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Abstract

Macrophytes play a crucial role in the functioning of lake ecosystems. Until now most macrophyte models neglected the
fact that the majority of macrophyte species expand clonally during the growing season. Inclusion of a detailed description of
clonal growth in models can facilitate our understanding of space occupation and patch expansion and predict future macrophyte
development. “CLOMO” is an individual-based model which includes a detailed, spatially explicit description of rhizome
formation and clone expansion as well as a realistic description of photosynthesis including light limitation and temperature.
The model also accounts for transfers of energy or resources between different parts of the clone (“clonal integration”).

Although the clonal growth of macrophytes is complex and poorly known, the first model results for the macrophyte species
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Potamogeton perfoliatus were promising and compared well with the field data. The model can produce growth network
similar to those found in the field. A Monte Carlo sensitivity analysis showed systematically which parameters have the
effect on the architecture and expansion of the clones.

The application of the model provided new insights into growth dynamics and patch development: (1) the model
that a lack of branching will lead to the extinction of the clone after a certain number of years. This is due to the fa
the reproductive organs (turions) are formed at the end of a branch and even a small turion mortality will cause a red
surviving plant numbers; (2) the growth of rhizome axes relative to those in the previous year determines the patch de
patch expansion rate. Reversing rhizomes lead to compact patch growth whereas continuing rhizomes lead to loose a
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1. Introduction

The majority of submersed macrophytes form
clones which are connected by below-ground rhi-
zomes. Observed from above, a macrophyte patch
appears like a simple collection of shoots, but a closer
look into the sediment reveals a complex network of
“ramets” (=potentially independent units with leafy
shoot and roots) interconnected by “rhizomes” (=hori-
zontal shoots lacking chlorophyll). One plant ofPota-
mogeton perfoliatus can, for example, consist of more
than 15 ramets connected by more than 1 m of rhizome
(Wolfer and Straile, 2004a). Experiments have shown
that ramets exchange energy or resources through these
rhizomes (Hartnett and Bazzaz, 1983), a process called
“clonal integration”. Furthermore, rhizomes are mobil-
ity units, as a clone can move slowly by creating
new rhizomes. The architectural growth of main rhi-
zome axes, rhizome branchings, rhizome angles and
rhizome “spacers” (=rhizome connection between two
neighbouring shoots) follows species-specific clonal
rules (Callaghan et al., 1990; Evans and Cain, 1995).
Nonetheless, spacer lengths and branch angles also
show considerable variation (Cain et al., 1995; Wolfer
and Straile, 2004a,b), sometimes in response to their
growth conditions (De Kroon and Hutchings, 1995),
aiming at the effective exploitation of local resources
such as light and nutrients (Callaghan et al., 1990).

Clonal growth architecture is important for macro-
phyte fitness, because it determines propagation,
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has, to our knowledge, never been modelled in detail,
including architectural, spatial, environmental, tempo-
ral and demographic components. For terrestrial plants,
only a few of such detailed models exists (Herben
and Suzuki, 2002; Oborny and Kun, 2002). The facts
that photosynthesis in water has fundamentally other
restrictions than in air and that light submission in water
is far more complex require separate models for sub-
mersed species.

Here we present the individual-based model
“CLOMO” (“clonal module”), a spatially explicit
model that combines a stochastic description of clonal
expansion with a ramet-based calculation of primary
production and respiration using physiological rules of
the non-clonal model Charisma (Van Nes et al., 2002,
2003). Clonal integration was described as simple as
possible, since transport between ramets is a poorly
understood process. We applied the model to describe
the spatial architecture ofP. perfoliatus L. in Lake Con-
stance.

Special analyses were performed with regard
to branching frequency and rhizome growth direc-
tion. Furthermore, a Monte Carlo sensitivity analysis
(Klepper et al., 1994) was applied to show systemat-
ically which parameters have the largest effect on the
architecture and expansion of the clones.

2. Methods
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rowth and survival, space occupation and patch ex
ion. Also the sharing of resources such as carb
rates or nutrients increases fitness (Wijesinghe and
andel, 1994; Stuefer et al., 1996; Hutchings
ijesinghe, 1997).
Our objective was to develop a model which

mprove our understanding of mechanisms that c
ause the observed field patterns of clonal archite
nd patch expansion. It does not aim at replacing e

ng models of aquatic macrophytes, but rather ad
upplementary application. On the long run it could
sed to predict future macrophyte development an

mpact of environmental variation.
Although there are many detailed dynamical mo

f macrophytes (Collins and Wlosinski, 1989; Scheff
t al., 1993; Hootsmans, 1994; Chen and Coughe
996; Muhammetoglu and Soyupak, 2000; Van Ne
l., 2003), the clonal growth of submerged macrophy
.1. Model description

.1.1. Overview
CLOMO is an extension of the model Charis

Van Nes et al., 2002, 2003). Although CLOMO use
he biomass growth unit of Charisma, its new co
onents make it fundamentally different from the e

ier version (seeTable 1). While the biomass mod
harisma is non-clonal and uses super-individua
ope with large numbers of individuals (Scheffer et al.
995), the current model is truly individual-bas
nd operates on a smaller spatial scale. Clone
odelled as a set of ramets (nodes with sho

nterconnected by rhizomes. The model is explic
patial, describing patches of plants growing o
rid.

The basic units of the calculations are the r
ts. Each ramet has an exactx and y coordinate an
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Table 1
An overview of the main differences between non-clonal macrophyte models (e.g.Collins and Wlosinski, 1989; Scheffer et al., 1993; Hootsmans,
1994; Chen and Coughenour, 1996; Muhammetoglu and Soyupak, 2000; Van Nes et al., 2003) and the clonal growth model CLOMO

Non-clonal macrophyte models Clonal macrophyte model

Shoots are the basic unit for photosynthesis (self-) shading is calculated
for each shoot

Ramets are the basic unit for photosynthesis

From each seed or tuber emerges a maximum of one shoot in spring; no
further shoot emergence during the growth season

From each tuber emerges one ramet in spring; additional ramets
are formed during the growth season if there is enough biomass
accumulated

Individual shoots, no clones Several ramets form a clone
(Almost) all shoots are assumed to be of equal age and length Each ramet has a different age and length
Spacer lengths and number of ramets per clone are ignored Spacer lengths and number of ramets per clone are important

components
No patch expansion within a season Position of new ramets is determined stochastically and leads to

patch expansion within a season
Transfer of energy between shoots and roots/reproductive organs only Additional transfer of energy between ramets

is associated with one grid cell. A clone can expand
over more than one grid cell. The biomass growth
of each ramet is calculated with time steps of 1 day
and depends on photosynthesis and local environmen-
tal conditions. During their growth, the shoots reserve
an increasing part of their net production for creat-
ing rhizomes and new ramets. The positioning of new
ramets is determined by the length of the rhizome
and a stochastic component. Above a certain shoot
length, part of the production will be transferred to
neighbouring ramets (clonal integration). During one
season, apical growth of rhizomes and ramets and
branching leads to the origin of a large clonal system
(“plant”). At the end of the growth season, part of the
biomass is redirected to overwintering organs (“turi-
ons”) in the sediment, and the rest of the aboveground
biomass dies. The turions will develop new sprouts at
a preset day in spring. Many of the default parame-
ters have been derived from Lake Constance field data
(Table 2).

Each grid cell has environmental variables associ-
ated with it (vertical light attenuation, water level and
nutrients). The grid dimensions can be defined by the
user.

In the following, we will describe the model focus-
ing on the new features and summarizing the parts that
are taken from the earlier version of the model (Van
Nes et al., 2002, 2003). The model is implemented
in Delphi 5.5, an object oriented version of Pascal.
It is freely available onhttp://www.dow.wau.nl/aew/
c

2.1.2. Production and respiration
Most rules for production and respiration are taken

from the Charisma model (Van Nes et al., 2003), but
bicarbonate is not assumed to be limiting, and senes-
cence is described in a more detailed way.

The daily growth of each shoot (�W) depends on the
photosynthesis (P), the maintenance respiration (Rm),
the import from previous ramets (T1) and export to
subsequent ramets (T2) (Fig. 1):

�Ws = WsP − WRm + T1 − T2 (1)

Maintenance respiration (Rm) is arbitrarily taken in the
middle of the range of values published byMadsen
and Adams (1989)and Ikusima (1970)for miscel-
laneous submerged plants (r20 = 0.024 g g−1 d−1 at

F owth
o
harisma/.
ig. 1. Schematic overview of the factors that determine the gr
f each shoot.

http://www.dow.wau.nl/aew/charisma/
http://www.dow.wau.nl/aew/charisma/
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Table 2
Default parameters for the clonal model ofPotamogeton perfoliatus in Lake Constance

Parameter Description Unit Value

HAge Half saturation for senescence day 100a

PAge Exponent in Hill function for senescence 2a

pMax Maximal gross photosynthesis h−1 0.006b

Q10 Q10 for maintenance respiration 2c

Resp20 Respiration at 20◦C day−1 0.00206a

MaxLength Maximum shoot length m 5a

MaxWeightLenRatio Mean weight of 1 m young shoot g m−1 0.8e

RootShootRatio Proportion of shoot allocated to the roots Fraction 0.06a

FracPeriphyton Fraction of light reduced by periphyton Fraction 0.2c

hPhotoLight Half-saturation light intensity (PAR) for photosynthesis �E m−2 s−1 30c

hPhotoTemp Half-saturation temperature for photosynthesis ◦C 14c

pPhotoTemp Exponent in temperature effect (Hill function) for photosynthesis 3c

sPhotoTemp Scaling of temperature effect for photosynthesis 1.35c

HTurbReduction Half saturation biomass of light attenuation reduction g m−2 100c

pTurbReduction Power in Hill function of light attenuation reduction 1c

PlantK Light attenuation of plant tissue m2 g−1 0.02c

cTuber Fraction of turion weight lost daily when sprouts start growing Fraction 0.1c

MaxTurionWeight Maximum weight of turions g 0.2a

MeanTurionWeight Mean (initial) weight of turions g 0.2a

MinTurionWeight Minimum weight of turions g 0.1a

TurionFraction Fraction of biomass allocated to turions Fraction 0.05b

TurionGerminationDay Day of turion sprouting 114a

TurionMortality Annual mortality of turions yr−1 0.1a

TurionReproDay Formation day of turions 250a

Alpha Parameter that determines the biomass allocation to subsequent
rhizomes and ramets

0.6b

MeanRhiAngle Mean rhizome angle rad 0d

NewRametLength Length of the ramet at which it creates a new rhizome and ramet m 0.15b

PBranchingLong Branching probability of rhizomes Fraction 0.1d

RhizomeWeightPerM Average weight of 1 m rhizome g m−1 0.5e

SDRhiAngle Standard deviation of rhizome angle rad π/9d

TurionAngle Angle of the turion with the parent rhizome rad πd

TurionAngleRange Range in the angle of the turion with the parent rhizome rad 0d

a Estimated from field observations (S. Wolfer, Unpublished results).
b Calibrated.
c Assumed to be the same asP. pectinatus (Scheffer et al., 1993; Van Nes et al., 2003).
d Wolfer and Straile (2004b).
e Wolfer and Straile (2004a).

20◦C). Temperature dependence of the respiration is
formulated using aQ10 formulation (default value 2):

Rm = r20Q
T−20/10
10 (2)

Only the shoots take part in the primary production (P).
The maximum photosynthesis (Pmax) is limited by the
in situ light intensity at plant leaves (I), temperature
(T), and the age of the ramet (A):

P = Pmax
I

I + HI

1.35T 3

T 3 + 143

H2
A

H2
A + A2

(3)

The parameterPmax represents the specific daily pro-
duction of the plant top at 20◦C not having light limita-
tion. Light limitation is described by a Monod function,
HI is the half-saturation constant. Irradiance follows a
daily as well as a yearly cycle and light is attenuated in
the water column both by the water and the vegetation
(Van Nes et al., 2003).

Temperature dependence of photosynthesis was fit-
ted to values ofPotamogeton pectinatus (Scheffer et al.,
1993). As field observations indicate that older ramets
are often covered with periphyton that reduces irradi-
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ance and consequently production, a factor for aging
was added as a Hill function (HA is the half-saturation
constant of aging).

In the present analyses we assumed that the plants
are not limited by phosphorus, nitrogen or carbon in
the water, but the model can optionally account for
such limitations.

As light varies during the day and with water
depth, we integrated photosynthesis over the day and
over the length of each shoot by three-point Gaussian
integration (Goudriaan, 1986). The in situ light con-
ditions were averaged for each grid cell taking self-
shading into account (see below). As accounting for
self-shading can be very computer intensive and as the
biomass changes are relatively slow, we calculated the
light attenuation in each grid cell once in 7 days (at 15
depths distributed evenly over the water column) and
interpolated linearly between the calculated points.

For vertical light attenuation, temperature and water
level we used 10 years of interpolated data from Lake
Constance. For more theoretical questions we averaged
these years to avoid stochastic differences between
years.

We also included water clarification by macrophytes
(Scheffer, 1998; Van Nes et al., 2003). In Lake Con-
stance this effect is probably not important as the water
is usually rather clear, but this effect is essential for the
existence of alternative stable states (Scheffer, 1998;
Van Nes et al., 2002).

In most simulations we used a grid of 10× 10 cells
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Fig. 2. Scheme of the clonal growth ofP. perfoliatus. Si is the surplus
production of shooti, Ti is the transfer to shooti, α is a parameter
that determines which part of the transfer (Ti) goes to the next shoot.

with shoot height. The biomass is assumed to be trans-
ported acropetally from older to younger ramets (Evans
and Whitney, 1992; Marb̀a et al., 2002). Each younger
shoot adds a part (α) of the transferred biomass to its
net production. The remainder goes to the next shoot
(Fig. 2). Thus, the transport to the shoot of rameti (Ti)
sums up to:

Ti =
i∑

k=1

Si−kα(α − 1)k−1 i > 1 (4)

in whichSi is the surplus production of shooti (i = 1 is
the oldest shoot). For simplicity we assume that there
is no cost for transport. Biomass which is transferred to
full-grown shoots, will not be used but immediately be
transferred further to the next ramet. In case of branch-
ing, the transported biomass is divided equally over
both branches. The surplus production of the last ramet
goes into the growth of the new rhizome, which has a
fixed weight–length ratio. If the last shoot reaches a cer-
tain fixed height, the growth of the rhizome is ceased
and a new daughter ramet is created.

The main rhizome may have a (usually small) angle
with the previous rhizome, which is drawn from a nor-
mal distribution. Each ramet has a certain probability
of branching, which is drawn from a Bernoulli distri-
bution. The angle of the branch with the main rhizome
is also drawn from a predefined normal distribution.

2
und

m on.
f 0.2 m× 0.2 m. To avoid edge effects, ramets t
rew beyond the border of the grid were coupled to
pposite grid cells.

.1.3. Biomass allocation, clonal growth and
lonal integration (transfer)

The produced biomass is allocated to shoots,
omes and roots. The root is a fixed proportion of
hoot that does not take part in photosynthesis.
eight of the young shoots increases proportion
ith their biomass until the water surface or a p
efined maximum height has been reached. If the
roduction of a shoot is positive, a part is alloca

o the rhizomes. The proportion of the production
s allocated depends on the height of the plant:
mall shoots add nothing, whereas fully-grown sh
dd all their production to the rhizomes. Between th
xtremes, the allocated proportion increases line
.1.4. Mortality
The model accounts for (a) a fixed backgro

ortality and (b) mortality at the end of the seas
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Fig. 3. Schematic representation of a clone and the transport of energy from the ramets (circles) to the turions (triangles). At the end of the season
the turions get a proportional part (same color) of the accumulated biomass in the rhizomes and shoots. If enough biomass is accumulated, the
turion produces a new clone in the next season in which the growth direction is optionally reversed.

Background mortality results either in a weight loss or
in a stochastic loss of the complete shoot depending on
whether it has already reached the surface or not (Van
Nes et al., 2003). At a pre-set day in autumn, all shoots
die, and their biomass is reallocated to the rhizomes. At
the last (youngest) ramet of each branch of the clone,
a turion is created (Wolfer and Straile, 2004b). Since it
has been shown that turion production often depends
on plant biomass (Spencer et al., 1993), the turion
receives a proportional part of the accumulated energy
in each ramet (Fig. 3). The amount of energy (biomass)
that is transported to each turion is a fixed part of the
rhizome biomass up to a fixed maximum. The turion is
only created if the rhizome biomass exceeds a certain
minimum weight. The growth direction of the clone can
be continuing, reversed or stochastic in the next season.

2.2. Scanning of asymptotic regimes

In the previous version of the model we showed
that there can be two alternative stable states in the
model due to a feedback of vegetation on their light
climate (Van Nes et al., 2002, 2003). In the current
more detailed model, we show whether the model still
has alternative stable states, by analysing of the effect
of increasing and decreasing light attenuation on the
equilibrium biomass ofP. perfoliatus. Vertical light
attenuation was slowly increased in small steps, while
the model was not reset. After a period of stabilis-
ing, the biomass at the end of the growth season was
p axi-
m had
d back
w ). A

small import of turions prevented total extinction of the
plants. If the model has alternative stable states it will
show a hysteresis in the response, i.e. the vegetation
will recolonise at a lower turbidity than the turbidity at
which they disappeared.

2.3. Monte Carlo sensitivity analysis

We applied a Monte Carlo sensitivity analysis
to select the parameters which have the strongest
impact on clonal architecture. We generated 20,000
sets of parameters, drawing all parameters randomly
and independently from uniform probability distribu-
tions within ranges of±10% around the default values.
Three years were simulated with each parameter set-
ting, and the model results (mean shoot length, mean
spacer length, fraction below-ground biomass, mean
number of ramets per clone, approximate expansion
area, mean expansion per clone) were stored at three
dates (days 189, 219 and 249) of each year. At the end
of each simulation, the model was reset to the start-
ing number of turions per grid cell (5 m−2). Sensitivity
coefficients were defined by linear regression between
the parameter values and each model output value,
scaled by the ranges used for each parameter (Klepper,
1989). Cluster analysis (average linkage) was used to
form groups of parameters that had the same or oppo-
site effect on the qualitative model results. As similarity
measure the absolute sine of the angle between the vec-
tors of sensitivity coefficients was used. As measure of
t sed
(

lity
t ient
lotted for 5 years. When the water had reached m
um vertical light attenuation, and the vegetation
isappeared, the same procedure was repeated
ards (i.e. vertical light attenuation was reduced
-

he total sensitivity the length of this vector was u
Klepper, 1989).

In a Monte Carlo analysis there is a probabi
hat a parameter has a positive sensitivity coeffic
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Fig. 4. Example of a generated pattern (clone growth during 1 year).

because it is related to the model outcomes by chance.
To determine the significance level of the sensitivity
coefficients, we added 100 dummy parameters that had
no effect on the model (Van Nes et al., 2003). These
dummy parameters were arbitrarily set to 1. As the real
model parameters, the dummy parameters were drawn
from uniform distributions, and their “sensitivity coef-
ficients” were calculated. The 0.02 significance level of
the sensitivity coefficients was estimated by the 98%
percentile of the sensitivity coefficients of the dummy
parameters. In the cluster analyses we only included
parameters with a significant sensitivity coefficient.

3. Results

3.1. Architecture and growth parameters

The simulation produces complex architectural pat-
terns of shoot and rhizome connections (Fig. 4) which
compare well with field data from Lake Constance
(Wolfer and Straile, 2004b). For example, the observed
increase in length of younger rhizomes during one sea-
son (Wolfer and Straile, 2004a,b) is reproduced by the
model.

A 20-year simulation starting with 5 propagu-
les m−2 yielded the following results: annual curves of
most growth parameters (Fig. 5a) start in May, increase

more or less exponentially, peak in August, and fall
back to 0 after September. With regard to area, there
is a net patch growth each year (difference between
end-of-season and before-season turion numbers). In a
20-year-simulation (Fig. 5b), biomass, ramet number
and total patch size initially increase and then stabi-
lize after 10–15 years; ramet number per plant and
rhizome length decrease slightly, spacer length, shoot
length, belowground biomass and limitation stay about
the same.

The values of simulated growth parameters such as
shoot length, rhizome spacer length, rhizome length,
etc. are in the range of the field data (Wolfer and
Straile, 2004b; Table 3). In general, growth parame-
ters of macrophytes are extremely variable and also
the cited reference only covers a small part of the reper-
toire. The simulated biomass and ramet densities occur
frequently in situ (Wolfer, Unpublished observation);
for the cited field work, lower densities were deliber-
ately chosen. The simulated number of ramets per plant
is rather low, but this is partly due to the high equilib-
rium density of ramets, implying strong light limitation.
At lower ramet densities the number of ramets per plant
is quite realistic (Fig. 6).

Stabilization of biomass and ramet number after an
initial colonization phase is common in aquatic macro-
phytes (Duarte and Sand-Jensen, 1990). Ramet number
per plant and total rhizome length decrease because of
higher density and the resulting light limitation (Wolfer
and Straile, 2004a).
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hoot length (cm) 100 12–6
hizome spacer length (cm) 8.5 7.6–
hizome length (m) 0.4 0.4–0
Average spacer length, shoot length and be
round fractions do not change much during the
imulated years. The behaviour of spacer length
ot comply with observations which show that aver
pacer length decreases with increasing light limita
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ctive light foraging strategy of the plants (shoot gro

or light capturing at the expense of rhizome grow
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Fig. 5. Twenty years run: (a) year 2009 and (b) 1990–2010. Initial turion density = 1 m−2.
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Fig. 6. Relation between the mean number of ramets and biomass at
day 249. Data based on 10 replicates of 20 years of simulation. Initial
turion density = 1 m−2. The gap between biomass 200 and 300 g m−2

is due to the exponential phase of the growth in macrophytes.

which could not be reproduced by the simplified plant
strategy in the model.

As in (Wolfer and Straile, 2004a), we found lower
patch expansion at low plant density and at higher den-
sity, and highest patch expansion at medium density.
Long-term stabilization of patch sizes under model
conditions (no disturbance, homogeneous environ-
ment) is probably related to field observations, where
patches appear at the same site and in a very simi-
lar size from year to year (Walser, 1996; Gafny and
Gasith, 1991). In situ, patches may even keep their dis-
tinct shape over long time periods, although, according
to expectations, they should expand until they fill up
homogeneous lake compartments. The growth curves
suggest, that this could be a result of the stabilization
of biomass and ramet number which in turn are due to
light limitation in a dense patch.

3.2. Branchings

A variation of the branching probability per plant
from 0 to 1 reveals strong consequences for equilib-
rium summer biomasses and total number of ramets
(Fig. 7). Plants with zero branching die. Due to the
clonal growth architecture ofP. perfoliatus, each plant
with zero branching produces exactly one turion at the
end of the rhizome axis (Wolfer and Straile, 2004b).
Under the assumption of zero mortality, the number
of plants will remain the same forever. However, turi-
ons are usually subjected to waterbird foraging, fungus
i ddi-

Fig. 7. Modelling results on the influence of branching probability
on summer biomass (a) and number of ramets (b) inP. perfoliatus
after a simulation period of 20 years.

tionally, it is assumed that turions also fail to propagate
if their weight is too low (for example due to bad shoot
biomass growth in the previous season). The model
shows that, if there is no branching, even the lowest
turion mortality will eventually lead to the extinction
of the plant.

Maximum summer biomass and maximum density
are achieved at the (relatively low) branching inten-
sity of 0.1–0.2. At higher branching rates, biomass
and number of ramets decrease again. The optimum
branching probabilities found by the model are equal to
those found in the field in patches with favourable plant
growth (Wolfer and Straile, 2004b), and lower than
those found under experimental conditions (Wolfer
and Straile, 2004a), probably because of lower water
level and more light in the experimental water basin.
The decreasing biomass at higher branching is due
to our assumption that energy reserves at the end of
the growing season are equally divided up into the
number of turions. Branching increases the number
of turions, therefore individual turions will not have
enough reserves to sprout successfully in the next
season.
nfection, or mortality due to stochastic reasons. A



76 S.R. Wolfer et al. / Ecological Modelling 192 (2006) 67–82

3.3. Spatial expansion with and without reversing
turions

The main rhizomes axes ofPotamogeton perfolia-
tus usually grow relatively straight and terminate with
a turion at the end of the season. During winter, the rhi-
zomes decompose and only the turion remains intact.
In the following year, the growth of the new rhizome
can theoretically (a) be random, (b) continue in the
direction of the previous year, or (c) reverse its direc-
tion. In practice however, the growth direction of the
new rhizome is probably not random but rather deter-
mined by the alignment of the meristem (Watson and
Cook, 1982). There is some indication of growth rever-
sal, since turions grow basipetally in the sediment in a
hook-like fashion (Wolfer and Straile, 2004b).

The model allowed us to compare the influence
of random, continuing, and reverse rhizome growth.
There are dramatic effects on patch density and expan-
sion after a 20-year simulation (Fig. 8). Reversal leads
to a very compact patch with high density (Fig. 8a).
Continuation of growth into last years direction cre-
ates a larger, sparser patch (Fig. 8c) and random growth
direction lies in between the two (Fig. 8b).

These model results show that not only extrin-
sic growth conditions but also intrinsic architectural
growth rules are of major importance for the patch
characteristics. There are intra-specific feed-backs of
patch density and structure such as modification of
light, nutrients, and sediment detritus (Cebrían and
Duarte, 2001), regulation of flowering (Thompson et
al., 1990), or susceptibility against wave attack (Coops

F
(

ig. 8. Patch density and expansion in dependence on rhizome grow
b) growth reversal, (c) random growth and (d) continuing growth (sim
th direction relative to the previous year. (a) Common starting condition,
ulation period 20 years).
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et al., 1991). The observed differences in patch size,
pattern and density will have impacts on processes in
the littoral ecosystem, such as element cycles (Barko
and James, 1997), as well as on littoral food webs
(Lauridsen et al., 1996) and the distribution and age-
characteristics of littoral fish (Weaver et al., 1997) and
macro-invertebrates (Webster et al., 1998).

3.3.1. Scanning of asymptotic regimes
Although the new model “CLOMO” is much more

complex than the original model Charisma, the results
were quite similar (Van Nes and Scheffer, 2005). Start-
ing from the turbid state,P. perfoliatus growth tolerates
less turbidity, than starting from the clear state. We can
therefore show thatPotamogeton influences its own
environment through feedback mechanisms and that
the system can have two alternative stable states at
higher turbidity: one with vegetation and one with little
or no vegetation. The main difference is that the zone
with alternative equilibria is much smaller in the clonal
model (Fig. 9), which is due to the fact thatP. perfolia-
tus is assumed to have a smaller effect on water clarity
thanP. pectinatus.

3.3.2. Monte Carlo sensitivity analysis of clonal
architecture

Cluster analysis of the sensitivity coefficients shows
that there are only two clear clusters of parameters that
determine the clonal architecture. The strongest effect
i pact
o mp,

F
i etting
t

pMax, sPhotoTemp and hAge (Fig. 10). These param-
eters have a strong effect on the expansion area and
the number of ramets per clone (Fig. 11). In an earlier
analysis, they also had the strongest effect on biomass
and numbers in the model Charisma (Van Nes et al.,
2003).

A second smaller cluster (Fig. 10) includes the
parameter Alpha, which determines the fraction of
transported biomass that is used for the growth of sub-
sequent ramets (Fig. 2). The parameters determining
the weight–length relationship of the rhizomes (Rhi-
zomeWeightPerM) and the length of the shoots at
which a new ramet is created (NewRametLength) are
also included in this cluster (Fig. 10). These parameters
have a strong effect on the clonal expansion because
they determine total rhizome length, but also on rhi-
zome spacer length (Fig. 11). Furthermore there are
some parameters that belong to no cluster, but also
have a significant effect. It seems plausible that the day
of turion germination (TurionGerminationDay) influ-
ences the growth of the clones, because any additional
day of growth increases the biomass. The importance
of earlier germination is also confirmed by experiments
and in situ observations (Spencer and Rejmanek, 1989;
Spencer et al., 2000). In the model, it strongly affects
all variables in the first year, but has much less effect
in the following years.

4
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l
3
any
s due to a group of parameters with a strong im
n photosynthesis. This group includes hPhotoTe

ig. 9. Simulation of the response ofP. perfoliatus biomass to
ncreasing and subsequently decreasing turbidity without res
he model.
. Discussion

.1. Comparison with other models

The models available for clonal plant growth can
lassified into empirical models and mechanistic m
ls (Carr et al., 1997).

1) The majority of aquatic plant models are mec
nistic biomass models that calculate plant gro
from physiological processes such as photosyn
sis but disregard clonal architecture. These m
els can be (a) non-spatial (Collins and Wlosinsk
1989; Scheffer et al., 1993; van Dijk and Jan
1993; Davis and McDonnell, 1997; Hootsma
1999; Asaeda and Karunaratne, 2000; Calado
Duarte, 2000; Best et al., 2001) or (b) spatia
(Wortmann et al., 1997; Van Nes et al., 200).
Compared to such models our model needs m
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Fig. 10. Cluster analysis of the sensitivity parameters of the model. Parameters with the same or opposite effect on the model results of four
subsequent years at three points in time (days 189, 219 and 249). Sensitivity was based on the following model output: mean spacer length,
mean shoot length, fraction below-ground biomass, mean number of ramets per clone, approximate expansion area, mean expansion per clone.
All parameters shown have a significant effect on model results (p > 0.01).

extra parameters that have to be assessed or cali-
brated. Complex rules have to be set up which make
the model complex and prone to uncertainties. The
advantage of our model is, that it gives more insight
into plant growth strategies than non-architectural
mechanistic models. The model allows us to study
the effects and implications of specific growth
rules for growth characteristics. For example: is
branching necessary for successful propagation?
It also allows for insights into patch formation and
growth.

(2) In contrast to mechanistic models, there are some
empirical “design models” of clonal architecture
(Bell, 1976; Bell et al., 1979), including submersed

species (Molenaar et al., 2000). Empirical models
use the ranges and standard deviations of rhizome
lengths, branching frequency, branching angles,
etc. and generate simulations of growth patterns.
They provide insights into possible variability of
patterns but cannot explain the underlying mech-
anisms nor simulate the patterns under different
environmental conditions. In contrast, our rhizome
architecture is growth related and consequently
ruled by environmental factors.

(3) Deterministic and stochastic spatio-temporal mod-
els (cellular automata) are also used for clonal
plants in competition models (Colasanti and
Grime, 1993; Chiarello and Barrat-Segretain,
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Fig. 11. Time course of the relative sensitivity coefficients of various representative parameters (expressed as sensitivity coefficients) on model
outcomes.
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1997; Balzter et al., 1998) but they describe clonal
expansion on a grid basis using simple empirical
rules, or random processes. They can be used to
predict patterns on a larger scale, but being empir-
ical, they do not provide mechanistic insight.

(4) A range of models, mainly for terrestrial plants,
takes into account both mechanistic and empiri-
cal aspects (Cain and Cook, 1988; Callaghan et
al., 1990; Cain, 1994; Oborny, 1994; Cain et al.,
1995, 1996; Evans and Cain, 1995; Klimes, 2000),
but neither of these models deals with submersed
macrophytes nor clonal integration.

(5) Models of clonal integration exist for theoretical
plants and are usually non-spatial (Stuefer et al.,
1998; Suzuki, 2002). Only a few spatial models
include clonal integration (Oborny et al., 2000;
Chesson and Peterson, 2002; Herben and Suzuki,
2002; Oborny and Kun, 2002), but in contrast to
our model these models are not truly mechanistic,
ignore clonal architecture or have a rigid architec-
ture, i.e. do not assume any plastic adjustment of
clonal architecture to resource availability.

To our knowledge there is no other model that
includes all following components: submersed species,
mechanistic biomass growth (dependent on environ-
ment), individually based, spatially concise, non-rigid
clonal architecture, and clonal integration.

4.2. Controlling complexity of the model

also
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m pro-
c ults.
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n rect
r l can
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t rly
k le in
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beyond the weight required for sprouting. More-
over, the model does not include biomass allocation
strategies and foraging by means of rhizome length
control, as we lack sufficient knowledge of these
processes.

We tried to manage the complexity of the model
by implementing detailed visualisation of the results,
which we regard as essential for keeping track of the
complexity (Grimm, 2002). Our modelling environ-
ment could visualise the clones and the various fea-
tures of the ramets, including shoot length, roots and
rhizomes, transport between shoot and rhizomes and
between rhizomes and patch expansion in 2D and 3D
graphs. Furthermore it was essential that the generated
patterns could be compared with real data ofPota-
mogeton perfoliatus in Lake Constance at the same
level of detail (Wolfer and Straile, 2004a,b). Keep-
ing track of several properties of the clones (spacer
length, biomass, number of ramets) simultaneously,
we could reduce the probability of getting realistic
results for wrong reasons. Finally, we compared our
results with a simpler version of the model (Van Nes
and Scheffer, 2005), namely the original Charisma
model. This way we could show that some behaviour
of the model, like the existence of alternative sta-
ble states, is not sensitive to the complexity of clonal
growth.

The benefits of our model approach are detailed eco-
logical insights through qualitatively correct results.
The model has also provided first insights into the
u pan-
s hical
u sting
p ture,
t and
f hyte
g can
e pro-
c eous
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g

A

the
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t

Being complex and detailed, our model has
everal drawbacks (Van Nes and Scheffer, 2005). The
odel includes many unknown parameters and

esses, resulting in a high uncertainty of the res
lthough our results were qualitatively correct, we c
ot be sure that we get good results for the cor
eason. Therefore, it is not sure whether this mode
lso be applied to other lakes and sites.

In particular, the results of the simulation
ranching variability are sensitive to some parame

or which we do not have good field data, such
raction of biomass allocated to turions or minim
urion weight for sprouting. The description of poo
nown processes was kept as simple as possib
he model, ignoring more flexible plant strategies
he avoidance of small side branches or the forma
f a few big turions in order to avoid propagu
nderstanding of growth architecture and patch ex
ion of submersed macrophytes. The strong grap
ser interface makes it possible to analyse the exi
atterns and find the underlying mechanisms. In fu

he model will be used for more detailed analyses
or the generation of hypotheses about macrop
rowth rules which can be tested experimentally. It
asily be extended by additional parameters and
esses, for example wave mortality or heterogen
rid cells in order to provide an improved picture of
rowth of submersed macrophytes.
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