Location via proxy:   
[Report a bug]   [Manage cookies]                

Karolina Stańczak

University of Copenhagen

foto.jpg

I am a third-year PhD student at the University of Copenhagen supervised by Professor Isabelle Augenstein. Before joining the CopeNLU group I’ve completed the MSc in Statistics at the Humboldt University of Berlin. Before that, I’ve obtained a Bachelor of Science in Economics also at the Humboldt University of Berlin. I’m a member of Rycolab at ETH Zürich co-supervised by Ryan Cotterell.

My PhD work focuses on gender bias detection in cross-lingual setups and interpretability. My primary research interests are bias and fairness in NLP, interpretability, and statistical methods.

Besides, prior to starting my PhD I have worked as a data science consultant for Deloitte Analytics Institute.

You can find me on: Twitter, GitHub, LinkedIn.

selected publications

  1. ACL
    Measuring Intersectional Biases in Historical Documents
    Nadav Borenstein, Karolina Stańczak, Thea Rolskov, Natália da Silva Perez, Natacha Klein Käfer, Isabelle Augenstein
    ACL 2023
  2. AAAI
    A Latent-Variable Model for Intrinsic Probing
    Karolina Stańczak, Lucas Torroba Hennigen, Adina Williams, Ryan Cotterell, and Isabelle Augenstein
    AAAI 2023
  3. EACL
    Measuring Gender Bias in West Slavic Language Models
    Sandra Martinková, Karolina Stańczak and Isabelle Augenstein
    EACL 2023
  4. NAACL
    Same Neurons, Different Languages: Probing Morphosyntax in Multilingual Pre-trained Models
    Karolina Stańczak, Edoardo Ponti, Lucas Torroba Hennigen, Ryan Cotterell, and Isabelle Augenstein
    In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 2022
  5. PLOS ONE
    Quantifying Gender Biases Towards Politicians on Reddit
    Sara Vera Marjanovic, Karolina Stańczak, and Isabelle Augenstein
    PLOS ONE 2022
  6. A Survey on Gender Bias in Natural Language Processing
    Karolina Stańczak, and Isabelle Augenstein
    ArXiv 2021
  7. Quantifying Gender Bias Towards Politicians in Cross-Lingual Language Models
    Karolina Stańczak, Sagnik Ray Choudhury, Tiago Pimentel, Ryan Cotterell, and Isabelle Augenstein
    ArXiv 2021