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a  b  s  t  r a  c  t

According to  the green wave  hypothesis,  herbivores  follow  the  flush of spring growth of forage  plants

during  their  spring  migration  to northern breeding  grounds. In  this study we compared two green  wave

indices  for predicting  the  timing  of the spring  migration  of avian herbivores: the  satellite­derived  green

wave  index  (GWI),  and  an  index  of  the  rate of  acceleration  in temperature (GDDjerk).  The  GWI was cal­

culated  from MODIS  normalized  difference vegetation  index  (NDVI)  satellite imagery  and  GDDjerk  from

gridded  temperature data  using  products from the  global land  data  assimilation  system (GLDAS).  To pre­

dict  the  timing  of arrival at stopover and  breeding  sites,  we used four  years  (2008–2011)  of tracking  data

from  12  GPS­tagged  barnacle  geese, a long­distance  herbivorous migrant, wintering in the Netherlands,

breeding  in the  Russian  Arctic.  The  stopover  and breeding  sites  for these  birds  were  identified and  the

relations  between date  of  arrival  with  the date  of 50% GWI  and date  of  peak  GDDjerk  at  each site were  ana­

lyzed  using  mixed effect  linear regression. A  cross­validation  method  was used to  compare  the  predictive

accuracy  of the  GWI and GDDjerk  indices.  Significant  relationships  were  found  between  the  arrival  dates

at  the  stopover  and breeding  sites  for  the  dates of 50% GWI as  well  as  the  peak  GDDjerk  (p <  0.01).  The  goose

arrival  dates at  both stopover  and breeding  sites  were predicted  more  accurately using  GWI  (R2
cv = 0.68,

RMSDcv =  5.9 and R2
cv=  0.71, RMSDcv = 3.9  for  stopover and breeding  sites, respectively)  than  GDDjerk.

The  GDDjerk  returned a lower  accuracy  for prediction  of goose  arrival  dates at stopover  ( R2
cv = 0.45,

RMSDcv =  7.79) and  breeding  sites  (R2
cv =  0.55,  RMSDcv =  4.93).  The  positive correlation between the  abso­

lute  residual values of the GDDjerk  model and distance to the breeding  sites  showed  that this index  is

highly  sensitive  to  latitude.  This  study demonstrates  that  the  satellite­derived  green  wave  index  (GWI)

can  accurately  predict the  timing  of goose migration,  irrespective  of latitude and therefore  is suggested

as  a reliable  green  wave  index  for predicting the  timing  of  avian herbivores  spring migration.
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1.  Introduction

The green wave hypothesis predicts that herbivores time their
spring migration to take advantage of the flush of nutrient­rich
plants at each stopover site toward their breeding grounds (Owen,
1980). In support of  the green wave hypothesis, it  was observed
that the timing of the annual northern migration of geese coin­
cided with plant phenology (Van der Graaf et  al., 2006). Arrival
to the breeding site usually happens prior the peak of nutrient
biomass, since it provides a better chance to profit from high food
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quality for hatched goslings and molting adults (Prop and de Vries,
1993; Sedinger and Flint, 1991; Van der Graaf et  al.,  2006). The
phenological patterns of  migratory animals (including birds) such
as migration timing are responsive to climate change (Root et  al.,
2003). However, it still remains unclear whether timing of avian
herbivores migration coincides with the phenology of food source,
i.e. the date of first spring flush of plants, which in turn determines
food availability for migratory birds (Visser and Both, 2005). Spring
advancement, which results from climate change, is more rapid in
high­latitude Arctic regions than further south. This may  advance
food availability more at higher latitude compared to lower lati­
tude, where spring migration begins (IPCC, 2007; Stone et al., 2002).
Therefore, Arctic nesting geese may miss the rapid seasonal devel­
opment because of  late arrival relative to plant growth phenology
at the breeding ground. The mismatches between arrival time at
the breeding ground and the initiation of  plant growth can affect
the timing of optimal breeding conditions (Pearce­Higgins et  al.,
2005). Therefore, an accurate understanding of the timing of the
spring migration of  avian herbivores such as geese to both stopover
and breeding sites with respect to the green wave of plant phen­
ology might help to predict the consequences of  future climate
change on migration patterns on individuals and therefore also on
populations.

Satellite imagery provides a potential tool for ecologists and
conservation biologists to investigate vegetation productivity and
phenology for large regions and long time­frames (Kerr and
Ostrovsky, 2003; Pettorelli et al., 2005). The normalized difference
vegetation index (NDVI) is a measure of  the presence and vigor of
green vegetation and is calculated from the near­infrared (NIR) and
red reflectance that can be captured by  satellite sensors (Myneni
et al., 1995; Reed et al., 1994). Photosynthetically active green veg­
etation has a high NIR reflection and low red reflection resulting in
a high NDVI. Because clouds may obstruct the visibility of  the land
cover, frequent imagery is required to obtain accurate information
on temporal changes of vegetation growth. Due  to the trade­off
between spatial and temporal resolution, daily imaging of the same
site is currently only feasible with a relatively coarse spatial reso­
lution. The most commonly used sensors for long­term monitoring
of seasonal changes of green vegetation include the Advanced
Very High Resolution Radiometer (AVHRR) at 8 km resolution, the
Satellite Pour I’Observation de le Terre­Vegetation (SPOT­VGT) at
1 km resolution, and the Moderate Resolution Imaging Spectro­
radiometer (MODIS) data set at 1 km resolution (Pettorelli et al.,
2005).

Satellite­derived NDVI time series yield reasonable estimates of
biomass (Skidmore and Ferwerda, 2008) and may also be used to
infer vegetation quality, because the nutritional quality declines
as vegetative biomass increases (Fryxell, 1991). Thus, NDVI time
series have been used to link plant quality with herbivore habitat
use (Hamel et al., 2009; Marshal et al.,  2006; Mueller et al., 2008;
Tveraa et al., 2013). In a study conducted by Doiron et al. (2013) on
Bylot Island, Canada, NDVI temporal changes were related to the
date of peak nitrogen concentration in above­ground graminoid
plants (grasses and grass­like plants, rushes, sedges). Their results
showed that the date when NDVI was halfway the seasonal min­
imum and maximum value was the best predictor for the date of
peak nitrogen in graminoids. They indicated that this date consti­
tutes an important phenological event for herbivores such as the
greater snow goose, Anser caerulescens atlantica, which breeds in
the Arctic tundra ecosystem.

NDVI  time series have been used to improve our under­
standing of the movements of herbivores, and how they relate
to the spatio­temporal variation in the forage characteristics of
their environment. For instance, a powerful predictive migration
model for the migratory zebra, Equus burchelli antiquorum, was
developed using NDVI data to evaluate how their timing and

pace  of movement is affected by spatio­temporal changes in the
environment (Bartlam­Brooks et al.,  2013). Another example also
showed that elephants tracked an intermediate value of NDVI
in the Marsabit protected area in Kenya, corresponding to the
“surfing the green wave” hypothesis (Bohrer et  al., 2014).

For  animal migration studies, NDVI time series have often been
transformed into the green wave index (GWI), i.e. a normalized
NDVI trajectory for each pixel with a ratio output, where 0% reflects
the annual minimum and 100% the annual maximum NDVI (Beck
et al., 2008; White et  al., 1997). The GWI  has been successfully
used to explain the seasonal movements of giant pandas, Ail­

uropoda melanoleuca, in relation to plant phenology (Beck et al.,
2008). Moreover, using the GWI, Bischof et al. (2012) showed that
ungulates can time their migration to either surf a wave of food
availability (i.e. green wave) or jump ahead of  the green wave as
they move along the migration corridor. In addition to mammals,
the migration of barnacle geese, Branta leucopsis, with respect to
the vegetation phenology was successfully studied using the GWI
index (Shariatinajafabadi et al., 2014).

An alternative parameter that may be used to test the green
wave hypothesis is temperature, which is an important factor for
plant phenology (Gordo and Sanz, 2009; Menzel et  al., 2006). Plant
phenology studies have traditionally used models based on vari­
ables, such as growing degree days (GDD), i.e. the sum of mean
daily temperature above a  certain temperature threshold (Wang,
1960). This measure is relevant for different phases of plant devel­
opment (Cleland et al., 2007; Gordo and Sanz, 2010). Van Eerden
et al. (2005) proposed to use the day at which GDD reaches 180 ◦C
as a definition of the start of  spring (using a threshold of 0 ◦C  and
a starting date of 1st January). Furthermore, the rate of change
in temperature acceleration (GDDjerk) could be another proxy
for the onset of spring (Fitzjarrald et  al., 2001; Van Wijk et al.,
2012).

The GDD and day length were found to be accurate predictors
for timing the migration of pink­footed geese, Anser brachyrhynchus

(Bauer et al., 2008; Duriez et  al., 2009). Van Wijk et al. (2012) com­
pared three green wave indices (GDD 180 ◦C,  GDDjerk, and date
of snow melt) with variables related to the accumulated photope­
riod (period between sunrise and sunset) and latitude to predict the
arrival date of  white­fronted geese, Anser albifrons, at stopover sites
during their spring migration from the Netherlands to Russia. The
arrival of  white­fronted geese at stopover sites was predicted most
accurately by the peak in GDDjerk (i.e. the highest acceleration of
daily temperature per site) (Van Wijk et  al., 2012). Kölzsch et  al.
(2014) used the same index to show how much the onset of  spring
is correlated across successive stopover sites, and if the timing of
goose migration depends on this predictability of onset of spring
between sites. Based on their results, if there is high predictability
between the consecutive stopover sites, the geese closely follow
the onset of spring during their migration.

Air temperatures, solar radiation and water are the most criti­
cal constraints to vegetation growth in different parts of the world
(Churkina and Running, 1998; Nemani et al., 2003). The relation­
ship between temperature or growing degree days with different
phases of  plant development, especially spring flush of  plants, is
well known (Cleland et  al., 2007; Schwartz, 2003). For  this reason, a
number of studies could identify significant relationships between
temperature and NDVI (Jia et al., 2003; Maselli et al., 1998).

NDVI  is closely related to the amount of  photosynthetically
active  radiation absorbed by vegetation canopies (Slayback et  al.,
2003). NDVI has been used as a direct measure of plant phenology
to study the effect of seasonality in plant phenology on synchrony
of herbivores reproduction (Loe et al., 2005). Therefore, plant
phenology can be directly studied through NDVI, and not through
its proxy’ growing degree days (GDD) that is an indirect mea­
sure of plant development (Kerby and Post, 2013). Based on this



324 

assumption, we hypothesized that the timing of herbivorous water­
fowl migration, with respect to the green wave phenology, would
be predicted more accurately by GWI  than GDDjerk. We  examined
this hypothesis for individual, GPS­tagged barnacle geese, Branta

leucopsis, during their spring migration to sub­Arctic breeding sites
via the stopover sites along the Baltic coast, on  islands in the White
Sea, and on the Kanin Peninsula (Eichhorn et  al., 2006, 2009).

2.  Materials and methods

2.1.  Satellite­derived green wave index (GWI)

In this study, GWI  was calculated from the MODIS 16­day com­
posite NDVI dataset (MOD13A2) with a 1­km spatial resolution for
the 4­year period of 2008–2011 (Beck et  al., 2008; Huete et al.,
2002). A single year contains 23 16­day composites. Before comput­
ing the GWI, two pre­processing steps were applied to the whole
NDVI time series: (1) an  estimate of the winter NDVI for any snow­
affected pixel from October to February to reduce the effect of snow
in high latitudes, using a method proposed by Beck et al. (2006), and
(2) the Savitzky–Golay filter and double logistic function­fitting to
reduce noise and maintain the integrity of the time series data (Beck
et al., 2006; Chen et al., 2004; Jonsson et al., 2010). To calculate daily
GWI  values for each pixel, the 23 NDVI image composites were
interpolated to 365 daily images, and then normalized to cover the
range of 0–100%, where 0% corresponds to the annual pixel’s min­
imum NDVI value and 100% to its annual maximum value (Beck
et al., 2008; White et al.,  1997). The 50% GWI  (intermediate stage
of greenness) was taken to represent high forage quality for herbi­
vores based on Doiron et  al. (2013).

2.2. Temperature acceleration (GDDjerk)

The air temperature data were obtained from the global land
data assimilation system (GLDAS), on  a fixed grid of 0.25◦ and at a
3­hour temporal resolution. Growing degree days (GDD) were cal­
culated following the method proposed by McMaster and Wilhelm
(1997) from k = 1 January to 31 December:

GDD =

∑
TAVG,k − TBASE (1)

where  TAVG,k is the average temperature calculated from the daily
maximum and minimum air temperature. TBASE is the base tem­
perature for plant growth and if  TAVG,k < TBASE, then TAVG,k = TBASE

(Črepinšek  et al., 2006). Following Van Wijk et al. (2012), the TBASE at
a given latitude was estimated as: TBASE = (−0.25 × latitude) + 13.
They  derived the parameters for this equation from linear regres­
sion between a TBASE of 0 ◦C in the Netherlands (52◦ N) (Lantinga,
1985) and a TBASE of −5 ◦C in northern Russia (72◦ N) (Botta et  al.,
2000).

The GDDjerk was derived from fitting a  sigmoid function
through the data points that plot the day k against GDDk for each
year. The third derivative of  this sigmoid function is the GDDjerk
(Van Wijk et al., 2012). For each pixel, the date of  the first peak in
GDDjerk was derived as a proxy for the start of  spring.

2.3. GPS tracking data

A  total of 15 female barnacle geese were equipped with 30 g
solar GPS/ARGOS transmitters fixed on their backs with a nylon
harness (Solar GPS 100 PTT; PTT­platform transmitter terminal;
Microwave Telemetry, Inc., Columbia, MD,  USA). These birds were
tracked from their overwintering sites in  the Netherlands to their
breeding ground on the Arctic coast of  Russia during 2008–2011.
The transmitters were programmed to record GPS locations four

Table 1

Tag/Bird ID, number of  stopover sites, and  years of tracking of 12 barnacle geese

breeding  in  the Russian Arctic.

Bird ID No.  of  stopover sites Total

78033 3 2009–2011

78034 4 2009–2011

78035 3 2009–2011

78036 3 2009–2010

78037 2 2009

78039 7 2009–2011

78041 6 2008–2010

78043 10 2008–2010

78044 10 2008–2010

78045 4 2008

78046 2 2008–2009

78047 10 2008–2010

(or five) times per day (Appendix I)  (for details ARGOS/CLS, 2011;
Ens et  al., 2008).

Of  the tagged geese, 12 yielded at least one full spring migra­
tion, 10 of which were tracked for more than one year, resulting
in a total of 33 GPS spring migration tracks. Three incomplete
migrations were removed from the analysis, leaving 30 full data
tracks (Table 1). The risk of pseudo­replication was  considered
in this study, and the methods regarding how it  is dealt with is
described later. The barnacle geese tracking data can be viewed at
movebank.org: “Migration timing in barnacle geese (Barents Sea),
data from Kölzsch et  al. and Shariatinajafabadi et  al., 2014”, DOI:
10.5441/001/1.ps244r11”.

2.4. Delineation of stopover, and breeding sites

The Russian population of  barnacle geese winters along the
Wadden Sea coast of Denmark, Germany and Netherlands. In
April/May, the geese leave the spring fattening area of the Wadden
Sea and move via stopover sites along the Baltic Sea coast, most
notably in western Estonia and on the Swedish Island of Gotland,
the White Sea and Kanin Peninsula to their breeding area on the
Barents Sea coast. The breeding areas of  this population were for­
merly confined to the islands of Novaya Zemlya and Vaygach, but
it is now found breeding from the Kanin Peninsula in the west to
Vaygach and Novaya Zemlya in the east, both on islands and on the
Russian mainland (Madsen et al., 1999).

The stopover sites for each individual goose were identified as
sites where the birds stopped for longer than 48 h within a radius
of 30 km that allows a maximum of one outlier position (Van Wijk
et al., 2012). Sites used for 7–26 days within a radius of 30 km in
the second half of June were marked as breeding sites. In total,
64 stopover sites and 30 breeding sites were recognized along the
Russian flyway for the 12 barnacle geese from 2008 to 2011 (Fig. 1).

2.5. Statistical analysis

To  avoid pseudo­replication caused by sequential observations
of individual goose a linear mixed­effect model was used with a
fixed effect for the dates of 50% GWI  or peak GDDjerk. The individ­
ual identity and tracking year were considered as random effects.
The models were fitted by maximum likelihood (ML) estimation
methods using the linear mixed effect regression function (lmer)
of the lme4 package (Bates et al.,  2014) in  the R  statistical software
version 3.1.2 (R Core Team, 2014).

We calculated the proportion of total variance accounted for
each random effect, by  dividing the random effect’s variance
(between­group variance) by the total variance (between­
group variance + within­group variance) (Lessells and Boag, 1987;
Nakagawa and Schielzeth, 2010). The t test was used to exam­
ine the significance of the fixed effects (Bolker et  al., 2009), and
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Fig. 1.  Stopover and breeding sites of Russian barnacle geese. The red  arrow shows the  spring migration route of  Russian barnacle geese from their wintering to their breeding

sites. The brown dots indicate the  stopover sites and the  green dots the breeding sites of the  12 barnacle geese tracked from 2008 to 2011. All individual barnacle geese that

have  been tracked more than one year,  occupied the same breeding site in different years. The Kanin Peninsula was occupied by individuals with IDs 78033 (2009–2011) and

78035  (2009–2011). The Kulgoyev island was  occupied by IDs 78034 (2009–2011), 78039 (2009–2011), 78043 (2008–2010) and 78046 (2008–2009). The Novaya Zemlya

was  occupied by IDs 78036 (2009– 2010), 78047 (2008–2010), and 78045 (2008). The Vaygach island was occupied by ID 78044 (2008–2010), and Tobseda was  occupied by

ID  78037 (2009). The only exception was ID 78041 that occupied Novaya Zemlya in  2008 and  2010, but Kulgoyev island in 2009.(For interpretation of the references to color

in  this figure legend, the reader is referred to the  web version of  this article.)

likelihood ratio test was used to examine the significance of  the
random effects (Pinheiro and Bates, 2009). If the variance of  a ran­
dom effect was relatively small, we removed the random effect
from the model (Mathworks, 2013). The Akaike Information Crite­
rion (AIC) and Bayesian Information Criterion (BIC) were used to
compare the fitness of the models, and the models with lower AIC
and BIC were preferred.

In  order to evaluate the predictive performance of  the GWI  and
GDDjerk models, we used cross­validation with the leave­one­out
procedure. In this method, a calibration set of n − 1 samples is
used to predict the sample that was left out, and this procedure is
repeated n times. The prediction success of the GWI  and GDDjerk
models was evaluated on  predicted and observed arrival dates,
using the cross­validated root mean square deviation (RMSDcv),
and the cross­validated coefficient of determination (R2

cv). The
more accurate model is the model with higher R2

cv and lower
RMSDcv.

To  graphically compare the observed with the predicted arrival
dates using GWI  and GDDjerk models, they were plotted in a
Bland–Altman plot with the 95% limits of agreement (i.e. the 95%
confidence interval) (Bland and Altman, 1995). All of the statistical
analyses were repeated once for arrival date to the stopover sites,
and once for arrival date to the breeding sites.

3. Results

3.1. Arrival date at the stopover sites

The obtained results for the GWI  mixed­effect model showed
that the residual variance estimate (  �̂  = 30.69) was larger than
the random effect variance estimate of  individual identity (  �̂  =

0), and the random effect variance estimate of a tracking year
( �̂  = 2.60). In other words, the random effect for individual iden­
tity accounted for 0%, and the random effect of  a tracking year
accounted for only 8% of the total variance of  random effect. These
relatively low variance estimates of  random effects indicate that the
level of between­group variability is low and that random effects
can safely be eliminated from the model (Mathworks, 2013). We
therefore removed the random effect from GWI  model, and used
ordinary least square (OLS) regression with only a fixed effect for
the analysis. The results of OLS showed that there are significant
relationships between the arrival dates at the stopover sites and
the dates of 50% GWI  (R2 = 0.69, p < 0.001, n = 64) (Table 2).

Using  the mixed­effect model, we  found a significant linear
relationship between the arrival date at the stopover site and the
date of peak GDDjerk (slope on in scale for GDDjerk = 0.21 ± 0.02;
t63 = 9.46, p­value < 0.001) (Table 2). Inclusion of year and
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Table 2

Effects of the 50% GWI  and  the peak of  GDDjerk on barnacle goose arrival dates at the stopovers sites. Results are from ordinary least square (OLS) for GWI  and linear mix

effect for GDDjerk models, conducted for 12 barnacle geese which were tracked from 2008 to 2011.

Model Fixed effect Parameter ± SE t­value p­value −95% CI +95% CI

GWI  Intercept 21 ± 9.76 2.15 <0.05 1.49 40.52

GWI  0.83 ± 0.06 11.99 <0.001 0.70 0.98

GDDjerk  Intercept 111.94 ± 3.67 19.07 <0.001 103.88 119.44

GDDjerk 0.21 ± 0.02 9.46 <0.001 0.17 0.26

Random  effect Variance �2 p­value

ID  10.9 13.83 <0.01

Year 18.88 7.84 <0.001

CI – confidence interval, SE – standard error, �2 – Chi­square.

individual identity as random intercepts significantly improved the
fit  of GDDjerk model for arrival time (�2 = 13.83, p < 0.01 for ID,
and �2 = 7.84, p < 0.001 for year, Table 2). Individual identity and
year explained 17% and 29% of the residual variance in arrival date
respectively, not accounted by the GDDjerk (fix effect). This sug­
gests that there were a repeatable inter­individual and between
year difference among barnacle geese in the arrival date to the
stopover sites based on the peak of  GDDjerk.

In the next step, the cross validated R2 and RMSD were calcu­
lated for both GWI  and GDDjerk models. As shown in Fig. 2, the
GWI is a more accurate index for predicting the arrival date at
stopover sites (R2

cv = 0.68, RMSDcv = 5.9) than GDDjerk (R2
cv =  0.45,

RMSDcv =  7.79). Using the GWI  model, the data points (observed
and predicted arrivals) are  distributed around the 1:1 line. Instead,
the data points for the GDDjerk model are dispersed, and are  only
close to the 1:1 line between DOY (i.e. day of  the year) 140 and 160
(late May  to early June), when birds arrived at higher latitudes.

The  Bland–Altman plot (Fig. 3)  for the GWI  model shows a
uniform distribution and relatively good agreement between the
observed and predicted arrival dates along the migration route. But
the observed and predicted arrival dates using the GDDjerk model
were not evenly distributed in this plot, and some data exceeded
the 95% limit of agreement. For the GWI  model the 95% limits of
agreement in these plots were narrower than the GDDjerk model.
This indicates that the difference between observed and predicted

arrival  dates using the GWI  model is smaller than with GDDjerk
model.

As it  can be observed from the Bland–Altman plot, for the
GDDjerk model the points between DOYs 100 and 140 (arrival date
to the lower latitude) were more dispersed than between DOYs 140
and 160  (arrival dates to the higher latitude). However, this was not
the case for the GWI  model, as the points were evenly distributed
from lower to higher latitude. To explore the effect of  latitude fur­
ther, we performed a Pearson’s correlation analysis between the
absolute residuals values and distance to the breeding site. The
results showed that for the GDDjerk model, there was  a significant
positive correlation between the residual and the distance (Pear­
son correlation coefficient = 0.32, p < 0.01). This indicates that for
the GDDjerk model the difference between observed and predicted
arrival time becomes less when birds are approaching the breeding
site. Unlike for the GDDjerk model, the correlation was not signif­
icant for the GWI  model (Pearson correlation coefficient = −0.01,
p = 0.89).

To illustrate how barnacle geese follow the GWI  and GDDjerk
during their northward migration, both indices were mapped for
2010, together with the barnacle geese stopover sites for the cor­
responding time periods (Fig. 4). The arrival dates of the barnacle
geese coincided well with the middle range of GWI  (GWI = 50%), but
the geese did not follow the peak of  GDDjerk during their north­
ward migration. For example, one goose arrived at the White Sea

Fig. 2. Cross validation results for stopover sites. The relationship between observed and predicted arrival dates of barnacle geese at the stopover sites for the GWI  and

GDDjerk indices, using linear regression models. Note that the values of R2 and RMSD are cross­validated. The red dotted line is the 1:1  line.(For interpretation of the  references

to  color in this figure legend, the reader is referred to the web  version of this article.)
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Fig. 3. Bland–Altman plots for stopover sites. Bland–Altman plots of the difference between the observed and predicted arrival dates at the  stopover sites for the GWI  and

GDDjerk models. The blue lines represent 95% limits of agreement.(For interpretation of the references to color in  this figure legend, the reader is referred to the web version

of  this article.)

on 24th May, when GWI  was 50%, but the peak of GDDjerk at this
site occurred on  17th May  almost one week before the bird arrived
(Fig. 4).

3.2. Arrival date at the breeding site

Significant linear relationships exist between arrival date at the
breeding site with both the date of  50% GWI  (slope on in scale
for GWI  = 0.50 ± 0.07, t29 = 6.77), and the date of peak GDDjerk
(slope on in scale for GDDjerk = 0.34 ± 0.10, t29 = 3.21) (Table 3).
Arrival date to the breeding site exhibited significant repeatable

inter­individual and between­year variation as inclusion of  the
individual identity and year significantly improved the fit of the
GWI (�2 =  5.45, p < 0.05 for ID,  and �2 = 11.64, p < 0.000 for year;
Table 3), and the GDDjerk models (�2 = 6.35, p < 0.05 for ID, and
�2 = 17.40, p < 0.000 for year; Table 3). Identity and year explained
28% and 40%, in the GWI  and 20% and 58% in  the GDDjerk model,
of the variance in arrival date not accounted by the fixed effects,
respectively. Moreover, the comparison between the GWI  and
GDDjerk models using AIC and BIC values showed an increase in
both when replacing the GWI  with GDDjerk as a  fix  effect in  the
mixed model (Table 4).

Fig. 4. The northward spring migration of  barnacle geese in  relation to the green wave. Example to illustrate the northward migration of one barnacle goose (ID: 78047) in

2010  in  relation to the  GWI  and GDDjerk indices. The arrival date at each stopover site is shown above the images. Note that the decrease in  GDDjerk indicates a slower rate

of  warming up as spring proceeds.
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Table 3

Effects of the 50% GWI  and  the  peak of GDDjerk on barnacle geese arrival time at the breeding sites. Results are from linear mixed effect, conducted for 12 barnacle geese

which were tracked from 2008 to 2011.

Model Fixed effect Parameter ± SE t­value p­value −95% CI +95% CI

GWI  Intercept 74.98 ±  11.96 6.26 <0.000 50.36 99.90

GWI  0.50 ± 0.07 6.77 <0.000 0.35 0.66

Random effect Variance �2 p­value

ID  4.96 5.45 <0.05

Year  7.09 11.64 <0.000

GDDjerk Fixed effect Parameter ± SE  t­value p­value −95% CI +95% CI

Intercept  103.35 ± 16.37 6.31 <0.000 70.16 137.06

GDDjerk 0.34 ± 0.10 3.21 <0.01 0.12 0.55

Random effect Variance �2 p­value

ID  8.88 6.35 <0.05

Year  24.78 17.40 <0.000

CI – confidence interval, SE – standard error, �2 – Chi­square.

Fig. 5. Cross validation results for breeding sites. The relationship between observed and  predicted arrival dates of barnacle geese at the breeding sites for the GWI  and

GDDjerk indices, using linear regression models. Note that the values of R2 and RMSD are cross­validated. The red dotted line is the 1:1  line.(For interpretation of the  references

to  color in this figure legend, the reader is referred to the web  version of this article.)

Fig. 6. Bland–Altman plots for breeding sites. Bland–Altman plots of the difference between the observed and predicted arrival dates at the breeding sites for the GWI  and

GDDjerk models. The blue lines represent 95% limits of  agreement.(For interpretation of  the references to color in this figure legend, the reader is referred to the  web version

of  this article.)
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Table  4

Model comparison of  GWI and GDDjerk models. The AIC and BIC are smallest for the

GWI model.

Model d.f. AIC BIC

GWI  5 167.74 174.75

GDDjerk 5 186.16 193.17

Validations of the two models were done utilizing cross­
validation. The cross validated results in Fig. 5 demonstrate that
the arrival date to the breeding site is predicted more accurately
by the GWI  (R2

cv = 0.71, RMSDcv = 3.9) than the GDDjerk model
(R2

cv = 0.55, RMSDcv = 4.93). The Bland–Altman plots (Fig. 6) show
that the observed and predicted arrival dates using GWI  models
are evenly distributed, however, this was not the case for GDDjerk
model. Moreover, the difference between observed and predicted
arrival dates using the GWI  model is smaller than the GDDjerk
model (Fig. 6).

4.  Discussion

Our results suggest that the satellite­derived green wave index
(GWI) is a more reliable index to predict barnacle goose arrival time
at both stopover and breeding sites than the temperature­derived
index (GDDjerk). Although the arrival dates of the individual geese
were significantly related to both green wave indices, the cross­
validated result revealed a better fit between the observed and
predicted arrival dates obtained from the GWI  model than from
the GDDjerk model.

Moreover,  our results indicate that unlike the GWI  model, the
GDDjerk model was sensitive to latitude. The prediction power of
the GDDjerk model at the stopover sites was more accurate at the
high latitudes. Moreover, the difference between the RMSDcv of  the
two models became smaller in breeding sites. This can be explained
by the longer growing season and higher optimum temperature for
the shoot growth of plants in temperate areas (Chapin, 1983). In
contrast to the temperate region, the growing season in the high
Arctic environment is short and the plant growth is more rapid in
relation to favorable temperatures (Beck et al.,  2006; Bliss, 1962,
1971). It also was shown by Van Wijk et al. (2012) that GDDjerk
is more peaked at higher latitudes. Therefore, the time interval
between the date of  peak GDDjerk and onset of plant growth is
reduced at higher latitudes which may  cause a smaller gap between
peak GDDjerk and the geese arrival date in this area.

Overtaking the successively delayed spring flush of plants en
route is an important migratory phenomenon for the Arctic­nesting
geese as many geese are  at least partly capital breeders, meaning
that they rely on the amount of fat accumulated and energy stored
from their different stopovers for successful breeding (Gauthier
et al., 2003; Hahn et al., 2011; Hübner, 2006). Therefore, the north­
ward spring migration of geese has to commence at the right time
and they should be able to follow the green wave of plant phenology
based on green wave hypothesis (Owen, 1980). The approximate
match between onset of spring associated with temperature sum
and goose migration could support the green wave hypothesis
(Van Wijk et al., 2012). Environmental (temperature sum, food
resources) and energy cues have been recognized as the most accu­
rate predictors for when migratory geese decide to depart from a
stopover site (Duriez et al., 2009). Moreover, Van der Graaf (2006)
found a correlation between the accumulated spring temperatures
(GDD) at successive stopover sites for the barnacle geese that breed
in Russia. In other study, Kölzsch et  al. (2014) showed that a higher
predictability of climatic conditions and the onset of  spring at con­
secutive stopover sites was associated with a closer match of goose
arrival and the green wave during their spring migration. Although
the above cited studies used temperature sum as  a proxy for the

local  onset or progression of spring, the results of  our study indicate
that a more direct measure (such as GWI) should be preferred.

For  consecutive stopovers lacking a  strong correlation between
their climatic conditions, studies showed that birds were unable
to time their migration optimally (Kölzsch et  al., 2014; Tombre
et al., 2008). This was for example the case for the migration from
the Baltic to the White Sea area (Kölzsch et al., 2014; Van der
Graaf, 2006). Despite the low predictability of climatic conditions
between these two areas, our results showed that the GWI  model
worked well in predicting goose arrival dates in  these two  regions.
This could be explained by the fact that birds use other time­related
cues, such as day length, to time their departure from the Baltic Sea
to move on to the White Sea, as suggested by Van der Graaf (2006).
However, with climate change and an  earlier onset of  spring (IPCC,
2007), barnacle geese may still be able to follow the green wave,
i.e. the date of  50% GWI  from the Baltic Sea to the White Sea. This is
because of the fact that species can adjust their behavior to climate
change through phenotypic plasticity (Muñoz et al., 2015).

The  between­year variations in bird arrival dates can be due
to environmental conditions determined by climate (Žalakevicius,
1997).  However, bird spring arrival predominantly depends on food
availability which depends upon temperature (Žalakevicius,  1997).
An increase of monthly air temperature during the growing sea­
son (May–October) was observed from 2008 to 2010 in western
Europe (Tullus et al., 2012), and spring warming is known to cause
increased photosynthetic activity and vegetation growth for north­
ern high latitudes (Myneni et  al., 1997). Therefore the time interval
between peak GDDjerk and the geese arrival at the consecutive
stopover sites was  smaller than for colder years with a later onset
of spring. Unlike the GDDjerk model, we did not find any repeat­
able difference in arrival date to the stopover site among individuals
and years with respect to the GWI  index. In other words, the fixed
effect of  GWI  alone explained most variance in  the arrival date of
barnacles at the stopover site.

Compared to the stopover sites, we observed relatively high
inter­individual and between­year repeatability in arrival date to
the breeding sites using both models. This might be because geese
arrival on the breeding site is a trade­off between benefitting from
early arrival, and staying longer in staging sites resulting in  more
accumulation of body fat (Prop et  al.,  2003). Thus, the individuals
that are unable to accumulate large body store, try to arrive earlier
to the breeding sites to increase the survival rate of  the off­spring
and so  increase their reproduction chance (Prop et al.,  2003).

Repeatable  arrival dates to the breeding site have been shown
for other migratory birds such as snow geese (Anser caerulescens)
(Bety et  al., 2004) and black­tailed godwits (Limosa l. limosa)
(Lourenç o et  al., 2011). Several studies have indicated that some
of the migratory birds behavior such as migration timing may have
a genetic basis (Berthold et al.,  2001; Pulido and Berthold, 2003).
This genetic basis for migration timing was  also suggested for snow
geese (Bety et al., 2004) and black­tailed godwits (Lourenç o  et  al.,
2011), and may  consequently also explain between­individual
barnacle geese’s variation in migration timing. Moreover, part
of the observed repeatability might be phenotype plasticity (i.e.
an environmentally based change in the phenotype) that lead
to adaptation to the environmental condition (Teplitsky et al.,
2008).

5. Conclusion

Our results revealed that a satellite­based index that reflects the
relative greenness of  the vegetation (i.e. GWI) more accurately pre­
dicts the arrival dates of barnacle geese at stopover and breeding
sites than a temperature­based index (i.e. GDDjerk). Moreover, we
demonstrated that the GWI  is not sensitive to latitude, and there­
fore is a reliable green wave index to predict the timing of spring
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migration of avian herbivores. The variation of  land­surface plant
phenology can be reasonably reflected by NDVI, since it  is related
to the amount of photosynthetically active radiation absorbed by
green vegetation (Slayback et al.,  2003). Thus, any variability of
plant phenology and its effect on  avian herbivore migration phen­
ology can now be investigated directly using GWI  and not through
vegetation proxy’ temperature. This shows the importance of the
GWI  index in studying migratory avian herbivores’ movements
that are influenced by spatio­temporal changes in the environ­
ment. Hence, our work highlights the use and importance of remote
sensing data and the indices derived from it for animal migration
studies.
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Appendix I.

For each individual GPS PTT information about the number by
which it is identified (PTT ID), the weight in g, and the duty cycle
has been specified. The “duty cycle” indicates the hour of the day
(local time) at which the PTT should take a GPS fix  (if this includes
a fix during midnight, this is indicated with a 0 at the start).

Bird ID Weight Duty cycle

78033 30 g 0,  8, 11, 14,  17

78034 30 g 0,  8, 11, 14,  17

78035 30 g 0,  8, 11, 14,  17

78036 30 g 0,  8, 11, 14,  17

78037 30 g 0,  8, 11, 14,  17

78039 30 g 0,  8, 11, 14,  17

78041 30 g 8,  11,  14, 17

78043 30 g 8,  11,  14, 17

78044 30 g 8,  11,  14, 17

78045 30 g 8,  11,  14, 17

78046 30 g 8,  11,  14, 17

78047 30 g 8,  11,  14, 17

References

ARGOS/CLS, 2011. Argos User’s Manual.
Bartlam­Brooks, H.L.A., Beck, P.S.A., Bohrer, G., Harris, S., 2013. In  search of greener

pastures: using satellite images to predict the  effects of  environmental change
on  zebra migration. J. Geophys. Res. Biogeosci. 118, 1427–1437.

Bates,  D., Eigen, C., Rcpp, L.,  2014. Package ‘lme4’.
Bauer, S., Gienapp, P., Madsen, J., 2008. The relevance of environmental conditions for

departure decision changes en route in migrating geese. Ecology 89, 1953–1960.

Beck, P.S.A., Atzberger, C., Høgda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved
monitoring of vegetation dynamics at very high latitudes: a new method using
MODIS NDVI. Remote Sens. Environ. 100, 321–334.

Beck, P.S.A., Wang, T.J.,  Skidmore, A.K., Liu, X.H., 2008. Displaying remotely sensed
vegetation dynamics along natural gradients for ecological studies. Int. J. Remote
Sens.  29,  4277–4283.

Berthold, P., Bauer, H.­G., Westhead, V.,  2001. Bird Migration: A General Survey.
Oxford  University Press, Oxford.

Bety, J., Giroux, J.F., Gauthier, G., 2004. Individual variation in timing of  migration:
causes  and reproductive consequences in greater snow geese (Anser caerulescens
atlanticus).  Behav. Ecol. Sociobiol. 57, 1–8.

Bischof, R., Loe, L.E., Meisingset, E.L., Zimmermann, B., Van Moorter, B., Mysterud, A.,
2012. A migratory northern ungulate in  the pursuit of  spring: jumping or surfing
the  green wave? Am. Nat. 180, 407–424.

Bland, J.M., Altman, D.G., 1995. Comparing methods of  measurement: why plotting
difference against standard method is misleading. Lancet 346, 1085–1087.

Bliss, L., 1962. Adaptations of arctic and  alpine plants to environmental conditions.
Arctic  15, 117–144.

Bliss,  L.C., 1971. Arctic and alpine plant life cycles. Annu. Rev. Ecol. Syst. 2,  405–438.
Bohrer, G., Beck, P.S., Ngene, S.M., Skidmore, A.K., Douglas­Hamilton, I., 2014. Ele­

phant movement closely tracks precipitation­driven vegetation dynamics in  a
Kenyan forest­savanna landscape. Mov. Ecol. 2,  2.

Bolker,  B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H.,
White,  J.­S.S., 2009. Generalized linear mixed models: a  practical guide for ecol­
ogy and evolution. Trends Ecol. Evol. 24, 127–135.

Botta, A.,  Viovy, N., Ciais, P., Friedlingstein, P., Monfray, P., 2000. A global prognostic
scheme  of  leaf onset using satellite data. Glob. Change Biol. 6, 709–725.

Chapin III, F., 1983. Direct and indirect effects of temperature on arctic plants. Polar
Biol. 2, 47–52.

Chen,  J., Jonsson, P., Tamura, M.,  Gu, Z.H., Matsushita, B., Eklundh, L., 2004. A  simple
method for reconstructing a high­quality NDVI time­series data set based on the
Savitzky­Golay filter. Remote Sens. Environ. 91, 332–344.

Churkina,  G., Running, S.W., 1998. Contrasting climatic controls on the estimated
productivity  of global terrestrial biomes. Ecosystems 1,  206–215.

Cleland,  E.E., Chuine, I., Menzel, A., Mooney, H.A., Schwartz, M.D., 2007. Shifting plant
phenology in response to global change. Trends Ecol. Evol. 22, 357–365.
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