
Visual cluster analysis of trajectory data
with interactive Kohonen maps

Tobias Schrecka, *
Jurgen Bernarda

Tatiana von Landesbergera
and Jorn Kohlhammerb

·Computer Science, Technische Universitat
Darmstadt, Interactive Graphics Systems
Group (GRIS), Fraunhoferstrasse 5, D-64283
Darmstadt, Germany.
E-mails: tobias.schreck@gris. informatik.
tu-darmstadt.de,
juergen.bernard@gris.informatik.
tu-darrnstadt.de,
tatiana. von_landesberger@gris.informatik .
tu-darmstadt.de,
bFraunhofer In stitute for Computer
Graphics (lGD), Fraunhoferstrasse 5, D-64283
Darmstadt, Germany.
joern.kohlhammer@igd .fraunhofer.de

' Corresponding author.

Abstract Visual-inte ractive cluste r analysis provides valuable tools for
effectively ana lyzin g la rge and complex data sets . Owing to desirabl e prop­
erties and an inherent predisposition for visu a lization, the Kohonen Feature
Map (or Self-Organizing Map or SOM) algorithm is among the most popular
and widely used visu al clustering techniques . However, the unsupervised
nature of the algorithm may be disadvantageous in certa in app lications.
Depe nding on initia li zation a nd data characte ri sti cs, cluste r maps (cluster
layouts) may emerge th at do not comply with user preferences, expecta­
tions or the application co ntext. Considering SOM-based ana lysis of trajectory
data, we propose a comprehensive visual- interactive monitoring and control
framework extending the bas ic SOM algorithm. The framework implements
the general Visual Analytics id ea to effectively combine automatic data anal­
ys is w ith human expert supervisio n . It provides simple, yet effective faci li ties
for visua lly monitoring and in teractively co ntrolling th e trajecto ry clusterin g
process at arbitrary levels of detail. The approach all ows th e user to leverage
existing dom ain knowl edge and user preferences, arrivin g at improved cluste r
maps. We apply the fram ework on severa l traj ectory clustering prob lem s,
demonstrating its potential in combining both unsupe rvised (machine) and
supervised (human expert) processing, in producing appropriate cluster
results .

Keywords: visual analytics; visual cluster analys is; self-organizing maps; trajectory data;
tim e series data

Introduction

Cluster analysis is a process for structuring a nd reducing data sets by finding
groups of similar data elements.1 It is regarded as one of the core tools
to effectively analyze large data volumes. This process is usually unsuper­
vised : Up to param eterization, most algorithms work fully automatic and
the use r has no further m ea ns to determine the clusters. However, only
appropriate clusterings effectively support the user in analyzing large data
sets. Visual cluster analysis is a specialization of general cluster analysis
and relies on the appropriate visualiza tion of clusters. Some of the most
popular approach es perform a spatialization of the cluster centers to display
space, trying to preserve essenti al re lationships among the clusters, while
visualizing additional data properties such as the number of represented
data items or m easures of cluster quality. To date, the Self-Organizing Map
(SaM) algorithm proposed by Kohonen 2 is one of the most popular visual
cluster algori thms. It effectively combines clustering and spatializat ion by
learning cluster prototypes located on a grid structure embedded in low
dimensional space. However, to the best of our knowledge none of the
existing SaM implementations allows the user to monitor and steer the
clustering process by visual-interactive means.

http://ivi.sagepub.com/
http://nbn-resolving.de/urn:nbn:de:bsz:352-173895

In this paper, we focus on trajectory data, which is a
ubiquitous type of data important in many applications.
For instance, enabled by tracking technology, it is possible
to routinely collect large amounts of geo-referenced move­
ment data . Also, trajectories consisting of observation
sequences in arbitrary vector spaces, for example, time­
dependent observations in two-dimensional diagram
space can be regarded. Visual analysis in the trajectory
data domain often faces very large data sets that cannot
be visualized effectively per se. Trajectory cluster analysis
is a promising option to this end. In previous work,3 the
SOM algorithm was applied to visually analyze sets of
trajectories observed in diagram space. It was observed
that the fully automatic cluster analysis may yield mean­
ingful cluster spatialization. However, we recognize that
there is a need to more closely integrate the expert user
in the clustering process .

We propose to extend the automatic (unsupervised)
SOM algorithm by a visual-inter-active control and anal­
ysis framework. The framework allows the analyst to
guide the otherwise purely automatic SOM algorithm
toward resembling user-defined trajectory cluster maps.
Thereby, it allows the user to factor in domain knowl­
edge, application needs and user preferences. The frame­
work allows the user to visually monitor and understand
the otherwise black-box clustering process, and contro l
it at an arbitrary level. The user can use it to obtain
appropriate cluster maps from the full spectrum of maps
generated either completely unsupervised or completely
supervised.

Related Work

This work relates to a number of research strands. In
general, this work follows the Visual Analytics idea of inte­
grating automatic data ana lysis with human expertise,
relying on visual-interactive means .4,5 Cluster analysis
is one key data mining technique of which many auto­
matic approaches exist.6,7,1 Clusters may be found for
example, by centroid or medoid.based approaches, hierar­
chical models or density-based approaches. Visualization
is often key to understand otherwise possibly abstract
clustering results. Although certain clustering approaches
implicitly yield visual representations (for example,
dendrograms or two-dimensional mappings), for many
other clustering techniques, appropriate visual represen­
tations need to be constructed as a post-processing step.
Projection-based approaches are common to this end.8,9
The Kohonen Map (SOM) algorithm2 is a well-known
approach suited for analysis of large volumes of high­
dimensional data. The algorithm basically combines clus­
tering and projection, and it is ver6 amenable to visual
analysis of high-dimensional data .l Its effectiveness has
been demonstrated by its appli cation on many different
data types. 11- 14 The SOM may also be used in combi­
nation with other visual data analysis approaches. In

Guo et al,15 it has been integrated with several comple­
mentary visualizations, allowing the analYSis of data
showing high-dimensional as well as spatio-temporal
characteristics.

Trajectory data lately has attracted much research
interest. Because of advances in sensor and other
techniques, increasingly large amounts of trajectory data
arise, and consequently, techniques for their analysis
are being developed. Trajectory data may be observed
in real-world coordinates on various scales. 16,17 Also,
trajectories may be regarded in more abstract spaces,
for example, two-dimensional diagram space.3 Trajec­
tory mining research considers analysis and description
of important properties in trajectory data . Of primary
concern are methods to define appropriate similarity
functions to query, compare, cluster trajectories l8 , 19 and
support the detection of interesting patterns.20

SOM-based Clustering of Trajectory Data

In this section, we discuss the clustering of trajectory
data using SOM. We briefly recall the basic mechanism of
the unsupervised SOM algorithm in the next subsection,
followed by a sketch of its application to trajectory data
in a subsequent subsection. Later, we then motivate the
need for integrating the user in the clustering procedure
using visual-interactive facilities .

Self-organizing map algorithm

The SOM algorithm is a neural network-type learning
algorithm. It iteratively trains a network of prototype
vectors to represent a set of input data vectors. The
network is usually given in the form of a two-dimensional
regular gr id . During training, the algorithm iterates over
the input data vectors; finds the best matching prototype
vector; and adjusts the best matching prototype and a
number of its network neighbors toward the input vector.
In the course of the process, the si ze of the considered
neighborhood and the strength of the ad justment process
are reduced.

In practice, two key effects are achieved by this
process. Firstly, a set of prototype vectors (or clusters)
is obtained representing the input data . And secondly,
a low-dimensional arrangement (sorting) of the proto­
types is obtained, given by the grid structure. The main
parameterization required by the algorithm includes the
initialization of prototype vectors and the specification
of learning parameters. The latter include the duration of
the training process, the definition of the neighborhood
kernel and the degree of vector ad justment (the learning
rate). Although a number of rules of thumb exist for the
parameter setting, finding good settings for a given data
set usua lly requires experimentation and evaluation by
the user.

15

Simple trajectory data model for self-organizing map
analysis

Application of the SOM algorithm to trajectory data
requires a suitable vector representation of the trajectory
data items. The vector representation should capture
relevant trajectory characteristics and allow meaningful
interpretation of vector distances as a measure for
dissimilarity of the corresponding trajectories. Generally
speaking, a trajectory feature selection problem has to be
solved before the SOM algorithm can be applied. Many
different trajectory features are candidates for a vector
representation. For instance, features such as position,
orientation and direction, curvature and changes thereof
may be considered. Also, sampling and normalization
aspects are usually an integral part of the feature selection
process.

Following Schreck et al,3 we consider a simple trajectory
vector representation constructed from normalized trajec­
tory sample points. To obtain the vector representation,
we first normalize each trajectory by scaling it into the
unit square [0, 1]2, and then sample n uniformly spaced
(x , y) coordinates spanning the trajectory from its start
point to its end pOint. The concatenation of the sample
coordinates in their sequence along the trajectory yields
the vector representation of length 2n. By definition this
representation ignores features, which might be impor­
tant in certain applications. For instance, it ignores the
trajectories' absolute positions and scale in space, and,
depending on the number of samples, may lose trajectory
details or introduce sampling artifacts. The key advan­
tage of this representation in context of this work is that
it has a direct geometric interpretation and that it can
serve as the basis for visualization of and interaction with
cluster prototype vectors produced by the SOM algorithm.
Therefore, it is an integral component of the framework
developed in the section Trajectory Cluster Map Learning
Framework. Besides, this vector representation is simple
to obtain and allows a straightforwa rd interpretation of
vector distances.

Requirement analysis

As an example following,3 we cons ider a data set from
the financia l Data analysis domain (d. also the subsec­
tion, Data set and unsupervised clustering). The data set
consists of time-dependent observations of risk and return
measurements of financial assets. Specifically, we consider
consecutive observations in this two-dimensional space
as sample points describing trajectories in an abstract
(diagram) space. By taking daily samples and observing
whole trading weeks (Monday through Friday), we arrive
at five sample pOints and lO-dimensional trajectory
vector representations, describing the movement of asset
characteristics over time in risk x return diagram space.
Figure 1 shows the reference vectors of a 12 x 9 SOM

16

trained from 5.500 trajectories. Note that this SOM was
obtained by standard unsupervised training.

Generally, the result of the SOM algorithm depends on
input data characteristics, initialization of the map refer­
ence vectors and the set learning parameters. For effective
SOM-based visual trajectory analysis, it is important that
the overall cluster map is (a) meaningfully interpretable
in terms of the location of reference trajectories and
(b) stable with respect to data updates. It is deSirable that
the position of the reference trajectories also corresponds
to specific features and transitions of the underlying
trajectories. Thereby, the spatial memory of the human
analyst can be fully utilized, and meaningful interpreta­
tion can be supported even for changing data sets. Also,
the presentation of the results is made easier if the layouts
meet the common expectations of the target audience.
For example, it might be desirable that the left-hand side
of the SOM holds low values of the start points, whereas
the right-hand side holds high end values (both in terms
of (x , y) coordinates of the trajectory control points). On
the other hand, it could be desirable that the four corners
of the SOM contain reference trajectories resembling
trajectories in diagonal direction. Standard SOM training
usually cannot guarantee this, as it performs the learning
process strictly unsupervised, and often the SOM algo­
rithm is applied in a 'black box' manner. What is required
from the user perspective are efficient means of guiding
the otherwise fully automatic learning process toward the
desired trajectory cluster layou t.

Trajectory Cluster Map Learning Framework

We propose a comprehensive framework for supervised­
interactive SOM-based clustering of trajectory data. It
consists of three main visual-interactive extensions to the
otherwise fully automatic SOM learn ing algorithm. The
framework was designed to be systematic with respect to
the SOM clustering algorithm, and to incorporate visual­
interactive monitoring and control facilities considered
useful in gUiding the clustering process.

We point out that we do not expect every single control
option discussed in this section to be required in every
data analysis scenario. Rather, depending on the appli­
cation, an appropriate combination of controls from the
framework is best suited to support achieving a given
analysis goal.

Map initialization based on trajectory editor

Before the SOM training process can start, the grid of
cluster prototypes needs to be initialized. The initializa­
tion guides the training process, and often influences the
overa ll layout of the emerging cluster map. In the stan­
dard approach, two initia.1ization methods are common:
random initialization and initialization based on a

Figure 1: Self-Organizing Map of trajectory data, trained in unsupervised mode. Start and end points of trajectories are
indicated by green and red dots, respectively.

principal component analysis of the input data set.2 Both
methods are unsupervised in nature.

We propose a more user-oriented approach to control
the initialization process. We base the approach on the
fact that our trajectory data representation has a straight­
forward geometric interpretation: the vectors directly
encode the trajectory geometry (the sequence of trajec­
tory control points), and can therefore be readily visual­
ized and manipulated interactively. To do so, we provide
an interactive trajectory editor that lets the user draw
example trajectories into chosen SOM grid positions.
Reference trajectories may be input at distinct map loca­
tions, thereby specifying a model for the overall SOM
cluster layout desired . Starting from a user-provided set
of example trajectories, we initialize the full grid of SOM
trajectory prototypes as follows:

• For the grid nodes for which the user has provided
example trajectories, we set the initial value of the SOM
prototype vector equal to the vector representation of
the drawn trajectory (simply a sequence of (x, y) coor­
dinates) .

• For the unaSSigned grid nodes, we interpolate between
the assigned example vectors.

Figure 2 illustrates the trajectory editor concept.
Figure 2(a) shows a simple trajectory consisting of two
control points: one (green) start and one (red) end
point. Figure 2(b) illustrates a 4 x 3 SOM grid, into
which two example trajectories have been drawn by the
user. Interpolation of the unaSSigned nodes takes place
on a component-by-component basis, determined by
the assigned values and an appropriate interpolation
function. Figures 2(c)- (f) illustrate the resulting distri­
bution of components over the SOM grid. Consider for
example, Figure 2(c) showing the distribution of the Xl

component over the SOM grid. The top left cell corre­
sponds to low value, and the bottom-right cell corresponds
to high value of this component. This is in accordance
with the fact that the Xl coordinate (the x coordinate
of the start point) of the two entered trajectories is low
for the top left example, and high for the bottom right
example. In this example, nearest neighbor interpolation
was used, but other schemes such as weighted average are
possible.

Figure 3 shows an example of the trajectory editor for
initialization of the SOM prototype vectors. Five reference
trajectories were assigned by the user, and the remaining
prototype vectors were filled in by weighted average

17

a y

high

b

/

x
low

low high /
c d e f

Figure 2: Supervised initi alization of the SOM prototype grid using the trajectory editor co ncept. (a) An example trajectory
consisting of two contro l points (xl , Yl) (start point; marked green) and (x2 , Y2) (end point; marked red) . (b) Two example
trajectories specified o n a 4 x 3 SOM grid . (c)-(f) Interpo lated component planes for the xl, YI, x2 and Y2 components.
Bright (dark) colors indicate low (high) component values.

interpolation. With this concept, the user is able to effi­
ciently initialize a SOM prototype map with a coarse
template of a desired layout.

Online visualization and control of the map training

In the standard approach, the SOM clustering is produced
by an unsupervised training process that ends'once a fixed
number of iterations has elapsed or the quantization error
meets a predefined threshold .2 In our approach, we aim
to produce SOM cluster results that are both good with
respect to quantization error, and at the same time reflect
user- or application-desired prototype patterns and layout
criteria. We therefore extend the unsupervised training
process by (a) online visualization and (b) control func­
tionality. Visualization of online training and optional
user intervention are coupled. At any time during the
training, the user is able to pause the training, update
training parameters and resume the training.

Visualization of the training process
Recall that in our application, the data vectors have an
immediate geometric interpretation. Therefore we are
able to visualize the online training process by showing
a continuously updated display of prototype trajectories.
Specifically, the user can observe the effect of the provided
trajectory initialization on the subsequent training
process. In addition to visualizing the emerging trajectory
patterns within the SOM cells, we optionally superimpose
certain cluster map quality metrics using color-coding

18

and nearest neighbor connectors (d. Figure 4):

1. Color-coding of the current quantization error of the
emerging maps: for each prototype vector, we calculate
the average Euclidean distance between the prototype
and the trajectory data samples it represents .

2. Color-coding of the average Euclidean distance between
each SOM prototype vector and its immediate proto­
type vector neighbors on the grid (also known as U­
Matrix color coding) .l0

3. Nearest-neighbor connectors indicating the nearest
neighbor relations between the SOM prototype vectors.
This visualization reflects the smoothness of the
pattern transitions over the map (smoother transiting
prototype layouts show shortei- connectors) .

By means of these visualizations, the user can observe
both the emerging organization of the pattern layout, as
well as the quality of the representation of the obtained
clustering. Figure 4 illustrates the online training visual­
ization with snapshots of the quantization error during
training of a 12 x 9 SOM of trajectories (a)- (c) and a zoom
into a connector display (d).

Control of the training process
The framework supports a set of interaction facilities for
control of the training process. At any time, the user can
suspend the training process and, depending on prefer­
ences and experience, exert one or more of the following
controls:

1. Adjust single prototype trajectories by directly editing
them with the trajectory editor.

Figure 3: Editor-based initialization of a 12 x 9 SOM trajectory grid, using five user-defined example trajectories (marked
blue) in con junction with weighted average interpolation . Component distributions (xl, Yl) to (Xs , Ys) are shown in the left
panel.

2. Adjust the map by editing a selection of prototypes
and replace the remaining prototypes by interpolating
between the selected prototypes.

3. Update the training parameters at global granularity:
adjust the number of remaining iterations, learning rate
and neighborhood kernel.

4. Manipulate learning parameters at local granularity: set
different learning rate and radius for selected grid cells .

S. Reinforce training of selected patterns.

These controls serve to gUide the learning process toward
user desired results, if required. Control 4 particularly
allows the specification of smaller or even zero learning
rates for selected patterns. This allows to explicitly enforce
selected patterns on the map. Control S is another option
we implemented to smoothly place example patterns
into the map as follows. If this option is set, the system
monitors the evolution of the assigned example patterns
during the training process. Once the Euclidean distance
between the prototype vector and the user-assigned
trajectory grows too high, we repeatedly inject (update)
the assigned prototype onto the respective grid position
with the current training parameters. This has the effect

that the otherwise freely adapted patterns do not deviate
too strongly from the assigned patterns during training,
and that the map neighborhood smoothly accommodates
the assigned pattern.

Although options 1 and 2 are basic controls, options
3- S are more advanced controls of the training process,
designed for users requiring fine-grained control of the
training. However, we expect that it should also be
possible to wrap the more advanced controls by easy­
to-use high-level commands, such as setting an 'enforce
this pattern' flag that can be set inside the trajectory
editor. Thereby, the more advanced options can also be
easily used by less experienced users. After updates to the
training process have been manually entered, training
is resumed and the user can continue to observe the
effects . Usually, experimentation with different param­
eter settings is required for optimizing results on a given
data set and analysis task. The experimentation process
is supported by an undo operation, which rewinds the
training effect of the most recent update .

Note the idea of fixing selected data vectors to given
SOM grid locations during training is not new per se.
For instance, the Self-Organizing Map Program Package

19

.c

C'O

20

implementation includes an option for doing so.21 We
point out that our interactive training controls extend
beyond a simple fixing of vector assignments. Not only
any training parameter may be edited at rUntime, but
also the reference vectors may be interactively modified
during training using the trajectory editor.

We also point out that, in principle the control frame­
work allows a user to produce any prototype layout
desired, possibly influencing the reliability of the obtained
results. Generally, we expect that an application- or
user-dependent trade-off will have to be found between
supervised and unsupervised training of the reference
map. Clustering quality visualization is recommended for
appropriately balancing the trade-off between the preci­
sion of the clustering (in terms of quantization error and
nearest neighbor transitioning) on the one hand, and
supervised pre assignment of the reference layout on the
other.

Map post-processing

Usually, the final trajectory map yielded by the training
will be the basis for subsequent visual analysis of the
obtained clustering and the underlying data. Depending
on the nature of the analysis task, it may be useful to post­
process the obtained trajectory map. The framework there­
fore supports the following trajectory map post-processing
interactions:

1. Merging of multiple trajectory prototypes. This allows
aggregation of similar prototypes and reduces the size
of the map. The new prototypes are formed by aver­
aging the original prototypes.

2. Expansion of trajectory prototypes. This allows finer
grained visual ana lysiS of prototypes that perform
too much aggregation . The expansion is achieved by
training a sub map of refined prototypes based on the
data represented by the original trajectory prototypes.

3. Editing, creation and deletion of trajectory proto­
types. The user can manually edit existing trajectory
prototypes or add new prototypes to the map using
the tra jectory editor. Also, existing prototypes can be
deleted from the map.

4. Swapping of prototypes. The user is allowed to rear­
range the layout of the prototypes by position swap
operations.

These operations are optional, yet useful in certain situ­
ations. For instance, manual addition of pOSSibly non­
represented, sparse patterns to the map may be very
helpful in situations where certain patterns are important
from the ana lysis perspective, but underrepresented in
the data set, and therefore were not trained by the SOM
algorithm. Note that like manual control of the online
training process, an interactive post-processing operation
may incur a loss of quantization preciSion or pattern
transition smoothness, compared to a SOM trained in
a completely unsupervised way. Again, referring to the

quality visualizations, it is left to the discretion of the user
to balance this trade-off.

Application

We apply our supervised SOM training framework in two
scenarios, illustrating the modes of operation supported,
as well as a possible analytical workflow adapted to finan­
cial data analysis.

Operation of the framework

In the next subsection, we describe the results of an unsu­
pervised reference SOM clustering. In the further subsec­
tions, we then apply our framework to produce several
different target layouts, demonstrating the functionality
of the framework for generating supervised clusterings.

Data set and unsupervised clustering
We consider the same data set as in Schreck et at3
(d. also the Simple trajectory data model for self­
organizing map section). An unsupervised reference SOM
was trained from this data set, consisting of a rectangular
grid of 12 x 9 trajectory prototypes. The description of the
training process follows. We first iterated 100 times over
the data set, initially setting the learning rate to 5 per cent
and the learning radius to 15 using a bubble neighbor­
hood kernel. We then refined the map by a second run,
iterating 200 times over the data set, after adjusting the
learning rate to 2 per cent, and the neighborhood radius
to 5. We considered both random and linear initializations
of the prototype vectors, obtaining both times approxi­
mately the same end result, which is shown in Figure l.

In the next sections, we present a series of experiments
applying our framework to produce user-guided trajectory
maps.

Adaptation of unsupervised trajectory map
In the first experiment, we show how the framework can
be used to adapt a given trajectory map to reflect the
users' global layout preferences, assuming that the user has
inspected the fully unsupervised map shown in Figure l.
Although the user agrees with the obtained cluster proto­
types, another positioning of the patterns on global map
may be desired. The user proceeds to initialize a new map
by a number of example prototypes taken from the unsu­
pervised map. Figure 5(a) shows the initialization: four
example trajectories were selected and assigned to the
corner regions of an initial map; the unassigned proto­
types were filled in using weighted average interpolation.
Then, training using the SOM algorithm takes place. After­
ward, a reinforcement of the assigned example trajecto­
ries (described in the subsection Control of the training
process) is applied to the preassigned reference trajecto­
ries. Figures 5(b)-(f) show how the map converges toward

a stable layout. The map layout basically represents the
patterns contained in the original unsupervised map, this
time, the user-intended global cluster map layout is also
obtained.

Abstract reference map
In this experiment, we assume that the user is inter­
ested in a couple of rather different, dissimilar trajectory
patterns. The patterns are assumed to carry an application­
specific important meaning, and therefore need to be
reflected in the map. The analyst starts the training by
assigning these patterns. Figure 6(a) shows the initializa­
tion of a cluster map based on six abstract user-defined
patterns, along with nearest neighbor interpolation. A
short training interval consisting of a small number of
iterations, in conjunction with reinforcement of example
patterns, yields the smoothly transitionlng cluster maps
shown in Figures 6(b) and (c). The clusters adapt to
reflect the data distribution, while keeping up the types
of the preassigned patterns, as well as their positions.
Figures 6(d)-(f) visualize the emerging smooth transi­
tions between the trajectory prototypes. The color-coding
represents the normalized average distances between the
prototype vectors (the second SOM metric in the section
Visualization of the training process).

Circular flow-like map
As a further abstract supervised target layout, we consider
a circular flow-like layout. Figure 7(a) shows an initial­
ization given by eight control trajectories in conjunction
with weighted average interpolation. Figure 8 compares
training of that reference layout on the data set with
and without reinforcement (d. controlS described in the
section Control of the training process) of the assigned
patterns. We observe, as expected, that reinforcement
of the assigned patterns (top row in Figure 8) holds
them fixed on the map, and adapts neighboring patterns
accordingly. Without reinforcement of assigned patterns
(bottom row in Figure 8), these too are subject to adapta­
tion by the SOM training, and evolve together with the
overall map of reference trajectories.

Application to financial data analysis problem

In this section, we present an exemplary analysis workflow
based on a financial data analysis problem, making use of
our trajectory clustering framework. The next subsection
introduces the used data set and a possible analytical task
and the further subsections describe analysis steps using
unsupervised and supervised cluster analysis.

Data set
We consider a second data set we compiled according
to the systematization in Schreck et al3 (d. also section
Simple tra jectory data model for self-organizing map) .

21

22

[(:~ (/),.), \\ \ .1
[r lU I) j L):S[g1 \'1
l/ /j) ') 1) ', \ ; \ l\l
I.,.} / '.} ~YJ II .l~ ~ I \ \ j
l..J./..J, :-l Li --\:~ ,~1; \ 1\ '1
I. ' ., _I 'j' \ \ '11 \ 1
~\....l '-l l~- -\ ---j "" I' ... 1 \>01

~ \. 1'\ , >''\1 'V' ~ ,.\> :j
[i , <1/ "
k\ '\ I'\"\ "'7 1'~1 V -.) 0 4

l\ .\ x l\' 1 17 / ./ JJJ
~\ , \ \ 'V l iI TJ,/~ /j
l\~ " \ _I r~ .r lZ]If]

() 1\ \ .\" \ ~ (I/ [J{]v l

1
(,, (/ J >::>1 \ ,,\' .\J
/IZJ / f; J '/) \ ;[~]\1
[1' 1/ .)) IJ : ~ .' \ \ \'j
I/'/ ' ~)~: j .l ~ \. ~ \ , \
I~ ~'. ;-> :-1 ,-\ \11: \. :~ \. \ :1
l'l~:'l"i~;--\ :.:-<-\ " ~< \-\~
1:'< ,,:;:~ 1"'\ "V\J J. ~ ! ~ ~.\:) J
l\ f\ \ ·h>.Ii ~ ;',Q; '\!~~
I,) \ f\ 1.\ ") :l) ./ ~ J'./J
[\l\~\ "\ ~ I .'} J~,7 ;:
~\ :... . \,.\ L J.l !Z1/1

.0 1.\ \ \J I-IJI! ' /

[~ , ~ r lr f Y >,))J
l ~ lZJ r l r f i y > EJ) ~
l ~ ~ . r. r)" IJ) ;.> '}.l
l {" {" ~: r)" , }' } ~' '> r ,> .1

1.<' <' {" \ ,} I) ~. ~ I ~ I
l ~ ~ ,~ t:- t ,_ ~ , ~ ~ ~

[< 4.. '" "'_ ~ (I (\ ,I't ' I't l
l"J, ,, '\ I ~~ \' , \' <' : <' <' j
l" '\ ~ , 1; {' \ . f ' <' , <'1
1.1; , 1; 1; t \,f \ .<' <'1
I ~ ~ t t f {' f lZI \'1

C\l l ~ ~ t t f, {' f ' \' .. \'1

-

'C

23

It consists of risk vs. return data, observed on a weekly
basis, for 30 blue chip stocks listed in the Deutsche Aktien
Index (German Stock Index) .22 The full data set spans
a time frame between June 2005 and August 2007. We
specifically like to study the diagram characteristics for the
first three weeks of March 2007, characterized by transient
market turbulences.

Unsupervised trajectory map and identification of patterns of
interest .
Firstly, a SOM of the set of risk-return diagrams was
trained in an unsupervised mode. The result is shown in
Figure 9(a). Yellow color-coding shows the relative density
of matched sample charts over the SOM. It can be seen
that the distribution of the patterns in the data set is rela­
tively uniform, meaning that all the found patterns occur
with similar frequency during the whole time period. The
shapes of the patterns vary substantially and cover the
important types of market movements.

Followingly, we look closely at the market movements
during the first three weeks of March 2007, when a tran­
sient market downturn leading to significant drop of
many of the listed stocks' prices occurred. Figure 9(b)- (d)
indicate the patterns occurring during these weeks. The
density of matched samples, as well as their spread
(deviation) from the respective cluster prototypes is indi­
cated by background highlighting (yellow) and trajectory
bundles (blue), cf.3 In contrast to the whole time period,
the pattern for the turbulent weeks show that the distri­
bution of patterns changes drastically. The variance of the
market movements seen during normal trading weeks is
replaced by strong developments in one direction on the
whole market. The trading week of February 26- March
2002 (Figure 9(b» first shows an increase in daily stock
price return (y-aXiS, upward movement), while showing
increased risk (price volatility) at the same time (x-aXiS,
rightward movement) for most of the traded stocks.
Followed by this upturn, a downturn was observed for
many stocks, as characterized by a decrease in daily
return (downward movement along y-axis) together with
fluctuations in variance (movements along x-axis). The
downturn is dominating the risk-return chart patterns
occurring in the latter two weeks (Figures 9(c) and (d» .

Customized trajectory clustering and further analysis
Although such patterns of interest as described above
may be identified, for detailed analysis they may not be
adequately represented on the unsupervised cluster map.
For example, as the interesting patterns may account
only for a small fraction of overall patterns used during
the unsupervised training, they may not be represented
on the map in as much detail as reqUired for an in-depth
analYSis. In the next step, we therefore re-train the SOM
based on the identified patterns of interest. Specifically,
we initialized the map with the patterns identified as
significant in the previous analysis. An upturn prototype

24

'" c:
o
.~

o
. ~
Q.

'" E
C
.8
u
<Ii
.~

~

,£
'" :J
0-
<Ii

..r::.
~

'0
c:
o .,p
u
<Ii
Q.
VI
c:

ro
:J
VI

':>

e
Q.

'" E

b c

e f

Figure 8 : Training based on the circular supervised reference layout from Figure 7(a), using reinforced reference patterns (top row) and free-floating
patterns. Like the bottom row of images in Fig ure 6, the color-coding indicates the average distance between Self-Organizing Map prototype vectors.
The visualization indicates that several different trajectory regions evolve. The reinforced map shows larger differences between trajectory regions;
specifically, the reinforced patterns produce larger differences to their neighborhood trajectory patterns.

a b

c d

.- I ~i ... l(lnnn ..,~
II I I

"

~
I

Figure 9: Figure (a) shows an unsupe rvised clustering of weekly risk-return charts for 30 German blue chip stocks, as
observed between 2005 and 2007. Figures (b)-(d) show a highlighted projection of the map to the chart patterns observed
during three consecutive weeks, during a transitory downturn phase of the market (c, d; the most frequent patterns are
zoomed in), preceded by a short upturn phase (b).

chart (identified from Figure 9(b» was placed on the left
hand side of the map, and two downturn prototype charts
(identified from Figures 9(c) and (d» were positioned on
the top and bottom right-hand side of the map. Training
then took place while reinforcing the assigned prototype
charts during the training.

Figure lO(a) shows the resulting SOM. The manu­
ally adjusted map allows for a larger resolution of the
observed market patterns on the SOM, and provides the
user-specified global layout of the trajectory map. Specif­
ically, upturn charts are found on the left hand side,
and downturn charts are found on the right hand side
of the overall SOM. The subsequent in-depth analysis

26

can concentrate on, for example, the temporal relation­
ship between upturn and downturn patterns, for possible
identification of interesting correlations, and general
support of technical chart analysis and prediction tasks.
Figure lOeb) shows an example of such a temporal anal­
ysis: the individual, weekly risk-return charts of the 30
stocks are replaced by their SOM representations, and are
shown in a sequence view.3 This view allows for anal­
ysis of patterns over time (the patterns for each stock
are lined up along the time axis) . Highlighting of upturn
(blue) and downturn (yellow) patterns used in creation
of the supervised map then allows to study the observed
patterns across stocks in the specific turbulence periods

a

b

J RGO

N'IOhtlQUt Rtll 'on,

O~"'.DblarK'''

tJ~tOll-.dOf'

0.....-." ... ' .. _
!18

Figure 10: (a) Self-Organizing Map of ri sk-return charts, trained in supervised mod e by assigning one upturn (left, middle
position) and two downturn sequences (right, top and bottom positions) identifi ed from the unsupervised SOM shown in
Figure 9. (b) Sequence analysi s of the weekly charts, hi ghlighting the upward (blue) and downward (yellow) patterns (two
regions are zoomed in for closer in spection) .

as well as to search for similar situations in other time
intervals . In our case, the results show that the upturn
phase of the market seen in the week identified above
(week 85) was directly followed by the downturn phase
in the following week (week 86) . The sequence view also
revea ls that a similar pattern occurred also in the past
(week 34). However, the immediate reversal of the trend
did not fo llow shortly afterward.

Discussion and Options for Extensions

The overa ll goa l of our SOM visualization and control
framework is to guide the otherwise unsupervised
algorithm to produce maps of user-preferred tra jectory
clusterings. User interaction with the clustering algorithm
includes setting of main training parameters as well as
manual assignment of reference trajectories guiding the

27

self-organization of cluster prototypes on the map. Several
options exist for the choice of assignment patterns used
in supervised training mode. They range from simply
re-using or adjusting patterns identified in a preceding
unsupervised clustering run, to completely unrestricted
specification by the user. The choice of method is task
specific and depends also on user interest and exper­
tise. Although we did not perform a formal user study,
experience obtained from our experiments indicates
that the implemented visual-interactive SOM controls
support quite efficient and effective parameter setting by
the user.

Usually, the more the trajectory clustering aimed at by
the user differs from the result achievable by the purely
unsupervised algorithm, the less aggressive the training
parameters need to be set, to retain the main charac­
teristics of the predefinition. This is in accordance with
practical recommendations for SOM training, suggesting
to use moderate training parameters during a fine-tuning
phase after a preceding global organization phase21 has
taken place. In our system, the global organization phase is
replaced by interactive map initialization using the trajec­
tory editor, and the fine-tuning is done by application of
a number of interactive SOM training iterations.

By controlling the training process, in the extreme
case the user is able to achieve any clustering desired, no
matter how precise (and thereby meaningful) this clus­
tering result may be. Balancing the trade-off between opti­
mizing a formal clustering quality metric (for example,
quantization error) and the user-desired trajectory clus­
tering, will ultimately be the responsibility of the user.
Although formally evaluating this trade-off is considered
to be difficult, we believe the SOM quality visualization
options implemented, including the nearest neighbor
connectors visualization such as illustrated in Figure 7(b),
support achieving a good trade-off. More evaluation in
this direction is considered interesting and should be
addressed in the future work.

Regarding the supported data model, our frame­
work is applicable to trajectory data of constant length
described in a simple geometry-based vector represen­
tation. Currently not included are position- and scale­
dependent geometriC features, features for very long
tra jectories, or more abstract and non-geometric trajec­
tory features. Some of these features are expected to be
easy to incorporate by an extended vector representation.
Other trajectory features are expected to be more difficult
to represent by the vector model, and also more difficult
to visualize and interact with. Generally, the inclusion
and evaluation of a richer set of tra jectory features into
our framework constitutes interesting future work.

Our framework was introduced on a rather conceptual
level. More deep application integration is considered
interesting and should be addressed in the future work.
Considering that in many domains vast amounts of time­
dependent point cloud (scatter p lot) data arise, we see
much potential of applying customized cluster analysis
as proposed here . Relevant domains include financial

28

data analysis, but also engineering and science. Based
on the domain and application, customized trajectory
features should be defined, and application-specific chart
templates could be compiled, for assisting the user in
generating useful cluster layouts.

Fundamentally, we can distinguish trajectory analysis
tasks taking place in diagram space (for example, finance
data), as well as in real-world coordinates (for example,
traffic monitoring) . A comparative study that which
identifies typical trajectory analysis tasks in diagram and
real-world coordinate space could shed insight on how
to extend our approach to the Geographic Information
System domain .

Conclusion

We defined a visual-interactive framework for guiding the
otherwise unsupervised Self-Organizing Map algorithm by
a user, customized to operate in conjunction with a simple
trajectory data model. The framework enables the user to
visually monitor the clustering process and control the
algorithm at an arbitrary level of detail. A number of inter­
action facilities were proposed, an integral part of them
being the trajectory editor for interactive initialization of
the clustering process and interaction facilities to manip­
ulate the training parameters during runtime. The frame­
work was applied to a number of trajectory clustering
tasks .

The framework is regarded as one step toward better
fitting this popular, yet largely unsupervised clustering
algorithm toward user supervision. A number of options
for future work have been identified, including extension
of the simple trajectory data model currently supported.
Based on a flexible set of trajectory features, also the
implementation of a hierarchical SOM algorithm, using
different tra jectory properties to organize the data on
different hierarchy levels, could be realized. To this
end, appropriate interaction techniques for specification
of the layouts on the different levels will have to be
developed.

References

1 Han, J. and Kamber, M. (2006) Data Mining: Concepts and
Techniques, 2nd edn., Los Altos, CA: Morgan Kauffman.

2 Kohonen, T. (2001) Self-Olganizing Maps, 3rd edn., Berlin:
Springer.

3 Schreck, T., Tekusova, T., Koh lhammer, j. and Fellner, D. (2007)
Trajectory-based visual analysis of large financial time series data .
SIGKDD Explorations 9(2): 30-37.

4 Thomas, J. and Cook, K. (2005) Illuminating the Path: The Research
and Development Agenda for Visual Ar/(/Iytics. Silver Spring, MD:
IEEE Computer Society.

5 Keirn, D., Mansmann, E, Schneidewind, J., Thomas, J. and Ziegler,
H. (2008) Visual Analytics: Scope and Challenges. Lecture Notes in
Computer Science (LNCS) Berlin: Springer.

6 Kaufman, L. and Rousseeuw, P. (1990) Finding Groups in Data: An
Introduction to Cluster Analysis. New York: Wiley-Interscience.

7 jain, A., Murty, M. and Flynn, P. (1999) Data clustering: A review.
ACM Compllting Surveys 31(3): 264- 323.

8 Hinneburg, A., Wawryniuk, M. and Keirn, D. A. (1999) HD-eye:
Visual mining of high-dimensional data. IEEE Computer Graphics
& Applications 10llrnal 19(5): 22- 3l.

9 Dhillon,!., Modha, D. and Spangler, W. (2002) Class visualization
of high-dimensional data with applications. Computational
Statistics and Data Analysis 4(1): 59- 90.

10 Vesanto, j . (1999) SOM-based data visualization methods.
Intelligent Data Analysis 3(2): 111- 126.

11 Kaski, S. , Honkela, T., Lagus, K. and Kohonen, T. (1998) WEBSOM­
self-organizing maps of document collections. Nellrocompllting 21:
101- 117.

12 Laaksonen,j ., Koskela, M., Laakso, S. and Oja, E. (2007) picSOM ­
content-based image retrieval with self-organizing maps. Pattern
Recognition Letters 21(13- 14):1199-1207.

13 Deboeck, G. and Kohonen, T. (eds.) (1998) Visual Explorations in
Finance: with Self-Organizing Maps . Berlin : Springer.

14 Bustos, B., Keirn, D. A., l'anse, C. and Sch reck, T. (2004) 20
Maps for Visual Analysis and Retrieval in Large Multi-feature 3D
Model Databases. In: D. Laidlaw, V. Interrante and R. Kosara (eds.),
Proceedings of the IEEE Visualization Conference (VIS); Poster
paper, Austin, TX: IEEE Computer Society, pp. 598- 599.

15 Guo, D., Chen, j ., MacEachren, A. M. and Liao, K. (2006) A
visualization system for space- time and multivariate patterns
(VIS-STAMP) . IEEE Transactions on Visualization and Computer
Graphics 12(6): 1461-1474.

16 Andrienko, G., Andrienko, N. and Wrobel, S. (2007) Visual
analyt ics tools for ana lysis of movement data. SIGKDD
Explorations 9(2): 38- 46.

17 Andrienko, N. and Andrienko, G. (2007) Designing visua l
ana lytics methods for massive co llections of movement data.
Cartographica 42(2): 117-138.

18 Ivanov, Y., Wren, c., Sorokin, A. and Kaur, 1. (2007) Visualizing the
history of living spaces. Transactions on Visualization and Computer
Graphics 13(6): 1153-1160.

19 Pelekis, N., Kopanakis, 1., Marketos, G., Ntoutsi, 1., Andrienko,
G., and Theodoridis, Y. (2007) Similar ity Search in Trajectory
Databases. In: C. Dixon, V. Goranko and S. Wang (eds.),
Proceedings of the International Symposium on Temporal
Representation and Reasoning; Alicante, Spain: IEEE Computer
Society, pp. 129-140.

20 Tietbohl, A., Bogorny, V., Kui jpers, B. and Alvares, L. (2008)
A Clustering based Approach for Discovering Interesting Places
in Trajectories. In: R. L. Wainwright and H.M . Haddad (eds.),
Proceedings of the ACM Symposium on Applied Computing,
Advances in Spatial and Image-Based Information Systems Track;
Forta leza, Brazil : ACM, pp. 863- 868,

21 Kohonen, T., Hynninen, j ., Kangas, j . and Laaksonen, j . (1996)
Som_pak: The Self-Organizing Map Program Package. Helsinki
University of Technology. Technical Report A3l.

22 Deutsche Boerse, AG. Deutscher Aktien Index (DAX). http://
deutsche-boerse.com/ .

29

	Text1: First publ. in: Information Visualization ; 8 (2009), 1. - pp. 14-29

http://dx.doi.org/10.1057/ivs.2008.29

	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-173895

