A radiotherapy treatment plan is based on an anatomical &... more A radiotherapy treatment plan is based on an anatomical 'snapshot' of the patient acquired during the preparation stage using a kVCT (kilovolt computed tomography) scanner. Anatomical changes will occur during the treatment course, in some cases requiring a new treatment plan to deliver the prescribed dose. With the introduction of 3D volumetric on-board imaging devices, it became feasible to use the produced images for dose recalculation. However, the use of these on-board imaging devices in clinical routine for the calculation of dose depends on the stability of the images. In this study the validation of tomotherapy MVCT (megavolt computed tomography) produced images, for the purpose of dose recalculation by the Planned Adaptive software, has been performed. To investigate the validity of MVCT images for dose calculation, a treatment plan was created based on kVCT-acquired images of a solid water phantom. During a period of 4 months, MVCT images of the phantom have been acquired and were used by the planned adaptive software to recalculate the initial kVCT-based dose on the MVCT images. The influence of the adapted IVDTs (image value-to-density tables) has been investigated as well as the effect of image acquisition with or without preceding airscan. Output fluctuations and/or instabilities of the imaging beam result in MV images of different quality yielding different results when used for dose calculation. It was shown that the output of the imaging beam is not stable, leading to differences of nearly 3% between the original kV-based dose and the recalculated MV-based dose, for solid water only. MVCT images can be used for dose calculation purposes bearing in mind that the output beam is liable to fluctuations. The acquisition of an IVDT together with the MVCT image set, that is going to be used for dose calculation, is highly recommended.
Advances in radiation oncology evolved in parallel with advances in multimodality imaging. Both i... more Advances in radiation oncology evolved in parallel with advances in multimodality imaging. Both in the treatment planning process and during the actual treatment delivery, anatomical and biological information has become a necessity, which relies heavily on information ...
To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch... more To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch compared with 4DOF positioning for intracranial lesions and to estimate the immobilization characteristics of the BrainLAB frameless mask (BrainLAB AG, Feldkirchen, Germany), more specifically, the setup errors and intrafraction motion. We enrolled 40 patients with 66 brain metastases treated with frameless stereotactic radiosurgery and a 6DOF robotic couch. Patient positioning was performed with the BrainLAB ExacTrac stereoscopic X-ray system. Positioning results were collected before and after treatment to assess patient setup error and intrafraction motion. Existing treatment planning data were loaded and simulated for 4DOF positioning and compared with the 6DOF positioning. The clinical relevance was analyzed by means of the Paddick conformity index and the ratio of prescribed isodose volume covered with 4DOF to that obtained with the 6DOF positioning. The mean three-dimensional setup error before 6DOF correction was 1.91 mm (SD, 1.25 mm). The rotational errors were larger in the longitudinal (mean, 0.23°; SD, 0.82°) direction compared with the lateral (mean, -0.09°; SD, 0.72°) and vertical (mean, -0.10°; SD, 1.03°) directions (p < 0.05). The mean three-dimensional intrafraction shift was 0.58 mm (SD, 0.42 mm). The mean intrafractional rotational errors were comparable for the vertical, longitudinal, and lateral directions: 0.01° (SD, 0.35°), 0.03° (SD, 0.31°), and -0.03° (SD, 0.33°), respectively. The mean conformity index decreased from 0.68 (SD, 0.08) (6DOF) to 0.59 (SD, 0.12) (4DOF) (p < 0.05). A loss of prescribed isodose coverage of 5% (SD, 0.08) was found with the 4DOF positioning (p < 0.05). Half a degree for longitudinal and lateral rotations can be identified as a threshold for coverage loss. With a mask immobilization, patient setup error and intrafraction motions need to be evaluated and corrected for. The 6DOF patient positioning with a 6DOF robotic couch to correct translational and rotational setup errors improves target positioning with respect to treatment isocenter, which is in direct relation with the clinical outcome, compared with the 4DOF positioning.
The purpose of this note is to report the feasibility and clinical validation of an in-house deve... more The purpose of this note is to report the feasibility and clinical validation of an in-house developed MOSFET dosimetry system and describe an integrated non-destructive reset procedure. Off-the-shelf MOSFETs are connected to a common PC using an 18 bit/analogue-input and 16 bit/output data acquisition card. A reading algorithm was developed defining the zero-temperature-coefficient point (ZTC) to determine the threshold voltage. A wireless interface was established for ease of use. The reset procedure consists of an internal circuit generating a local heating induced by an electrical current. Sensitivity has been investigated as a function of bias voltage (0-9 V) to the gate. Dosimetric properties have been evaluated for 6 MV and 15 MV clinical photon beams and in vivo benchmarking was performed against thermoluminescence dosimeters (TLD) for conventional treatments (two groups of ten patients for each energy) and total body irradiation (TBI). MOSFETS were pre-irradiated with 20 Gy. Sensitivity of 0.08 mV cGy(-1) can be obtained for 200 cGy irradiations at 5 V bias voltage. Ten consecutive measurements at 200 cGy yield a SD of 2.08 cGy (1.05%). Increasing the dose in steps from 5 cGy to 1000 cGy yields a 1.00 Pearson correlation coefficient and agreement within 2.0%. Dose rate dependence (160-800 cGy min(-1)) was within 2.5%, temperature dependence within 2.0% (25-37 degrees C). A strong angular dependence has been observed for gantry incidences exceeding +/-30 degrees C. Dose response is stable up to 50 Gy (saturation occurs at approximately 90 Gy), which is used as threshold dose before resetting the MOSFET. An average measured-over-calculated dose ratio within 1.05 (SD: 0.04) has been obtained in vivo. TBI midplane-dose assessed by entrance and exit dose measurements agreed within 1.9% with ionization chamber in phantom, and within 1.0% with TLD in vivo. An in-house developed resettable MOSFET-based dosimetry system is proposed. The system has been validated and is currently used for in vivo entrance dose measurement in clinical routine for simple (open field) treatment configurations.
ABSTRACT Purpose: To determine the balance between kV fluoroscopyimaging dose and image quality, ... more ABSTRACT Purpose: To determine the balance between kV fluoroscopyimaging dose and image quality, for robust detection of implanted fiducial markers in lung on the VERO real‐time tumortracking system. Methods: Tumorvisibility in fluoroscopic images can be improved with an implanted fiducial marker in or near the tumor. In total 5 types of fiducial markers were used in this study: solid gold markers, helical coils, multi‐gold‐marker assemblies, spherical markers and stent‐like markers. To investigate automatic detection performance of markers projected on high density structures in the thorax images, an anthropomorphic phantom was placed on a moving platform behind the static markers. Images were acquired with variable imaging settings and in different anatomical circumstances. A marker detection algorithm was developed using maximization of normalized cross correlation with a template library incorporating marker rotations. The templates were created from a 3D model of the marker. The marker detection was applied on 25 images per sequence and detection scores calculated. Additionally imaging dose TLD measurements were conducted for different imaging settings. Results: Differences were seen in the marker detection for different marker types in the different anatomical situations. Beside the intrinsic attenuation of the marker, also its spatial structure played a role. Increasing the mAs did not always increase detection scores. For 0.5 mAs, 100kVp and an SSD of 900mm a skin dose was measure of 0.031 mGy/image and an exit dose of 0.001 mGy/image. At a frame rate of 14 frames/sec this would mean an imagingskin dose of 26.04 mGy/min. Conclusions: It is feasible to use marker‐based fluoroscopy based real‐time tracking with imaging doses comparable to CBCT. Markers with more elaborate structures made from high density materials have, beside an advantage of being less prone to migration, also an advantage in terms of detectability. This collaborative work was supported by the Flemish government through the Hercules foundation and the “Fonds voor Wetenschappelijk Onderzoek ‐ Vlaanderen” grants G.0486.06 and G.0412.08, and corporate funding from BrainLab AG. There are no other conflicts of interest.
Stereotactic radiosurgery using frame-based positioning is a well-established technique for the t... more Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique.A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively).The ET/NB system can detect rotational setup errors with an average accuracy of 0.09° (standard deviation [SD] 0.06°), 0.02° (SD 0.07°), and 0.06° (SD 0.14°) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06° (SD 0.04°), 0.08° (SD 0.06°), and 0.08° (SD 0.07°) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique.The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the frameless technique showed comparable accuracy to the frame-based approach.
Skin toxicity has been reported for IMRT of head and neck cancer. The purpose of this study was t... more Skin toxicity has been reported for IMRT of head and neck cancer. The purpose of this study was to investigate the dose in the build-up region delivered by a 6 MV treatment plan for which important skin toxicity was observed. We also investigated if the different designs of the treatment head of an Elekta and a Varian linear accelerator, especially the lower position of the Varian multi-leaf collimator, give rise to different build-up doses. For regular square open beams, the build-up dose along the central beam axis is higher for the Varian machine than for the Elekta machine, both for 6 MV and 18 MV. At the Elekta machine at 18 MV, the superficial dose of a diamond shaped 10 x 10 cm2 field is 3.6% lower than the superficial dose of a regular 10 x 10 cm2 field. This effect is not seen at 6 MV. At the Varian machine, the superficial dose of the diamond shaped field is respectively 3.5 and 14.2% higher than the superficial dose of the regular 10 x 10 cm2 field for 6 MV and 18 MV. Despite the differences measured in build-up dose for single beams between the Elekta and the Varian linear accelerator, there were no measurable differences in superficial dose when a typical IMRT dose plan of 6 MV for a head and neck tumour is executed at the two machines.
A radiotherapy treatment plan is based on an anatomical &... more A radiotherapy treatment plan is based on an anatomical 'snapshot' of the patient acquired during the preparation stage using a kVCT (kilovolt computed tomography) scanner. Anatomical changes will occur during the treatment course, in some cases requiring a new treatment plan to deliver the prescribed dose. With the introduction of 3D volumetric on-board imaging devices, it became feasible to use the produced images for dose recalculation. However, the use of these on-board imaging devices in clinical routine for the calculation of dose depends on the stability of the images. In this study the validation of tomotherapy MVCT (megavolt computed tomography) produced images, for the purpose of dose recalculation by the Planned Adaptive software, has been performed. To investigate the validity of MVCT images for dose calculation, a treatment plan was created based on kVCT-acquired images of a solid water phantom. During a period of 4 months, MVCT images of the phantom have been acquired and were used by the planned adaptive software to recalculate the initial kVCT-based dose on the MVCT images. The influence of the adapted IVDTs (image value-to-density tables) has been investigated as well as the effect of image acquisition with or without preceding airscan. Output fluctuations and/or instabilities of the imaging beam result in MV images of different quality yielding different results when used for dose calculation. It was shown that the output of the imaging beam is not stable, leading to differences of nearly 3% between the original kV-based dose and the recalculated MV-based dose, for solid water only. MVCT images can be used for dose calculation purposes bearing in mind that the output beam is liable to fluctuations. The acquisition of an IVDT together with the MVCT image set, that is going to be used for dose calculation, is highly recommended.
Advances in radiation oncology evolved in parallel with advances in multimodality imaging. Both i... more Advances in radiation oncology evolved in parallel with advances in multimodality imaging. Both in the treatment planning process and during the actual treatment delivery, anatomical and biological information has become a necessity, which relies heavily on information ...
To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch... more To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch compared with 4DOF positioning for intracranial lesions and to estimate the immobilization characteristics of the BrainLAB frameless mask (BrainLAB AG, Feldkirchen, Germany), more specifically, the setup errors and intrafraction motion. We enrolled 40 patients with 66 brain metastases treated with frameless stereotactic radiosurgery and a 6DOF robotic couch. Patient positioning was performed with the BrainLAB ExacTrac stereoscopic X-ray system. Positioning results were collected before and after treatment to assess patient setup error and intrafraction motion. Existing treatment planning data were loaded and simulated for 4DOF positioning and compared with the 6DOF positioning. The clinical relevance was analyzed by means of the Paddick conformity index and the ratio of prescribed isodose volume covered with 4DOF to that obtained with the 6DOF positioning. The mean three-dimensional setup error before 6DOF correction was 1.91 mm (SD, 1.25 mm). The rotational errors were larger in the longitudinal (mean, 0.23°; SD, 0.82°) direction compared with the lateral (mean, -0.09°; SD, 0.72°) and vertical (mean, -0.10°; SD, 1.03°) directions (p < 0.05). The mean three-dimensional intrafraction shift was 0.58 mm (SD, 0.42 mm). The mean intrafractional rotational errors were comparable for the vertical, longitudinal, and lateral directions: 0.01° (SD, 0.35°), 0.03° (SD, 0.31°), and -0.03° (SD, 0.33°), respectively. The mean conformity index decreased from 0.68 (SD, 0.08) (6DOF) to 0.59 (SD, 0.12) (4DOF) (p < 0.05). A loss of prescribed isodose coverage of 5% (SD, 0.08) was found with the 4DOF positioning (p < 0.05). Half a degree for longitudinal and lateral rotations can be identified as a threshold for coverage loss. With a mask immobilization, patient setup error and intrafraction motions need to be evaluated and corrected for. The 6DOF patient positioning with a 6DOF robotic couch to correct translational and rotational setup errors improves target positioning with respect to treatment isocenter, which is in direct relation with the clinical outcome, compared with the 4DOF positioning.
The purpose of this note is to report the feasibility and clinical validation of an in-house deve... more The purpose of this note is to report the feasibility and clinical validation of an in-house developed MOSFET dosimetry system and describe an integrated non-destructive reset procedure. Off-the-shelf MOSFETs are connected to a common PC using an 18 bit/analogue-input and 16 bit/output data acquisition card. A reading algorithm was developed defining the zero-temperature-coefficient point (ZTC) to determine the threshold voltage. A wireless interface was established for ease of use. The reset procedure consists of an internal circuit generating a local heating induced by an electrical current. Sensitivity has been investigated as a function of bias voltage (0-9 V) to the gate. Dosimetric properties have been evaluated for 6 MV and 15 MV clinical photon beams and in vivo benchmarking was performed against thermoluminescence dosimeters (TLD) for conventional treatments (two groups of ten patients for each energy) and total body irradiation (TBI). MOSFETS were pre-irradiated with 20 Gy. Sensitivity of 0.08 mV cGy(-1) can be obtained for 200 cGy irradiations at 5 V bias voltage. Ten consecutive measurements at 200 cGy yield a SD of 2.08 cGy (1.05%). Increasing the dose in steps from 5 cGy to 1000 cGy yields a 1.00 Pearson correlation coefficient and agreement within 2.0%. Dose rate dependence (160-800 cGy min(-1)) was within 2.5%, temperature dependence within 2.0% (25-37 degrees C). A strong angular dependence has been observed for gantry incidences exceeding +/-30 degrees C. Dose response is stable up to 50 Gy (saturation occurs at approximately 90 Gy), which is used as threshold dose before resetting the MOSFET. An average measured-over-calculated dose ratio within 1.05 (SD: 0.04) has been obtained in vivo. TBI midplane-dose assessed by entrance and exit dose measurements agreed within 1.9% with ionization chamber in phantom, and within 1.0% with TLD in vivo. An in-house developed resettable MOSFET-based dosimetry system is proposed. The system has been validated and is currently used for in vivo entrance dose measurement in clinical routine for simple (open field) treatment configurations.
ABSTRACT Purpose: To determine the balance between kV fluoroscopyimaging dose and image quality, ... more ABSTRACT Purpose: To determine the balance between kV fluoroscopyimaging dose and image quality, for robust detection of implanted fiducial markers in lung on the VERO real‐time tumortracking system. Methods: Tumorvisibility in fluoroscopic images can be improved with an implanted fiducial marker in or near the tumor. In total 5 types of fiducial markers were used in this study: solid gold markers, helical coils, multi‐gold‐marker assemblies, spherical markers and stent‐like markers. To investigate automatic detection performance of markers projected on high density structures in the thorax images, an anthropomorphic phantom was placed on a moving platform behind the static markers. Images were acquired with variable imaging settings and in different anatomical circumstances. A marker detection algorithm was developed using maximization of normalized cross correlation with a template library incorporating marker rotations. The templates were created from a 3D model of the marker. The marker detection was applied on 25 images per sequence and detection scores calculated. Additionally imaging dose TLD measurements were conducted for different imaging settings. Results: Differences were seen in the marker detection for different marker types in the different anatomical situations. Beside the intrinsic attenuation of the marker, also its spatial structure played a role. Increasing the mAs did not always increase detection scores. For 0.5 mAs, 100kVp and an SSD of 900mm a skin dose was measure of 0.031 mGy/image and an exit dose of 0.001 mGy/image. At a frame rate of 14 frames/sec this would mean an imagingskin dose of 26.04 mGy/min. Conclusions: It is feasible to use marker‐based fluoroscopy based real‐time tracking with imaging doses comparable to CBCT. Markers with more elaborate structures made from high density materials have, beside an advantage of being less prone to migration, also an advantage in terms of detectability. This collaborative work was supported by the Flemish government through the Hercules foundation and the “Fonds voor Wetenschappelijk Onderzoek ‐ Vlaanderen” grants G.0486.06 and G.0412.08, and corporate funding from BrainLab AG. There are no other conflicts of interest.
Stereotactic radiosurgery using frame-based positioning is a well-established technique for the t... more Stereotactic radiosurgery using frame-based positioning is a well-established technique for the treatment of benign and malignant lesions. By contrast, a new trend toward frameless systems using image-guided positioning techniques is gaining mainstream acceptance. This study was designed to measure the detection and positioning accuracy of the ExacTrac/Novalis Body (ET/NB) for rotations and to compare the accuracy of the frameless with the frame-based radiosurgery technique.A program was developed in house to rotate reference computed tomography images. The angles measured by the system were compared with the known rotations. The accuracy of ET/NB was evaluated with a head phantom with seven lead beads inserted, mounted on a treatment couch equipped with a robotic tilt module, and was measured with a digital water level and portal films. Multiple hidden target tests (HTT) were performed to measure the overall accuracy of the different positioning techniques for radiosurgery (i.e., frameless and frame-based with relocatable mask or invasive ring, respectively).The ET/NB system can detect rotational setup errors with an average accuracy of 0.09° (standard deviation [SD] 0.06°), 0.02° (SD 0.07°), and 0.06° (SD 0.14°) for longitudinal, lateral, and vertical rotations, respectively. The average positioning accuracy was 0.06° (SD 0.04°), 0.08° (SD 0.06°), and 0.08° (SD 0.07°) for longitudinal, lateral and vertical rotations, respectively. The results of the HTT showed an overall three-dimensional accuracy of 0.76 mm (SD 0.46 mm) for the frameless technique, 0.87 mm (SD 0.44 mm) for the relocatable mask, and 1.19 mm (SD 0.45 mm) for the frame-based technique.The study showed high detection accuracy and a subdegree positioning accuracy. On the basis of phantom studies, the frameless technique showed comparable accuracy to the frame-based approach.
Skin toxicity has been reported for IMRT of head and neck cancer. The purpose of this study was t... more Skin toxicity has been reported for IMRT of head and neck cancer. The purpose of this study was to investigate the dose in the build-up region delivered by a 6 MV treatment plan for which important skin toxicity was observed. We also investigated if the different designs of the treatment head of an Elekta and a Varian linear accelerator, especially the lower position of the Varian multi-leaf collimator, give rise to different build-up doses. For regular square open beams, the build-up dose along the central beam axis is higher for the Varian machine than for the Elekta machine, both for 6 MV and 18 MV. At the Elekta machine at 18 MV, the superficial dose of a diamond shaped 10 x 10 cm2 field is 3.6% lower than the superficial dose of a regular 10 x 10 cm2 field. This effect is not seen at 6 MV. At the Varian machine, the superficial dose of the diamond shaped field is respectively 3.5 and 14.2% higher than the superficial dose of the regular 10 x 10 cm2 field for 6 MV and 18 MV. Despite the differences measured in build-up dose for single beams between the Elekta and the Varian linear accelerator, there were no measurable differences in superficial dose when a typical IMRT dose plan of 6 MV for a head and neck tumour is executed at the two machines.
Uploads
Papers by Tom Depuydt