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Abstract Visual-inte ractive cluste r analysis provides valuable tools for 
effectively ana lyzin g la rge and complex data sets . Owing to desirabl e prop­
erties and an inherent predisposition for visu a lization, the Kohonen Feature 
Map (or Self-Organizing Map or SOM) algorithm is among the most popular 
and widely used visu al clustering techniques . However, the unsupervised 
nature of the algorithm may be disadvantageous in certa in app lications. 
Depe nding on initia li zation a nd data characte ri sti cs, cluste r maps (cluster 
layouts) may emerge th at do not comply with user preferences, expecta­
tions or the application co ntext. Considering SOM-based ana lysis of trajectory 
data, we propose a comprehensive visual- interactive monitoring and control 
framework extending the bas ic SOM algorithm. The framework implements 
the general Visual Analytics id ea to effectively combine automatic data anal­
ys is w ith human expert supervisio n . It provides simple, yet effective faci li ties 
for visua lly monitoring and in teractively co ntrolling th e trajecto ry clusterin g 
process at arbitrary levels of detail. The approach all ows th e user to leverage 
existing dom ain knowl edge and user preferences, arrivin g at improved cluste r 
maps. We apply the fram ework on severa l traj ectory clustering prob lem s, 
demonstrating its potential in combining both unsupe rvised (machine) and 
supervised (human expert) processing, in producing appropriate cluster 
results . 

Keywords: visual analytics; visual cluster analys is; self-organizing maps; trajectory data; 
tim e series data 

Introduction 

Cluster analysis is a process for structuring a nd reducing data sets by finding 
groups of similar data elements.1 It is regarded as one of the core tools 
to effectively analyze large data volumes. This process is usually unsuper­
vised : Up to param eterization, most algorithms work fully automatic and 
the use r has no further m ea ns to determine the clusters. However, only 
appropriate clusterings effectively support the user in analyzing large data 
sets. Visual cluster analysis is a specialization of general cluster analysis 
and relies on the appropriate visualiza tion of clusters. Some of the most 
popular approach es perform a spatialization of the cluster centers to display 
space, trying to preserve essenti al re lationships among the clusters, while 
visualizing additional data properties such as the number of represented 
data items or m easures of cluster quality. To date, the Self-Organizing Map 
(SaM) algorithm proposed by Kohonen 2 is one of the most popular visual 
cluster algori thms. It effectively combines clustering and spatializat ion by 
learning cluster prototypes located on a grid structure embedded in low 
dimensional space. However, to the best of our knowledge none of the 
existing SaM implementations allows the user to monitor and steer the 
clustering process by visual-interactive means. 
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In this paper, we focus on trajectory data, which is a 
ubiquitous type of data important in many applications. 
For instance, enabled by tracking technology, it is possible 
to routinely collect large amounts of geo-referenced move­
ment data . Also, trajectories consisting of observation 
sequences in arbitrary vector spaces, for example, time­
dependent observations in two-dimensional diagram 
space can be regarded. Visual analysis in the trajectory 
data domain often faces very large data sets that cannot 
be visualized effectively per se. Trajectory cluster analysis 
is a promising option to this end. In previous work,3 the 
SOM algorithm was applied to visually analyze sets of 
trajectories observed in diagram space. It was observed 
that the fully automatic cluster analysis may yield mean­
ingful cluster spatialization. However, we recognize that 
there is a need to more closely integrate the expert user 
in the clustering process . 

We propose to extend the automatic (unsupervised) 
SOM algorithm by a visual-inter-active control and anal­
ysis framework. The framework allows the analyst to 
guide the otherwise purely automatic SOM algorithm 
toward resembling user-defined trajectory cluster maps. 
Thereby, it allows the user to factor in domain knowl­
edge, application needs and user preferences. The frame­
work allows the user to visually monitor and understand 
the otherwise black-box clustering process, and contro l 
it at an arbitrary level. The user can use it to obtain 
appropriate cluster maps from the full spectrum of maps 
generated either completely unsupervised or completely 
supervised. 

Related Work 

This work relates to a number of research strands. In 
general, this work follows the Visual Analytics idea of inte­
grating automatic data ana lysis with human expertise, 
relying on visual-interactive means .4,5 Cluster analysis 
is one key data mining technique of which many auto­
matic approaches exist.6,7,1 Clusters may be found for 
example, by centroid or medoid.based approaches, hierar­
chical models or density-based approaches. Visualization 
is often key to understand otherwise possibly abstract 
clustering results. Although certain clustering approaches 
implicitly yield visual representations (for example, 
dendrograms or two-dimensional mappings), for many 
other clustering techniques, appropriate visual represen­
tations need to be constructed as a post-processing step. 
Projection-based approaches are common to this end.8,9 
The Kohonen Map (SOM) algorithm2 is a well-known 
approach suited for analysis of large volumes of high­
dimensional data. The algorithm basically combines clus­
tering and projection, and it is ver6 amenable to visual 
analysis of high-dimensional data .l Its effectiveness has 
been demonstrated by its appli cation on many different 
data types. 11- 14 The SOM may also be used in combi­
nation with other visual data analysis approaches. In 

Guo et al,15 it has been integrated with several comple­
mentary visualizations, allowing the analYSis of data 
showing high-dimensional as well as spatio-temporal 
characteristics. 

Trajectory data lately has attracted much research 
interest. Because of advances in sensor and other 
techniques, increasingly large amounts of trajectory data 
arise, and consequently, techniques for their analysis 
are being developed. Trajectory data may be observed 
in real-world coordinates on various scales. 16,17 Also, 
trajectories may be regarded in more abstract spaces, 
for example, two-dimensional diagram space.3 Trajec­
tory mining research considers analysis and description 
of important properties in trajectory data . Of primary 
concern are methods to define appropriate similarity 
functions to query, compare, cluster trajectories l8 , 19 and 
support the detection of interesting patterns.20 

SOM-based Clustering of Trajectory Data 

In this section, we discuss the clustering of trajectory 
data using SOM. We briefly recall the basic mechanism of 
the unsupervised SOM algorithm in the next subsection, 
followed by a sketch of its application to trajectory data 
in a subsequent subsection. Later, we then motivate the 
need for integrating the user in the clustering procedure 
using visual-interactive facilities . 

Self-organizing map algorithm 

The SOM algorithm is a neural network-type learning 
algorithm. It iteratively trains a network of prototype 
vectors to represent a set of input data vectors. The 
network is usually given in the form of a two-dimensional 
regular gr id . During training, the algorithm iterates over 
the input data vectors; finds the best matching prototype 
vector; and adjusts the best matching prototype and a 
number of its network neighbors toward the input vector. 
In the course of the process, the si ze of the considered 
neighborhood and the strength of the ad justment process 
are reduced. 

In practice, two key effects are achieved by this 
process. Firstly, a set of prototype vectors (or clusters) 
is obtained representing the input data . And secondly, 
a low-dimensional arrangement (sorting) of the proto­
types is obtained, given by the grid structure. The main 
parameterization required by the algorithm includes the 
initialization of prototype vectors and the specification 
of learning parameters. The latter include the duration of 
the training process, the definition of the neighborhood 
kernel and the degree of vector ad justment (the learning 
rate). Although a number of rules of thumb exist for the 
parameter setting, finding good settings for a given data 
set usua lly requires experimentation and evaluation by 
the user. 
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Simple trajectory data model for self-organizing map 
analysis 

Application of the SOM algorithm to trajectory data 
requires a suitable vector representation of the trajectory 
data items. The vector representation should capture 
relevant trajectory characteristics and allow meaningful 
interpretation of vector distances as a measure for 
dissimilarity of the corresponding trajectories. Generally 
speaking, a trajectory feature selection problem has to be 
solved before the SOM algorithm can be applied. Many 
different trajectory features are candidates for a vector 
representation. For instance, features such as position, 
orientation and direction, curvature and changes thereof 
may be considered. Also, sampling and normalization 
aspects are usually an integral part of the feature selection 
process. 

Following Schreck et al,3 we consider a simple trajectory 
vector representation constructed from normalized trajec­
tory sample points. To obtain the vector representation, 
we first normalize each trajectory by scaling it into the 
unit square [0, 1]2, and then sample n uniformly spaced 
(x , y) coordinates spanning the trajectory from its start 
point to its end pOint. The concatenation of the sample 
coordinates in their sequence along the trajectory yields 
the vector representation of length 2n. By definition this 
representation ignores features, which might be impor­
tant in certain applications. For instance, it ignores the 
trajectories' absolute positions and scale in space, and, 
depending on the number of samples, may lose trajectory 
details or introduce sampling artifacts. The key advan­
tage of this representation in context of this work is that 
it has a direct geometric interpretation and that it can 
serve as the basis for visualization of and interaction with 
cluster prototype vectors produced by the SOM algorithm. 
Therefore, it is an integral component of the framework 
developed in the section Trajectory Cluster Map Learning 
Framework. Besides, this vector representation is simple 
to obtain and allows a straightforwa rd interpretation of 
vector distances. 

Requirement analysis 

As an example following,3 we cons ider a data set from 
the financia l Data analysis domain (d. also the subsec­
tion, Data set and unsupervised clustering). The data set 
consists of time-dependent observations of risk and return 
measurements of financial assets. Specifically, we consider 
consecutive observations in this two-dimensional space 
as sample points describing trajectories in an abstract 
(diagram) space. By taking daily samples and observing 
whole trading weeks (Monday through Friday), we arrive 
at five sample pOints and lO-dimensional trajectory 
vector representations, describing the movement of asset 
characteristics over time in risk x return diagram space. 
Figure 1 shows the reference vectors of a 12 x 9 SOM 
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trained from 5.500 trajectories. Note that this SOM was 
obtained by standard unsupervised training. 

Generally, the result of the SOM algorithm depends on 
input data characteristics, initialization of the map refer­
ence vectors and the set learning parameters. For effective 
SOM-based visual trajectory analysis, it is important that 
the overall cluster map is (a) meaningfully interpretable 
in terms of the location of reference trajectories and 
(b) stable with respect to data updates. It is deSirable that 
the position of the reference trajectories also corresponds 
to specific features and transitions of the underlying 
trajectories. Thereby, the spatial memory of the human 
analyst can be fully utilized, and meaningful interpreta­
tion can be supported even for changing data sets. Also, 
the presentation of the results is made easier if the layouts 
meet the common expectations of the target audience. 
For example, it might be desirable that the left-hand side 
of the SOM holds low values of the start points, whereas 
the right-hand side holds high end values (both in terms 
of (x , y) coordinates of the trajectory control points). On 
the other hand, it could be desirable that the four corners 
of the SOM contain reference trajectories resembling 
trajectories in diagonal direction. Standard SOM training 
usually cannot guarantee this, as it performs the learning 
process strictly unsupervised, and often the SOM algo­
rithm is applied in a 'black box' manner. What is required 
from the user perspective are efficient means of guiding 
the otherwise fully automatic learning process toward the 
desired trajectory cluster layou t. 

Trajectory Cluster Map Learning Framework 

We propose a comprehensive framework for supervised­
interactive SOM-based clustering of trajectory data. It 
consists of three main visual-interactive extensions to the 
otherwise fully automatic SOM learn ing algorithm. The 
framework was designed to be systematic with respect to 
the SOM clustering algorithm, and to incorporate visual­
interactive monitoring and control facilities considered 
useful in gUiding the clustering process. 

We point out that we do not expect every single control 
option discussed in this section to be required in every 
data analysis scenario. Rather, depending on the appli­
cation, an appropriate combination of controls from the 
framework is best suited to support achieving a given 
analysis goal. 

Map initialization based on trajectory editor 

Before the SOM training process can start, the grid of 
cluster prototypes needs to be initialized. The initializa­
tion guides the training process, and often influences the 
overa ll layout of the emerging cluster map. In the stan­
dard approach, two initia.1ization methods are common: 
random initialization and initialization based on a 



Figure 1: Self-Organizing Map of trajectory data, trained in unsupervised mode. Start and end points of trajectories are 
indicated by green and red dots, respectively. 

principal component analysis of the input data set.2 Both 
methods are unsupervised in nature. 

We propose a more user-oriented approach to control 
the initialization process. We base the approach on the 
fact that our trajectory data representation has a straight­
forward geometric interpretation: the vectors directly 
encode the trajectory geometry (the sequence of trajec­
tory control points), and can therefore be readily visual­
ized and manipulated interactively. To do so, we provide 
an interactive trajectory editor that lets the user draw 
example trajectories into chosen SOM grid positions. 
Reference trajectories may be input at distinct map loca­
tions, thereby specifying a model for the overall SOM 
cluster layout desired . Starting from a user-provided set 
of example trajectories, we initialize the full grid of SOM 
trajectory prototypes as follows: 

• For the grid nodes for which the user has provided 
example trajectories, we set the initial value of the SOM 
prototype vector equal to the vector representation of 
the drawn trajectory (simply a sequence of (x, y) coor­
dinates) . 

• For the unaSSigned grid nodes, we interpolate between 
the assigned example vectors. 

Figure 2 illustrates the trajectory editor concept. 
Figure 2(a) shows a simple trajectory consisting of two 
control points: one (green) start and one (red) end 
point. Figure 2(b) illustrates a 4 x 3 SOM grid, into 
which two example trajectories have been drawn by the 
user. Interpolation of the unaSSigned nodes takes place 
on a component-by-component basis, determined by 
the assigned values and an appropriate interpolation 
function. Figures 2(c)- (f) illustrate the resulting distri­
bution of components over the SOM grid. Consider for 
example, Figure 2(c) showing the distribution of the Xl 

component over the SOM grid. The top left cell corre­
sponds to low value, and the bottom-right cell corresponds 
to high value of this component. This is in accordance 
with the fact that the Xl coordinate (the x coordinate 
of the start point) of the two entered trajectories is low 
for the top left example, and high for the bottom right 
example. In this example, nearest neighbor interpolation 
was used, but other schemes such as weighted average are 
possible. 

Figure 3 shows an example of the trajectory editor for 
initialization of the SOM prototype vectors. Five reference 
trajectories were assigned by the user, and the remaining 
prototype vectors were filled in by weighted average 
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Figure 2: Supervised initi alization of the SOM prototype grid using the trajectory editor co ncept. (a) An example trajectory 
consisting of two contro l points (xl , Yl) (start point; marked green) and (x2 , Y2) (end point; marked red) . (b) Two example 
trajectories specified o n a 4 x 3 SOM grid . (c)-(f) Interpo lated component planes for the xl, YI, x2 and Y2 components. 
Bright (dark) colors indicate low (high) component values. 

interpolation. With this concept, the user is able to effi­
ciently initialize a SOM prototype map with a coarse 
template of a desired layout. 

Online visualization and control of the map training 

In the standard approach, the SOM clustering is produced 
by an unsupervised training process that ends'once a fixed 
number of iterations has elapsed or the quantization error 
meets a predefined threshold .2 In our approach, we aim 
to produce SOM cluster results that are both good with 
respect to quantization error, and at the same time reflect 
user- or application-desired prototype patterns and layout 
criteria. We therefore extend the unsupervised training 
process by (a) online visualization and (b) control func­
tionality. Visualization of online training and optional 
user intervention are coupled. At any time during the 
training, the user is able to pause the training, update 
training parameters and resume the training. 

Visualization of the training process 
Recall that in our application, the data vectors have an 
immediate geometric interpretation. Therefore we are 
able to visualize the online training process by showing 
a continuously updated display of prototype trajectories. 
Specifically, the user can observe the effect of the provided 
trajectory initialization on the subsequent training 
process. In addition to visualizing the emerging trajectory 
patterns within the SOM cells, we optionally superimpose 
certain cluster map quality metrics using color-coding 
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and nearest neighbor connectors (d. Figure 4): 

1. Color-coding of the current quantization error of the 
emerging maps: for each prototype vector, we calculate 
the average Euclidean distance between the prototype 
and the trajectory data samples it represents . 

2. Color-coding of the average Euclidean distance between 
each SOM prototype vector and its immediate proto­
type vector neighbors on the grid (also known as U­
Matrix color coding) .l0 

3. Nearest-neighbor connectors indicating the nearest 
neighbor relations between the SOM prototype vectors. 
This visualization reflects the smoothness of the 
pattern transitions over the map (smoother transiting 
prototype layouts show shortei- connectors) . 

By means of these visualizations, the user can observe 
both the emerging organization of the pattern layout, as 
well as the quality of the representation of the obtained 
clustering. Figure 4 illustrates the online training visual­
ization with snapshots of the quantization error during 
training of a 12 x 9 SOM of trajectories (a)- (c) and a zoom 
into a connector display (d). 

Control of the training process 
The framework supports a set of interaction facilities for 
control of the training process. At any time, the user can 
suspend the training process and, depending on prefer­
ences and experience, exert one or more of the following 
controls: 

1. Adjust single prototype trajectories by directly editing 
them with the trajectory editor. 



Figure 3: Editor-based initialization of a 12 x 9 SOM trajectory grid, using five user-defined example trajectories (marked 
blue) in con junction with weighted average interpolation . Component distributions (xl, Yl) to (Xs , Ys) are shown in the left 
panel. 

2. Adjust the map by editing a selection of prototypes 
and replace the remaining prototypes by interpolating 
between the selected prototypes. 

3. Update the training parameters at global granularity: 
adjust the number of remaining iterations, learning rate 
and neighborhood kernel. 

4. Manipulate learning parameters at local granularity: set 
different learning rate and radius for selected grid cells . 

S. Reinforce training of selected patterns. 

These controls serve to gUide the learning process toward 
user desired results, if required. Control 4 particularly 
allows the specification of smaller or even zero learning 
rates for selected patterns. This allows to explicitly enforce 
selected patterns on the map. Control S is another option 
we implemented to smoothly place example patterns 
into the map as follows. If this option is set, the system 
monitors the evolution of the assigned example patterns 
during the training process. Once the Euclidean distance 
between the prototype vector and the user-assigned 
trajectory grows too high, we repeatedly inject (update) 
the assigned prototype onto the respective grid position 
with the current training parameters. This has the effect 

that the otherwise freely adapted patterns do not deviate 
too strongly from the assigned patterns during training, 
and that the map neighborhood smoothly accommodates 
the assigned pattern. 

Although options 1 and 2 are basic controls, options 
3- S are more advanced controls of the training process, 
designed for users requiring fine-grained control of the 
training. However, we expect that it should also be 
possible to wrap the more advanced controls by easy­
to-use high-level commands, such as setting an 'enforce 
this pattern' flag that can be set inside the trajectory 
editor. Thereby, the more advanced options can also be 
easily used by less experienced users. After updates to the 
training process have been manually entered, training 
is resumed and the user can continue to observe the 
effects . Usually, experimentation with different param­
eter settings is required for optimizing results on a given 
data set and analysis task. The experimentation process 
is supported by an undo operation, which rewinds the 
training effect of the most recent update . 

Note the idea of fixing selected data vectors to given 
SOM grid locations during training is not new per se. 
For instance, the Self-Organizing Map Program Package 
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implementation includes an option for doing so.21 We 
point out that our interactive training controls extend 
beyond a simple fixing of vector assignments. Not only 
any training parameter may be edited at rUntime, but 
also the reference vectors may be interactively modified 
during training using the trajectory editor. 

We also point out that, in principle the control frame­
work allows a user to produce any prototype layout 
desired, possibly influencing the reliability of the obtained 
results. Generally, we expect that an application- or 
user-dependent trade-off will have to be found between 
supervised and unsupervised training of the reference 
map. Clustering quality visualization is recommended for 
appropriately balancing the trade-off between the preci­
sion of the clustering (in terms of quantization error and 
nearest neighbor transitioning) on the one hand, and 
supervised pre assignment of the reference layout on the 
other. 

Map post-processing 

Usually, the final trajectory map yielded by the training 
will be the basis for subsequent visual analysis of the 
obtained clustering and the underlying data. Depending 
on the nature of the analysis task, it may be useful to post­
process the obtained trajectory map. The framework there­
fore supports the following trajectory map post-processing 
interactions: 

1. Merging of multiple trajectory prototypes. This allows 
aggregation of similar prototypes and reduces the size 
of the map. The new prototypes are formed by aver­
aging the original prototypes. 

2. Expansion of trajectory prototypes. This allows finer 
grained visual ana lysiS of prototypes that perform 
too much aggregation . The expansion is achieved by 
training a sub map of refined prototypes based on the 
data represented by the original trajectory prototypes. 

3. Editing, creation and deletion of trajectory proto­
types. The user can manually edit existing trajectory 
prototypes or add new prototypes to the map using 
the tra jectory editor. Also, existing prototypes can be 
deleted from the map. 

4. Swapping of prototypes. The user is allowed to rear­
range the layout of the prototypes by position swap 
operations. 

These operations are optional, yet useful in certain situ­
ations. For instance, manual addition of pOSSibly non­
represented, sparse patterns to the map may be very 
helpful in situations where certain patterns are important 
from the ana lysis perspective, but underrepresented in 
the data set, and therefore were not trained by the SOM 
algorithm. Note that like manual control of the online 
training process, an interactive post-processing operation 
may incur a loss of quantization preciSion or pattern 
transition smoothness, compared to a SOM trained in 
a completely unsupervised way. Again, referring to the 



quality visualizations, it is left to the discretion of the user 
to balance this trade-off. 

Application 

We apply our supervised SOM training framework in two 
scenarios, illustrating the modes of operation supported, 
as well as a possible analytical workflow adapted to finan­
cial data analysis. 

Operation of the framework 

In the next subsection, we describe the results of an unsu­
pervised reference SOM clustering. In the further subsec­
tions, we then apply our framework to produce several 
different target layouts, demonstrating the functionality 
of the framework for generating supervised clusterings. 

Data set and unsupervised clustering 
We consider the same data set as in Schreck et at3 
(d. also the Simple trajectory data model for self­
organizing map section). An unsupervised reference SOM 
was trained from this data set, consisting of a rectangular 
grid of 12 x 9 trajectory prototypes. The description of the 
training process follows. We first iterated 100 times over 
the data set, initially setting the learning rate to 5 per cent 
and the learning radius to 15 using a bubble neighbor­
hood kernel. We then refined the map by a second run, 
iterating 200 times over the data set, after adjusting the 
learning rate to 2 per cent, and the neighborhood radius 
to 5. We considered both random and linear initializations 
of the prototype vectors, obtaining both times approxi­
mately the same end result, which is shown in Figure l. 

In the next sections, we present a series of experiments 
applying our framework to produce user-guided trajectory 
maps. 

Adaptation of unsupervised trajectory map 
In the first experiment, we show how the framework can 
be used to adapt a given trajectory map to reflect the 
users' global layout preferences, assuming that the user has 
inspected the fully unsupervised map shown in Figure l. 
Although the user agrees with the obtained cluster proto­
types, another positioning of the patterns on global map 
may be desired. The user proceeds to initialize a new map 
by a number of example prototypes taken from the unsu­
pervised map. Figure 5(a) shows the initialization: four 
example trajectories were selected and assigned to the 
corner regions of an initial map; the unassigned proto­
types were filled in using weighted average interpolation. 
Then, training using the SOM algorithm takes place. After­
ward, a reinforcement of the assigned example trajecto­
ries (described in the subsection Control of the training 
process) is applied to the preassigned reference trajecto­
ries. Figures 5(b)-(f) show how the map converges toward 

a stable layout. The map layout basically represents the 
patterns contained in the original unsupervised map, this 
time, the user-intended global cluster map layout is also 
obtained. 

Abstract reference map 
In this experiment, we assume that the user is inter­
ested in a couple of rather different, dissimilar trajectory 
patterns. The patterns are assumed to carry an application­
specific important meaning, and therefore need to be 
reflected in the map. The analyst starts the training by 
assigning these patterns. Figure 6(a) shows the initializa­
tion of a cluster map based on six abstract user-defined 
patterns, along with nearest neighbor interpolation. A 
short training interval consisting of a small number of 
iterations, in conjunction with reinforcement of example 
patterns, yields the smoothly transitionlng cluster maps 
shown in Figures 6(b) and (c). The clusters adapt to 
reflect the data distribution, while keeping up the types 
of the preassigned patterns, as well as their positions. 
Figures 6(d)-(f) visualize the emerging smooth transi­
tions between the trajectory prototypes. The color-coding 
represents the normalized average distances between the 
prototype vectors (the second SOM metric in the section 
Visualization of the training process). 

Circular flow-like map 
As a further abstract supervised target layout, we consider 
a circular flow-like layout. Figure 7(a) shows an initial­
ization given by eight control trajectories in conjunction 
with weighted average interpolation. Figure 8 compares 
training of that reference layout on the data set with 
and without reinforcement (d. controlS described in the 
section Control of the training process) of the assigned 
patterns. We observe, as expected, that reinforcement 
of the assigned patterns (top row in Figure 8) holds 
them fixed on the map, and adapts neighboring patterns 
accordingly. Without reinforcement of assigned patterns 
(bottom row in Figure 8), these too are subject to adapta­
tion by the SOM training, and evolve together with the 
overall map of reference trajectories. 

Application to financial data analysis problem 

In this section, we present an exemplary analysis workflow 
based on a financial data analysis problem, making use of 
our trajectory clustering framework. The next subsection 
introduces the used data set and a possible analytical task 
and the further subsections describe analysis steps using 
unsupervised and supervised cluster analysis. 

Data set 
We consider a second data set we compiled according 
to the systematization in Schreck et al3 (d. also section 
Simple tra jectory data model for self-organizing map) . 
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It consists of risk vs. return data, observed on a weekly 
basis, for 30 blue chip stocks listed in the Deutsche Aktien 
Index (German Stock Index) .22 The full data set spans 
a time frame between June 2005 and August 2007. We 
specifically like to study the diagram characteristics for the 
first three weeks of March 2007, characterized by transient 
market turbulences. 

Unsupervised trajectory map and identification of patterns of 
interest . 
Firstly, a SOM of the set of risk-return diagrams was 
trained in an unsupervised mode. The result is shown in 
Figure 9(a). Yellow color-coding shows the relative density 
of matched sample charts over the SOM. It can be seen 
that the distribution of the patterns in the data set is rela­
tively uniform, meaning that all the found patterns occur 
with similar frequency during the whole time period. The 
shapes of the patterns vary substantially and cover the 
important types of market movements. 

Followingly, we look closely at the market movements 
during the first three weeks of March 2007, when a tran­
sient market downturn leading to significant drop of 
many of the listed stocks' prices occurred. Figure 9(b)- (d) 
indicate the patterns occurring during these weeks. The 
density of matched samples, as well as their spread 
(deviation) from the respective cluster prototypes is indi­
cated by background highlighting (yellow) and trajectory 
bundles (blue), cf.3 In contrast to the whole time period, 
the pattern for the turbulent weeks show that the distri­
bution of patterns changes drastically. The variance of the 
market movements seen during normal trading weeks is 
replaced by strong developments in one direction on the 
whole market. The trading week of February 26- March 
2002 (Figure 9(b» first shows an increase in daily stock 
price return (y-aXiS, upward movement), while showing 
increased risk (price volatility) at the same time (x-aXiS, 
rightward movement) for most of the traded stocks. 
Followed by this upturn, a downturn was observed for 
many stocks, as characterized by a decrease in daily 
return (downward movement along y-axis) together with 
fluctuations in variance (movements along x-axis). The 
downturn is dominating the risk-return chart patterns 
occurring in the latter two weeks (Figures 9(c) and (d» . 

Customized trajectory clustering and further analysis 
Although such patterns of interest as described above 
may be identified, for detailed analysis they may not be 
adequately represented on the unsupervised cluster map. 
For example, as the interesting patterns may account 
only for a small fraction of overall patterns used during 
the unsupervised training, they may not be represented 
on the map in as much detail as reqUired for an in-depth 
analYSis. In the next step, we therefore re-train the SOM 
based on the identified patterns of interest. Specifically, 
we initialized the map with the patterns identified as 
significant in the previous analysis. An upturn prototype 
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Figure 8 : Training based on the circular supervised reference layout from Figure 7(a), using reinforced reference patterns (top row) and free-floating 
patterns. Like the bottom row of images in Fig ure 6, the color-coding indicates the average distance between Self-Organizing Map prototype vectors. 
The visualization indicates that several different trajectory regions evolve. The reinforced map shows larger differences between trajectory regions; 
specifically, the reinforced patterns produce larger differences to their neighborhood trajectory patterns. 
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Figure 9: Figure (a) shows an unsupe rvised clustering of weekly risk-return charts for 30 German blue chip stocks, as 
observed between 2005 and 2007. Figures (b)-(d) show a highlighted projection of the map to the chart patterns observed 
during three consecutive weeks, during a transitory downturn phase of the market (c, d; the most frequent patterns are 
zoomed in), preceded by a short upturn phase (b). 

chart (identified from Figure 9(b» was placed on the left 
hand side of the map, and two downturn prototype charts 
(identified from Figures 9(c) and (d» were positioned on 
the top and bottom right-hand side of the map. Training 
then took place while reinforcing the assigned prototype 
charts during the training. 

Figure lO(a) shows the resulting SOM. The manu­
ally adjusted map allows for a larger resolution of the 
observed market patterns on the SOM, and provides the 
user-specified global layout of the trajectory map. Specif­
ically, upturn charts are found on the left hand side, 
and downturn charts are found on the right hand side 
of the overall SOM. The subsequent in-depth analysis 

26 

can concentrate on, for example, the temporal relation­
ship between upturn and downturn patterns, for possible 
identification of interesting correlations, and general 
support of technical chart analysis and prediction tasks. 
Figure lOeb) shows an example of such a temporal anal­
ysis: the individual, weekly risk-return charts of the 30 
stocks are replaced by their SOM representations, and are 
shown in a sequence view.3 This view allows for anal­
ysis of patterns over time (the patterns for each stock 
are lined up along the time axis) . Highlighting of upturn 
(blue) and downturn (yellow) patterns used in creation 
of the supervised map then allows to study the observed 
patterns across stocks in the specific turbulence periods 
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Figure 10: (a) Self-Organizing Map of ri sk-return charts, trained in supervised mod e by assigning one upturn (left, middle 
position) and two downturn sequences (right, top and bottom positions) identifi ed from the unsupervised SOM shown in 
Figure 9. (b) Sequence analysi s of the weekly charts, hi ghlighting the upward (blue) and downward (yellow) patterns (two 
regions are zoomed in for closer in spection) . 

as well as to search for similar situations in other time 
intervals . In our case, the results show that the upturn 
phase of the market seen in the week identified above 
(week 85) was directly followed by the downturn phase 
in the following week (week 86) . The sequence view also 
revea ls that a similar pattern occurred also in the past 
(week 34). However, the immediate reversal of the trend 
did not fo llow shortly afterward. 

Discussion and Options for Extensions 

The overa ll goa l of our SOM visualization and control 
framework is to guide the otherwise unsupervised 
algorithm to produce maps of user-preferred tra jectory 
clusterings. User interaction with the clustering algorithm 
includes setting of main training parameters as well as 
manual assignment of reference trajectories guiding the 
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self-organization of cluster prototypes on the map. Several 
options exist for the choice of assignment patterns used 
in supervised training mode. They range from simply 
re-using or adjusting patterns identified in a preceding 
unsupervised clustering run, to completely unrestricted 
specification by the user. The choice of method is task 
specific and depends also on user interest and exper­
tise. Although we did not perform a formal user study, 
experience obtained from our experiments indicates 
that the implemented visual-interactive SOM controls 
support quite efficient and effective parameter setting by 
the user. 

Usually, the more the trajectory clustering aimed at by 
the user differs from the result achievable by the purely 
unsupervised algorithm, the less aggressive the training 
parameters need to be set, to retain the main charac­
teristics of the predefinition. This is in accordance with 
practical recommendations for SOM training, suggesting 
to use moderate training parameters during a fine-tuning 
phase after a preceding global organization phase21 has 
taken place. In our system, the global organization phase is 
replaced by interactive map initialization using the trajec­
tory editor, and the fine-tuning is done by application of 
a number of interactive SOM training iterations. 

By controlling the training process, in the extreme 
case the user is able to achieve any clustering desired, no 
matter how precise (and thereby meaningful) this clus­
tering result may be. Balancing the trade-off between opti­
mizing a formal clustering quality metric (for example, 
quantization error) and the user-desired trajectory clus­
tering, will ultimately be the responsibility of the user. 
Although formally evaluating this trade-off is considered 
to be difficult, we believe the SOM quality visualization 
options implemented, including the nearest neighbor 
connectors visualization such as illustrated in Figure 7(b), 
support achieving a good trade-off. More evaluation in 
this direction is considered interesting and should be 
addressed in the future work. 

Regarding the supported data model, our frame­
work is applicable to trajectory data of constant length 
described in a simple geometry-based vector represen­
tation. Currently not included are position- and scale­
dependent geometriC features, features for very long 
tra jectories, or more abstract and non-geometric trajec­
tory features. Some of these features are expected to be 
easy to incorporate by an extended vector representation. 
Other trajectory features are expected to be more difficult 
to represent by the vector model, and also more difficult 
to visualize and interact with. Generally, the inclusion 
and evaluation of a richer set of tra jectory features into 
our framework constitutes interesting future work. 

Our framework was introduced on a rather conceptual 
level. More deep application integration is considered 
interesting and should be addressed in the future work. 
Considering that in many domains vast amounts of time­
dependent point cloud (scatter p lot) data arise, we see 
much potential of applying customized cluster analysis 
as proposed here . Relevant domains include financial 
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data analysis, but also engineering and science. Based 
on the domain and application, customized trajectory 
features should be defined, and application-specific chart 
templates could be compiled, for assisting the user in 
generating useful cluster layouts. 

Fundamentally, we can distinguish trajectory analysis 
tasks taking place in diagram space (for example, finance 
data), as well as in real-world coordinates (for example, 
traffic monitoring) . A comparative study that which 
identifies typical trajectory analysis tasks in diagram and 
real-world coordinate space could shed insight on how 
to extend our approach to the Geographic Information 
System domain . 

Conclusion 

We defined a visual-interactive framework for guiding the 
otherwise unsupervised Self-Organizing Map algorithm by 
a user, customized to operate in conjunction with a simple 
trajectory data model. The framework enables the user to 
visually monitor the clustering process and control the 
algorithm at an arbitrary level of detail. A number of inter­
action facilities were proposed, an integral part of them 
being the trajectory editor for interactive initialization of 
the clustering process and interaction facilities to manip­
ulate the training parameters during runtime. The frame­
work was applied to a number of trajectory clustering 
tasks . 

The framework is regarded as one step toward better 
fitting this popular, yet largely unsupervised clustering 
algorithm toward user supervision. A number of options 
for future work have been identified, including extension 
of the simple trajectory data model currently supported. 
Based on a flexible set of trajectory features, also the 
implementation of a hierarchical SOM algorithm, using 
different tra jectory properties to organize the data on 
different hierarchy levels, could be realized. To this 
end, appropriate interaction techniques for specification 
of the layouts on the different levels will have to be 
developed. 
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