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Abstract
Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are 

of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to bio-

technology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial 

progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine 

biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing 

targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom 

research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the 

available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. 

Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications 

in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for 

the characterization of diatom biology and for metabolic engineering.
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Introduction

Diatoms are unicellular algae which represent an essential 

part of the planktonic and benthic communities (Malviya 

et al. 2016) and contribute significantly to global primary 

production (Armbrust 2009). They also have peculiar cel-

lular and metabolic features, which likely are a result of 

their evolution by multiple secondary endosymbiotic events 

(Archibald 2015). During the last two decades, significant 

efforts have been devoted to develop molecular tools to 

foster studies of diatom biology and ecology, but also to 

establish these algae as a significant, renewable and sustain-

able resource of biomass for feed, food, energy, and other 

value-added products. After the first reports on successful 

biolistic transformation of diatoms such as Cyclotella cryp-
tica (Dunahay et al. 1995) and Phaeodactylum tricornutum 

(Apt et al. 1996; Falciatore et al. 1999) had been published, 

this transformation method quickly became the standard 

for genetic diatom modification (Fischer et al. 1999, Apt 

et al. 2002; Buhmann et al. 2014; Ifuku et al. 2015). More 

recently, highly efficient protocols for introducing transgenes 

into diatoms via electroporation (Niu et al. 2012; Miyahara 
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et al. 2013; Zhang and Hu 2014) or bacterial conjugation 

(Karas et al. 2015) have been added to the diatom transfor-

mation portfolio. In addition to standard vectors containing 

selectable marker and reporter gene constructs, a number 

of expression vectors for high-throughput protein tagging 

and overexpression studies in P. tricornutum have been 

generated based on the Gateway technology (Siaut et al. 

2007). Furthermore, Golden Gate cloning based on Type 

IIS restriction enzymes (Engler et al. 2008) has been applied 

to assemble multiple DNA fragments to be expressed in the 

diatom Thalassiosira pseudonana (Hopes et al. 2016). How-

ever, a versatile Modular Cloning (MoClo) tool box with a 

library of basic components such as promoters, CDS, termi-

nators (Weber et al. 2011) is not yet available for any diatom 

model species.

Another useful application of diatom transformation is 

gene silencing (De Riso et al. 2009; Lepetit et al. 2013), 

enabling the downregulation of gene expression. While gene 

silencing may reduce the amount of a target protein, only 

knockout mutations allow the complete elimination or the 

modification of the respective gene product. In this respect, 

the generation of knockout strains via genomic engineering 

recently became a powerful tool for diatoms. Different strat-

egies for targeted genome editing have been developed by a 

number of laboratories, which are either based on TALENs 

(Transcription Activator-Like Effector Nucleases) (Christian 

et al. 2010) or CRISPR (clustered regulatory interspaced 

short palindromic repeats)/Cas9 (Doudna and Charpentier 

2014) technologies. Importantly, these methods allow the 

modification of both alleles of a gene, permitting a complete 

loss of a gene or the modification of a specific gene func-

tion. This is especially helpful for the diploid diatoms and 

the molecular model species, such as P. tricornutum and 

T. pseudonana, which do not cross sexually in the lab. In 

this review, both established and developing approaches for 

genome editing in diatoms are described.

Genome editing

Genome editing approaches allow the direct modification 

of one or more copies of a gene within a cell using engi-

neered nucleases. One of the first systems applied in dia-

toms was based on  meganucleases (Daboussi et al. 2014). 

These endonucleases bind to specific sites in genomes and 

can be used to replace, eliminate or modify sequences. How-

ever, the production of meganucleases is time consuming 

(several weeks) and not sufficiently flexible to envisage a 

significant role in microalgae genome engineering (Smith 

et al. 2006). Instead, TALENs or CRISPR/Cas9 gRNA com-

plexes (Malzahn et al. 2017) can be easily designed to edit 

most of the genomic regions (Moscou and Bogdanove 2009; 

Doudna and Charpentier 2014). Those approaches have in 

common that they may induce a double-DNA strand break 

(DSB), which subsequently triggers an error-prone DNA 

repair system such as non-homologous end-joining (NHEJ) 

that may introduce insertions or deletions (INDELs), eventu-

ally resulting in the inactivation of the targeted gene (Lieber 

2010). More rarely, DSBs can also be fixed by homology-

directed repair (HDR), which involves homologous recom-

bination with a donor DNA sequence (Steinert et al. 2016). 

In many organisms, HDR has been used to introduce pre-

cise DNA mutations, to insert specific sequences in a target 

locus, or to achieve targeted gene replacements. In the fol-

lowing paragraphs, we report the key steps and tools already 

available to perform efficient genome editing in diatoms, 

including steps that require further improvement (Fig. 1).

TALE nucleases

TALE nucleases are chimeric proteins created through the 

fusion of a TALE DNA-binding domain designed to recog-

nize and bind a specific sequence with a non-specific cata-

lytic head, the FokI endonuclease (Bitinaite et al. 1998). The 

DNA-binding domain of TALENs is derived from transcrip-

tion activator-like effectors (TALEs), that are produced by 

plant pathogenic bacteria of the Xanthomonas genus (Zu 

et al. 2013). This binding domain is composed of 14–24 

repeat units of 33–35 amino acids nearly identical to each 

other, except for two polymorphic amino acids called RVDs 

(repeat variable di-residue) located at positions 12 and 13, 

being responsible for the specific recognition of a target 

nucleotide. Based on this feature, it is possible to custom-

ize the DNA-binding domain to recognize virtually any 

sequence. As FokI functions only as a dimer, two independ-

ent monomeric TALENs are required to generate a DSB. 

The target site is then determined by the two DNA-binding 

domains resulting in high-sequence specificity (Christian 

et al. 2010). The proof of concept of targeted gene inacti-

vation and targeted sequence insertion induced by TALEN 

has been established in microalgae recently (Daboussi et al. 

2014), demonstrating its usefulness for rewriting diatom 

metabolism, e.g., knocking out a key gene for storage carbo-

hydrate synthesis in P. tricornutum resulted in a strong lipid 

production (Daboussi et al. 2014). With the same approach, 

knockout mutants for a phytochrome photoreceptor showing 

loss of responsiveness to far-red light have been generated 

(Fortunato et al. 2016). In addition, a urease gene (Weyman 

et al. 2015) and a nitrate reductase gene (McCarthy et al. 

2017) have been knocked out through HDR.

Technical improvements should decrease the TALENs 

production costs and increase the feasibility of producing 

these endonucleases in a short time. A protocol by Sanjana 

et al. (2012) for generating fast, easy, and affordable TALEN 

constructs, based on a library of monomers, each represent-

ing one repeat unit of a TALE, and a two-step Golden-gate 
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reaction, has recently been adopted for diatoms generating 

knockout strains for blue light Aureochrome photoreceptors 

in P. tricornutum (Serif et al. 2017). Moreover, compact 

TALENs (cTALENs) (Beurdeley et al. 2013), a new TALEN 

scaffold where the FokI catalytic head has been replaced 

by the I-TevI homing endonuclease, have been designed for 

diatoms. As I-TevI can generate DSB in a monomeric form, 

only one cTALEN construct is required instead of two as 

for TALENs. The specificity of cTALEN is mediated both 

by the DNA-binding domain and the sequence specificity of 

the I-TevI domain itself. The proof of concept of cTALENs 

has been established recently in diatoms by targeting the 

UGP1 gene (Daboussi et al. unpublished data). However, the 

probability to find an I-TevI recognition motif (CNNNGN) 

adjacent to the TALE binding in the P. tricornutum genome 

is low (e.g., one occurrence every 300 bp-1 kbp), making 

the use of cTALEN less versatile than classical TALEN 

scaffolds.

CRISPR/Cas9

In the last decade, the bacterial CRISPR and CRISPR-associ-
ated protein-9 nuclease (Cas9) system has been demonstrated 

to mediate gene editing in a large variety of eukaryotic cells 

(Cong et al. 2013). The CRISPR system requires a guide RNA 

fragment complementary to the target site to recognize a speci-

fied target sequence in the genome, and a nuclease (e.g., Cas9) 

to generate a doublestrand break (DSB). The custom single-

guide RNA (sgRNA) contains a targeting sequence (crRNA 

sequence) homologous to the genomic region to be modified, 

and a Cas9 nuclease-recruiting sequence (tracrRNA). The 

binding specificity is based on the sgRNA and a 3-nucleotide 

downstream sequence called the protospacer adjacent motif 

(PAM; NGG, in the case of S. pyogenes Cas9). The Cas9 

nuclease carries two nuclease domains (HNH and RvuC) and 

cleaves both DNA strands generating DSBs at sites defined by 

the 20-nucleotide guide sequence (Chen et al. 2014). The first 

paper reporting stable CRISPR/Cas9-based gene editing in 

algae (Nymark et al. 2016) describes a vector encoding both a 

codon-optimized synthetic Cas9, controlled by the strong dia-

tom PtLHCF2 promoter, and sgRNAs, controlled by the RNA 

polymerase III PtU6 snRNA promoter (Nymark et al., 2017). 

The system is adaptable to any specific target sequence by 

simply replacing the 20 bp fragment at the 5´end of the sgRNA 

fragment of the vector. By this approach Nymark et al. (2016) 

targeted the gene encoding the P. tricornutum chloroplast 

signal recognition particle 54 (CpSRP54), which is involved 

in insertion of chloroplast proteins into the thylakoid mem-

brane (Kirst and Melis 2014). A high proportion of biallelic 

modifications and an almost complete absence of wild-type 

alleles were observed. Increased sensitivity of CpSRP54-mod-

ified cell lines to high-quantum blue light exposure provided 

functional evidence for a successful modification. Hopes 

et al. (2016) reported successful editing of the urease gene 

of another diatom, T. pseudonana, using a CRISPR system 

with two sgRNAs. This study also indicates the feasibility of 

targeting multiple genes in a single transformation event using 

multiplex sgRNAs.

Fig. 1  Current state of the 

art and further improvements 

needed for genome editing in 

diatoms. Suggested articles: 

*Doyle et al. (2012), Lin et al. 

(2014), Rastogi et al. (2016), 

Haeussler et al. (2016), **Zis-

chewski et al. (2017)



1404 

Expression of endonuclease genes

Until now, genome editing in diatoms has been achieved 

by expressing the endonucleases as a transgene. In most 

of the studies, endonuclease expression was driven by 

the promoter regions of the genes encoding fucoxanthin 

chlorophyll a/c-binding proteins (FCPs, Lhcf genes). 

These promoters provide a robust expression, but a draw-

back of these promoters is their light dependency, leading 

to a potentially oscillating expression when the cells are 

grown in a day/night cycle (Russo et al. 2015).

A major concern regarding the presence of endonucle-

ases in the cells is the possibility that they can generate 

off-target DNA cleavages, resulting in undesired perma-

nent side effects. Therefore, it is important to control the 

expression of these enzymes and to minimize the exposure 

of the genome to their activity. Since the mid-nineties, a 

number of studies described the utilization of different 

promoters for transgene expression in diatoms (for a com-

pilation see Huang and Daboussi 2017). For temporary 

induction or inhibition of endonuclease expression, the 

nitrate reductase (NR) promoter has been used, as the 

expression of the NR gene can be induced or inhibited by 

exchanging ammonia by nitrate as a nitrogen source or 

vice versa. The NR promoter construct, originally devel-

oped for the diatom Cylindrotheca fusiformis (Poulsen and 

Kröger 2005), and then adapted for P. tricornutum and T. 
pseudonana (Poulsen et al. 2006; Miyagawa et al. 2009; 

Hempel et al. 2011; Chu et al. 2016; Lau et al. 2016), has 

already been used to drive a strong expression of TALEN 

(Serif et al. 2017) and Cas9 (Stukenberg et al. 2018) in P. 
tricornutum cells grown in nitrate-containing media. How-

ever, studies of NR promotor-driven GFP expression in 

P. tricornutum also indicated that gene expression cannot 

be completely switched off in the absence of nitrate (Chu 

et al. 2016). Furthermore, nitrate deprivation may affect 

the photosynthetic capacity, the chlorophyll content, and 

the accumulation of neutral lipids, leading to possible sec-

ondary phenotypes (Valenzuela et al. 2012; Alipanah et al. 

2015; Chu et al. 2016; Shrestha and Hildebrand 2017). 

An alternative system could be derived from the silicon 

starvation inducible promoters (SSIPs), that are induced 

in the absence of silica in T. pseudonana and C. cryptica 

(Shrestha and Hildebrand 2017). Under such silica-limited 

conditions, while both cell division and cell growth are 

blocked, the energy is channeled into the gene expression 

process, with little detrimental effect on cellular physiol-

ogy (Shrestha and Hildebrand 2017).

The detailed characterization of the regulatory regions 

controlling gene expression in diatoms appear now as 

a mandatory step to set up inducible systems based on 

endogenous elements. Due to the limited data on promoter 

structures, usually 0.5–1 kbp fragments upstream of the 

coding regions have been utilized without further analy-

sis, based on the assumption that all necessary regulatory 

regions to drive expression should be included. Recently, 

several publications identified diatom transcription fac-

tors (TFs) (Rayko et al. 2010; Buitrago-Flórez et al. 2014; 

Matthijs et al. 2016, 2017; Kroth et al. 2017), but their 

binding site in the promoters of their target genes are still 

largely uncharacterized. Information is only available for 

 CO2-cAMP-responsive cis-elements (Ohno et al. 2012), 

iron cis-regulatory elements (Yoshinaga et al. 2014), and 

a transcription enhancer-like sequence in the 5 -flank-

ing region of the P. tricornutum Lhcf2 gene (Russo et al. 

2015). To identify promoters that might be similarly active 

in different diatoms, a selection of highly conserved non-

coding elements (CNEs) have recently been identified in 

a comparative genome study of Pseudo-nitzschia multist-
riata (Basu et al. 2017). However, none of the five CNEs 

studied proved to be functional in GUS assay experiments 

in P. tricornutum (Ferrante et al. unpublished data). Sys-

tematic studies of the transcription terminators are also 

missing, although a recent study indicates that transcrip-

tion terminators and 3  UTRs may have an influence on 

gene expression in diatoms (Slattery et al. 2018). In paral-

lel with endogenous inducible systems, the identification 

of inducible synthetic promoters and of heterologous gene 

expression systems working in diatoms, will also permit 

to better control the expression of endonucleases in these 

algae.

In addition to the development of very tightly controlled 

promoters, nuclease expression from an episome that is not 

integrated into the genome, is a valid option. Seminal to the 

development of such tools was the finding by Karas et al. 

(2015), that DNA (plasmids/episomes) can be transferred 

to diatoms through bacterial conjugation. This approach is 

based on the functionality of plasmids with a broad host 

range that possess genetic elements such as a yeast centro-

meric CEN6-ARSH4-HIS3 sequence that enables episome 

maintenance in P. tricornutum (Karas et al. 2015; Diner 

et al. 2017). Such episomes can be controlled by standard 

selection principles such as antibiotic resistance, and thereby 

can be eliminated by removal of the selection pressure. The 

conjugation system has recently been refined (Diner et al. 

2016) and improved for gene editing of P. tricornutum (Slat-

tery et al. 2018). By removing selection shortly after hav-

ing identified the mutation, the episome carrying CRISPR/

Cas9 can be eliminated to limit genome exposure to the 

Cas9 enzyme. To quantify the extent of off-target muta-

tions, whole-genome re-sequencing of a mutant generated 

with this approach has been performed. The analysis has 

indicated absence of mutations in the predicted off-target 

sites, but a limited number of small-genomic variations were 

observed in wild-type as well as in the mutant strain, perhaps 
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due to mutations during culturing over a period of 1 year 

(Russo, Ferrante, unpublished data).

Screening

Following the genetic delivery of endonucleases, the identi-

fication of cells in which both alleles are effectively mutated, 

is still time-consuming, but an essential process to obtain 

a fully clonal cell line knocked out for the targeted gene 

(Zischewski et al. 2017). Transformant colonies can exhibit 

for the targeted gene: (1) only the wild-type sequence if no 

editing has taken place, (2) identical biallelic mutations, pos-

sibly resulting from DSB induced gene conversion mecha-

nism such as break-induced replication (BIR) (Nymark et al. 

2016), (3) different mutations in the two alleles, or (4) a 

heterogeneous mixture of wild-type and different mutated 

sequences, because of non-simultaneous action of the nucle-

ases on both alleles following transformation, or repeated 

action of a nuclease after a minor mutation.

The occurrence and the frequency of mutagenic events 

within a transgenic colony can be assessed by different PCR-

based assays of the targeted gene region: T7 endonuclease 

I assay (Daboussi et al. 2014; Slattery et al. 2018), High 

Resolution Melting (HRM) analysis (Nymark et al. 2016), 

loss of restriction enzyme sites, or a PCR band shift assay 

(Hopes et al. 2016). Recently, digital PCR technology has 

become an emerging tool for INDEL detection (Santurtún 

et al. 2017). The very high number of partitions permits 

statistical modelling to precisely determine the actual num-

ber of target DNA molecules present in the original sample. 

Once colonies containing mutations are detected and their 

frequency estimated with one of the approaches described 

above, Sanger sequencing of the targeted region of the initial 

transgenic colonies or of their respective subclones, can be 

done to characterize the nature of the mutations.

Single chromatogram traces corresponding to both allele 

sequences will indicate a homozygous biallelic mutant 

(Nymark et al. 2016). Multiple traces with overlapping peaks 

at the mutation sites will be obtained in case of heterozygous 

biallelic or monoallelic mutations. To differentiate mutations 

in the two alleles, allele-specific primers can be generated 

from genome-sequencing trace files (see Serif et al. 2017).

If PCR reactions should fail because of larger deletions 

or insertions, a Southern blot might be helpful, as it reveals 

shifts of fragments compared to the wild-type DNA. South-

ern blots together with PCR/sequencing was also the method 

of choice for a TALEN-based homologous recombination 

approach by Weyman et al. (2015), which was based on 

co-transformation of P. tricornutum with two plasmids, 

one containing both TALENs and a plasmid containing a 

homolog recombination fragment including a resistance 

cassette for selection of the cell lines. In nearly all diatom 

studies that were based on NHEJ repair mechanisms, large 

insertions have been observed in the resulting cell lines 

(Daboussi et al. 2014; Nymark et al. 2016; Serif et al. 2017). 

These insertions mostly consist of vector fragments being 

inserted at the DSB site, which may be due to the use of the 

biolistic transformation methods that result in shearing of 

the plasmid DNA.

Future improvements for controlled genome 
editing in diatoms

The TALEN and CRISPR/Cas9 systems described in this 

review have been tested and validated in different labora-

tories independently. The work of the DiaEdit consortium 

(Daboussi et al. 2014; Fortunato et al. 2016; Nymark et al. 

2016; Serif et al. 2017, unpublished data) along with other 

studies (Weyman et al. 2015; Hopes et al. 2016; McCarthy 

et al. 2017; Allorent et al. 2018; Slattery et al. 2018; Stuken-

berg et al. 2018) clearly show that genome editing in diatom 

is feasible and efficient. Because of the different approaches 

used to generate transgenic lines and to screen the mutants, 

at this stage estimates on editing efficiency in diatoms, com-

pared to other systems, are not meaningful.

As described above, so far genome editing in diatoms 

has been achieved mostly by integrating the genes encod-

ing the different nucleases into the genome of the cells. 

This process might have negative impacts on genome sta-

bility (by potentially interrupting endogenous genes or 

disrupting regulatory regions). Moreover, the nucleases 

can later target additional sites in the genome producing 

additional off-target mutations. Finally, integration of the 

transgenes encoding the endonucleases into the nuclear 

genome results in the creation of diatom cells that will 

be defined as genetically modified organisms (GMOs), 

thus representing a limitation for commercial use of these 

strains. In contrast, non-transgenic edited lines might not 

be regulated as GMOs depending on the individual coun-

tries gene technology legislation. Therefore, in addition 

to the development of very tightly controlled promoters to 

regulate the expression of nucleases either integrated into 

the genomes or located on episomes, the transient delivery 

of nucleases in the form of mRNAs or proteins might be 

the most efficient way to limit off-target effects and also 

the problems related to the use of GMO strains. Recently, 

gene knockout in the green algae Chlamydomonas rein-
hardtii has been achieved by delivering Cas9/sgRNA ribo-

nucleoprotein (RNP) complexes into the cells (Baek et al. 

2016; Shin et al. 2016; Greiner et al. 2017). In the same 

algal system, Ferenczi et al. (2017) also demonstrated tar-

geted DNA editing and replacements by the Cpf1 ribo-

nucleoproteins, which use single-stranded oligodeoxynu-

cleotides (ssODNs) as repair templates. Recent promising 
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results indeed indicate that, similarly to Chlamydomonas, 
P. tricornutum cells can be efficiently edited with the 

CRISPR/Cas9 system using the RNP directly (Daboussi 

et al. unpublished data).

Similar to TALEN (Daboussi et al. 2014; Weyman et al. 

2015), CRISPR/Cas9 also appears to be an amenable tech-

nology for carrying gene replacement via homologous 

recombination. Such endonuclease-driven homologous 

recombination could be important in the future to target 

transgenes to specific genomic sites and to generate engi-

neered landing sites. The latter could be particularly useful 

to perform comparative gene expression studies between 

different mutants by facilitating the introduction of dif-

ferent DNA regions of interest into a characterized and 

clearly defined genomic environment. Recent evidence 

suggests that such landing sites could also be created by 

developing a site-specific recombinase (SSR) approach in 

diatoms. SSRs are extensively used for genome manipula-

tions in a plethora of organisms (Wirth et al. 2007; Nafissi 

and Slavcev 2014; Meinke et al. 2016). The SSR integrase 

(Int) of the HK022 bacteriophage catalyzes the integra-

tion (between the phage attP and the host attB sites) and 

excision (between the recombinant attR and attL sites) of 

the phage into and out of the chromosome of its Escheri-
chia coli host by site-specific recombination reactions 

(Azaro and Landy 2002). It has been shown that Int is 

active in plants, cyanobacteria, and human cells (Gottfried 

et al. 2005; Harel-Levi et al. 2008; Melnikov et al. 2009). 

Recent in silico analysis based on the Int attB promiscu-

ity (Kolot et al. 2015) have identified native secondary 

Int attB sites on the chromosomes of P. tricornutum that 

may be used for genome manipulations via Int-catalyzed 

recombinase-mediated cassette exchange reactions. These 

sites have been proven to be active in an E. coli assay 

(Kolot, unpublished).

Other approaches to improve genome editing in diatoms 

include the generation of DNA single-strand breaks or 

nicks (Wu et al. 2014) by fusing a nickase to a single TALE 

which may mediate high-efficient gene addition, but with 

marked reduction of random mutagenesis. In perspective, 

the improvement of genome-editing technologies may also 

allow to establish loss of function screens via the genera-

tion of CRISPR-Cas9 knockout libraries targeting gene fami-

lies or the whole genome. This may facilitate the unbiased 

discovery of novel gene function in diatoms, as shown in 

human cells (Shalem et al. 2014).

Finally, as the generation of mutants now became feasi-

ble, an essential issue for future molecular diatom research 

is the description and storage of stable diatom mutants, as 

well as their distribution among scientists. Here, deposition 

sites as well as info databases will have to be created to avoid 

repetitive and simultaneous creation of mutants in different 

labs.
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