
C-SPARQL: SPARQL for Continuous Querying

Davide Francesco Barbieri Daniele Braga Stefano Ceri
Emanuele Della Valle Michael Grossniklaus

{ dbarbieri, braga, ceri, dellavalle, grossniklaus} ~elet.polimi.it

Politecnico di Milano- Dipartimento di Elettronica e lnformazione
Piazza L. da Vinci, 32- 20133 Milano- Italy

ABSTRACT
C-SPARQL is an extension of SPARQL to support contin­
uous queries over RDF data streams. Supporting streams
in RDF format guarantees interoperability and opens up
important applications, in which reasoners can deal with
knowledge that evolves over time. We present C-SPARQL
by means of examples in Urban Computing.

Categories and Subject Descriptors: H.2.3 [Database
Management]: Query Languages

General Terms: Languages

Keywords: SPARQL, Data Streams, RDF

1. C-SPARQL IN A NUTSHELL
RDF repositories are scaling up in the time-invariant do­

main, and SPARQL engines support complex queries over
multiple sources. However, the combination of static (or rel­
atively slowly changing) knowledge with rapidly changing
(or "streaming") data has been so far neglected or forgot­
ten. RDF streams are the natural extension of the RDF
data model to this new scenario and C-SPARQL (for Con­
tinuous SPARQL) the extension of SPARQL to query RDF
streams. C-SPARQL bridges data streams to reasoning and
enables stream reasoning, a new research area. C-SPARQL
is defined by orthogonal extensions to the standard SPARQL
grammar [2], so that SPARQL is a subset of C-SPARQL.

RDF streams - Similar to RDF graphs, RDF streams
are identified by IRis, which are locators of the streaming
data sources. Instead of being static collections of triples,
streams are sequences of triples continuously produced and
annotated with timestamps, which are monotonically non­
decreasing.

Windows - Introducing RDF streams as a new type of
input data requires the ability to identify them and apply
selection criteria over them. As for identification, we rely
on the association with distinct IRis. As for selection, given
that streams are intrinsically infinite, we introduce the no­
tion of windows (the last items in the data streams), whose
characteristics are inspired by those of continuous query lan­
guages such as CQL [1]. The extraction can be physical (a
given number of triples) or logical (a variable number of
triples within a given timeframe). Identification and win­
dowing are expressed by means of the FROM STREAM clause:

1061

FromStrClause -+ ' FROM' ['NAMED'] ' sTREAM ' StreamiRI

' [RANGE' Window 'l'

Window -+ LogicaJWindow I PhysicaJWindow

LogicaJWindow -+ Number TimeUnit WindowOverlap

TimeUnit -+ 'MSEC' I ' sEc ' I 'MI N' I ' HOUR' I 'DAY'

WindowOverlap -+ ' STEP' Number TimeUnit I 'TUMBLING'

PhysicalWindow -+ 'TRIPL ES' Number

Logical windows are sliding when progressively advanced
of a STEP that is shorter than the window's time interval; they
are non- overlapping (or TUMBLING) when they are advanced of
exactly their time interval at each iteration. With tumbling
windows every triple of the data stream is included into one
window, whereas with sliding windows some triples can be
included into several windows. The optional NAMED keyword,
like in the standard SPARQL FROM clause, tracks the prove­
nance of triples binding the IRI of the stream to variables
later accessible via the GRAPH clause.

Registration- C-SPARQL produces as output the same
types as SPARQL: boolean answers, variable bindings, new
RDF triples, or RDF descriptions of resources. These out­
puts are continuously renewed with each query execution
when a statement is registered as QUERY:

Registration-+ ' REGI STER' ('QUERY'I's TREAM') QName 'As ' Query

Only a CONSTRUCT or DESCRI BE query can be registered as
STREAM, to produce RDF triples that, once associated with
timestamps, yield to new RDF streams. In this case, ev­
ery query execution produces from a minimum of one triple
to a maximum of an entire RDF graph, depending on the
construction pattern.

Aggregation- The SPARQL specification lacks aggrega­
tion capabilities, although some SPARQL implementations
already support it. A continuous query language without ag­
gregates would not be practically useful, therefore, we also
provided C-SPARQL with aggregation. This extension is
orthogonal w.r.t. the othersand gives rise to an extension
of SPARQL which is significant per se. We also allow mul­
tiple independent aggregations within the same query, thus
pushing the aggregation capabilities beyond those of SQL.

AggregateClause -+

('AGGREGATE { (' var ','Function',' Group') ' [Filter] '}')*
Function-+ 'couNT' I 'sUM' I 'AVG' I 'MIN' I 'MAX'

Group--+ var I ' {' va.r (')' var)* '}'

Every aggregation clause has the following parts: (a) a
new variable (i.e. a variable not occurring in the WHERE clause
or in other aggregation clauses); (b) an aggregation func­
tion (one of: COUNT, MAX, MIN, SUM, AVG); (c) a set of one or

http://nbn-resolving.de/urn:nbn:de:bsz:352-277370

more variables, occurring in the WHERE clause, that express
the grouping criteria; and (d) an optional FILTER clause.

The semantics of a query with aggregate functions con­
sists in adding to the regular variable bindings computed by
the WHERE clause some new bindings, one for each of the new
variables introduced by the AGGREGATE clauses. The solution
constructed in this way may be further filtered by the FI L­

TER clause. The evaluations of aggregate functions are all
independent from each other and take place after the com­
putation of the bindings provided by the WHERE clause.

2. EXAMPLES OF C-SPARQL
A simple Query with Aggregation - Aggregation is

orthogonal w.r.t. the other extensions, so we start with a
query having aggregates but no streams. It counts the num­
ber of sensors placed in every street and returns those with
more than 5 sensors. The query is not continuous and re­
quires no registration.

PREFIX c : <htt p :/ /linkedurbandata.or g/ ci t y#>
SELECT DISTINCT ?s t r eet ?sensors
WHERE { ?sensor c :pl acedin ?street . }
AGGREGATE {(?sensor s , COUNT, {?s t reet}) FILTER (?sensor s > 5) }

The query is executed by first extracting all pairs of bind­
ings of sensors with their street, then the number of sensors
in each street is counted into the new variable sensors and
each resulting pair is extended into a triple , then the triples
which satisfy the filter predicate are selected, and finally
distinct pairs of street and sensor numbers are projected.

A simple Query over a Stream- A classic example
in Urban Computing is counting the cars enter the city cen­
ter passing through tollgates. The next query counts how
many cars went through each tollgate in the last 10 minutes,
sliding the window every minute.

REGISTER QUERY CarsEnter ingCityCenter Pe rTol lgate AS
PREF IX t: <http ://l i nkedurbandata .org/traffic#>
SELECT DISTINCT ?tollgate ?passages
FROM STREAM <www. uc .eu/ t ollgat es .trdf> [RANGE 10 MIN STEP 1 MIN]
WHERE { ?t ol lgat e t : r egister s ?car . }
AGGREGATE { (?passages, COUNT, {? t ollgat e})}

First, all pairs of bindings of tollgates with the car they
register are extracted from the current window, then the
number of cars is counted into the new variable pas sages

for each tollgate (and each resulting pair is extended into
a triple), and finally the result is projected as distinct pairs
of tollgate and passages. Note that at every new minute
new triples enter into the window and old triples exit , and
the query result does not change during the slide interval; it
changes only at every slide change (i.e., at every minute).

In this stream, as in all the streams that we will use in
the examples of this paper, the predicate of the triple (e.g.
t :regis t er) is fixed while the subject and object part of the
triple (e.g., ?t ollgat e and ?car) are variable. Thus, a physi­
cal source for this stream will have items consis ting of pairs
of values. This arrangement is coherent with RDF reposi­
tories whose predicates are taken from a small vocabulary
constituting a sort of schema, but C-SPARQL makes no as­
sumption on variable bindings of its stream triples.

Comhining Static and Streaming Knowledge - A
more complex example counts the number of car entering the
city center from each district. The RDF repository stores
(a) which districts a city is divided in, (b) which streets
belong to each district, and (c) which street each tollgate is
placed in. The window is set to 30 minutes and slides every
5 minutes. For brevity, the declaration of prefixes c: and t :

will be omitted in the next examples.

1062

REGISTER QUERY CarsEnteringCityCent erPerDistrict AS
SELECT DISTINCT ?dist ri ct ?pa ssage s
FROM STREAM <www .uc . eu/ t ollgat es.trdf > [RANGE 30 MIN STEP 5 MIN]
WHERE { ?t oll t:regi ste r s ?car . 7t ol l c :placed in ?street .

?dis t ric t c: contains ?s t r eet . }
AGGREGATE { (?passages, COUNT , {?d i st r ict }) }

As in the previous query, all pairs of bindings of tollgates
with the cars are extracted. Also, a graph pattern also ex­
tracts the pair of bindings of tollgates with the district they
are in. Here the cars are counted based on the district.

Streaming the Results of a Query - Continuous que­
ries renew their output at each query execution; such out­
put could be periodically transferred to another system for
further analysis (e.g., to plot the traffic as a function of
time). In addition, C-SPARQL allows the construction of
new RDF data streams, by supporting the possibility to
register CONSTRUCT and DESCRI BE queries. We can register the
previous query to generate a stream of RDF triples :

REGISTER STREAM CarsEnt er i ngCityCente r Per Distr ic t AS
CONSTRUCT {?d ist rict t :has-entering- car s ?passages}
FROM STREAM <www.uc. eu/ t oll gat es .tr df > [RANGE 30 MI N STEP 5 MIN]
WHERE { ? t oll t : registers ?car ?tol l c :pl acedin ?stree t .

?di strict c : cont ains ?street . }
AGGREGATE { (?pa ssages , CO UNT , {?d i st rict}) }

Every query execution may produce from a minimum of
one triple to a maximum of an entire graph. In the former
case, a different timestamp is assigned to every triple; in
the latter case, the same timestamp is assigned to all the
triples of the graph. In both cases, timestamps are system­
generated in monotonic order.

Combining Multiple Streams- We now also consider
traffic control cameras registering cars at traffic lights, orig­
inating a different stream. The next query finds the streets
that have been over 80% of their capacity in the last 5 min­
utes and shows the number of cars (cars seen by cameras
and passing through tolls are summed up).

REGISTER QUERY FullSt reets AS
SELECT { ?str eet ?pa ssages }
FROM STRE AM <www .uc .eu/ tol lgat es . t r df > [RANGE 5 MIN TUMBLI NG]
FROM STREAM <www .uc .eu/cameras . t rdf > [RANGE 5 MI N TUMBLING]
WHERE { GRAPH <http : //s t r eam.org/m ilant ol lgates .trdf > {

?t o ll t:regi ster s ?car . ?t oll c :placedin ?s t reet
} UNION
GRAPH <ht tp : //s t r eam .org/m ilancameras .trdf > {

?camer a t: regis ter s ?car . ?camera c :p lacedAt ?light .
?light c : cr ossing ?s t r eet .

} UNION { ?street c :hasCapacit y ?capacity . }
AGGREGATE { (?passages , COUNT, {?st r eet })

FILTER (?pa ssages > (0 .8• ?capacity)) }

Here, the bindings over the different graphs are combined
following the semantics of the UNI ON pattern evaluation in
SPARQL, and it becomes possible to count in the new vari­
able pa ssages the cars registered either by the tollgates or by
the cameras in each street.

Acknowledgement
Thls work is supported by the FP7-215535 integrated project
(LarKC) funded by the KU. Dr. Grossniklaus's work is carried
out under SNF grant number PBEZ2-121230. W e acknowledge
Ioana Manolescu for her contributions to the initial discussions
on the p ot ential impact of RDF streams on several use cases.

3. REFERENCES
[1] A. Arasu , S. Babu, and J. Widom. The CQL Continuous

Query Language: Semantic Foundations and Query
Execution. The VLDB Journal, 15(2) :121- 142, 2006.

[2] K Prud'hommeaux and A. Seaborne. SP ARQL Query
Language for RDF Grammar.
http://www.w3.org /TR/rdf-sparql-query/#sparqlGrammar.

	Text1: Erschienen in: WWW'09 : Proceedings of the 18th international conference on World wide web / Juan Quemada... (eds.). - New York, NY : ACM, 2009. - S. 1061-1062. - ISBN 978-1-60558-487-4
http://dx.doi.org/10.1145/1526709.1526856
	Text2: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-277370

