at most D · SDP ≤ D ·OPT edges, where D = Oε(

√
log n log(1/ρ̃min)) =

Oε(
√

log n log k). We verify that the weight of each set Pi is O(ρi). Note that Pi ⊂ Ai since for u /∈ Ai,
‖ũi‖2 = 0, and thus the algorithm does not add u to Pi. We have,

µi(Pi) = µ′i(Pi ∩Ai) · µi(Ai) = µ′i(Pi) · µi(Ai) ≤ 5(1 + ε)ρ̃i · µi(Ai) ≤ 5(1 + ε)ρi.

4 Partitioning with d-Dimensional Weights

We describe how Minimum Nonuniform Graph Partitioning with unrelated d-dimensional weights reduces
to Minimum Nonuniform Graph Partitioning with unrelated weights. Consider an instance I of Minimum
Nonuniform Graph Partitioning with unrelated d-dimensional weights. Let µ′i(u) = maxj(rj(u, i)/cj(i)).
Then define measures µi(u) and capacities ρi(u) by

µi(u) = µ′i(u)/µ′i(V) and ρi = d/µ′i(V).

We obtain an instance I ′. Note that the optimal solution P ∗1 , . . . , P
∗
k for I is a feasible solution for I ′ since

µi(P
∗
i) =

∑
u∈P ∗i

µ′i(u)

µ′i(V)
=

1

µ′i(V)

∑
u∈P ∗i

max
j

rj(u, i)

cj(i)
≤ 1

µ′i(V)

∑
u∈P ∗i

d∑
j=1

rj(u, i)

cj(i)

=
1

µ′i(V)

d∑
j=1

∑
u∈P ∗i

rj(u, i)

cj(i)
≤ d

µ′i(V)
= ρi.

13

DRAFT

DRAFT
We solve instance I ′ and get a partition P1, . . . , Pk that cuts at most O(

√
log n log kOPT) edges. The

partition satisfies d-dimensional capacity constraints:∑
u∈Pi

rj(u, i) ≤
∑
u∈Pi

cj(i)µ
′
i(u) = cj(i)µ

′
i(V)

∑
u∈Pi

µi(u) ≤ cj(i)µ′i(V)(5(1 + ε)ρi) = 5d(1 + ε) cj(i).

This concludes the analysis of the reduction.

5 Orthogonal Separators

In this section, we prove Theorem 5.1 for completeness of exposition.

Theorem 5.1 (Bansal et al. (2014)). There exists a polynomial-time algorithm that given a graph G =
(V,E), a measure µ on V (µ(V) = 1), parameters ρ, ε, δ ∈ (0, 1) and a collection of vectors ū satisfying
the following constraints:∑

u∈V
‖ū‖2µ(u) ≤ ρ (10)∑

v∈V
〈ū, v̄〉µ(v) ≤ ‖ū‖2ρ for all u ∈ V (11)

‖ū− v̄‖2 + ‖v̄ − w̄‖2 ≥ ‖ū− w̄‖2 for all u, v, w ∈ V (12)

0 ≤ 〈ū, v̄〉 ≤ ‖ū‖2 for all u, v ∈ V (13)

‖ū‖2 ≤ 1 for all u ∈ V (14)

outputs a random set S ⊂ V (“orthogonal separator”) such that

1. µ(S) ≤ (1 + ε)ρ (always);

2. For all u, Pr(u ∈ S) ∈ [(1− δ)α‖ū‖2, α‖ū‖2];

3. For all (u, v) ∈ E, Pr(u ∈ S, v /∈ S) ≤ αD · ‖ū− v̄‖2.

Where the probability scale α = 1/n, and the distortion D ≤ Oε(
√

log n log(1/(ρδ))). For graphs with
excluded minors, D = Oε(1).

Remark 5.1. Note that if vectors {ūi : u ∈ V, i ∈ [k]} satisfy constraints (2)–(6), then for every i, vectors
{ū ≡ ūi : u ∈ V } satisfy constraints (10)–(14) with µ(u) = µi(u) and ρ = ρi. In particular, constraint (14)
follows from (6).

In Chlamtac, Makarychev, and Makarychev (2006), we showed that for every β > 0 there exists a ran-
domized polynomial-time algorithm that given G, SDP solution {ū} satisfying (12) – (14), and a parameter
m > 0, outputs a random set S with the following properties (see also Bansal et al. (2014) and Louis and
Makarychev (2014)).

O1. For all u ∈ V , Pr(u ∈ S) = α ‖ū‖2, where α = 1/n.

O2. For all u, v ∈ V with ‖ū− v̄‖2 ≥ βmin(‖ū‖2, ‖v̄‖2),

Pr(u ∈ S and v ∈ S) ≤ αmin(‖ū‖2, ‖v̄‖2)

m
.

14

DRAFT

DRAFT
O3. For all (u, v) ∈ E,

Pr(u ∈ S and v /∈ S) ≤ αD · ‖ū− v̄‖2,

where D ≤ Oβ(
√

log n logm).

Bansal et al. (2014) showed that for graphs excluding a fixed minor, there is an algorithm as described
above with D = Oβ(1). Specifically, they proved (see Theorem 2.5 in Bansal et al. (2014)) that there
exists an algorithm that given any collection of numbers {z(u, v)} and {x(u)} in [0, 1] satisfying conditions
(a) z(u, v) + z(v, w) ≥ z(u, v), (b) |x(u) − x(v)| ≤ z(u, v), and (c) x(u) + x(v) ≥ z(u, v), outputs a
random set S such that:

O1′. For all u ∈ V , Pr(u ∈ S) = αx(u), where α = Ω(1/n).

O2′. For all u, v ∈ V with z(u, v) ≥ βmin(x(u), x(v)), Pr(u ∈ S and v ∈ S) = 0.

O3′. For all (u, v) ∈ E, Pr(u ∈ S and v /∈ S) ≤ αD · z(u, v), where D = Oβ(1).

Observe that if ū is an SDP solution satisfying constraints (12) – (14), then the numbers x(u) = ‖ū‖2
and z(u, v) = ‖ū − v̄‖2 satisfy conditions (a), (b), and (c). Hence, for a feasible SDP solution {ū} and
x(u) = ‖ū‖2, z(u, v) = ‖ū − v̄‖2, this algorithm outputs a random set S such that O1, O2, and O3 hold
with D = Oβ(1) and arbitrarily large m > 0 (or even that m =∞ so that 1/m = 0).

Below, we will use the algorithm by Chlamtac, Makarychev, and Makarychev (2006) for arbitrary graphs
and the algorithm by Bansal et al. (2014) for graphs excluding a fixed minor.

We now describe the algorithm used in Theorem 5.1. The algorithm samples S as above with m =
2/(δερ), β = ε/4 (m may be fractional) and outputs S′ = S if µ(S) ≤ (1 + ε)ρ, and S′ = ∅, otherwise.
It is clear that µ(S′) ≤ (1 + ε)ρ (always), and thus the first property in Theorem 5.1 is satisfied. Then, for
(u, v) ∈ E,

Pr(u ∈ S′ and v /∈ S′) ≤ Pr(u ∈ S and v /∈ S) ≤ αD · ‖ū− v̄‖2,

where D = Oβ(
√

log n logm) = Oε(
√

log n log(1/(ρδ))) for arbitrary graphs and D = Oβ(1) for graphs
excluding a fixed minor.

For every u ∈ V ,
Pr(u ∈ S′) ≤ Pr(u ∈ S) = α‖ū‖2.

So we only need to verify that Pr(u ∈ S′) ≥ α(1− δ)‖ū‖2. We assume ‖ū‖2 6= 0. We have

Pr(u ∈ S′) = Pr(u ∈ S′ | u ∈ S) · Pr(u ∈ S) = Pr
(
µ(S) ≤ (1 + ε)ρ | u ∈ S

)
· α‖ū‖2.

We split V into two sets Au = {v : ‖ū − v̄‖2 ≥ β‖ū‖2} and Bu = {v : ‖ū − v̄‖2 < β‖ū‖2}. We show
below (see Lemma 5.2) that µ(Bu) ≤ (1 + ε/2)ρ. Then,

µ(S) = µ(S ∩Au) + µ(S ∩Bu) ≤ (1 + ε/2)ρ+ µ(S ∩Au)

and
Pr(u ∈ S′) ≥ α‖ū‖2 · Pr

(
µ(S ∩Au) ≤ ερ/2 | u ∈ S

)
. (15)

We estimate Pr
(
µ(S ∩ Au) ≥ ερ/2 | u ∈ S). For every v ∈ Au, ‖ū − v̄‖2 ≥ β‖ū‖2. Thus, for v ∈ Au,

Pr(u ∈ S; v ∈ S) ≤ α‖ū‖2/m, and

Pr(v ∈ S | u ∈ S) =
Pr(u ∈ S, v ∈ S)

Pr(u ∈ S)
≤ 1

m
.

15

DRAFT

DRAFT
Therefore, E[µ(S ∩Au) | u ∈ S] ≤ µ(Au)/m ≤ 1/m, and, by Markov’s inequality,

Pr
(
µ(S ∩Au) ≥ ερ/2 | u ∈ S

)
≤ E[µ(S ∩Au) | u ∈ S]

ερ/2
≤ 2

mερ
= δ.

The last equality holds since m = 2/(δερ). We plug this bound in (15) and get the desired inequality,

Pr(u ∈ S′) ≥ α‖ū‖2 · (1− δ).

We now prove Lemma 5.2.

Lemma 5.2. For every u ∈ V such that ū 6= 0, µ(Bu) ≤ (1 + ε/2)ρ.

Proof. To prove the lemma, we first derive a lower bound on 〈ū, v̄〉 for points v ∈ Bu and an upper bound
on
∑

v∈Bu
〈ū, v̄〉µ(v); combining the bounds we get an upper bound for µ(Bu). If v ∈ Bu, then by the

definition of Bu and by inequality (13), we have

〈ū, v̄〉 = ‖ū‖2 + (‖v̄‖2 − 〈ū, v̄〉︸ ︷︷ ︸
≥0

)− ‖ū− v̄‖2 ≥ (1− β)‖ū‖2.

From constraints (11) and (13), ∑
v∈Bu

〈ū, v̄〉µ(v) ≤
∑
v∈V
〈ū, v̄〉µ(v) ≤ ‖ū‖2ρ.

Thus,

µ(Bu) =
∑
v∈Bu

µ(v) ≤
∑
v∈Bu

µ(v) · 〈ū, v̄〉
(1− β)‖ū‖2

≤ ρ‖ū‖2

(1− β)‖ū‖2

≤ (1 + 2β)ρ = (1 + ε/2)ρ.

Acknowledgement

The authors thank an anonymous referee for valuable comments and suggestions.

References
A. Amir, J. Ficler, R. Krauthgamer, L. Roditty, and O. Sar Shalom. Multiply Balanced k-Partitioning. LATIN

2014.

N. Bansal, U. Feige, R. Krauthgamer, K. Makarychev, V. Nagarajan, J. Naor, and R. Schwartz. Min-max
Graph Partitioning and Small Set Expansion. SIAM Journal on Computing 43.2 (2014): 872-904.

E. Chlamtac, K. Makarychev, and Y. Makarychev. How to Play Unique Games Using Embeddings. FOCS
2006.

R. Krauthgamer, J. Naor, and R. Schwartz. Partitioning graphs into balanced components. SODA 2009.

R. Krauthgamer, J. Naor, R. Schwartz, and K. Talwar. Non-Uniform Graph Partitioning. SODA 2014.

A. Louis and K. Makarychev. Approximation Algorithm for Sparsest k-Partitioning. SODA 2014.

H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. STOC 2008.

16

