

Parallel Overlapping Schwarz

Preconditioners and Multiscale

Discretizations with Applications

to Fluid-Structure Interaction

and Highly Heterogeneous

Problems

INAUGURAL-DISSERTATION

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Alexander Heinlein

aus Essen

Köln, 2016

Berichterstatter: Prof. Dr. Axel Klawonn

(Universität zu Köln)

Prof. Dr. Oliver Rheinbach

(TU Bergakademie Freiberg)

Tag der mündlichen Prüfung: 22. April 2016

Abstract

Accurate simulations of transmural wall stresses in artherosclerotic coronary

arteries may help to predict plaque rupture. Therefore, a robust and efficient

numerical framework for Fluid-Structure Interaction (FSI) of the blood flow

and the arterial wall has to be set up, and suitable material laws for the mod-

eling of the fluid and the structural response have to be incorporated. In this

thesis, monolithic coupling algorithms and corresponding monolithic precondi-

tioners are used to simulate FSI using highly nonlinear anisotropic polyconvex

hyperelastic and anisotropic viscoelastic material models for the arterial wall.

An MPI-parallel FSI software from the LifeV library is coupled to the software

FEAP in order to enable access to the structural material models implemented

in FEAP. To define a benchmark test for highly nonlinear material models in

FSI, a simple geometry corresponding to a section of an idealized coronary

artery, suitable boundary conditions, and material parameters adapted to ex-

perimental data are used. In particular, the geometry is chosen to be non-

symmetric to make effects due to the anisotropy of the structure visible. An

initialization phase and several heartbeats are simulated, and systematical stud-

ies with meshes of increasing refinement and different space discretizations are

carried out. The results indicate that, for the highly nonlinear material models,

piecewise quadratic or F-bar element discretizations lead to significantly better

results than piecewise linear shape functions. The results using piecewise lin-

ear shape functions are less accurate with respect to the displacements and, in

particular, to the approximation of the stresses.

To improve the performance of the FSI simulations, a more robust precon-

ditioner for the highly nonlinear structural material models has to be used.

Therefore, a parallel implementation of the GDSW (Generalized Dryja-Smith-

Widlund) preconditioner, which is a geometric two-level overlapping Schwarz

preconditioner with energy-minimizing coarse space, is presented. The imple-

mentation, which is based on the software library Trilinos, is held flexible to

make further extensions of the preconditioner possible. Even though the di-

mension of its coarse space is comparably large, parallel scalability for two and

three dimensional scalar elliptic and linear elastic problems for thousands of

cores is demonstrated. Also for unstructured domain decompositions and for a

hybrid version of the preconditioner, convincing scalability is presented. When

used as a preconditioner for the structure block in FSI simulations, the GDSW

preconditioner shows excellent performance as well: scalability for up to 512

cores and a significant reduction of the simulation time and of the number of

v

iterations with respect to the previously used preconditioner, IFPACK, are ob-

served. IFPACK is an algebraic one-level overlapping Schwarz preconditioner.

Finally, highly heterogeneous (multiscale) problems are investigated. Since

the GDSW coarse space is not robust for general problems of this type, spaces

based on Approximate Component Mode Synthesis (ACMS) are considered. On

the basis of the ACMS space, coarse spaces for overlapping Schwarz methods are

constructed, and a parallel implementation of a special finite element method

is presented. For the coarse spaces, preliminary results indicating numerical

scalability and robustness are discussed. For the parallel implementation of the

special finite element method, very good parallel weak scalability is observed

with respect to the construction of the basis functions and to the solution of

the resulting linear system using the FETI-DP (Finite Element Tearing and

Interconnecting - Dual Primal) method.

vi

Zusammenfassung

Präzise Simulationen der Wandspannungsverteilung in artherosklerotischen

Koronararterien können ein Hilfsmittel zur Vorhersage von Rupturen des

Plaques sein. Um diese zu ermöglichen, müssen die Fluid-Struktur Inter-

aktion (FSI) von Blutfluss und Arterienwand sowie ein realistisches Ma-

terialverhalten von Blut und Arterienwand berücksichtigt werden. Dazu

werden robuste, effiziente numerische Verfahren und geeignete Materialmod-

elle für Fluid und Struktur benötigt. In dieser Arbeit werden monolithische

Kopplungsalgorithmen und Vorkonditionierer verwendet, um FSI unter Ver-

wendung von stark nichtlinearen anisotropen polykonvexen hyperelastischen

und anisotropen viskoelastischen Materialmodellen für die Arterienwand zu

simulieren. Die zu diesem Zweck implementierte Software basiert auf der Kop-

plung eines MPI-parallelen FSI Codes aus der Softwarebibliothek LifeV mit der

Strukturmechanik-Simulationssoftware FEAP. Dies ermöglicht die Verwendung

aller Materialmodelle aus FEAP. Um einen Benchmark-Test für die Simulation

von FSI unter der Verwendung von stark nichtlinearen Materialmodellen zu

definieren, werden die Geometrie einer vereinfachten Koronararterie, geeignete

Randbedingungen und realistische Materialparameter verwendet. Die Geome-

trie ist dabei asymmetrisch gewählt, damit Effekte infolge der Anisotropie

des Strukturmaterials erkennbar sind. Die Simulationen beinhalten jeweils

eine Initialisierungsphase und mehrere Herzschläge. Dabei werden Gitter

unterschiedlicher Feinheit und verschiedene Raumdiskretisierungen verwendet.

Die Ergebnisse der Simulationen zeigen unter anderem, dass stückweise lineare

Formfunktionen nicht zur Diskretisierung der stark nichtlinearen Modelle

geeignet sind. Qualitativ hochwertiger sind die Ergebnisse für stückweise

quadratische und F-bar Elemente, vor allem bezüglich der Verschiebungen und

insbesondere der Approximation der Spannungen.

Um die Performance der FSI Simulationen zu verbessern, muss ein ro-

busterer Vorkonditionierer für die stark nichtlinearen Strukturmodelle ver-

wendet werden. Daher wird eine parallele Implementierung des zweistufigen

überlappenden Schwarz Vorkonditionierers GDSW (Generalized Dryja-Smith-

Widlund), welcher geometrische Überlappung und einen energieminimalen

Grobgitterraum verwendet, vorgestellt. Die Implementierung basiert auf der

Softwarebibliothek Trilinos und ist flexibel gehalten, um weitere Verbesserun-

gen zu ermöglichen. Trotz der hohen Dimension des Grobgitterraums kann

parallele Skalierbarkeit für zwei und dreidimensionale skalare und linear elastis-

che Probleme bis zu mehreren Tausend Rechenkernen gezeigt werden. Auch die

Skalierbarkeit für unstruktutrierte Zerlegungen und für eine hybride Variante

vii

des GDSW Vorkonditionierers ist ausgezeichnet. Der GDSW Vorkonditionierer

wird daher auch für den Strukturblock in FSI verwendet, mit exzellenten

Ergebnissen: Starke Skalierbarkeit für bis zu 512 Rechenkernen und eine

beachtliche Reduktion der Simulationszeit gegenüber dem zuvor verwendeten

Vorkonditionierer, IFPACK, werden erreicht. IFPACK ist ein einstufiger

überlappender Schwarz Vorkonditionierer mit algebraischer Überlappung.

Abschließend werden stark heterogene (Multiskalen-) Probleme behandelt.

Der GDSW Vorkonditionierer ist, im Allgemeinen, nicht robust für Probleme

dieser Art. Daher werden Grobgitterräume und eine parallele Implementierung

einer speziellen Finite Elemente Methode, die auf Approximate Component

Mode Synthesis (ACMS) basieren, untersucht. Bezüglich der Grobgitterräume

für überlappende Schwarz Vorkonditionierer können erste vielversprechende

Ergebnisse gezeigt werden. Für die parallele Implementierung der speziellen

Finite Elemente Methode wird sehr gute parallele Skalierbarkeit für die

Berechnung der Finite Elemente Funktionen und die Lösung mit Hilfe der

FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) Meth-

ode präsentiert.

viii

Acknowledgements

First of all, I would like to thank my advisor Axel Klawonn for the great oppor-

tunity to work on some most interesting topics during the last four years in his

group. Even though, these years were filled with a lot of hard work and each of

my projects required a lot of initial work, I look back at a very exciting time. I

have learned many new things, and I had the chance to develop myself in many

ways. This would not have been possible without the support and, especially

in the last year, the encouragement of Axel Klawonn.

This thesis would also not have been possible without the help and support of

Oliver Rheinbach. Even though having moved to Freiberg, he was still available

for hours of fruitful discussions on the phone and during my stays in Freiberg.

I am also thankful for sharing his knowledge on the implementation of parallel

algorithms with me. In particular, I would like to thank him for the use of his

FETI-DP implementation and his efforts in working on our publications.

Many thanks are also directed to all my former and current colleagues,

namely, Andreas Fischle, Sabrina Gippert, Patrick Radtke, Martin Lanser, Mar-

tin Kühn, Stephanie Friedhoff, and Christian Hochmuth. I thank all of them,

for sharing many, many hours in discussions about mathematical, numerical,

and other important topics. I am grateful for their support, and glad about their

understanding for my habits (especially, for not being communicative when try-

ing to focus on implementation or writing). In particular, I appreciated the time

being office mates with Andreas Fischle, helping und supporting me especially

at the beginning of my PhD, Martin Lanser (twice actually) for helping out

each other with all kinds of programming issues and sharing a lot of frustration

while implementing C and C++ codes, and Patrick Radtke, for being a very

calm and careful person. I would also like to thank Martin Kühn for being a

good friend, especially outside the office, and Jascha Knepper, for our recent

collaboration which continued the work of the first phase of my PhD.

Furthermore, I acknowledge all of my coworkers from the “CoDELartere”

project for the collaboration and the results which would have not been possible

without them, namely, Daniel Balzani, Simone Deparis, Simon Fausten, Davide

Forti, and Jörg Schröder. Regarding our project, also the financial support by

the German Science Foundation (DFG), project no. BA2823/9-1, KL2094/3-1,

RH122/4-1, and SCHR570/15-1, and the Swiss National Foundation (SNF),

project no. 140184 is gratefully appreciated.

I also thank Ulrich Hetmaniuk from the University of Washington for the

chance to spend three months at the Department of Applied Mathematics at

the University of Washington at the beginning of my PhD. I appreciate my stay

ix

in Seattle a lot, including the discussions with Ulrich and the chance to learn

about the different culture in the U.S., and I feel bad for not having been able

to come back during the time of my PhD.

Laying the ground for the implementations in my PhD thesis, I would also

like to thank the PETSc, Trilinos, and LifeV teams. Many computers have

been used to perform all the numerical experiments presented in this thesis

(and many more). Therefore, I gratefully acknowledge the use of the CHEOPS

parallel computer at Universität zu Köln, the Cray XT6m at the University of

Duisburg-Essen, the Cluster at Technische Universität Bergakademie Freiberg,

and the Oculus cluster at Universität Paderborn. I also gratefully acknowledge

the Gauss Centre for Supercomputing (GCS) for providing computing time

through the John von Neumann Institute for Computing (NIC) on the GCS

share of the supercomputer JUQUEEN [191] at Jülich Supercomputing Centre

(JSC). GCS is the alliance of the three national supercomputing centres HLRS

(Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische

Akademie der Wissenschaften), funded by the German Federal Ministry of Ed-

ucation and Research (BMBF) and the German State Ministries for Research

of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen

(MIWF).

Many other people who were not involved in the scientific part of my PhD

made the completion of this thesis possible. First, I would like to thank my

family: my parents, Renate and Hans, who always supported me in every pos-

sible way, and all my grandparents, Hanna, Hubert and Amalie, who sadly

passed away and thus could not witness the completion of my thesis, and my

grandfather Albert. All of them, in their own way, helped to finish this work

by their support and encouragement.

Second, I thank my girlfriend Erika, for being encouraging und understand-

ing, and for overlooking all the time I spent on my work instead of with her. I

also thank her family and friends.

Third, I would like to thank all of my friends for being a distraction from my

work and a great help in many difficult situations, and I am very glad about the

fun time we spent together. It is great that they are still part of my life, even

though, I could not spend much time with them during the last years. Therefore,

I would like to mention some of them here: my best and oldest friend, Sebastian;

my friends from high school, Andreas and Long; my friends from the studying

time at Universität Duisburg-Essen; my old swimming team; my friends from

Essen, Esther, Delia, and Marina; Mira, for many conversations on the phone;

and my friends from the FH Südwestfalen, Jathessan and Damian, for several

x

Skype sessions. I would also like to thank those people I met in Seattle and in

Cologne, for making life enjoyable after moving. In particular, many thanks go

to Aymeric, Yerin, Rita, Francesco, Lynn, Susanna, Soo, Sandra, Cat, Sophia,

Randy, Ben, Michelle and Thanh, Chengchen, Irina, Insa, Denise, Johanna,

Stefan, and Maike.

Finally, I would like to thank especially those people who proofread this thesis

within such a narrow time frame.

xi

Contents

Abstract . v

Zusammenfassung . vii

Acknowledgements . ix

List of Tables . xvi

List of Figures . xix

Introduction 1

1 FSI in Coronary Arteries 9

1.1 Monolithic Fluid-Structure Interaction 13

1.1.1 Model Description . 15

1.1.2 Coupling Algorithms . 17

1.1.3 Linearization and Parallel Preconditioner 23

1.2 Material Models for the Arterial Wall 27

1.2.1 Notation and Basics . 28

1.2.2 Linear Elasticity . 31

1.2.3 Neo-Hookean Material . 33

1.2.4 Anisotropic Polyconvex Hyperelastic Material Model . . . 34

1.2.5 Anisotropic Viscoelastic Material Model 36

1.2.6 Three-Field Mixed Finite Elements 38

1.3 Coupling of LifeV and FEAP . 41

1.3.1 LifeV . 42

1.3.2 FEAP and libfw . 45

1.3.3 Implementation of the Coupling 48

1.4 Benchmark Settings . 54

1.4.1 Geometry . 54

1.4.2 Material Parameters . 54

1.4.3 Time Discretization . 55

1.4.4 Space Discretizations . 56

1.4.5 Meshes . 56

1.4.6 Boundary Conditions . 57

xiii

1.5 Numerical Experiments . 61

1.5.1 Initiating Physiological Blood Pressure (Ramp Phase) . . 61

1.5.2 Heartbeat Phase . 73

1.6 Collection of Results . 82

1.7 Conclusion . 93

2 A Parallel Implementation of GDSW 95

2.1 The GDSW Preconditioner . 97

2.2 A Hybrid GDSW Preconditioner 101

2.3 Implementation . 102

2.3.1 Trilinos Software Library 102

2.3.2 Structure of the GDSW Implementation 103

2.3.3 Identification of Vertices, Edges, and Faces in Parallel . . 105

2.3.4 Computation of the Coarse Basis Functions 107

2.3.5 Computation of the Coarse Operator 108

2.3.6 Factorizations of the Local and the Coarse Problems . . . 110

2.3.7 Application of the Preconditioner to a Vector or Multivector111

2.3.8 User-Interface of the Preconditioner 112

2.3.9 Third-Party Libraries . 114

2.4 Model Problems . 115

2.4.1 Laplacian . 116

2.4.2 Linear Elasticity . 116

2.5 Numerical Results . 117

2.5.1 Strong Scalability in 2D Using Umfpack as the First Level

Solver . 118

2.5.2 Strong Scalability in 2D Using Mumps as the First Level

Solver . 119

2.5.3 Weak Scalability Using Umfpack as the First Level Solver 120

2.5.4 Weak Scalability Using Mumps as the First Level Solver . 124

2.6 Conclusion . 132

3 Application of GDSW to FSI Problems 135

3.1 Simulation Settings . 137

3.2 Preconditioners for the Structural Block 140

3.2.1 Time to Solution - Pressure Wave Inflow Condition 140

3.2.2 Time to Solution - Cosine Ramp Inflow Condition 144

3.3 Strong Scaling for the Fluid-Structure Interaction Problem . . . 149

3.4 Conclusion . 151

xiv

4 ACMS Special Finite Element Method 153

4.1 ACMS Discretizations . 155

4.1.1 Discretization Spaces Based on Eigenfunctions 157

4.1.2 Description of the ACMS Method 158

4.1.3 Error Estimate . 161

4.1.4 Parallel Implementation of the ACMS Discretization . . . 161

4.1.5 Computation of the Eigenvalue Problems 164

4.2 The FETI-DP Method . 166

4.2.1 FETI-DP Methods for ACMS Discretizations 168

4.3 Model Problems . 170

4.3.1 Laplace Equation (Problem 1) 170

4.3.2 Equation with a Varying Coefficient (Problem 2) 170

4.3.3 Equation with a Highly-Oscillating Coefficient (Problem 3)171

4.3.4 Another Equation with a Highly-Oscillating Coefficient

(Problem 4) . 171

4.3.5 An Equation with Discontinuous Coefficients (Problem 5) 172

4.4 Numerical Results . 173

4.4.1 Numerical Scalability of the FETI-DP Method for ACMS

Discretizations . 174

4.4.2 Using Different Fine Discretizations in ACMS 176

4.4.3 Weak Parallel Scalability 178

4.5 Conclusion . 184

5 Coarse Spaces based on ACMS 185

5.1 Definition of an ACMS-based Coarse Space 187

5.2 Performance of the ACMS-based Coarse Space 189

5.3 Algebraic Approximations of the ACMS Coarse Space 195

5.4 Conclusion . 202

Conclusion and Future Work 203

Conclusion . 203

Future Work . 204

Bibliography 207

xv

List of Tables

1.1 Performance of various FSI coupling algorithms for different

numbers of CPUs. 20

1.2 Different types of Neo-Hookean material models implemented in

FEAP. 34

1.3 List of FEAP commands for the implementation of the coupling. . 45

1.4 Input files for FEAP. 48

1.5 Parameters for the hyperelastic material model. 55

1.6 Parameters for the viscoelastic material model; see Section 1.2.5. 55

1.7 Description of the space discretizations. 56

1.8 Degrees of freedom of the meshes used in the FSI simulations. . . 56

1.9 Degrees of freedom of the P1 meshes. 57

1.10 Degrees of freedom of the P2 and F̄ meshes. 57

1.11 Amplitude of the oscillations of the outflow cross-sectional lumen

area at t = 0.2 s. 66

1.12 Degrees of freedom of the meshes corresponding to the long tube. 71

1.13 Degrees of freedom of the meshes corresponding to the long tube:

each physical variable counted separately. 72

2.1 Timings for the identification of the interface components. 105

2.2 Number of degrees of freedom of the total mesh, coarse and lo-

cal space dimensions of the GDSW preconditioner for the weak

scaling tests in Figure 2.14. 120

2.3 Number of degrees of freedom of the total mesh, coarse and lo-

cal space dimensions of the GDSW preconditioner for the weak

scaling tests in Figure 2.15 and Figure 2.16. 122

2.4 Coarse space dimensions of the GDSW preconditioner for the

weak scaling tests in Figure 2.21. 129

2.5 Coarse and local space dimensions of the GDSW preconditioner

for the weak scaling tests in Figure 2.22. 130

3.1 Number of degrees of freedom of the discretization of the tube

in Figure 3.1. 138

3.2 Parameters for the nonlinear ΨA material model used 139

xvii

3.3 Average computing time per time step and average number of

GMRES iterations per Newton step for the pressure wave in a

tube problem; see Figure 3.4 for the total runtimes. 141

3.4 Average number of Newton iterations per time step for FSI for

the pressure wave and the cosine ramp inflow boundary condition

in the tube. 142

3.5 Average computing time per time step and average number of

GMRES iterations per Newton step for the cosine ramp in a

tube problem; see Figure 3.4 for the total runtimes. 145

3.6 Numbers of Newton steps for the strong scaling results shown in

Figure 3.10. 149

4.1 Estimated condition number for different ACMS discretizations

for h/hf = 30 (Problem 2). 174

4.2 Estimated condition number of the preconditioned FETI-DP sys-

tem for the ACMS discretization. 175

4.3 Comparison of the energies for the ACMS special finite element

discretization and a Q1 discretization (Problem 2). 178

4.4 Weak scaling for H/h = 28 and h/hf = 20 (Problem 1). 180

4.5 Weak scaling for H/h = 28 and h/hf = 20 (Problem 2). 181

4.6 Weak scaling for H/h = 28 and h/hf = 20 (Problem 3). 181

4.7 Weak scaling for H/h = 16 and h/hf = 30 (Problem 3). 182

4.8 Comparison of the energies for the ACMS special finite element

discretization and a Q1 discretization (Problem 4). 183

4.9 Weak scaling for H/h = 28 and h/hf = 20 (Problem 4). 183

4.10 Weak scaling for H/h = 28 and h/hf = 20 (Problem 5). 183

5.1 Number of iterations and estimated condition number (Lanczos)

for a model problem with the coefficient function displayed in

Figure 5.4 (left). 192

5.2 Number of iterations and estimated condition number (Lanczos)

for a model problem with the coefficient function displayed in

Figure 5.4 (right). 193

5.3 Number of iterations and estimated condition number (Lanczos)

for a model problem with the coefficient function displayed in

Figure 5.5. 194

5.4 Number of iterations and estimated condition number (Lanczos)

for a model problem with the coefficient function displayed in

Figure 5.6. 197

xviii

List of Figures

0.1 IVUS measurements to identify the layers of the arterial wall of

a diseased artery, and virtual histology (IVUS-VH) to identify

the plaque components. 2

0.2 Three-dimensional geometry of a diseased artery without curva-

ture. 3

0.3 Classical setting of the alternating Schwarz method. 4

0.4 Images of the microstructures of dual phase steels obtained from

electron backscatter diffraction (EBSD/FIB). 6

1.1 Creep and relaxation tests for the viscoelastic material model. . . 36

1.2 Dependencies of software packages in the FSI sofware. 41

1.3 Methods of the abstract class structuralConstitutiveLaw. . . 43

1.4 Specification of the list of coordinates in FEAP. 45

1.5 Example of an input file for FEAP. 46

1.6 Calling FEAP commands using libfw. 47

1.7 Execution of FEAP. 49

1.8 Software flow and transfer of the structural data between LifeV

and FEAP. 50

1.9 Handling of the time stepping of LifeV and FEAP. 51

1.10 Exported von Mises stresses. 52

1.11 Geometry of the FSI problem. 55

1.12 Dirichlet boundary condition at the inlet and outlet. 57

1.13 Prestretched geometry at steady state. 62

1.14 Linear and cosine type ramp with TR = 0.1 s. 62

1.15 P1 mesh convergence study for the hyperelastic material using

the linear ramp with TR = 0.1 s. 63

1.16 Inflow minus outflow pressure for the hyperelastic material using

the linear ramp with TR = 0.1 s. Copyright c⃝ 2015 John Wiley

& Sons, Ltd. 64

1.17 Outflow pressure for the hyperelastic material using the cosine-

type ramp with TR = 0.1 s. 65

xix

1.18 Mesh convergence study of the outflow cross-sectional lumen area

for the hyperelastic material using the cosine-type ramp with

TR = 0.1 s. 65

1.19 Outflow cross-sectional lumen area using P2 elements on Mesh

#1. 67

1.20 Comparison of the hyperelastic and the viscoelastic material for

P2 elements using the cosine-type ramp. 68

1.21 Viscoelastic material on Mesh #1: outflow pressure and com-

parison with the hyperelastic material model with respect to the

outflow cross-sectional lumen area. 68

1.22 Sensitivity analysis for the absorbing boundary conditions. 70

1.23 Curved tube with a longer straight part. 70

1.24 Bending of the long tube. 71

1.25 Comparison of the outflow flow rate, the inflow average pressure,

and the outflow cross-sectional lumen area of Mesh #1 and the

corresponding mesh of the long tube. 71

1.26 Inflow flow rate for the heartbeat phase. 73

1.27 Simulation of 3 heartbeats using Mesh #1 and the hyperelastic

material model. 74

1.28 Evolution of the magnitude of the displacement of the structure

for Mesh #3 and F̄ elements in the deformed configuration. . . . 75

1.29 Evolution of the flow for Mesh #7 and P1 elements at different

slices. 76

1.30 Evolution of velocity and pressure for Mesh #7 and P1 elements. 77

1.31 Mesh convergence of the inflow pressure and outflow cross-

sectional lumen area during the heartbeat phase. 78

1.32 Number of Newton iterations in each time step and sum of GM-

RES iterations in each time step during the heartbeat using Mesh

#3 and F̄ finite elements. 78

1.33 Fluid velocity and first principal Cauchy stress at t = 0.3 s and

at t = 0.635 s. 79

1.34 The principal Cauchy shear stress using the F̄ element at t = 0.3 s

(left) and t = 0.635 s. 79

1.35 Comparison of the first principal Cauchy stress for P1, P2 and

F̄ elements at the inner surface and over the wall thickness. . . . 81

1.36 P1 mesh convergence study for the hyperelastic material using

the linear ramp with TR = 0.1 s. 82

xx

1.37 P1 mesh convergence study for the hyperelastic material using

the cosine-type ramp with TR = 0.1 s 83

1.38 P2 mesh convergence study for the hyperelastic material using

the cosine-type ramp with TR = 0.1 s. 83

1.39 F̄ mesh convergence study for the hyperelastic material using the

cosine-type ramp with TR = 0.1 s. 84

1.40 Hyperelastic material using P1 elements on Mesh #1. 84

1.41 Hyperelastic material using P2 elements on Mesh #1. 85

1.42 Viscoelastic material with P1 using the parameter Set 1 from

Table 1.6 elements on Mesh #1. 85

1.43 Viscoelastic material with P2 elements using the parameter Set

1 from Table 1.6 on Mesh #1. 86

1.44 Hyperelastic material on Mesh #1. 86

1.45 Viscoelastic material using the parameter Set 1 from Table 1.6

on Mesh #1. 87

1.46 Viscoelastic material using the parameter Set 2 from Table 1.6

on Mesh #1. 87

1.47 Comparison of the hyperelastic and the viscoelastic material us-

ing the parameter Set 2 from Table 1.6 on Mesh #1. 88

1.48 Comparison of the hyperelastic and the viscoelastic for P2 ele-

ments material using the cosine-type ramp and parameter Set 2

from Table 1.6 on Mesh #1. 88

1.49 Sensitivity analysis of the absorbing boundary conditions. 89

1.50 Comparison of Mesh #1 and the corresponding mesh of the long

tube. 89

1.51 P1 mesh convergence study for the hyperelastic material for the

heartbeat. 90

1.52 P1 simulation for the hyperelastic material for three heartbeats. . 90

1.53 P2 mesh convergence study for the hyperelastic material for the

heartbeat. 91

1.54 P2 simulation for the hyperelastic material for three heartbeats. . 91

1.55 F̄ mesh convergence study for the hyperelastic material for the

heartbeat. 92

1.56 F̄ simulation for the hyperelastic material for three heartbeats.. . 92

2.1 Nonoverlapping and corresponding overlapping decomposition of

a cube. 98

2.2 Distribution of parallel vectors defined by Epetra_Maps. 102

2.3 Public interface of the abstract Trilinos class Epetra_Operator.104

xxi

2.4 A vertex x̃ of the nonoverlapping decomposition. 106

2.5 Computation of the index set Nx̃ for the node x̃. 106

2.6 Building the coarse matrix A0 using Trilinos. 109

2.7 Comparison of timings for the coarse level using MUMPS

(Amesos_Mumps) and UMFPACK (Amesos_Umfpack) as the coarse

level solver. 110

2.8 Lines of code to call the GDSW preconditioner (SOS) inside the

FSI code which was implemented using LifeV. 113

2.9 Solutions of the Laplacian and the linear elastic model problems. 115

2.10 Strong parallel scalability on JUQUEEN using the GDSW pre-

conditioner for the model problem of the Laplacian in 2D using

UMFPACK for the first level. 118

2.11 Strong parallel scalability using the GDSW preconditioner for

the model problem of linear elasticity in 2D using UMFPACK for

the first level. 119

2.12 Strong parallel scalability on JUQUEEN using the GDSW pre-

conditioner for the model problem of the Laplacian in 2D using

MUMPS for both levels. 119

2.13 Strong parallel scalability on JUQUEEN using the GDSW pre-

conditioner for the model problem of linear elasticity in 2D using

MUMPS for both levels. 120

2.14 Weak parallel scalability on JUQUEEN for model problem of the

Laplacian in 2D using P2 finite elements. Using UMFPACK for the

first level. 121

2.15 Weak parallel scalability on JUQUEEN for model problem of

linear elasticity in 2D using P2 finite elements. Using UMFPACK

for the first level. 121

2.16 Weak parallel scalability using the GDSW preconditioner for the

model problem of linear elasticity in 2D using UMFPACK for the

first level. 123

2.17 Weak parallel scalability using the GDSW preconditioner for the

problem of linear elasticity in 3D using UMFPACK for the first level.124

2.18 Weak parallel scalability on JUQUEEN using the GDSW pre-

conditioner for linear elasticity in 2D: 16 MPI ranks per node. . . 125

2.19 Weak parallel scalability on JUQUEEN using the GDSW pre-

conditioner for linear elasticity in 3D: 4 MPI ranks per node. . . 126

2.20 Weak parallel scalability on JUQUEEN using the GDSW pre-

conditioner for linear elasticity in 3D: 16 MPI ranks per node . . 127

xxii

2.21 Numerical scalability of variants of the GDSW preconditioner for

the model problem of linear elasticity in 3D, cf. (2.11). 128

2.22 Weak parallel scalability using the GDSW preconditioner for the

model problem of linear elasticity in 3D for an unstructured de-

composition, cf. (2.11). 129

2.23 Numerical parallel scalability using the GDSW preconditioner

for the model problems of the Laplacian in 3D and of linear

elasticity in 3D. 131

3.1 Geometry of the FSI problem. 137

3.2 Cosine-type inflow boundary condition. 138

3.3 Fluid pressure and structural deformation for the linear elastic,

the Neo-Hookean, and the ΨA material model at t = 0.003s. . . . 142

3.4 Total number of GMRES iterations and total runtime for the

pressure wave in a tube FSI problem using 128 cores. 143

3.5 Runtimes for the monolithic FSI simulation using a Neo-Hookean

material, a time step of 0.0005 s, and a pressure wave inflow

condition. 144

3.6 Fluid pressure and structural deformation for the linear elastic,

the Neo-Hookean, and the ΨA material model at t = 0.008 s using

a cosine-type ramp inflow condition. 146

3.7 Total number of GMRES iterations and total runtime for the

cosine ramp in a tube FSI problem using 128 cores. 147

3.8 Runtimes for the monolithic FSI simulation using the ΨA mate-

rial model, a time step of 0.0002 s, and a cosine-type ramp inflow

condition. 148

3.9 Strong parallel scalability on JUQUEEN (16 to 512 cores) for

FSI using linear elasticity and ∆t = 0.0001 s. 149

3.10 Strong parallel scalability on JUQUEEN (16 to 512 cores) for

FSI using linear elasticity and ∆t = 0.0002s. 150

4.1 A vertex-specific coarse basis function with oscillating interface

values used in the ACMS method. 157

4.2 A fixed-interface basis function and a coupling basis function. . . 160

4.3 Support and shape of a fixed-interface basis function on a rect-

angular partition. 162

4.4 Support and trace of a vertex-specific basis function on a rectan-

gular partition. 162

xxiii

4.5 Support and trace of a edge-based basis function (first eigenmode)

on a rectangular partition. 163

4.6 FETI-DP method using primal vertices. 167

4.7 Identification of the ACMS degrees of freedom. 168

4.8 Coefficient functions of Problems 2 and 3. 171

4.9 Coefficient function of Problem 4. 172

4.10 Discontinuous coefficient function. 172

4.11 Scales and mesh sizes involved in our FETI-DP approach for

ACMS discretizations. 173

4.12 Estimated condition number for different ACMS discretizations

for h/hf = 30. 174

4.13 Estimated condition number for different H/h for ACMS dis-

cretizations and a fit of a second-order polynomial in log(H/h)

to the data. 175

4.14 Comparison of EACMS−E∗ (“ACMS”) and EQ1−E∗ (“Q1”) for the

ACMS special finite element discretization and a Q1 discretization.177

4.15 Weak parallel scalability from 4 to 1024 processor cores on a

Cray XT6. 180

5.1 Numerical scalability study for the Laplacian model problem

(Problem 1) with H/h = 32. 189

5.2 Numerical scalability study for Problem 2 with H/h = 32. 190

5.3 Numerical scalability for Problem 3 with H/h = 32. 191

5.4 Coefficient functions with six short vertical channels and with

four inclusion located at the vertices of the decomposition. 191

5.5 Coefficient function with three vertical channels. 193

5.6 Coefficient function with 12 vertical channels. 196

5.7 Values of the coefficient function and diagonal entries of the stiff-

ness matrix, the corresponding three optimal edge-based eigen-

functions selected for the coarse space, and the three recon-

structed edge functions. 196

5.8 Coefficient function with vertical channels and three different

values. 199

5.9 Values of the coefficient function and diagonal entries of the

stiffness matrix and the corresponding three optimal edge-based

eigenfunctions selected for the coarse space. 199

5.10 Reconstructed edge-based basis functions for the bottom edges in

Figure 5.8. 200

xxiv

5.11 Another coefficient function with vertical channels and three dif-

ferent values, and the corresponding reconstructed basis functions.201

xxv

Introduction

Numerical simulations of the interaction of blood flow with arterial tissue in

the cardiovascular system of human beings have become increasingly popular

in the last decade. This is because, these days, cardiovascular diseases are the

most frequent cause of death globally [205], and accurate realistic modeling of

the cardiovascular system can be a useful tool for medical doctors to diagnose

diseases or to predict the risks of consequential damages. The simulations

may serve as a reference to decide if a and which surgical intervention may be

necessary and also to accommodate optimizing medical methods.

In order to make realistic predictions from numerical simulations, medical

measurements and expertise have to be combined with appropriate and reliable

material models for the description of the blood flow and the mechanical re-

sponse of the arterial wall. In addition to that, the Fluid-Structure Interaction

(FSI) has to be taken into account, and robust and fast numerical methods are

necessary for the solution of the arising linear and nonlinear systems.

As a prerequisite for the simulations, patient-specific geometries have to be

measured and converted to 3D computer models, i.e., to CAD (Computer Aided

Design) models or polygonal meshes (such as in Figure 0.2), and realistic ma-

terial parameters for the material models (for the blood and the arterial tissue)

have to be obtained from experiments. Typically, the 3D models for the sim-

ulations are constructed from magnetic resonance imaging (MRI), Computed

Tomography (CT) scans, or catheter-based intravascular ultrasound (IVUS)

measurements. From the grey-tone in the resulting images, the media-lumen-

and the media-adventitia-interface can be identified and thus allowing the dis-

tinction of the individual layers, namely the intima, the media, the adventitia,

and, in atherosclerotic arteries, the plaque; see Figure 0.1. Utilizing a series of

2D images and additional X-ray images describing the path of the catheter, a

three-dimensional geometry of the artery, including the curvature of the vessel,

can be reconstructed [20].

In large vessels, blood, which is in fact a suspension of cells and particles in

plasma, can be approximated as a Newtonian fluid, whereas in smaller vessels

and capillaries the shear-thinning behavior of the blood has to be taken into

account [91]. In particular, on the scale of the cell-level, biochemical processes

1

INTRODUCTION

Figure 0.1: IVUS measurements to identify the layers of the arterial wall of a

diseased artery, i.e., intima, media, adventitia, and plaque (left).

The IVUS measurements do not provide the ability to identify be-

tween individual plaque components. Therefore virtual histology

(IVUS-VH, property of Volcano Corperation, California, USA)

analysis is carried out (right): the components are color-coded as

fibrotic tissue (green), fibrofatty tissue (light green), necrotic core

(red) and dense calcium (white); cf. [20].

are important to model the blood appropriately. Since larger coronary arter-

ies are in the focus of this thesis, the approximation as a Newtonian fluid is

reasonable. Coronary arteries form a network located on the outer layer of the

heart wall and supply blood to the myocardium and other components of the

heart [91].

Since, e.g., plaque rupture is a high threat in atherosclerotic arteries, reli-

able computations of the transmural stresses in the arterial wall, which are

often considered as the main origin of plaque rupture, are necessary. To model

the mechanical response and the stresses of the arterial tissue accurately, so-

phisticated material models, which take into account the incompressibility, the

anisotropy induced by the fibers in the arterial wall, and the viscoelastic behav-

ior of the arterial tissue, have to be utilized; cf. [19, 41, 20, 23, 24]. Therefore,

suitable space discretizations have to be considered for the discretization of the

arterial wall.

In Chapter 1, the numerical framework and the MPI-parallel (Message Pass-

ing Interface) software environment which enable FSI simulations in coronary

arteries are introduced and carefully investigated with respect to the material

2

Figure 0.2: Three-dimensional geometry of a diseased artery without curva-

ture used in [136, 20]. The plaque is colored in blue, the media in

red, and the adventitia in beige.

models, boundary conditions, and the spatial discretizations. Therefore, we

define a benchmark test such that the simulations can be carried out under

controlled settings, where we use a section of an idealized coronary artery as

the geometry. It is chosen to be simple, but nonsymmetric, to make effects

due to the anisotropy of the structure visible. The implementation of our FSI

software is based on the coupling of the software libraries LifeV [90, 92] and

FEAP [193], which enables the use of a variety of material models for the arterial

wall.

We consider a fully-coupled monolithic approach using a Convective Explicit

(CE) time discretization, which is based on the linearization of the convective

term in the Navier-Stokes equations; see [24]. The simulations include an ini-

tialization phase and several consecutive heartbeats. As a preconditioner for

the monolithic tangent matrix, we use a composed Dirichlet-Neumann precon-

ditioner which is based on a block factorization of an approximation of the

tangent matrix. The inverse matrices of the fluid, structure, and geometry

blocks are approximated by parallel preconditioners.

However, the computation time of our simulations turns out to be comparably

large, even if utilizing up to 250 processor cores: the simulation of three heart-

beats takes up to several weeks, depending on the refinement of the mesh. For

the software framework described in Chapter 1, this time cannot be reduced sig-

nificantly by using more computer processors in parallel. This is due to the fact

3

INTRODUCTION

Ω1 Ω1 ∩ Ω2 Ω2

Figure 0.3: Classical setting of the alternating Schwarz method by H. A.

Schwarz [180]. The overlap of the subdomains Ω1 and Ω2 is

Ω1 ∩ Ω2.

that, even for the largest mesh used, the local subdomains are already compa-

rably small when using 250 cores (subdomains). Even more importantly, a very

fine temporal resolution has to be used, and for the sophisticated (anisotropic,

almost incompressible, polyconvex, nonlinear) material models considered in

this thesis, the numbers of Newton and Krylov iterations grow very large. On

the one hand, the parallel preconditioner, which is used in our framework, i.e.,

the one-level algebraic Schwarz preconditioner IFPACK [173] from the software

library Trilinos [109], is not scalable. On the other hand, IFPACK is not very

robust for the nonlinear material models considered for the arterial wall used

in our setting. In this thesis, we therefore focus on the improvements of the

performance of our FSI software by the use of a better suited parallel precon-

ditioner. Numerical experiments show that this can reduce the simulation time

significantly.

Overlapping Schwarz preconditioners [186], which make use of an overlapping

Domain Decomposition (DD) of the computational domain, cf. Figure 0.3, are

frequently used in the field of FSI in biomechanics, e.g., in [56, 30, 207, 156]. Un-

fortunately, the IFPACK preconditioner lacks robustness and scalability, caused

by the algebraic overlap and the missing coarse level. However, a major advan-

tage of this preconditioner is that it can be constructed using only the fully-

assembled global stiffness matrix. Therefore, we consider the GDSW (Gener-

alized Dryja-Smith-Widlund) preconditioner, which combines the strengths of

IFPACK with a geometric overlap and a robust coarse space. The GDSW precon-

ditioner was introduced by Dohrmann, Klawonn, and Widlund in 2008 [70] and

is a two-level overlapping Schwarz preconditioner with an energy-minimizing

coarse space. As the IFPACK preconditioner, the GDSW preconditioner can

4

be computed from the fully-assembled global stiffness matrix, and, even for

unstructured domain decompositions, no additional coarse triangulation is re-

quired to construct the coarse space. Therefore, it fits well into our FSI frame-

work. The GDSW coarse space is robust for almost incompressible elasticity

(cf. [72]), and it is related to the coarse space of the FETI-DP (Finite Element

Tearing and Interconnecting - Dual Primal) method [82, 83]. This is of advan-

tage since the FETI-DP method was already shown to be robust and scalable

for the anisotropic polyconvex hyperelastic material model which is used to de-

scribe the mechanical behavior of the arterial wall in this thesis; see [20, 42, 89].

However, in our monolithic context, applying the FETI-DP method is difficult

since it does not operate on the original variables but on Lagrange multipliers.

In addition to that, it cannot be constructed from the global matrix since the

local subdomain matrices are required.

Therefore, a parallel implementation of the GDSW preconditioner based on

Trilinos is presented in Chapter 2. The implementation is designed such that

it can be used in our FSI software without significantly modifications of exist-

ing code and without introducing additional software dependencies. Although

our implementation is held flexible with respect to the implementation of any

two-level overlapping Schwarz preconditioner, we restrict ourselves to the par-

allel implementation of the GDSW preconditioner here. We test the parallel

scalability for Laplacian and linear elastic model problems in two and three di-

mensions, before we apply the GDSW preconditioner as a block preconditioner

for the structure in FSI simulations in Chapter 3. For the Laplacian and the

linear elastic model problems, the performance of the GDSW preconditioner

is remarkable, for both structured and unstructured domain decompositions.

In addition, we investigate possibilities to reduce the dimension of the coarse

space and a hybrid version of the GDSW preconditioner. With the parallel

implementation of the GDSW preconditioner, the simulation of FSI using non-

linear material models for the structure requires much less Krylov iterations.

Also, when using larger time steps, the use of the GDSW preconditioner reduces

the number of Krylov iterations compared to the IFPACK preconditioner. Both

factors help to improve the parallel scalability and reduce the total simulation

time significantly.

However, for some types of problems, such as highly heterogeneous (multi-

scale) problems, the GDSW coarse space is not sufficient; see Chapter 5. In

particular, for the discretization or the preconditioning of such problems, ad-

ditional treatment may be necessary. Multiscale problems appear in virtually

all areas of modern science and engineering, e.g., composite materials, porous

5

INTRODUCTION

Figure 0.4: Images of the microstructures of dual phase steels obtained from

electron backscatter diffraction (EBSD/FIB). Courtesy of Jörg

Schröder, University of Duisburg-Essen, Germany, originating

from a cooperation with ThyssenKrupp Steel.

media, and turbulent transport in high Reynolds number flow; see [77]. The

heterogeneity can occur in many of the properties under consideration, e.g.,

multiscale fluctuations on the permeability (hydraulic conductivity) of the me-

dia when analyzing groundwater transport, or fluctuations in thermal, electri-

cal, or elastic properties at the phase boundaries of composite materials. The

microstructure of dual phase steels is a typical example for a multiscale config-

uration; cf. the images depicted in Figure 0.4. Multiscale models are also used

in the field of biomechanics on the cellular, tissue, and organ levels. However,

multiscale problems in biomechanics are not object of this thesis.

Among others, the Multiscale Finite Element Method (MsFEM) [77, 114] and

Component Mode Synthesis (CMS) method [54, 117, 118] are suitable for the

discretization of such problems. In Chapter 4 of this thesis, we consider a special

finite element method [111] which was constructed by Hetmaniuk and Lehoucq

in 2010 as an Approximation of the CMS method and is therefore named ACMS.

However, not being very popular yet, the method is a trade-off between the very

good approximation properties of the CMS method and locally supported basis

functions, such as in the MsFEM. Both methods, CMS and ACMS, are based

on a domain decomposition approach and the computation of eigenfunctions by

solving generalized eigenvalue problems, which are global in the CMS method

and local in the ACMS method. We present a parallel implementation of the

ACMS-based special finite element method in two dimensions, which enables

us to test the approximation properties of the discretization for large problems;

cf. Chapter 4. In addition to that, we show the application of the FETI-

DP method to such kind of special finite element methods. As a result, we

observe a quadratic-logarithmical behavior of the condition number which is

6

also typical for the application of the FETI-DP method to standard Lagrangian

finite element functions and excellent scalability results.

As a logical completion of this thesis, we use ACMS basis functions for the

construction of a coarse space for a two-level overlapping Schwarz preconditioner

in Chapter 5. In particular, we select those basis functions which are related

to the interface of the decomposition, and present preliminary results which

indicate scalability and robustness. Similar to so-called adaptive coarse spaces,

some of the basis functions on the interface are computed on the basis of local

generalized eigenvalue problems.

Finally, in Chapter 4, we introduce a heuristic strategy to reconstruct the

ACMS coarse space using the coefficient function or, alternatively, certain en-

tries of the stiffness matrix. Thus, we are able to avoid the solution of the

generalized eigenvalue problems. For this approach, which requires only alge-

braic information, we also obtain promising preliminary results.

7

1 Fluid-Structure Interaction in

Coronary Arteries

Computational simulations of diseased arteries represent a novel approach in

clinical diagnosis and treatment assistance, provided that accurate predictions

of the mechanical behavior are available. They may not only help to opti-

mize medical methods of treatment but also enable a more precise assessment

whether the decision for a surgical intervention is justified or not. In partic-

ular, transmural wall stresses are expected to provide important information

for an estimation whether, e.g., an atherosclerotic plaque is likely to rupture if

the artery is not treated. Reliable material models as well as robust numerical

methods are necessary to provide simulations that allow for a realistic predic-

tion of stresses. In this chapter, which is based on the work in [23] and [24]

(Copyright c⃝ 2015 John Wiley & Sons, Ltd.), sophisticated nonlinear models

for fluid as well as for the structure are combined with appropriate space and

time discretizations and efficient parallel solution methods to enable the com-

putation of transmural stresses. This combination of sophisticated nonlinear

models for fluid and for structure is not common in Fluid-Structure Interaction

(FSI), yet.

We consider a fully-coupled monolithic approach to solve the FSI problem

for the geometry of an idealized artery. The fluid dynamics are modeled by

the Navier-Stokes equations in Arbitrary-Lagrangian Eulerian (ALE) coordi-

nates [33, 56, 91] and the structure by nonlinear material laws in a Lagrangian

frame of reference. The FSI problem is composed of three subproblems, i.e., a

fluid, a structure, and a geometry problem. At the fluid-structure interface, we

enforce the geometry adherence between the fluid and structure displacement

fields, the continuity of the velocities, and the equilibrium of the normal stresses.

The system of equations describing the FSI problem is treated as a single system

involving all the state variables in a monolithic fashion. In general, this system

is nonlinear because of the convective term in the Navier-Stokes equations, the

nonlinearity of the constitutive law of the structure, and the moving fluid do-

main. An overview of FSI in biomechanics and the full FSI model are presented

in Section 1.1. Therein, also descriptions of some strongly coupled segregated

9

CHAPTER 1. FSI IN CORONARY ARTERIES

and some monolithic coupling algorithms are given. In addition to that, re-

viewing the results of [66], we compare some of these coupling algorithms with

respect to their performance and parallel scalability. As a result, the monolithic

algorithm seems to be more performant. This motivates the use of a monolithic

Convective Explicit (CE) monolithic algorithm for our numerical tests presented

in Section 1.5. In the Convective Explicit approach, the convective term of the

fluid momentum is linearized by temporal extrapolation and used for solving

the fully coupled FSI problem [13, 56]. The resulting discretized nonlinear FSI

problem is solved by Newton’s method wherein, at each nonlinear iteration, the

linearized FSI system is solved in parallel by the GMRES method, precondi-

tioned by an approximated monolithic Dirichlet-Neumann preconditioner [56].

Additionally, we introduce the monolithic Fully-Implicit (FI) time discretiza-

tion algorithm. In contrast to the CE approach, in the FI approach, the con-

vective term is not linearized. We also describe the FaCSI1 preconditioner,

which was introduced in [65] and can be viewed as a extension of the composed

Dirichlet-Neumann preconditioner. Both, the FI algorithm and the FaCSI pre-

conditioner, are used in Chapter 3, where different overlapping Schwarz pre-

conditioners for the structural block are compared. The FaCSI preconditioner

involves also the use of a SIMPLE preconditioner [160] for a fluid subproblem

on the interior degrees of freedom.

The modeling of the arterial wall by sophisticated material models plays

an important role in our discussion. We consider anisotropy as well as the

viscoelastic effects accounting for the elastin-rich ground substance with em-

bedded collagen and smooth muscle cells; see also [26, 112]. In Section 1.2, the

structure mechanical context is introduced first, followed by the definitions of

all material models used for the arterial wall in this thesis.

Aside from the mechanical behavior of the arterial tissue itself, the stresses

therein strongly depend on the interaction with the blood flow imposing a com-

plex and inhomogeneous shear stress and pressure distribution on the inner

vessel wall surface. Therefore, the fluid-structure interaction is important to

be considered in numerical computations. Recently, in [198], FSI in idealized

healthy cerebral arteries with both, nonlinear isotropic and anisotropic mate-

rial constitutive laws, was investigated, particularly highlighting the role of the

fibers. In [198], P1 finite elements were used to represent the structure dis-

placements for a non-polyconvex hyperelastic energy, but a grid convergence

analysis was not reported. Here, we rather follow a systematic approach with

a special focus on the structural side of the simulation.

1According to [65] FaCSI is an abbreviation for Factorization, Condensation, and SIMPLE.

10

With respect to the modeling of the structure, we consider polyconvex hy-

perelastic energies. We report on the investigations from [24], which is a con-

tinuation of our earlier work started in the proceedings article [23], where, to

the best of the author’s knowledge, for the first time an extended polyconvex

anisotropic hyperelastic energy incorporating all mixed invariants was used in

FSI. The article [24] presents our framework and our findings in a very detailed

way, extending [23], among other experiments, by results of viscoelasticity in

FSI.

Beyond simple P1 finite elements, we consider P2 as well as F̄ finite elements

for the space discretization of the structure. The latter are based on a three-field

formulation [183] to avoid locking caused by the incompressibility constraint;

see Section 1.2.6 for a description of F̄ elements and Section 1.4.4 for all com-

binations of space discretizations (fluid, structure, and geometry) for FSI used

in this thesis. The choice of an appropriate space discretization is important to

obtain a good estimate of the stresses in the arterial wall.

For our numerical tests, we define a benchmark problem of sufficient complex-

ity to show that our approach is viable and efficient. However, the geometry is

chosen rather simple to make an interpretation of the results possible, whereas

it is chosen to be nonsymmetric to reveal effects arising from the nonlinearities

and the anisotropy of the material models. The settings of our simulations, i.e.,

the geometry, the material parameters, the space and time discretizations, the

meshes, and the boundary conditions, are described in Section 1.4. In particu-

lar, we take special care to use a suitable absorbing boundary condition at the

outflow; see Section 1.4.6 for the description of the absorbing outflow boundary

condition and Section 1.5.1.5 for the corresponding discussion with respect to

the numerical results.

The inflow conditions are the driving force of our simulations. We use a ramp

phase before applying one or several heartbeats. This ramp can be regarded

as an initialization phase and is used only to incorporate the prestretch from a

physiological blood pressure; cf. Section 1.4.6 and [24]. While, in principle, any

shape can be chosen for the ramp, certain choices may encourage (decaying)

oscillations, which can be observed, e.g., in the pressure. Therefore, we discuss

the shape of the ramp and possible sources of these oscillations.

We perform mesh convergence studies using all three different combinations

of space discretizations (cf. Section 1.4.4), for both phases of the simulations

(ramp phase and heartbeat phase). Our smallest mesh has only 30 000 total

degrees of freedom, and the largest one has over a million total degrees of

freedom; cf. Section 1.4.4. The discussion of our most important numerical

11

CHAPTER 1. FSI IN CORONARY ARTERIES

results is given in Section 1.5; a collection of all results using the settings of our

benchmark problem can be found at the end of the section.

The software environment used in the simulations, including a description of

the implementation of the coupling of the software libraries LifeV and FEAP, is

described in Section 1.3.

12

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

1.1 Monolithic Fluid-Structure Interaction

This section starts with an overview of the extensive work which has been

carried out on the development of algorithms for the solution of time-dependent

FSI problems in biomechanics. Then, we describe the framework which is used

in this thesis.

The approaches for handling of the coupling in FSI problems are typically

categorized either as segregated or as monolithic schemes. However, the dis-

tinction is not always straight-forward. Segregated schemes can range from

loosely coupled iterative schemes, such as simple, possibly accelerated, fixed

point iterations, to schemes with a much stronger coupling still using separate

solvers for fluid and structure. Monolithic schemes range from block precon-

ditioners for the fully coupled problem constructed from segregated solvers to

preconditioners which are not constructed from separate solvers.

Many researchers have been working on segregated coupling algorithms. For

instance, Causin et al. studied loosely coupled FSI algorithms in [47], in con-

trast to Deparis et al., who studied segregated methods based on Schur com-

plement approaches in [63]. Whereas in the algorithms in [63], the nonlinear

Steklov-Poincaré operators are linearized, the Schur complements are computed

after linearization by Fernández et al. in [86]. The approach in [208] by Yang

and Zulehner is also based on the Steklov-Poincaré operator on the FSI inter-

face. Solvers using inexact factorizations were considered by Badia, Quaini, and

Quarteroni in [13]. Gerbeau and Vidrascu studied a quasi-Newton approach on

the fixed point formulation using a finite difference approximation of the Jaco-

bian or reduced models in [99], resulting in Newton-like methods. The Interface

Quasi-Newton method (IQN) was considered by Degroote et. al in [60, 61]; see

also [147].

Monolithic algorithms were investigated, e.g., by Hron and Turek [115], by

Gee, Küttler, and Wall in [97] and Küttler et al. in [143], by Bazilevs et al. [32],

by Barker and Cai [29, 30, 206, 207], and by Crosetto, Deparis, Fourestey, and

Quarteroni in [56]. In [66], strongly coupled segregated Dirichlet-Neumann,

Neumann-Dirichlet, and Neumann-Neumann coupling algorithms have been

compared with the monolithic Dirichlet-Neumann preconditioner used in this

thesis and in [24]. Results presented in [66], and reviewed in Section 1.1.2.1, in-

dicate that the monolithic approach is the fastest and that its parallel scalability

is superior in our biomechanical context.

Parallel Algebraic Multigrid (AMG) preconditioners have recently been ap-

plied to fully monolithic ALE formulations of FSI problems in the setting of

biomechanics, see, e.g., Gee, Küttler, and Wall in [97] and Bazilev et al. [32].

13

CHAPTER 1. FSI IN CORONARY ARTERIES

Overlapping Schwarz methods within monolithic approaches were studied in dif-

ferent regimes of severity of the added-mass effect in [56], confirming successful

results for 2D obtained already by Barker and Cai [30].

In the context of overlapping Schwarz preconditioners in FSI, we present a

parallel framework for two-level overlapping Schwarz preconditioners based on

the software library Trilinos in Chapter 2. Therein, also the parallel efficiency

of the two-level Schwarz GDSW preconditioner for Laplacian and linear elastic

model problems is reported. The preconditioner is then also applied to FSI

problems in Chapter 3. As a preconditioner for the structural block in FSI

problems, good strong scalability and robustness with respect to sophisticated

material models are observed.

In this thesis, as well as in [115] and [168], the ALE mapping is obtained

as the solution of a Laplace equation (cf. Equation (1.2)), but it is also possi-

ble to use the solution of, e.g., an elasticity problem instead; see [172]. There

are alternative approaches to the ALE framework. Among these are XFEM

approaches; see [202] and references therein. In [166, 170, 75], a fully Eule-

rian formulation of FSI is used in 2D, to avoid the degeneration of the ALE

mapping and to facilitate adaptivity. Other alternatives are space-time finite

element methods, cf., e.g., [195, 116, 32], and Eulerian level set formulations;

see [53] or [203]. The immersed boundary method can also be applied to FSI

problems [162]. Comparisons of different time stepping schemes for FSI prob-

lems in ALE-formulation are also known; see, e.g., [168] by Razzaq, Hron, and

Turek.

Constructing preconditioners for Navier-Stokes equations is challenging by

itself. Among the many approaches are preconditioners based on the SIM-

PLE method [160] or on approximate factorization of the Navier-Stokes equa-

tions [164]. The Pressure Convection-Diffusion (PCD) preconditioner is based

on a factorization which converges in at most two GMRES iterations [157].

Another approximation of the Schur complement leads to the Least-Squares

Commutator (LSC) preconditioner [78, 80], which is compared to the PCD

preconditioner by Elman et al. in [79]. Benzi et al. [34, 35] have introduced the

Augmented Lagrangian (AL) preconditioners which are based on an augmented

Lagrangian formulation of the corresponding saddle point problem. A compar-

ison between the PCD, the LSC and the AL approaches has been discussed

in [201].

Many publications on the mechanical interaction of biological surrounding

structures with an interior blood flow focus on the qualitatively correct physi-

ological simulation of the hemodynamics. Here, even simple structural models,

14

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

e.g., linear elasticity, as in [56], or simple discretizations, e.g., P1, as in [198],

can be sufficient.

One of our main objectives, however, is to compute realistic transmural stress

distributions resulting from the interior blood flow in an artery. This requires

a realistic, i.e., nonlinear and anisotropic, model of the wall structure including

eigenstresses; see [85]. As a result of the almost incompressibility, a suitable

discretization is also necessary; it is to be expected that simple P1 finite el-

ements will not be sufficient. In [143], Küttler et al. applied nonlinear Saint

Venant-Kirchhoff and Neo-Hooke material laws to FSI of biological tissues in

different strong coupling schemes. To the best of the author’s knowledge, the

first approach using nonlinear, polyconvex, anisotropic structural models in the

context of FSI has been considered in [23].

Gee, Förster, and Wall proposed methods to compute prestresses in the

isotropic large deformation setting and compared them using a 3D model of

an abdominal aortic aneurysm recovered from patient-specific CT geometry

data in [96]. They also have reported that FSI simulations lead to unrealistic

wall deformations unless the prestress is accounted for.

1.1.1 Model Description

We now introduce the fluid-structure interaction problem. Let Ωf and Ωs be

the domains occupied by the fluid and the solid in their undeformed reference

configuration. We denote by Γ = ∂Ωf ∩ ∂Ωs the fluid-structure interface in

the reference configuration. At any time t > 0, the domain occupied by the

fluid Ωf
t can be retrieved from Ωf by the Arbitrary Lagrangian Eulerian (ALE)

mapping,

At : Ωf → Ωf
t

X 7→ At(X) = X + df (X),
(1.1)

where df represents the displacement of the computational fluid domain. The

use of the ALE formulation allows an arbitrary reconstruction of the volumetric

finite element grid in the fluid domain Ωf
t from the displacement on its boundary

∂Ωf
t . For the sake of computation, this reconstruction operates directly in the

reference configuration. More precisely, since the structural displacement ds

and the displacement of the fluid domain df coincide on the fluid-structure

interface Γ, to obtain df , we extend ds on Γ to the interior of the reference

15

CHAPTER 1. FSI IN CORONARY ARTERIES

fluid domain Ωf by means of a harmonic extension:
−∆df = 0 in Ωf ,

df = ds on Γ,

df · nf = 0 on ∂Ωf\Γ,

(1.2)

where nf is the outward unit normal to the reference fluid domain bound-

ary. Since the structural displacement ds changes in time, the harmonic ex-

tension (1.2) allows defining the current configuration of the fluid domain,

Ωf
t = At(Ω

f), using the ALE map parametrization (1.1).

In our FSI model, we consider the fluid dynamics governed by the incompress-

ible Navier-Stokes equations written in the ALE frame of reference [33, 91], ρf

(
∂u

∂t

∣∣∣∣
X

+ ((u−w) · ∇)u

)
−∇ · σf (u, p) = 0 in Ωf

t × (0, T],

∇ · u = 0 in Ωf
t × (0, T].

(1.3)

In (1.3), the term ∂
∂t

∣∣
X

= ∂
∂t + w · ∇ is the ALE derivative and X corre-

sponds to the fluid coordinates in reference configuration, ρf is the fluid

density, u and p are the fluid velocity and pressure, respectively, and

σf (u, p) = 2µfϵ(u) − pI is the Cauchy stress tensor (I is the identity

matrix). We denote by ϵ(u) = 1
2

(
∇u + (∇u)T

)
the strain rate tensor and by

µf the dynamic viscosity of the fluid. Furthermore, w is the fluid mesh velocity

w =
∂df

∂t

∣∣∣∣
X

.

The final time of the time interval is T .

We formulate the structure problem in a purely Lagrangian frame of refer-

ence. The conservation of momentum for the structure reads

ρs
∂2ds

∂t2
−∇ ·P = 0 in Ωs × (0, T], (1.4)

where ρs is the density of the structure and P are the first Piola-Kirchhoff

stresses of any material model which could be used for the arterial wall, cf., e.g.

Section 1.2.2 for linear elasticity, Section 1.2.3 for Neo-Hooke, Section 1.2.4

for a nonlinear anisotropic hyperelastic material model, and Section 1.2.5 for

a nonlinear anisotropic viscoelastic material model. For more details on the

continuum mechanical context and the corresponding notation, see also Sec-

tion 1.2.1.

16

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

The coupling between the geometry, fluid and structure subproblems is ex-

pressed by the coupling conditions

df = ds on Γ, (1.5)

∂ds

∂t
= u ◦ At on Γ, (1.6)

(det[F])−1F−T σf nf ◦ At + (FS)ns = 0 on Γ, (1.7)

whereas (1.5) expresses the geometric adherence, which already appeared in the

definition of the geometry problem (1.2), (1.6) the continuity of the velocities

(kinematic condition), and (1.7) the continuity of the stresses (dynamic condi-

tion) on Γ. Here, nf and ns are the outer normal vectors of the fluid and the

structural domain, respectively, and F is the deformation gradient.

The resulting system of equations describing the FSI problem is nonlinear

due to the moving fluid domain, the convective term in the fluid momentum

equation, and the possible nonlinearity of the structural material model. In this

thesis, we use indeed highly nonlinear structural material models formulated in

a finite strain framework.

1.1.2 Coupling Algorithms

We use finite differences to approximate the time derivatives of the fluid as well

as the structure equations, and the finite element method for the space dis-

cretization. We choose conforming fluid and structure meshes at the interface.

Specifically, we consider three different combinations of discretizations (fluid,

structure, and geometry) for the full FSI problem that we refer to as “P1”,

“P2”, and “F̄”; see Section 1.4.4 and, in particular, Table 1.7.2

After space discretization, there are mainly two different possible ways to

handle the coupling of the fluid and the structural problem, i.e., by segregated

or by monolithic coupling algorithms. In this thesis, monolithic algorithms are

used for our FSI framework.

To motivate this choice, we give a short overview of segregated and monolithic

approaches of interest. In particular, we focus on strongly coupled segregated

algorithms based on Steklov-Poincaré operators and discuss their performance

compared to a related monolithic algorithm in Section 1.1.2.1. The monolithic

algorithms which are used in the numerical experiments in Section 1.5 and in

Chapter 3 are then introduced in Section 1.1.2.2.

2The names “P1”, “P2”, and “F̄” correspond to the space discretization of the structure,
and the discretizations for the fluid and the geometry problems are chosen accordingly.
For the description of the F̄ discretization for the structure, see Section 1.2.6.

17

CHAPTER 1. FSI IN CORONARY ARTERIES

1.1.2.1 Strongly Coupled Segregated Algorithms

Following [64, 63, 62, 66], we consider the equilibrium of forces,

Ss (ds) + Sf (df) = 0 (1.8)

at the FSI interface Γ with Dirichlet-to-Neumann operators Ss and Sf which

map the structural and the fluid displacement, respectively, to the correspond-

ing normal stresses. The Dirichlet-to-Neumann operators correspond to the,

possibly nonlinear, Schur complements where the variables which do not lie

on the FSI interface have been eliminated. These operators are also known as

Steklov-Poincaré operators, and thus, equation (1.8) is also called the Steklov-

Poincaré formulation of the FSI problem.

The geometric adherence condition (1.5) yields the existence of a common

displacement, λ = ds = df , at the FSI interface, such that the Steklov-Poincaré

formulation can be written as

Ss (λ) + Sf (λ) = 0. (1.9)

The Steklov-Poincaré formulation (1.9) can be solved, e.g., by means of a fixed-

point iteration on the equation

S−1
s (−Sf (λ)) = λ, (1.10)

or Newton’s method on

S−1
s (−Sf (λ)) − λ = 0. (1.11)

Equations (1.10) and (1.11) are, however, equivalent to

S−1
f (−Ss (λ)) = λ and S−1

f (−Ss (λ)) − λ = 0, (1.12)

respectively, which can also be solved by using a fixed-point or a Newton it-

eration. The systems (1.10) and (1.11) can be seen as preconditioned by the

operator S−1
s , whereas the systems in (1.12) can be seen as preconditioned by

the operator S−1
f . The involvement of the inverse S−1

s is particularly favorable

when the structural inverse can be computed or approximated easily, e.g., for

linear elasticity, where Ss would be linear.

In contrast to weakly coupled segregated algorithms, where the fluid and

the structural problems are solved separately in each time step (or for several

time steps), the approaches presented here involve the solution of one common

18

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

nonlinear interface problem. Therefore, they are denoted as strongly coupled

segregated algorithms. They are segregated in the sense that, for the solution

of the interface problem, the linearized fluid and structural subproblems are

solved separately.

Alternatively, (1.8) can be solved directly using Newton’s method, which

leads to another strongly coupled segregated algorithm. The Newton linearized

system reads(
S′
s

(
λk
)

+ S′
f

(
λk
))

δλk = −
(
Ss

(
λk
)

+ Sf

(
λk
))

(1.13)

in the k-th Newton step. However, the corresponding Jacobian S′
s +S′

f is typi-

cally ill-conditioned. Three choices of preconditioners for (1.13), which are mo-

tivated from Domain Decomposition Methods (DDM) [197], are the Dirichlet-

Neumann (S′
s)

−1, the Neumann-Dirichlet (S′
f)−1, and the Neumann-Neumann

(αs(S
′
s)

−1+αf (S′
f)−1) preconditioners. The weights for the Neumann-Neumann

preconditioner are chosen such that αs + αf = 1, with 0 ≤ αs, αf ≤ 1. For

αs = 1 and αf = 0, the Neumann-Neumann preconditioner is equal to the

Dirichlet-Neumann preconditioner and, on the contrary, for αs = 0 and αf = 1

it is equal to the Neumann-Dirichlet preconditioner.

In [66], the parallel performance of this strongly coupled segregated approach

was compared to the GCE monolithic algorithm, which is described in the

next section, using the Dirichlet-Neumann preconditioner for the monolithic

algorithm; cf. Section 1.1.3. For the space discretization, P1 elements have

been used for the structure, P1-P1 elements for the fluid velocity and pressure

(stabilized by interior penalty), and P1 elements for the discretization of the

geometry problem. This corresponds to the combination of space discretizations

“P1” for the full FSI problem; see Table 1.7 in Section 1.4.4. For all methods,

the time domain is discretized by an implicit Euler scheme with time step

∆t = 10−4 s; see also [66, 24] and Section 1.4 for more detailed descriptions

of the settings of the FSI benchmark problem which has been used in the

simulations.

It can be observed that, for the settings of our FSI benchmark problem, the

monolithic approach shows much better performance and parallel scalability

than the segregated algorithms under consideration. Regarding the precondi-

tioners for the segregated coupling algorithm (1.13), the Dirichlet-Neumann pre-

conditioner outperforms the Neumann-Dirichlet and the Neumann-Neumann

preconditioners, both, in terms of the iteration count and in CPU times. We

also observe that the Neumann-Neumann preconditioner performs best when

19

CHAPTER 1. FSI IN CORONARY ARTERIES

T
im

e
p

er
tim

e
step

G
M

R
E

S
iteration

s

A
lg
o
rith

m
1
C
P
U

2
C
P
U
s

4
C
P
U
s

1
C
P
U

2
C
P
U
s

4
C
P
U
s

S
P

-
D

N
31

s
2
6

s
2
2

s
15

15
15

S
P

-
N

D
866

s
7
2
9

s
6
3
5

s
567

567
567

S
P

-
N

N
(α

s
=

0.5,
α
f

=
0
.5)

590
s

5
0
1

s
4
3
4

s
274

274
274

S
P

-
N

N
(α

s
=

0
.9

9
9,
α
f

=
0
.001)

40
s

3
4

s
3
0

s
20

21
21

S
P

-
N

N
(α

s
=

0
.999

9
,
α
f

=
0
.0

001)
32

s
2
8

s
2
4

s
15

15
15

M
o
n

o
lith

ic
G

C
E

w
ith

co
m

p
osed

D
N

12
s

8
s

5
s

11
25

50

T
a
b
le

1
.1
:

P
erfo

rm
an

ce
o
f

va
rio

u
s

cou
p

lin
g

a
lgorith

m
s

for
d

iff
eren

t
n
u

m
b

ers
o
f

C
P

U
s

u
tilized

.
W

e
com

p
are

th
e

tim
e

to
p

erform
a

sin
g
le

tim
e

step
an

d
th

e
n
u

m
b

er
of

G
M

R
E

S
itera

tio
n

s
avera

g
ed

o
n

th
e

fi
rst

ten
tim

e
step

s
p

erform
ed

.
H

ere,
D

N
refers

to

th
e

D
irich

let-N
eu

m
a
n

n
alg

o
rith

m
,

N
D

to
th

e
N

eu
m

a
n

n
-D

irich
let

a
lg

o
rith

m
,

an
d

N
N

to
th

e
N

eu
m

an
n

-N
eu

m
an

n
m

eth
o
d

.

S
P

refers
to

th
e

S
tek

lov
-P

o
in

caré
form

u
lation

.
In

th
e

m
o
n

o
lith

ic
G

C
E

sch
em

e
th

e
b

lo
ck

s
are

n
ot

in
verted

b
u

t
O

v
erlap

p
in

g

S
ch

w
a
rz

p
recon

d
ition

ers
a
re

u
sed

.
T

aken
from

[6
6
];

co
u

rtesy
o
f

D
ep

a
ris,

F
orti,

Q
u

arteron
i.

20

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

it is close to the Dirichlet-Neumann preconditioner, i.e., when αs is close to 1

and αf is close to 0; see also Table 1.1.

1.1.2.2 Monolithic Algorithms

Since the monolithic approach seems to be more performant, especially in the

context of hemodynamics, we choose this coupling algorithm for our framework.

Thus, we give a short, incomplete review on monolithic FSI algorithms here.

A monolithic FSI approach coupling nonlinear hyperelastic solid models

with the Navier-Stokes equations for the fluid is presented by Hron and Turek

in [115], considering the incompressible case for the solid. They take a system-

atic approach starting from 2D; see also Turek et al. [168]. For the solution of

the linear saddle point systems, a sparse direct solver, an ILU preconditioner,

and a geometric multigrid method with a Vanka-type smoother are considered.

A block preconditioner with Schur complements for the monolithic system

is presented in [120]. In [200], a brain aneurysm in 2D is discussed, using a

Neo-Hookean material for the structure.

A scalable monolithic solver for an FSI problem coupling blood flow with a

conforming arterial wall in 2D is presented by Barker in [29] as well as by Barker

and Cai in [30]. They apply a Newton scheme with an explicitly computed

Jacobian; see also [87], [32], and [30]. For the solution of the arising linearized

systems Barker and Cai use a hybrid multilevel Schwarz preconditioner which

uses restricted additive Schwarz on the fine level and multiplicative Schwarz

on the coarse level. The parallel Newton-Krylov-Schwarz approach for the

monolithic system is extended to three dimensions in Wu and Cai [207], and

scalability is shown for up to three thousand processors. The solution approach

is related to ours, with the difference that we apply Schwarz methods on the

blocks of a monolithic Dirichlet-Neumann preconditioner instead of the whole

monolithic system.

In [97], Gee, Küttler, and Wall use a monolithic ALE approach to couple

a nonlinear Saint Venant-Kirchhoff model with a Navier-Stokes fluid in 3D

and solve the arising equations using a Newton scheme based on an exact Jaco-

bian. The authors consider block preconditioners for the monolithic system, i.e.,

Block-Gauss-Seidel, using AMG for the blocks, as well as a new AMG scheme

using Block-Gauss-Seidel smoothing on all levels. The block-AMG approaches

have already been compared with partitioned approaches in [143]. Recently,

in [145, 144], Langer and Yang considered a Dirichlet-Neumann method for

FSI problems in biomechanics using a Mooney-Rivlin model for the structure

and a straight tube. Mayr, Klöppel, Wall, and Gee present a monolithic FSI

21

CHAPTER 1. FSI IN CORONARY ARTERIES

approach using dual mortars in [154]. In our approach, we are able to handle

nonmatching grids by using radial basis functions, cf. [67]. Razzaq, Damanik,

Hron, Ouazzi, and Turek used an isotropic Neo-Hookean material model in [167]

to model the arterial wall in FSI in an aneurysm and Q2P1disc finite elements.

Here, we consider two different monolithic time discretization approaches, i.e.,

the Fully Implicit (FI) and the Convective Explicit (CE) time discretizations,

cf. [13, 56, 65]. Whereas, in the FI case, we treat all subproblems by an implicit

time discretization scheme, in the CE case, we treat only the structure and the

geometry subproblems fully implicitly. In the fluid subproblem the convective

term of the fluid momentum is linearized as follows:

((un+1 −wn+1) · ∇)un+1 ≈ ((u∗ −w∗) · ∇)un+1, (1.14)

with u∗ and w∗ represent temporal extrapolations of the fluid velocity and of the

fluid domain velocity, respectively. This choice is suitable when the Reynolds

number that characterizes the fluid flow is not high, namely for laminar flows.

This condition is typically fulfilled in the problems at hand.

The related Geometry-Convective Explicit (GCE) time discretization ap-

proach is proposed in [12]. In the GCE approach, the geometry problem is

decoupled by using the mesh from the previous time step in the fluid problem.

The convective term is treated explicitly, again. As a result, the only remain-

ing nonlinearity occurs in the structural equation (if the material model is

nonlinear); see also [57] for detailed discussion of the time discretizations and

corresponding preconditioners. We do not use this approach for any further

simulations; however, it has been used to compute the results in Table 1.1.

Note that, when using a linear elastic material for the structure and the GCE

time discretization approach, the resulting monolithic FSI problem is linear in

each time step.

After a space-time discretization, the fully coupled nonlinear FSI system

reads
F (un+1

f , pn+1,dn+1
f) + 0 + CT

1 λn+1 + 0

0 + S (dn+1
s) + CT

3 λn+1 + 0

C1 u
n+1
f + C2 d

n+1
s + 0 + 0

0 + C4d
n+1
s + 0 + H dn+1

f

 =


bf

bs

C2 d
n
s

0


(1.15)

for both, the Fully Implicit and the Convective Explicit case. We denote by λ

the vector containing the Lagrange multipliers enforcing the balance of normal

stresses across Γ. In system (1.15), the fluid subproblem F is nonlinear due

to the moving fluid domain and, in case of the FI time discretization, also due

22

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

to the convective term. The solid subproblem S is nonlinear depending on the

material law and finite strain setting used to model the structure deformations.

In contrast, the geometry subproblem H is linear. The matrices C1 and C2

account for the continuity of the velocity on Γ, the transposed matrices CT
1

and CT
3 account for the balance of normal stresses (imposed weakly), whereas

C4 accounts for the geometric adherence. Assuming conforming meshes and

conforming discretizations at the fluid-structure interface yields

C1|Γ = I|Γ, C2|Γ = 1/∆t C3, C3|Γ = −I|Γ, and C4|Γ = I|Γ, (1.16)

where I|Γ is the identity matrix defined on the degrees of freedom on the fluid-

structure interface Γ.

When using non-conforming discretizations, the coupling operators C1, C
T
1 ,

C2, and CT
3 have to be defined accordingly, e.g., using radial basis functions;

see, e.g., [67].

1.1.3 Linearization and Parallel Preconditioner

We solve the nonlinear problem (1.15) by means of the Newton method. At

each time step, the Newton algorithm yields the following linear system

JM(xn+1
k)δk+1 = −r(xn+1

k), (1.17)

where k denotes the index of the Newton iterations, JM(xn+1
k) is the tangent

matrix associated to the linearized FSI problem, r(xn+1
k) is the residual, δk+1

denotes the Newton increment, and xn+1
k = (u, p,ds,λ,df) is the solution

vector.

The tangent associated to the FSI problem (1.17) reads

JM =


D(uf ,p)F 0 CT

1 Ddf
F

0 DdsS CT
3 0

C1 C2 0 0

0 C4 0 H

 , (1.18)

where D(uf ,p)F denotes the linearization of the fluid part, Ddf
F are the shape

derivatives corresponding to the fluid mesh movement, cf. [88], and DdsS de-

notes the linearization of the solid part.

For each k, i.e., in each Newton iteration, we solve (1.17) using the GMRES

method preconditioned by an approximated monolithic Dirichlet-Neumann pre-

conditioner; cf. [56, 57]. This preconditioner is constructed from the Jacobian

23

CHAPTER 1. FSI IN CORONARY ARTERIES

of the monolithic system JM by neglecting the coupling block CT
3 , resulting in

the approximate Jacobian

PDN =


D(uf ,p)F 0 CT

1 Ddf
F

0 DdsS 0 0

C1 C2 0 0

0 C4 0 H

 . (1.19)

As suggested by the name, the Dirichlet-Neumann preconditioner for the

monolithic system is related to the Dirichlet-Neumann preconditioner for the

segregated coupling algorithms. This can be easily seen by considering the

preconditioned system matrix P−1
DNJM neglecting the geometry problem,

P−1
DNJM =

 D(uf ,p)F 0 CT
1

0 DdsS 0

C1 C2 0


−1 D(uf ,p)F 0 CT

1

0 DdsS CT
3

C1 C2 0



=

 I 0 −(D(uf ,p)F)−TCT
1

0 I 0

0 0 I




I 0 (D(uf ,p)F)−1CT
1

0 I (DdsS)−1CT
3

0 0 S′
f

(
(S′

f)−1 + (S′
s)

−1
)
 ,

using the definitions of C1, C2, and C3 for conforming meshes in (1.16). The

bottom diagonal block of the right factor,

S′
f

(
(S′

f)−1 + (S′
s)

−1
)

= I + S′
f (S′

s)
−1, (1.20)

relates the Dirichlet-Neumann preconditioner for the monolithic system with

the Dirichlet-Neumann preconditioned system matrix for the strongly coupled

segregated approach in (1.13),

(
S′
s

)−1 (
S′
s + S′

f

)
= I +

(
S′
s

)−1
S′
f . (1.21)

Note that S′
f operates on the displacement of the computational fluid domain df

rather than on the fluid velocity u; cf. Section 1.1.2.1. Therefore, the fluid Schur

complement has to be scaled by a factor of ∆t to obtain S′
f in the monolithic

context.

Instead of applying the inverse P−1
DN directly, we apply an approximated

Dirichlet-Neumann preconditioner. The composed Dirichlet-Neumann precon-

ditioner [57] is obtained by approximating the inverse matrices of the structural

block (DdsS), the geometry block (H), and the fluid block ((D(uf ,p)F)) appear-

24

1.1. MONOLITHIC FLUID-STRUCTURE INTERACTION

ing in

PDN =


I 0 0 0

0 DdsS 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

PS


I 0 0 0

0 I 0 0

0 0 I 0

0 C4 0 H


︸ ︷︷ ︸

PG


D(uf ,p)F 0 CT

1 Ddf
F

0 I 0 0

C1 C2 0 0

0 0 0 I


︸ ︷︷ ︸

PF

(1.22)

by some domain decomposition preconditioners. In the simulations in Sec-

tion 1.5, we use Trilinos IFPACK [173], i.e., a one-level algebraic additive

Schwarz preconditioner, to do so; cf. [186, 197].

In the simulations presented in Chapter 3, we employ the FaCSI precondi-

tioner, which can be seen as an extension of the composed Dirichlet-Neumann

preconditioner; see [65]. This preconditioner is built by further decomposing the

fluid block, PF in (1.22), then applying static condensation of the fluid inter-

face variables, and approximation of the remaining fluid matrix by a SIMPLE

preconditioner; see [68]. Here, we briefly describe the FaCSI preconditioner; for

additional details, we refer to [65].

First, the fluid block PF is factorized,
Ddf

F 0 CT
1 Ddf

F

0 I 0 0

C1 C2 0 0

0 0 0 I


︸ ︷︷ ︸

PF

=


I 0 0 Ddf

F

0 I 0 0

0 C2 I 0

0 0 0 I


︸ ︷︷ ︸

P
(1)
F


D(uf ,p)F 0 CT

1 0

0 I 0 0

C1 0 0 0

0 0 0 I


︸ ︷︷ ︸

P
(2)
F

.

(1.23)

Neglecting the identities, P
(2)
F has the form

K BT CT
1

B 0 0

C1 0 0

 , (1.24)

with

D(uf ,p)F =

(
K BT

B 0

)
(1.25)

corresponding to the discretized tangent matrix of the Navier-Stokes equations.

Instead of inverting P
(2)
F , the degrees of freedom on the interface (Γ) are elimi-

25

CHAPTER 1. FSI IN CORONARY ARTERIES

nated, resulting in a 2 × 2 block system of the form(
KII BT

I

BI 0

)(
δuI

δp

)
=

(
ruI −KIΓδuΓ

rp − BΓδuΓ

)
, (1.26)

which only involves the remaining (I) degrees of freedom.

The block matrix can be factorized:

F =

(
KII BT

I

BI 0

)
=

(
KII 0

BI −S

)(
I K−1

II BT
I

0 I

)
(1.27)

with S = BIK−1
II BT

I . Using D = diag (KII) to approximate KII and the cor-

responding approximate Schur complement S̃ = BID
−1BT

I , the matrix F is

replaced by a SIMPLE preconditioner F̃ , with

F ≈ F̃ :=

(
KII 0

BI −S̃

)(
I D−1BT

I

0 I

)
; (1.28)

cf. [68]. For more details on the SIMPLE (Semi-Implicit Method for Pressure

Linked Equations) method, we refer to the original work [160] and also to [78,

161, 79]. In [68], the SIMPLE method was interpreted as a preconditioner and

used in the context of unsteady Navier-Stokes equations and its application to

hemodynamics.

As in the Dirichlet-Neumann preconditioner, some domain decomposition

preconditioners are used to approximate the involved inverse matrices. In par-

ticular, we use overlapping Schwarz preconditioners for this purpose as well,

namely Trilinos IFPACK and a parallel implementation of the GDSW pre-

conditioner [107, 106, 105] (for the structural block). The GDSW precondi-

tioner [70, 71] is a two-level overlapping Schwarz preconditioner with an energy-

minimizing coarse space functions; for the presentation of our parallel imple-

mentation of the GDSW preconditioner, see Chapter 2; for the corresponding

results in FSI, we refer to Chapter 3.

26

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

1.2 Material Models for the Arterial Wall

Arterial tissue is composed of an elastin-rich ground substance with embedded

collagen and smooth muscle cells. This composition yields an anisotropic and

viscoelastic material response at finite strains. We thus consider FSI using

sophisticated material models for the structure.

To model the hyperelastic response of the structure, various models have been

proposed in the literature; however, the essential condition of polyconvexity [18],

which guarantees the existence of a unique minimizer of the strain energy func-

tion, was only considered during the last decade. More precisely, in [178],

anisotropic polyconvex functions were intentionally introduced for the first time.

Later however, it was observed that also previously proposed anisotropic func-

tions were indeed polyconvex; see, e.g., the function introduced in [113]. Based

thereon, in [26], a variety of polyconvex functions were constructed which a pri-

ori satisfy the condition of a stress-free reference configuration. Their numerical

performance and their performance using parallel iterative solvers, in particu-

lar, the FETI-DP domain decomposition method, were compared in [41]. A

larger structural simulation of an arterial wall for a diseased artery using one of

these anisotropic, almost incompressible hyperelastic material models was then

presented in [136], applying a Newton-Krylov FETI-DP approach. To model

embedded collagen fibers, anisotropy is one of the numerical challenges present

in models for soft biological tissue. In [22], it was numerically observed that

the anisotropy of soft tissue does clearly affect Newton’s method as well as the

iterative linear solver but that the effect is, in the physiological range, not se-

vere. Damage of the fibers from overstretch [28, 19, 27] has been considered in

computations performed with the FETI-DP method, for an arterial segment,

in [169, 21]. It was observed that it poses no additional challenge to the solver

of the linearized system since the damage rather decreases the effect of the

anisotropy.

Based on these results, patient-specific simulations of arteries, neglecting the

influence of the blood flow and a viscoelastic material behavior, were presented

in [20]. Viscoelastic effects in FSI, using reduced models, were already consid-

ered and compared with experiments in [46]. In [179], it was found that the

well-known model of [113] also fulfills the polyconvexity condition. A model

that goes beyond the concept of hyperelasticity and which includes also the vis-

coelastic material behavior of arteries is given in [112]. This approach is mainly

based on the original framework for viscoelasticity at finite strains in [182].

However, the formulation is restricted to a volumetric-isochoric split of the

strain energy function, and therefore, it allows for stresses induced in the fibers

27

CHAPTER 1. FSI IN CORONARY ARTERIES

by a volumetric strain; cf. [174]. Furthermore, the viscoelastic behavior is not

only associated with the smooth muscle cells as it considers overstresses in the

complete isochoric part including the response of the elastin matrix. A unified

approach for the inelastic response of arterial tissues is given in [119].

In this section, we first clarify the notations (cf. Section 1.2.1) and then

introduce the material models which are used for the arterial wall in this thesis.

The linear elastic material model, which is the simplest material model and

which results in a linear stiffness matrix, is introduced in Section 1.2.2. In

Section 1.2.3, the Neo-Hookean material, a rather simple nonlinear hyperelastic

isotropic material, is briefly introduced. The linear elastic and the Neo-Hookean

material models are not considered in the simulations in this chapter; however,

they are utilized to compare the performance of different preconditioners for the

structure in FSI simulations in Chapter 3. Next, we introduce a highly nonlinear

anisotropic hyperelastic material model, which consists of a hyperelastic part of

Neo-Hookean type and anisotropic parts accounting for the fibers in the arterial

wall. This model is then extended to an anisotropic viscoelastic material model,

which introduces the viscoelasticity on the stress level.

Finally, we describe the F̄ mixed finite element discretization which is suitable

for almost incompressible materials. We use this element type together with

sophisticated material models in order to obtain enhanced deformations and

stresses in the arterial wall. In the numerical results in Section 1.5, we discuss

the special importance of a suitable space discretization with respect to the

sophisticated models and almost incompressible materials.

Sections 1.2.1 and 1.2.2 are written following [50], [169, Chapter 3], and [40,

Chapter VI] and contain well-known definitions and theory, and Sections 1.2.4,

1.2.5, and 1.2.6 are based on [23, 24].

1.2.1 Notation and Basics

Let Ω̄′ ⊂ Rd be the (stress-free) reference configuration of a body in d dimen-

sions; e.g., Ωs in the FSI problem, cf. Section 1.1.1. The current configuration

of the body Ω̄ is given by the mapping

Φ : Ω̄′ → Rd, (1.29)

with Ω̄ = Φ
(
Ω̄′), and Φ is called a deformation of the body if

det (F) > 0, (1.30)

28

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

with F := ∇Φ. The displacement u of the body is given by Φ − id, where id

denotes the identity map.

Under the action of a body force f and a surface force g, the equilibrium

equations in the deformed configuration are

− divσ = f in Ω,

σ · n = g on ∂ΩN ,
(1.31)

with the symmetric Cauchy stress tensor σ. The corresponding stress ten-

sor in the reference configuration is the first Piola-Kirchhoff stress tensor,

P = σ Cof (F), which is used in, e.g., the formulation of the structural equations

of the FSI problem (1.4). The first Piola-Kirchhoff stress tensor is, in general,

not symmetric. Thus, the symmetric second Piola-Kirchhoff stress tensor

S = F−1σ Cof (F) = det (F)F−1σF−T , (1.32)

is introduced.

Elastic materials are materials for which the Cauchy stresses of any deformed

configuration are given by some response function σ (F) which depends only on

the gradient of the deformation F. The specific definition of the function σ (F)

is also called the constitutive law of the material.

A material is called hyperelastic if an energy functional Ψ̃ depending on F

exists, such that the first Piola-Kirchhoff stresses are the derivative of this

function with respect to F,

P = ∂FΨ̃ (F) . (1.33)

For materials which fulfill the objectivity condition, i.e. materials which are

frame indifferent, an energy function can be chosen which only depends on the

right Cauchy-Green strain tensor, C = FTF. Then, the second Piola-Kirchhoff

stresses also arise as the double of the derivative of the strain energy function

Ψ with respect to the right Cauchy-Green tensor

S = 2∂CΨ (C) . (1.34)

More precisely, if a material fulfills the objectivity condition, the strain energy

function can be represented in terms of the principal invariants of C, i.e.,

I1 = trC , I2 = tr [Cof C] , I3 = detC. (1.35)

29

CHAPTER 1. FSI IN CORONARY ARTERIES

The right Cauchy-Green strain tensor accounts for local strains of the body.

Thus any deformation with

C(x) = I ∀x ∈ Ω′ (1.36)

is called a rigid body motion, which corresponds to combinations of translations

and rotations of the body. In this case, no local strains are introduced but only

a movement of the complete body.

The nonlinear strain tensor is given by

E :=
1

2
(C− I) ,

or entry-wise by

Eij =
1

2
(∂jui + ∂iuj) +

1

2

∑
k

∂iuk∂juk. (1.37)

For an isotropic material, satisfying the condition of objectivity, the second

Piola-Kirchhoff stress tensor can be written as

S = γ0I + γ1C + γ2C
2, (1.38)

where γ0, γ1, and γ2 are functions of the principal invariants of C, given

in (1.35). We can reformulate this expression using E instead of C:

S (E) = γ0 (E) I + γ1 (E)E + γ2 (E)E2. (1.39)

Neglecting the higher-order terms of E leads to the linear Saint Venant-

Kirchhoff material law,

S = 2µE + λ trace(E)I, (1.40)

with the Lamé parameters λ and µ. In particular, the stresses S are linear with

respect to the nonlinear strain tensor E, but E is not linear with respect to

the displacement u (in contrast to linear elastic materials, cf. Section 1.2.2).

The second Lamé parameter is also called shear-modulus. The strain energy

function corresponding to the Saint Venant-Kirchhoff material law is

Ψ =
λ

2
(traceE)2 + µ traceC. (1.41)

30

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

1.2.2 Linear Elasticity

As already mentioned in Section 1.2.2, using the nonlinear strain tensor E yields

also quadratic terms of the derivates of u, cf. (1.37). This is the case, e.g., in the

Saint Venant-Kirchhoff material law. Under the assumption of small strains,

the quadratic terms in the strain tensor can be neglected, and we obtain the

symmetric linearized strain tensor

ϵij =
1

2
(∂jui + ∂iuj) . (1.42)

Using the linearized strain tensor ϵ instead of the nonlinear strain tensor E

in (1.40), yields the second Piola-Kirchhoff stresses of linear elasticity:

S = 2µϵ + λ trace(ϵ)I.

For linear elasticity, in contrast to the Saint Venant-Kirchhoff material law,

S is linear with respect to the displacement u since ϵ is linear with respect

to u. As a consequence, a linear elastic problem is linear with respect to the

displacement.

Note that

trace ϵ = divu

holds, because of (1.42). Thus, λ describes stresses due to volumetric changes.

In the case of linear material models, e.g., for linear elasticity or Saint Venant-

Kirchhoff, the Lamé parameters are equivalent to two other material parame-

ters, i.e., the Young modulus E and the Poisson’s ration ν, with the following

relations:

ν =
λ

2 (λ+ µ)
, E =

µ (3λ+ 2µ)

λ+ µ
,

λ =
Eν

(1 + ν) (1 − 2ν)
, µ =

E

2 (1 + ν)
.

(1.43)

There is also a linear relation to the bulk modulus

κ = λ+
2

3
µ (1.44)

in the context of linear material models. Physical constraints yield λ > 0,

µ > 0, E > 0, 0 < ν < 1/2, and κ > 0. The Poisson’s ratio accounts for

the incompressibility of the material. In particular, for almost incompressible

materials, ν is close to 0.5.

31

CHAPTER 1. FSI IN CORONARY ARTERIES

Now, we consider a specific boundary value problem for a linear elastic body,

applying a body force f and a surface force g on the Neumann boundary ∂ΩN .

Additionally the body Ω̄ is clamped at the Dirichlet boundary ∂ΩD. The bound-

ary value problem reads

divσ = f in Ω,

u = 0 on ∂ΩD,

σ · n = g on ∂ΩN .

(1.45)

The derived weak formulation is

arg min
u∈V

1

2

∫
Ω
ϵ(u) : σ(u) − f · u dx−

∫
∂ΩN

g · u ds (1.46)

with respect to the Sobolev space V =
(
H1

0 (Ω, ∂Ω)
)d

. Alternatively, using

1

2
σ(u) : ϵ(u) =

λ

2
(trace ϵ (u)) (trace ϵ (v)) + µϵ (u) : ϵ (v)

=
λ

2
div (u) div (v) + µϵ (u) : ϵ (v) ,

yields

2µ

∫
Ω
ϵ(u) : ϵ(v) dx+ λ

∫
Ω

div(u) div(v) dx =

∫
∂ΩD

fv dx+

∫
∂ΩN

g · v ds

(1.47)

for all v ∈ V . Here, ϵ : σ :=
∑
ij
ϵijσij = trace

(
ϵTσ

)
if considering ϵ and

σ as matrices. Finally, to solve this variational problem, we apply some space

discretization, such as the finite element method, and solve the resulting system

of linear equations.

The null space of the linearized strain tensor ϵ is the space of the (linearized)

rigid body modes. In two dimensions it is spanned by two translations,

r1 :=

[
1

0

]
, r2 :=

[
0

1

]
, (1.48)

and one rotation (or the linear approximation to the rotation),

r3 :=

[
−(x2 − x̂2)

x1 − x̂1

]
. (1.49)

32

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

In three space dimensions, however, the null space is spanned by three trans-

lations,

r1 :=

 1

0

0

 , r2 :=

 0

1

0

 , r3 :=

 0

0

1

 , (1.50)

and three linearized rotations,

r4 :=

 x2 − x̂2

−(x1 − x̂1)

0

, r5 :=

 −(x3 − x̂3)

0

x1 − x̂1

, r6 :=

 0

x3 − x̂3

−(x2 − x̂2)

. (1.51)

In both cases, we have shifted the origin of the rotation to the point x̂ ∈ Ω. In

order to obtain unique solvability, essential boundary conditions have to be set

to control the rigid body motions. In particular, we have to fix at least 3 or

6 linearly independent degrees of freedom in 2D or 3D, respectively; cf., e.g.,

Section 1.4.6 for the boundary conditions of our FSI benchmark.

The linear elastic material model is the most simple model due to the fact

that the corresponding equation is linear with respect to the displacement. It

can therefore very practical because the deformations are relatively small in

many applications, and thus the linear behavior is sufficiently accurate.

Also in FSI simulations, the use of linear elastic material models is not un-

common; cf., e.g., [206, 29, 56, 51, 60, 66]. This can be feasible if the focus

lies on the fluid flow and the influence of the structure is relatively low. For

instance in biomechanics, where the structural response is typically by far more

complicated, the use of a linear elastic material model may a very rough sim-

plification. In particular, in the simulation of FSI in the human cardiovascular

system, the stresses in the structure are typically of high interest, and they can

be only approximated poorly by a linear elastic model.

1.2.3 Neo-Hookean Material

The Neo-Hookean material law [209] is hyperelastic (and objective), and there-

fore, a strain energy function Ψ exists, which depends only on the principal

invariants of C, namely I1, I2, and I3.

The strain energy function is specified in form of an isochoric-volumetric split,

i.e., as the sum of an isochoric and a volumetric part:

ΨNH =
1

2
µ
(
Ī1 − 3

)
︸ ︷︷ ︸
isochoric part

+
κ

4

(
(J − 1)2 + (ln J)2

)
︸ ︷︷ ︸

volumetric part

, (1.52)

33

CHAPTER 1. FSI IN CORONARY ARTERIES

Isochoric part Volumetric part

µ/2 (I1 − 3) 1/4 (κ− 2µ/3)
(
J2 − 1 − 2 ln J

)
1/2 (κ− 2µ/3) (J − 1)2

1/2 (κ− 2µ/3) (ln J)2

µ/2
(
Ī1 − 3

)
κ/4

(
J2 − 1 − 2 ln J

)
κ/2 (J − 1)2

κ/2 (ln J)2

Table 1.2: Different types of Neo-Hookean material models implemented in

FEAP; cf. [194].

with J = I
1/2
3 = (detC)1/2 and Ī1 = J−2/3I1 = I

−1/3
3 I1. The parameters µ and

κ are the shear modulus and the bulk modulus, respectively; cf. Section 1.2.1.

The formulation of the Neo-Hookean material law (1.52) is implemented in

LifeV.

There are many different types of Neo-Hookean material models due to differ-

ent possible choices for the isochoric and the volumetric part; see, e.g., the FEAP

user manual [194] and Table 1.2. Using the new interface of LifeV and FEAP,

cf. Section 1.3, all Neo-Hookean materials which are implemented in FEAP are

available in our FSI code in LifeV; also all other material available in FEAP can

be used. For more details on the coupling of LifeV and FEAP, see Section 1.3.

The Neo-Hookean material model is very often used in order to describe

rubber-like materials. Also note that the strain energy function of the Neo-

Hookean material is not convex but polyconvex; therefore, the existence of a

unique minimizer is guaranteed; cf. [40, 50].

1.2.4 Anisotropic Polyconvex Hyperelastic Material Model

Going from linear elasticity, Saint Venant-Kirchhoff, and Neo-Hookean material

models to more sophisticated and realistic material models for the structure,

i.e., the arterial vessel wall, we describe an anisotropic polyconvex hyperelastic

material model in this section. The arterial wall contains reinforcing fibers

(collagen and smooth muscle cells), which are aligned in mainly two distinct

directions and wind cross-wise helically around the arterial wall, and an elastin-

rich ground substance.

Assuming a weak interaction of the fiber families, which are the origin of

the anisotropy, we consider an additively decoupled energy consisting of two

transversely isotropic parts ψti,∞
(a) for the individual fiber families (a) and a

purely isotopic part ψisot for the ground substance. The model is formulated

34

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

in the framework of classical continuum mechanics at finite strains, and the

modeling of anisotropy employs the concept of structural tensors; see, e.g., [38].

In particular, an additional argument tensor, the structural tensor for transverse

isotropy M(a) = a(a) ⊗ a(a), is considered, such that

ψti,∞
(a) := ψti,∞

(a) (C,M(a)).

Here, a(a) is the direction vector corresponding to the fiber family (a).

The strain energy function of the material model can be represented in terms

of the principal and mixed invariants,

I1 = trC , I2 = tr[Cof C] , I3 = detC , J
(a)
4 = tr[CM(a)] , J

(a)
5 = tr[C2M(a)].

Since J
(a)
5 itself is not polyconvex, it is replaced by K

(a)
3 := I1J

(a)
4 − J

(a)
5 ;

see [178]. The polyconvexity condition in the sense of [18] is the essential con-

dition to ensure the existence of minimizers and material stability, cf. [179].

To obtain polyconvexity, the strain energy function is expressed in the polyno-

mial basis, P := {I1, I3,K(1)
3 ,K

(2)
3 }, whereas the isotropic part ψisot is chosen

such that it depends only on C in order to fulfill the objectivity condition; cf.

Section 1.2.1. More precisely, a Neo-Hookean energy function,

ψisot = ϵ1
(
Iϵ23 + I−ϵ2

3 − 2
)

+ c1

(
I1 I

−1/3
3 − 3

)
, (1.53)

is considered for the isotropic part, and for the transversely isotropic part, the

function for arterial tissues proposed in [26] is used; see also [25], where this

function is also applied in an engineering context.

The transversely isotropic parts are given by

ψti,∞
(a) = α1

⟨
K

(a)
3 − 2

⟩α2

. (1.54)

The restrictions c1 > 0, ϵ1 > 0, ϵ2 > 1, α1 > 0, and α2 > 2 ensure poly-

convexity and smooth tangent moduli; the Macaulay brackets are defined as

⟨•⟩ := 1/2(| • |+ •). Note that a volumetric-isochoric split is considered for the

isotropic function, but not for the transversely isotropic part in order to avoid

the unphysical behavior observed in [174].

Using (1.53) and (1.54), we obtain the strain energy function

ψ(C,M(1),M(2)) = ψisot(I1, I3) +
2∑

a=1

ψti,∞
(a) (I1,K

(a)
3), (1.55)

35

CHAPTER 1. FSI IN CORONARY ARTERIES

0

20

40

60

80

100

0 2 4 6 8 10

σ
in

k
P

a

t in s

hyperelastic
τ1 = 0.3, β1 = 0.6
τ1 = 0.3, β1 = 1.2
τ1 = 0.3, β1 = 1.8

0

20

40

60

0 2 4 6 8 10

σ
in

k
P

a

t in s

hyperelastic
τ1 = 0.3, β1 = 0.6
τ1 = 0.3, β1 = 1.2
τ1 = 0.3, β1 = 1.8

1

1.1

1.2

1.3

0 2 4 6 8 10

λ
s

t in s

hyperelastic
τ1 = 0.3, β1 = 0.6
τ1 = 0.3, β1 = 1.2
τ1 = 0.3, β1 = 1.8

1

1.1

1.2

1.3

0 2 4 6 8 10

λ
s

t in s

hyperelastic
τ1 = 0.3, β1 = 0.6
τ1 = 0.3, β1 = 1.2
τ1 = 0.3, β1 = 1.8

t
t

t

t

x3

x2
x1

a2

a1

t
t

t

t

x3

x2
x1

a2

a1

Figure 1.1: Creep (top) and relaxation (bottom) tests in circumferential (left)

and axial (right) direction for different viscoelastic material pa-

rameter sets. Taken from [24]; courtesy of Balzani, Fausten, and

Schröder. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

cf. [113].

We use this material model in many of the simulations in Section 1.5 with

the material parameters from Section 1.4.2.

1.2.5 Anisotropic Viscoelastic Material Model

Based on the anisotropic hyperelastic material model from the previous section,

in this section, we describe how viscoelastic effects in the reinforcing fibers

can be incorporated to model the mechanical behavior of the layers of the

arterial wall even more appropriately. We present the approach from [84, 23,

24], where a viscoelastic overstress in direction of the fibers is introduced in

form of an internal variable Qti
α(a) on the stress level. In order to avoid an

unphysiological response, the overstresses are not considered to be isochoric,

as discussed in [174]. In contrast to the approach discussed here, in [112],

viscoelasticity is considered for the isotropic elastin-rich ground substance.

36

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

In correspondence to (1.34), we compute the second Piola-Kirchhoff stresses

from the strain energy function of each additive part, i.e., Sisot := 2∂Cψ
isot and

Sti,∞
(a) := 2∂Cψ

ti,∞
(a) . Then we add the viscoelastic overstresses to the stresses, re-

sulting in the second Piola-Kirchhoff stresses of the viscoelastic material model,

S = Sisot +

2∑
a=1

[
Sti,∞
(a) +

m∑
α=1

Qti
α(a)

]
, (1.56)

where the inner summation represents the classical parallel arrangement of vis-

coelastic elements; cf. [182]. In particular, m corresponds to the number of

viscoelastic relaxation processes. The Qti
α(a) evolve in time corresponding to

the linear differential equation

Q̇ti
α(a) +

Qti
α(a)

τα
= β∞α Ṡti,∞

(a) , (1.57)

with the relaxation parameter τα and the associated viscoelastic intensity βα.

We solve (1.57) using the update formula

Qti
α(a) = Hα(a)n + Q̂ti

α(a), (1.58)

where Hα(a)n depends only on quantities evaluated at the previous time step

(index n), and is given by

Hα(a)n = exp

(
−∆t

2τα

)[
exp

(
−∆t

2τα

)
{Qti

α(a)}n − β∞α {Sti,∞
(a) }n

]
. (1.59)

The second part of (1.57), Q̂ti
α(a), is computed on the basis of the transversely

isotropic second Piola-Kirchhoff stresses of the hyperelastic material model,

Sti,∞
(a) . It is computed by the formula

Q̂ti
α(a) = β∞α exp

(
−∆t

2τα

)
Sti,∞
(a) (1.60)

at the current time step. For further information regarding the derivation of

the update formulae from the evolution equation, we refer to [112] and the

references therein. Here, only one viscoelastic relaxation process is considered

in order to keep the number of additional material parameters small; therefore,

we choose m = 1.

In our simulations, the derivatives of the second Piola-Kirchhoff stresses with

respect to the right Cauchy-Green tensor are numerically computed using the

37

CHAPTER 1. FSI IN CORONARY ARTERIES

complex-step derivative approximation scheme which was proposed in [192] for

the calculation of tangent moduli in a finite strain setting.

To illustrate the model response of the viscoelastic material model, virtual

creep and relaxation tests have been performed in [24] for different viscoelas-

tic parameters β1 and τ1 in circumferential as well as in axial direction; cf.

Figure 1.1. Therefore, parameters from experimental data of the media of a

human abdominal aorta have been used for the hyperelastic part; cf. [41]. The

fiber angle has been set to β̄f = 43◦. The viscoelastic parameters have not

been adjusted to experimental data but chosen to obtain a significantly high

viscoelastic effect; see [24] for more details.

For the creep tests, a stress of 75 kPa is applied incrementally in steps of

one second in circumferential direction and 55 kPa in axial direction. Then,

the stresses are kept constant for nine additional seconds in order to an-

alyze the resulting creep behavior. For the relaxation tests, a stretch of

λs = 1.25 in circumferential and λs = 1.27 in axial direction is applied within

one second and then, again, kept constant for nine additional seconds. These

stretches are associated to the stresses considered in the creep tests.

The results obtained are shown in Figure 1.1. On the one hand, the anisotropy

of the material can be observed by comparing the results for circumferential

(left) and axial (right) direction. On the other hand, the sensitivity with re-

spect to the viscoelastic intensity parameters βα is visible; it is higher for the

relaxation than for the creep test. Since the deformation of arteries is mostly

traction driven (induced by the blood flow) and less displacement driven, which

corresponds to the creep test rather than to the relaxation test, we expect a

comparatively small sensitivity with respect to the viscoelastic parameters in

our FSI simulations.

1.2.6 Three-Field Mixed Finite Elements

In order to avoid locking effects arising in finite element simulations with almost

incompressible materials, we use the three-field (mixed) finite element formu-

lation which is also known as the F̄-approach as a space discretization for the

structure; see [183, Section 45].

With J = J(φ) = det(F), we have

F = J1/3F̃, F̃ = J−1/3F. (1.61)

38

1.2. MATERIAL MODELS FOR THE ARTERIAL WALL

We introduce a new scalar variable θ, satisfying θ = J in a weak sense, and

F̄ := θ1/3F̃, C̄ := F̄T F̄ (1.62)

with F̄ = F̄(φ, θ), C̄ = C̄(φ, θ). Then, we consider the following three-field

Lagrangian function

 L(φ, θ, π) =

∫
Ω
W (C̄(φ, θ)) + π(J(φ) − θ) dx− Vext(φ), (1.63)

where Vext(φ) is the potential energy of external forces; for more details,

see [183, Section 45]. It is discretized by P2-P0-P0 mixed finite elements, i.e.,

piecewise quadratic elements for the deformation field φ and piecewise constant

elements for the scalar fields θ and π. Local static condensation of θ and π on

each finite element leads to a reduced problem, which is then solved. Since the

reduced problem is formulated in the degrees of freedom of the deformation

field, the implementation of the F̄ approach differs from the implementation of

standard piecewise quadratic elements only in the assembly of Jacobian matrix

and the residual vector, on the element-level.

As a result of using the F̄-discretization, volumetric changes are not pe-

nalized point-wise but rather in an element-wise average sense by the term

ϵ1
(
Iϵ23 + I−ϵ2

3 − 2
)
; see the hyperelastic energy in Equation (1.53). Note that,

since the almost incompressibility constraint is nonlinear, there is no direct re-

lation to a Poisson’s ratio in the linear case. The severity of potential locking, if

standard finite elements are used, is therefore difficult to assess a priori. Typical

parameter sets for biological soft tissue can still result in a volumetric change at

the order of one percent [42], which is considered acceptable. This is one of the

reasons for our numerical study with respect to the space discretization of the

arterial wall; see, e.g., Sections 1.5.1.2 and 1.5.2.1. Our numerical results indeed

show that P1 finite elements are not sufficient to obtain good estimates of all

quantities of interest, even for simulations within the physiological range; see

Section 1.5.2.3 on the stresses. Surprisingly, for viscoelasticity, we even observe

a qualitatively wrong behavior using P1 elements; see Section 1.5.1.4.

The implementation of the almost incompressibility constraint by a penalty

term can pose challenges to direct and iterative solvers for the linearized sys-

tems. In [42, 39], it was observed that an augmented Lagrange approach can

be computationally profitable in the context of soft biological tissue: in the

quasi-static setting larger pseudo-time steps could be chosen and the number

of Krylov iteration for the linearized systems was reduced. It is also notewor-

thy that, using an augmented Lagrangian method, the element-wise volumetric

39

CHAPTER 1. FSI IN CORONARY ARTERIES

change can exactly be controlled, whereas, using a penalty term, the violation

is known only a posteriori. Here, however, to avoid additional complications,

we do not apply an augmented Lagrange approach for the incompressibility.

This increases the challenges for the iterative solution method.

40

1.3. COUPLING OF LIFEV AND FEAP

feapMaterial
FEAP

libfw

LifeV

ParMETIS & METIS Boost Trilinos

BLAS & LAPACK UMFPACK HDF5

Figure 1.2: Dependencies of software packages which are needed for the LifeV-

FEAP coupled FSI software. The most important packages are

LifeV [90, 92], which strongly relies on Trilinos [109] in many re-

gards, and FEAP [193]. We make use of a wrapper library for FEAP,

i.e., libfw [89]. The packages BLAS, LAPACK [6], UMFPACK [59],

HDF5 [196] are needed to compile Trilinos, and in addition we

require METIS, ParMETIS [123], and Boost [1, 177] to build our FSI

application in LifeV. The coupling (i.e., feapMaterial) is estab-

lished between LifeV and FEAP (using the features of libfw).

1.3 Coupling of LifeV and FEAP

In this section, the coupling of the software packages LifeV and FEAP

(feapMaterial) is described. The coupling is necessary in order to run

FSI simulations using a LifeV-based FSI implementation employing material

models from the material library of FEAP. For instance, several Neo-Hookean

type materials are available in FEAP, cf. Section 1.2.3. We use a customized

version of FEAP (cf. Section 1.3.2), in which also the anisotropic polyconvex

hyperelastic and the anisotropic viscoelastic material models described in

Sections 1.2.4 and 1.2.5, respectively, are implemented. Since the framework of

FEAP is well-engineered and, due to many users, well tested, the implementation

of the material models in FEAP is very reliable.

Our implementation of the coupling is designed to meet the following targets:

• the use of the material models from the material library in FEAP,

• access to the material models from existing structural mechanics or fluid-

structure interaction codes requiring only minimal changes,

41

CHAPTER 1. FSI IN CORONARY ARTERIES

• transfer of data between LifeV and FEAP,

• possible use of time dependent material models (e.g., the viscoelastic ma-

terial model which is described Section 1.2.5), and

• common export of data.

We first introduce briefly the two main software packages, LifeV and FEAP,

which form the basis of our FSI software. In particular, we concentrate on the

parts of LifeV and FEAP which are important for our implementation. Figure 1.2

gives an overview of the most important software packages which are used within

our FSI software.

Afterwards, we detail the main challenges of the implementation, namely:

• the initialization of FEAP within the FSI code,

• the transfer of material data and meshes,

• the structural assembly in FEAP,

• how the time stepping of FEAP is handled,

• the export of structural data, and

• the restart of simulations with the viscoelastic material model.

1.3.1 LifeV

According to the LifeV website [90, 92], LifeV is an open source library for

the numerical solution of partial differential equations with the finite element

method, which is distributed under the LGPL license. It is implemented in

C++ and is entirely coded with an object-oriented approach and advanced

programming features. The library includes solvers for incompressible fluid dy-

namics, (linear) structural problems, transport in porous media, fluid-structure

interaction, and electrical conduction in the heart.

Note that this section is written on the basis of LifeV version 3.6.2, which

has also been used to implement the coupling with FEAP.

As displayed in Figure 1.2, LifeV is based on many packages of the soft-

ware library Trilinos; see Section 2.3.1 for a more detailed description of

Trilinos. In particular, LifeV provides wrapper classes and interfaces for

many Trilinos packages, e.g., the parallel linear algebra package Epetra, the

linear solver packages AztecOO and Belos, the algebraic one-level overlapping

Schwarz preconditioner IFPACK [173], the AMG preconditioner ML [98], and the

parameter list tool Teuchos::ParameterList. In LifeV, mesh partitioning is

42

1.3. COUPLING OF LIFEV AND FEAP

1 virtual void

2 setup(const FESpacePtr_Type& dFESpace ,

3 const ETFESpacePtr_Type& ETFESpace ,

4 const boost ::shared_ptr <const MapEpetra >& monolithicMap ,

5 const UInt offset , const dataPtr_Type& dataMaterial ,

6 const displayerPtr_Type& displayer) = 0;

7
8 virtual void

9 computeLinearStiff(dataPtr_Type& dataMaterial ,

10 const mapMarkerVolumesPtr_Type /*

mapsMarkerVolumes */,

11 const mapMarkerIndexesPtr_Type /*

mapsMarkerIndexes */) = 0;

12
13 virtual void

14 updateJacobianMatrix(const vector_Type& disp ,

15 const dataPtr_Type& dataMaterial ,

16 const mapMarkerVolumesPtr_Type

mapsMarkerVolumes ,

17 const mapMarkerIndexesPtr_Type

mapsMarkerIndexes ,

18 const displayerPtr_Type& displayer) = 0;

19
20 virtual void

21 apply(const vector_Type& sol ,

22 vector_Type& res ,

23 const mapMarkerVolumesPtr_Type mapsMarkerVolumes ,

24 const mapMarkerIndexesPtr_Type mapsMarkerIndexes) = 0;

Figure 1.3: The most important methods of the abstract class

structuralConstitutiveLaw: the method setup initializes

the fields of the class, the stiffness matrix for linear elastic

material models is built in the method computeLinearStiff

(if the material model is nonlinear, the method is empty), the

Jacobian for nonlinear material models is assembled in the

method updateJacobianMatrix, and the residual vector is built

in the method apply.

performed using ParMETIS [123], by default, and the smart pointers from the

Boost library are used to prevent leaking of memory.

However, LifeV also contains many original features for finite element simu-

lations, such as

• boundary conditions,

• time discretizations,

• space discretizations,

• algebraic solvers and preconditioners,

43

CHAPTER 1. FSI IN CORONARY ARTERIES

• physical solvers,

• a geometrical multiscale framework, and

• useful tools, e.g., for import and export of data.

Most important for our purpose, LifeV contains a basic implementation of

a monolithic FSI solver in 3D. This FSI code uses the structural and the fluid

solver packages of LifeV in order to handle the corresponding subproblems.

Additional features, such as classes for the handling of the nonlinear FSI block

system (cf. Equation (1.15)), the framework for the handling of boundary con-

ditions, the importer and exporter tools for postprocessing, and the time and

space discretizations, which are provided by LifeV, are employed in the imple-

mentation as well. All settings of the simulation, e.g., the specifications of the

time stepping or the space discretizations, are specified in a datafile.

We use Trilinos IFPACK [173] to approximate the inverse matrices of the

blocks in the Dirichlet-Neumann preconditioner, as described in Section 1.1.3.

The use of IFPACK is provided by the corresponding interface, which is imple-

mented in LifeV.

The FSI implementation is fully MPI-parallel: the partition of the mesh,

which is computed by ParMETIS, defines the parallel distribution of the

Trilinos (i.e., Epetra) matrices and vectors. In particular, the fluid and the

structural meshes are distributed separately: one fluid, one structural, and one

subdomain of the geometry problem are assigned to each process.

The abstract class structuralConstitutiveLaw is of major relevance for our

implementation of the coupling of the software packages LifeV and FEAP. The

class defines a consistent interface for the implementation of structural material

models in LifeV. In particular, the structural stresses, which are included in

the right-hand side of the linearized system (1.17), and the structural Jacobian

matrix, which is part of the tangent matrix (1.18), are implemented in this class.

Among others, LifeV provides the classes VenantKirchhoffMaterialLinear

(for linear elasticity) and NeoHookeanMaterialNonLinear (for a Neo-Hookaen

material), which are specializations of the class structuralConstitutiveLaw.

The material model and the corresponding parameters can also be specified

within the datafile.

The most important methods of the class structuralConstitutiveLaw with

respect to the implementation of a new material law are listed in Figure 1.3.

The method setup initializes the fields of the material object such that the

object can be used to assemble the residual vector (apply) and Jacobian matrix

(updateJacobianMatrix). However, if the stresses are linear with respect to

44

1.3. COUPLING OF LIFEV AND FEAP

1 COORdinates

2 1 0 0.0 0.0

3 2 0 1.0 0.0

4 3 0 0.0 1.0

5 4 0 1.0 1.0

Figure 1.4: Specification of the list of coordinates of a two-dimensional mesh.

The command COORdinates is cut off after four characters, i.e.,

it is equivalent to the command COOR. The nodes of the mesh are

(0.0, 0.0), (1.0, 0.0), (0.0, 1.0), and (1.0, 1.0).

Command Description

TANG Assembly of the tangent matrix.
FORM Assembly of the residual vector.
SOLV Solution of the system/update of the solution vector.
TIME Progress in the time/load stepping.
PROP,,1 Initialization of the time/load stepping.
PLOT,STRE,1 Computation of the stresses.
SAVE,a Saving actual state to a file with suffix ‘a’.
REST,a Restarting from a file with suffix ‘a’.

Table 1.3: List of FEAP commands which are used for the implementation of

the LifeV-FEAP coupling class feapMaterial. Using libfw, the

command SOLV was modified such that no solution is computed by

FEAP and the solution vector is only updated instead. The com-

mands SAVE,a and REST,a are needed to perform the restart fea-

ture of FEAP. The additional parameter a defines the suffix of the

corresponding state file.

the displacement (linear elasticity), the Jacobian matrix is assembled only once

within the method computeLinearStiff.

In order to use FEAP within LifeV simulations (fluid-structure interac-

tion or structure-only) with minimal changes to existing codes, we im-

plemented a new material class, feapMaterial, which is derived from

structuralConstitutiveLaw, in LifeV. To explain how this class is im-

plemented, we first describe FEAP and the FEAP wrapper library libfw [89].

1.3.2 FEAP and libfw

FEAP (Finite Element Analysis Program) [193] is a software for finite element

computations including an element library for solids, structures and thermal

45

CHAPTER 1. FSI IN CORONARY ARTERIES

1 FEAP

2 NUMNP NUMEL NUMMAT NDM NDF NEN

3
4 ELEMents

5 INCLude , Elements.e

6
7 COORdinates

8 INCLude , Coordinates.c

9
10 MATE 1

11 SOLId

12 ELAStic

13 NEOHook 1000 0.49

14
15 END

Figure 1.5: Example of an input file for FEAP: The command FEAP starts the

input file (line 1), followed by the specification of the number of

nodal points (NUMNP), the number of elements (NUMEL), the number

of material property sets (NUMMAT), the space dimensions of the

mesh (NDM), the maximum number of unknowns per node (NDF),

and the maximum number of nodes per element (NEN) in line 2.

Next, with the command ELEM, the list of elements (in the file

Elements.e) of the mesh (lines 4–5), and, with the command

COOR, the list of coordinates (in the file Coordinates.c) of the

mesh (lines 7–8) are specified. In the material block (lines 11–13),

a Neo-Hookean material with the material parameters E = 1 000

(Young’s modulus) and ν = 0.49 (Poisson’s ratio) is defined. The

manipulation of data ends with the command END (line 15).

analysis, solution algorithms for a wide range of applications, and graphical

and numerical output capabilities; see [194].

We use a customized version of FEAP which is based on FEAP version 8.2. The

customized version includes additional features and a larger library of material

models, e.g., the material models described in Sections 1.2.4 and 1.2.5. In order

to use FEAP as library instead of as an application, we make use of the FEAP

wrapper library libfw which was implemented by Andreas Fischle; cf. his PhD

thesis [89] for more details.

A parallel version of FEAP, which uses METIS and ParMETIS [123] for the

mesh partitioning and PETSc [15, 16, 17] for the parallelization of the solution

steps, is also available. However, we use the (customized) serial version of FEAP.

Nonetheless, the implementation of the coupling should sustain the parallelism

46

1.3. COUPLING OF LIFEV AND FEAP

1 fw_run_cmd_seq("BATCH\nTANG\nFORM\nEND\n\n");

Figure 1.6: Calling the commands BATCH, TANG, FORM, and END in FEAP us-

ing fw_run_cmd_seq from libfw. Consequently, FEAP switches to

batch (non-interactive) mode, the tangent matrix (TANG) and the

right-hand side (FORM) are assembled in a sequence, and the batch

mode is stopped (END).

of the FSI code in LifeV. We discuss this issue and the implementation of the

parallelism in Section 1.3.3.

FEAP is typically used from the command line in an interactive mode, using

commands containing a maximum of four characters with possible additional

parameters. If the input is a command with more than four characters, the

remaining characters are neglected; cf. Figure 1.4. In Figure 1.4 the list of

coordinates of a mesh is specified. This can be performed from the command

line in interactive mode or, alternatively, the list of coordinates can be read

from a file on the hard drive. This file containing the list of coordinates can be

specified analogously to the lines of code shown in Figure 1.5. In this figure, an

example for an input file, which only specifies the setting of the finite element

computation, is shown. However, the whole program flow of a simulation (in-

cluding assembly, solution, and output) could be prescribed in the file as well.

The input file can be used in addition or instead of the interactive mode.

To implement the coupling, permanent access to the functions and the data

of FEAP from the FSI code at execution time is necessary. This is not naturally

supported by FEAP. The FEAP wrapper library libfw provides classes and func-

tions which make it possible to control FEAP and to use the data of FEAP from

the code of the user. As a result, libfw facilitates the use of FEAP similarly to

a library. For instance, in Figure 1.6, the execution of FEAP commands within

some user code is depicted. In particular, libfw simulates the input of the

commands to the command line in interactive mode.

The most important FEAP commands which are necessary to use FEAP for the

structural assembly within the FSI simulation are shown in Table 1.3. Note

that the solver functionality in FEAP was removed. Instead SOLV updates the

solution vector. Since we want to use FEAP only for the structural assembly,

the very limited set of commands in Table 1.3 is sufficient for our purpose. In

addition, we use input files to specify the mesh and the material model at the

initialization of the FSI simulation; cf. Figure 1.5.

47

CHAPTER 1. FSI IN CORONARY ARTERIES

Proc 0 Proc 1 Proc 2

Input file I0 I1 I2

Point-list file I0.c I1.c I2.c

Element-list file I0_0.e I1_0.e I2_0.e

Table 1.4: Files necessary for using separate instances of FEAP on 3 processes

(one subdomain/instance assigned to each process): one input file,

one file containing the list of elements of the local mesh, and one

file containing the list of coordinates of the local mesh are needed

for each instance of FEAP. The name of the file containing the list

of elements is chosen such that multiple files could be specified on

one process, e.g., to support multiple subdomains per process.

The coupling library libfw also provides the functionality to access data

from the internal data fields of FEAP, e.g., the solution, the stresses, or even the

dimension of the solution vector. This is essential in the implementation of the

coupling to transfer data between LifeV and FEAP.

1.3.3 Implementation of the Coupling

As already stated in Section 1.3.1, we implemented the coupling in form

of the class feapMaterial, which is a specialization of the abstract class

structuralConstitutiveLaw. We will now explain the implementation of the

coupling in detail.

The fact that FEAP is not MPI-parallel, in contrast to the FSI code in LifeV,

is very important for the design of the coupling. We solve this issue in the

following way: the structural mesh is decomposed using LifeV, and only a lo-

cal matrix and a local vector have to be assembled for each subdomain. The

local tangent matrices and residual vectors can be assembled locally on each

process/subdomain, using a serial instance of FEAP. As a consequence, we

execute one serial instance of FEAP for each structural subdomain, and all com-

munication is performed by LifeV.

Since the handling of FEAP is restricted to the four main methods of the

abstract class structuralConstitutiveLaw, cf. Figure 1.3, we do not have ac-

cess to the whole state of the FSI simulation from within the structural material

class. Thus, a small overhead to handle all possible states cannot be avoided.

1.3.3.1 Initialization of FEAP

First, the initialization of the FEAP instances has to be implemented. Typi-

cally, one would use either the constructor or the method setup of the class

48

1.3. COUPLING OF LIFEV AND FEAP

1 fw_start_cmdl(argc_libfw , argv_libfw);

Figure 1.7: Execution of FEAP: as usual, an argument count and an argu-

ment vector are specified at the start of the execution of FEAP.

In particular, the name of an input file (cf. Figure 1.5) should be

specified here; e.g., for the input file File, the string -iFile has

to be given to FEAP.

feapMaterial to initialize FEAP, cf. Figure 1.3 (methods of the abstract class

structuralConstitutiveLaw). This is not practical since, for the existing

LifeV implementations (e.g., the FSI code), data necessary at the time of cre-

ation of the material object, e.g., the local subdomain meshes, is not available

yet.

In order to start an instance of FEAP,

• the input file, cf. Figure 1.5,

• the point-list file, and

• the element-list file

are needed.

The first execution of a method of the material class, once all data for the ini-

tialization of FEAP is available, is the first execution of computeLinearStiff.

Thus, we implement the initialization of FEAP at the beginning of this

method. The method computeLinearStiff computes the Jacobian matrix

for a linear elastic material model. It is important to note that the method

computeLinearStiff is called for all types of material laws. However, it is

empty for nonlinear materials.

Since the material type and the material parameters are already available

when the setup method is called, we write the input files to the hard disk at

this point. Due to the fact that we start one FEAP instance on each process

(corresponding to one subdomain), we write one input file, one coordinate-

list file, and one element-list file per process to the hard disk; see Table 1.4.

The file names are chosen such that one file name uniquely corresponds to one

FEAP instance (i.e., one process). More than one subdomain per process is not

supported by LifeV at the moment; however, our naming convention, which is

explained in Table 1.4, supports many subdomains per process.

One serial instance of FEAP is launched using libfw, as shown in Figure 1.7,

where argc_libfw and argv_libfw are the input arguments given to FEAP.

49

CHAPTER 1. FSI IN CORONARY ARTERIES

FEAPAssembly

(TANG, FORM)

LifeV FSI Solver

Js & rs

δus

Figure 1.8: Software flow and transfer of the structural data between LifeV

and FEAP: the update of the structural displacement δud is trans-

ferred to FEAP where the tangent matrix Js and the residual vector

rs are assembled. Then, Js and rs are transferred back and used

in the next iteration in the FSI code in LifeV to compute the next

update δus.

In particular, the input file corresponding to the serial instance of FEAP is

specified here. In computeLinearStiff, we also set up the time stepping in

FEAP. Note that a time stepping in FEAP is only needed for, e.g., viscoelastic

material models, cf. Section 1.2.5, where the stresses in the actual time step

depend also on quantities at previous time steps. The time stepping for the

FSI simulation is, however, handled by LifeV.

Directly after initialization of FEAP we assemble the Jacobian, in the case

of linear elasticity; otherwise we leave the method computeLinearStiff doing

nothing.

1.3.3.2 Structural Assembly in FEAP

The most crucial part of the coupling is the handling of the structural as-

sembly in FEAP. More precisely, the assembly of the tangent matrix and

the residual vector for the structure is implemented inside the methods

updateJacobianMatrix and apply, respectively, in LifeV. In both cases, we

first update the actual displacement in FEAP. As can be observed in the list in

Table 1.3, this is performed using the command SOLV.

FEAP expects at least one assembly of the Jacobian matrix (TANG) and of

the residual vector (FORM) before SOLV is called for the first time. This makes

sense if SOLV is actually used to solve the corresponding linear equation system.

However, as already mentioned, we only update the solution when calling SOLV,

cf. Figure 1.3. Thus, if the simulation is started with an initial displacement,

which is not equal to zero, TANG and FORM have to be called once, before the

50

1.3. COUPLING OF LIFEV AND FEAP

LifeV ... tn tn+1 ...

FEAP ... tn
TIME

tn+1 ...

first structural assembly
at tLifeV = tn+1

Figure 1.9: Handling of the time stepping of FEAP and LifeV: in the

first structural assembly performed by FEAP within a new

time step the internal times of LifeV and FEAP differ, i.e.,

tn+1 = tLifeV = tFEAP + δt. The command TIME is called in FEAP

to proceed to the next time step.

solution can be updated using SOLV. This is typically the case if the simulation

is not started at rest, e.g. when a previous simulation is restarted.

In Figure 1.8, the coupling is presented schematically. The structural assem-

bly is performed by FEAP, whereas the FSI solver is part of LifeV (i.e., the time

stepping, the Newton iteration in each time step, and the GMRES iteration).

Since there is one independent instance of FEAP on each process, the assembly

of the global Jacobian and of the residual vector as well as the restriction of the

global displacement to the local meshes have to be performed by the coupling

class feapMaterial in LifeV. To transfer the data between FEAP and LifeV,

we access the memory of FEAP using libfw.

In order to be consistent, the (Jacobian) matrices and the (displacement and

residual) vectors, have to be permuted at this point. This is necessary since the

degrees of freedom are sorted differently in the two software packages. While in

LifeV, the degrees of freedom are ordered dimension-wise (i.e., all x coordinates

first), the degrees of freedom are ordered node-wise in FEAP.

1.3.3.3 Time Stepping

For some material models, the stresses at the current time depend also on

data from the previous time steps, in addition to the current displacement.

Therefore, to handle such material models, a time stepping has to be used in

FEAP as well. In particular, this is necessary for the use of the viscoelastic

material model in Section 1.2.5.

Since, from the software point of view, the time stepping in LifeV and

FEAP are independent from each other, they have to to be synchronized by

51

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
fo

w
 F

lo
w

ra
te

 in
 c

m
3 /s

0

1

2

3

4

5

6

7

8

A

B
C

D

A B

C D

0.3 s

A B

C D

0.635 s

Figure 1.10: Exported von Mises stresses using F̄ elements in a curved tube at

two different points of time during the simulation of a heartbeat,

cf. Section 1.5.2.1.

feapMaterial. Note also that the time discretization schemes used in LifeV

and FEAP may be completely different.

The time stepping is handled in the following way: after the actual displace-

ment is updated in FEAP (i.e., after calling SOLV within updateJacobianMatrix

or apply), we compare the actual time of LifeV tLifeV and of FEAP tFEAP. Since

we compare the times in each assembly, in fact, only two cases are possible. Ei-

ther tLifeV = tFEAP or tLifeV = tFEAP + δt. The latter is the case if LifeV

has advanced to the next time step since the last structural assembly in FEAP.

Then, we call the command (TIME), such that also FEAP advances in the time

stepping; see Figure 1.9.

1.3.3.4 Common Export of Data

LifeV provides importer and exporter tools which are used for post processing

purposes as well as for restarting simulations. In each time step, the solution

52

1.3. COUPLING OF LIFEV AND FEAP

vector is exported and can be opened with visualization tools (e.g., Paraview [4,

108]) or used by the FSI application to perform a restart of the simulation at a

specific time step.

In addition to the solution at each time step, also other data, based on the

nodes of the finite element mesh, can be exported, e.g., the structural stresses.

For our purpose, they are of particular importance; however, they are computed

at the Gauss points by FEAP. Thus, in order to export the stresses in LifeV,

they are first interpolated to the nodes of the finite element mesh and then

transferred to LifeV. Finally, the stresses interpolated at the nodes of the

mesh can be exported using the exporter tool of LifeV.

Since the export feature is typically not accessible from the material class

(feapMaterial), minor changes had to be applied to the existing FSI code in

order to add the vectors containing the stresses to the exporter object, and to

compute and to interpolate the stresses in FEAP before performing the export.

In Figure 1.10, an example for the distribution of the von Mises stresses in

a curved tube is depicted; see also Section 1.5.2.3. The stresses have been

transferred from FEAP to LifeV, exported, and visualized using Paraview [4,

108]. Note that exporting the stresses at each time step can be very memory

demanding.

1.3.3.5 Restart of FSI Simulations for the Viscoelastic Material Model

To restart FSI simulations in which the viscoelastic material model (cf. Sec-

tion 1.2.5) is used to model the arterial wall, the stresses (at the Gauss points)

at the previous time step have to be exported. This is because they are needed

to compute the stresses at the current time step. However, the exporter of

LifeV only allows the export of node-based data.

Thus, we employ the restart functionalities of FEAP and of LifeV separately:

the structural part of the restart is handled by FEAP, the fluid and the geometry

parts of the restart are handled by LifeV. In particular, we use the commands

SAVE and REST to perform the restart in FEAP; cf. Table 1.3. Therefore, in the

coupling class, we call the SAVE command directly after proceeding to a new

time step to store the data to the hard disk; see Section 1.3.3.3.

Since, analogously to the export feature, the restart functionality of FEAP

and LifeV cannot be accessed from within the coupling class feapMaterial,

the existing LifeV code had to be modified slightly to enable the restart of FEAP

by the class.

53

CHAPTER 1. FSI IN CORONARY ARTERIES

1.4 Benchmark Settings

In this section, we describe the benchmark problem which has been introduced

in [24] and has been used in our simulations. Its geometry corresponds to a

curved pipe mimicking a tract of an artery, and it includes an initialization

(“ramp”) phase and a heartbeat phase. The ramp phase is needed in order

to inflate the curved geometry, and the second phase includes the periodic

application of the inflow profile of a human heartbeat. First, we provide detailed

information about the geometry and the corresponding meshes, the material

parameters, and the boundary conditions of our boundary value problem.

In order to be able to interpret the results, we define an idealized geometry

and simplified boundary conditions, which still show characteristic results. As

we focus on the numerical analysis of sophisticated arterial wall models in this

thesis, the boundary value problem is constructed such that effects due to non-

linearities are revealed and the importance of the use of such material models in

general applications is highlighted. We also describe the temporal and spatial

discretizations used in our simulations.

1.4.1 Geometry

In Figure 1.11, the benchmark geometry and its dimensions are shown. It con-

sists of a curved and a straight section and can be regarded as an idealized

coronary artery. We have already used a similar geometry in [23]. As in [23],

we restrict ourselves to just one material layer, the media, whereas the wall

thickness is chosen according to realistic arteries here. Note that this repre-

sents a simplification since healthy arteries consist of mainly three layers, the

intima, the media, and the adventitia, cf. [113]. Here, however, we are in-

terested in an easily reproducible benchmark problem and, thus, focus on the

mechanically most relevant layer, the media. In order to obtain realistic trans-

mural wall stresses, also the other layers, i.e., the intima and the adventitia,

for atherosclerotic arteries also the plaque components, would have to be taken

into account.

1.4.2 Material Parameters

For the modeling of the media, we use the hyperelastic and the viscoelastic

material models which are described in Sections 1.2.4 and 1.2.5. We choose the

material parameters from [41, 20, (ΨA Set 2)], cf. Table 1.5, for the hyperelastic

material model. These parameters are fitted to the material response of the

media of a human abdominal aorta. For the viscoelastic material, we use two

54

1.4. BENCHMARK SETTINGS

Inflow

Outflow

Inner radius of the structure 0.15 cm
Outer radius of the structure 0.21 cm

Radius of curved part 1.0 cm
Length of straight part 1.0 cm

Figure 1.11: Geometry of the FSI problem. Copyright c⃝ 2015 John Wiley &

Sons, Ltd.

different parameter sets, cf. Table 1.6. Note that Set 2 in Table 1.6 has a

significantly reduced relaxation time in order to show viscoelastic effects more

clearly; cf. Section 1.2.5.

c1 [kPa] ε1 [kPa] ε2 α1 [kPa] α2

17.5 499.8 2.4 30 001.9 5.1

Table 1.5: Parameters for the hyperelastic material model; see Section 1.2.4.

Set c1 [kPa] ε1 [kPa] ε2 α1 [kPa] α2 τ1 β1
1 17.5 499.8 2.4 30 001.9 5.1 2.0 1.0
2 17.5 499.8 2.4 30 001.9 5.1 0.3 1.8

Table 1.6: Parameters for the viscoelastic material model: long relaxation

time (Set 1), and short relaxation time (Set 2); see Section 1.2.5.

1.4.3 Time Discretization

For the simulations of our benchmark test, we use the Convective Explicit

(CE) time discretization scheme [56], as already mentioned in Section 1.1.2,

while the temporal derivatives are approximated using a second-order backward

differentiation formula (BDF-scheme). The time discretization scheme and the

composed Dirichlet-Neumann preconditioner are described in Sections 1.1.2 and

1.1.3. Due to the semi-explicit treatment of the convective term and the fast

dynamics of our solution, in general, we have to use very small time steps. We

thus first use a time step ∆t = 10−4 s. As we are going to discuss later, it is

possible to use larger time steps in the heartbeat phase of the simulation; see

Section 1.5.2.1.

55

CHAPTER 1. FSI IN CORONARY ARTERIES

1.4.4 Space Discretizations

In Table 1.7, all combinations of space discretizations which have been used

within our FSI simulations are listed. The short names are introduced to dis-

tinguish between the different space discretizations more easily.

Short Name Fluid (velocity–pressure) Structure Geometry

“P1” P1-P1 stabilized P1 P1
“P2” P2-P1 P2 P2
“F̄” P2-P1 F̄ P2

Table 1.7: Description of the space discretizations considered.

We remark that, when using the “P1”-approach, the fluid velocity and pres-

sure are discretized by P1-P1 finite elements stabilized by interior penalty [45].

Finally, although the choice of the discretizations “P2” and “F̄” would lead to

isoparametric meshes, we keep straight tetrahedral elements in our computa-

tional grids.

1.4.5 Meshes

Mesh #Fluid #Structural Total Total Total
elements elements Dofs “P1” Dofs “P2” Dofs “F̄”

#0 2 404 12 348 - 96 285 96 285
#1 6 549 21 636 30 880 186 658 186 658
#2 8 187 45 360 47 995 307 579 307 579
#3 12 670 98 742 88 670 590 555 590 555
#4 19 978 183 420 146 817 1 016 913 1 016 913
#5 40 011 274 500 230 713 - -
#6 78 318 517 464 423 534 - -
#7 179 513 1 036 800 871 323 - -

Table 1.8: Degrees of freedom of the meshes used in the simulations. The

internal variables in F̄ are condensed locally and thus not counted

here.

In order to investigate whether or not the computed quantities converge for

the different spatial discretizations listed in Section 1.1.2, cf. Table 1.7, eight

different meshes are used; cf. Table 1.8. For P1 elements, these are the Meshes

#1 to #7; for P2 and F̄ elements, the Meshes #0 to #4 are sufficient since Mesh

#4 is already fine enough. For a detailed summary of the degrees of freedom

(dofs), cf. Tables 1.9 and 1.10.

Note that, if we are only interested in fluid quantities, P1 elements for the

structure can suffice if a comparatively high number of degrees of freedom is

considered. For an accurate analysis of the structural stress distributions at

56

1.4. BENCHMARK SETTINGS

Mesh Dofs u Dofs p Dofs ds Dofs λ Dofs df

#1 5 430 1 810 14 664 3 546 5 430
#2 6 807 2 269 27 648 4 464 6 807
#3 10 545 3 515 57 096 6 969 10 545
#4 15 345 5 115 101 937 9 075 15 345
#5 27 777 9 259 152 295 13 605 27 777
#6 51 408 17 136 282 165 21 417 51 408
#7 113 175 37 725 564 252 42 996 113 175

Table 1.9: Degrees of freedom of the P1 meshes: fluid velocity (u), fluid pres-

sure (p), structural displacement (ds), coupling (λ), and geome-

try/fluid mesh motion (df).

Mesh Dofs u Dofs p Dofs ds Dofs λ Dofs df

#0 14 505 843 58 296 8 136 14 505
#1 34 368 1 810 101 808 14 304 34 368
#2 43 071 2 269 201 168 18 000 43 071
#3 66 648 3 515 425 700 28 044 66 648
#4 100 455 5 115 774 396 36 492 100 455

Table 1.10: Degrees of freedom of the P2 and F̄ meshes: fluid velocity (u),

fluid pressure (p), structural displacement (ds), coupling (λ), and

geometry/fluid mesh motion (df). The internal degrees of free-

dom in the F̄ approach are statically condensated and are thus

not considered.

a lower number of degrees of freedom, at least P2 or, even better, F̄ elements

should be used to discretize the structure.

1.4.6 Boundary Conditions

In a realistic regime, coronary arteries are embedded in surrounding tissue,

hindering the artery from moving freely in space when being under the influence

of a pulsatile blood flow and pressure. Since we simulate only a section of a

Outflow

Inflow

Figure 1.12: Dirichlet boundary condition at the inlet and outlet: fixed y-

displacement for the red-colored nodes. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

57

CHAPTER 1. FSI IN CORONARY ARTERIES

coronary artery neglecting the surrounding tissue, appropriate but artificial

boundary conditions have to be applied to statically determine the idealized

artery. In particular, we fix the structure in the directions perpendicular to

the respective faces at the inlet and outlet, still allowing the artery to move in

y-direction. In addition to that, we impose zero displacement in y-direction for

all nodes at the inlet and outlet of the structure with y = 0; cf. the red lines in

Figure 1.12.

The inflow boundary condition for the fluid is of particular importance be-

cause it is the driving force for our FSI simulation. In the ramp phase, we apply

an increasing inflow flow rate. Applying a suitable inflow condition, together

with an absorbing type boundary condition [158] at the outlet, allows to ob-

tain a steady condition at the end of the ramp phase, for which the internal

blood pressure is psteady = 80 mmHg and the flow rate is Qsteady = 3 cm3/s; see

Section 1.5.1. In that way, a prestretch of the arterial wall is generated, which

is necessary as a starting configuration for a subsequent simulation of realistic

heartbeats.

We call TR the time when the inflow flow rate reaches its peak value of Qsteady

and Tsteady the time when the steady state is reached. There are many possible

choices for the ramp function Qramp to increase the flow rate. They should, of

course, satisfy the following conditions:

• Qramp(0s) = 0.0 cm3/s,

• Qramp(t) = 3.0 cm3/s ∀TR ≤ t ≤ Tsteady.

The time Tsteady strongly depends on the special choice of TR and Qramp. In

Sections 1.5.1.1 and 1.5.1.2, we consider a linear- and a cosine-type ramp to

model Qramp.

The inflow boundary conditions of both parts of the simulation, i.e., of the

ramp and of the heartbeat phase, are imposed as Dirichlet boundary conditions

for the fluid velocity. Precisely, we impose an inflow flow rate over time, i.e.,

Qramp for the ramp phase and Qheartbeat for the heartbeat phase, respectively.

The flow rate Q(tn+1) = Qn+1 at time tn+1, being either Qramp (ramp phase)

or Qheartbeat (heartbeat phase), is imposed at the inflow section of the fluid

domain Γf
t,in, namely un+1(x)|

Γf
t,in

= (0, 0, uz(x)), with

un+1
z (x) = αn+1 ûz ◦ A−1

t (x), (1.64)

where

ûz(x̂) =
R2 − ∥x̂− x̂c∥2

R2
. (1.65)

58

1.4. BENCHMARK SETTINGS

This means that ûz is a parabolic profile defined on Γ̂f
in, which is the inflow

section of the fluid domain at time t = 0 s, i.e., in reference configuration. The

variables R and x̂c are the radius and the barycenter of Γ̂f
in, while αn+1 reads

αn+1 =
Qn+1

Q̂n+1
, with Q̂n+1 =

∫
Γf
t,in

ûz ◦ A−1
t (x) · nf dγ. (1.66)

Indeed, these choices ensure that∫
Γf
t,in

un+1 · n = Qn+1. (1.67)

This essential property of the inflow boundary condition was not fulfilled for

the implementation of the inflow boundary condition in [23], contributing to

the very high oscillations observed in all measured quantities. Another cause of

the high oscillations was the use of a very short linear-type ramp. As a result,

the system was unfortunately prevented from reaching a steady state.

Our geometry only represents a section of an idealized coronary artery. Thus,

to properly model the behavior of the solution at the artery outflow, an absorb-

ing boundary condition is imposed at the outlet of the fluid. This is necessary to

circumvent wave reflections at the outflow of our tube. The absorbing boundary

condition internally builds on a lower-dimensional linear elastic material model.

In our nonlinear setting, in general, we can therefore not expect this absorb-

ing boundary condition to completely remove reflections since a linear elastic

material model can barely approximate the material response of the highly non-

linear material models appropriately for the whole range of the FSI simulation

(ramp and heartbeat phase). In the ramp phase, in order to reach at steady

state, a desired pressure (here, a physiological value of 80 mmHg) in the fluid,

we consider a modified version of the absorbing boundary condition proposed

in [158]. At time tn+1, the following absorbing boundary condition is enforced

at the outflow section of the fluid domain:

σn+1
f · nf |Γout = pn+1

out nf |Γout , (1.68)

with

pn+1
out =

(√
ρF

2
√

2

Qn
out

A
+

√
dE

1 − ν2
π

A0

√
A0

)2

− dE

1 − ν2
π

A0

√
A0 + pref , (1.69)

where E and ν are Young’s modulus and Poisson’s ratio of the underlying linear

elastic material law (cf. Section 1.2.1). Furthermore, d is the thickness of the

59

CHAPTER 1. FSI IN CORONARY ARTERIES

structure, pref is a reference pressure in the fluid, Qn
out is the outflow flow rate

at the discrete time tn, and A0 is the area of the outflow section of the fluid

domain in its reference configuration.

In our setting, A is computed from (1.69) by imposing the steady state con-

ditions, i.e., pn+1
out = psteady = 80 mmHg when Qout = Qsteady = 3 cm3/s. Note

that during the simulations of the heartbeats, the absorbing boundary condi-

tion (1.69) is modified according to [158], i.e., we use An
out instead of A.

We remark that the values of Young’s modulus E and Poisson’s ratio ν are ad-

justed to the response of the nonlinear anisotropic hyperelastic material model

described in Section 1.2.4. Here, only the material behavior in circumferential

direction is considered for the adjustment of the linear elastic absorbing bound-

ary condition, resulting in a Young’s modulus of 120 kPa and a Poisson’s ratio

of 0.49. However, we do not observe any sensitivity of the absorbing boundary

condition with respect to the Young’s modulus; cf. also Section 1.5.1.5.

Although an absorbing boundary condition is used at the fluid outflow, minor

oscillations remain at the end of the ramp; cf. Section 1.5.1.3 and Figure 1.19.

However, from the results shown in Section 1.5.1.6, we are inclined to believe

that the minor oscillations are physical, in the sense that they are simply an

artifact of the somewhat frugal boundary conditions for the structure, rather

than being an artifact caused by the imperfectly absorbed waves at the outflow.

We discuss the details in Section 1.5.1.6.

These oscillations vanish over time, cf., e.g., Section 1.5.1.3. We consider

ramps of different shapes, see Sections 1.5.1.1 and 1.5.1.2, and slopes, see Sec-

tion 1.5.1.3, to further reduce oscillations. After reaching the steady state, in

the second phase of the simulation, the inflow profile of a heartbeat, cf. Fig-

ure 1.26, is applied periodically; see Section 1.5.2.1.

60

1.5. NUMERICAL EXPERIMENTS

1.5 Numerical Experiments

In this section, we present a detailed discussion of our results for the FSI bench-

mark problem, including mesh convergence studies, investigation of the bound-

ary conditions, and comparisons of space discretizations and material models;

the results are taken from [24]. If not stated otherwise, we choose an absolute

tolerance of 10−7 as a stopping criterion for the Newton method, i.e., the New-

ton iteration is stopped when ∥rn∥∞ < 10−7, and a relative tolerance of 10−8 for

the GMRES, i.e., the GMRES iteration is stopped when ∥rn∥2/∥r0∥2 < 10−8.

With ∥ · ∥∞ and ∥ · ∥2 we refer to the corresponding vector norms, and rn de-

notes the residual in the correspond n-th iteration step. The complete set of

our computational results can be found in Section 1.6 (see Figures 1.36 to 1.56),

whereas in this section we just present those results relevant to our discussion.

1.5.1 Initiating Physiological Blood Pressure (Ramp Phase)

Before we start the simulation of heartbeats, we apply an interior blood pressure

of 80 mmHg to the interior of the artery; see Figure 1.13. This is crucial since

the resulting prestretch has a strong influence on the fluid-structure interaction

during the heartbeat. We initiate a slowly increasing blood flow (ramp), driven

by imposing a flow rate at the inlet, until an internal pressure corresponding

to roughly 80 mmHg is reached. We refer to this part of the simulation as the

ramp phase.

Since our goal is to reach a steady flow rate, any oscillations are unwanted,

may they be physical or only numerical artifacts. The shape and slope of the

ramp affects the magnitude of oscillations. Therefore, we first investigate the

ramp phase of the FSI simulation with respect to different shapes and slopes of

the ramp using different meshes and different finite element formulations. We

expect to reach a steady state at a physiological blood pressure. This is the

prestressed physiological configuration of the coronary artery that will be used

for the simulation of heartbeats; see Section 1.5.2.1. We impose a flow rate at

the inlet in the ramp phase featuring a parabolic inflow profile; see Figure 1.29.

In the ramp phase, we choose a time step of 10−4 s.

Already in this phase, we observe differences between the different discretiza-

tions; see Section 1.5.1.2.

61

CHAPTER 1. FSI IN CORONARY ARTERIES

Inflow

Outflow

Inflow

Outflow

Figure 1.13: Geometry at a pressure of 0 mmHg (left) and at 80 mmHg (right);

displacement scaled by a factor of three. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

Time in s
0 0.05 0.1 0.15 0.2

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3
/s

0

0.5

1

1.5

2

2.5

3

3.5

Time in s
0 0.05 0.1 0.15 0.2

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3
/s

0

0.5

1

1.5

2

2.5

3

3.5

Figure 1.14: Linear (left) and cosine (right) type ramp with TR = 0.1 s. Copy-

right c⃝ 2015 John Wiley & Sons, Ltd.

1.5.1.1 Linear Ramp

We first choose a simple linear ramp according to

Qramp(t) =


t

TR
Qsteady for 0 ≤ t ≤ TR,

Qsteady for TR ≤ t ≤ Tsteady,
(1.70)

cf. [23] and Figure 1.14 (left). In [23], a linear ramp with TR = 0.0177 s was al-

ready considered. Relatively high oscillations in all measured quantities, namely

the flow rate, average pressure, and the cross-sectional lumen area have been

observed. Additionally, the amplitude of the oscillations have increased until

the end of the simulation time for all depicted meshes. Thus, even though

mesh convergence was observed, no steady state was reached in [23] within the

simulation time.

Here, we consider seven different meshes, i.e., Mesh #1 to Mesh #7, cf.

Table 1.8 and Table 1.9, with an increasing number of degrees of freedom. As

we use unstructured meshes, we should note that the ratio of finite elements

(and degrees of freedom) from one mesh to the next mesh is not constant. In

62

1.5. NUMERICAL EXPERIMENTS

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Figure 1.15: P1 mesh convergence study for the hyperelastic material using

the linear ramp with TR = 0.1 s. Flow rate (left), average pres-

sure (middle), cross-sectional lumen area (right), over time at the

inlet (top) and outlet (bottom). Copyright c⃝ 2015 John Wiley

& Sons, Ltd.

this section, we restrict ourselves to P1 elements for a comparison with the

results in [23].

With respect to [23], TR is increased and the inflow boundary condition was

corrected. In [23], the change in the inflow cross-sectional lumen area during

the simulation was not accounted for the inflow profile, and this led to an

incorrect flow rate profile over the cross-sectional lumen area. Additionally, the

absorbing boundary condition has been adjusted, such that an outflow pressure

of 80 mmHg is reached at the outflow.

We measure the flow rate, the average pressure, and the cross-sectional lumen

area at the inflow and the outflow; cf. Figure 1.11. The results of our simulations

are presented in Figure 1.15. Compared to the results in [23], oscillations have

been reduced considerably, and now they decrease during the simulation time.

Besides, a pressure of approximately 80 mmHg, which is imposed by the ab-

sorbing boundary condition, is reached at the outflow, see Figure 1.15 (bottom,

middle), while small but clearly visible oscillations are apparent.

As expected, the pressure at the inflow, see Figure 1.15 (top, middle), is

slightly higher than the outflow pressure, cf. Figure 1.16. In this figure, we also

see that the frequency and amplitude of the oscillations in the pressure seem to

be independent of the mesh size.

63

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
flo

w
 -

 O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-3

-2

-1

0

1

2

3

4

5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Figure 1.16: Inflow minus outflow pressure for the hyperelastic material using

the linear ramp with TR = 0.1 s. Copyright c⃝ 2015 John Wiley

& Sons, Ltd.

The inflow flow rate, which is imposed by a Dirichlet boundary condition,

is now represented accurately in the simulation. For the outflow flow rate and

pressure, see Figure 1.15 (bottom), small perturbations in the beginning of the

ramp phase can be observed for the Meshes #2, #3, and #4. At the first glance,

they could be caused by the fact that the linear ramp is starting with a steep

slope, and thus the first time steps are very difficult to solve. As we discuss in

Section 1.5.1.2, they indicate instabilities due to the P1 discretization, and are

not caused by the shape of the ramp.

Similarly to the results in [23] the area is increasing when refining the mesh,

but with much smaller oscillations. The cross-sectional lumen area, at the inflow

as well as at the outflow, does not seem to converge when refining the meshes.

Within the simulation time of 0.3 s, which corresponds to 3 000 time steps,

the oscillations decrease but do not vanish. Thus, the time until a steady state

is reached would be significantly longer than 0.3 s when using a linear ramp

inflow condition.

1.5.1.2 Cosine-Type Ramp

An alternative, better suited ramp is

Qramp(t) =


1

2
Qsteady

(
1 − cos

(
π

TR
t

))
for 0 ≤ t ≤ TR,

Qsteady for TR ≤ t ≤ Tsteady;

(1.71)

cf. Figure 1.14. It is a C1-function which satisfies Q̇ramp(0) = 0 cm3/s2, meaning

that the transition between the increasing and the constant part of the ramps

is smooth, and that the difficulty of solving the first time steps is decreased.

64

1.5. NUMERICAL EXPERIMENTS

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.17: Outflow pressure for the hyperelastic material using the cosine-

type ramp with TR = 0.1 s for P1 (left), P2 (middle) and F̄

(right) elements. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2
0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.18: Mesh convergence study of the outflow cross-sectional lumen area

for the hyperelastic material using the cosine-type ramp with

TR = 0.1 s for P1 (left), P2 (middle) and F̄ (right) elements. In

this diagram, the graphs for Mesh #3 and Mesh #4 completely

overlap for P2 and F̄ elements. Copyright c⃝ 2015 John Wiley

& Sons, Ltd.

Let us first discuss the perturbations in the outflow quantities. Therefore,

we again consider for P1 elements the Meshes #1 to #7 and for P2 and F̄

elements the five meshes, Mesh #0 to Mesh #4; cf. Tables 1.8 and 1.10. In

Figure 1.17, the corresponding outflow pressure is displayed, and we can observe

that the perturbations remain also for this improved type of ramp. However,

for P2 (middle) and F̄ (right) elements, the perturbations in the beginning of

the ramp vanish. This shows clearly an improvement due to the use of these

discretizations.

Another purpose for the use of the cosine-type ramp is to reduce oscillations in

the constant part of the ramp phase. In Figure 1.18, the outflow cross-sectional

lumen area for P1, P2, and F̄ elements is displayed for different meshes. Com-

paring these results to those of Figure 1.15, on the visible scale we appreciate

a substantial reduction of the amplitude of the oscillations. More precisely,

the amplitude is reduced by one order of magnitude, cf. Table 1.11, using the

cosine-type ramp instead of the linear one.

65

CHAPTER 1. FSI IN CORONARY ARTERIES

Mesh Linear ramp P1 Cosine ramp P1 Cosine ramp P2 Cosine ramp F̄

0 - - 2.7 · 10−5 2.7 · 10−5

1 1.1 · 10−4 3.6 · 10−6 2.8 · 10−5 2.8 · 10−5

2 1.2 · 10−4 8.6 · 10−6 2.7 · 10−5 2.7 · 10−5

3 1.3 · 10−4 1.1 · 10−5 2.7 · 10−5 2.7 · 10−5

4 1.3 · 10−4 1.3 · 10−5 2.7 · 10−5 2.7 · 10−5

5 1.4 · 10−4 1.6 · 10−5 - -
6 1.2 · 10−4 1.9 · 10−5 - -
7 1.2 · 10−4 2.0 · 10−5 - -

Table 1.11: Amplitude of the oscillations of the outflow cross-sectional lumen

area in cm2 at t = 0.2 s.

In order to investigate mesh convergence, we again consider Figure 1.18. As

in Figure 1.15, mesh convergence cannot yet be observed for P1 elements (left).

On the other hand, the results for P2 (middle) and F̄ (right) finite elements

do suggest mesh convergence. Moreover, P2 and F̄ finite elements show a very

similar behavior in Figure 1.17 and Figure 1.18, and there is a difference to

P1 elements as can be seen in the latter figure. We further discuss this in

Section 1.5.1.4.

Based on our findings in this section, from now on, we proceed using a cosine-

type ramp to reduce oscillations. Next, we investigate whether we can further

decrease TR.

1.5.1.3 Steepness of the Ramp

In this section, we consider three different slopes of cosine-type ramps, i.e.,

TR ∈ {0.05 s, 0.1 s, 0.2 s}, in order to study the sensitivity. We again consider

the oscillations of the outflow cross-sectional lumen area, and restrict ourselves

to Mesh #1 for P2 elements. In addition to the hyperelastic material model, we

also consider the viscoelastic material model, cf. Section 1.2.5. The complete

set of results regarding the steepness of the ramp can be found in Section 1.6,

including results for P1 elements.

We remark that the relaxation time of the viscoelastic material model is

longer than 2 s, and thus it cannot be at steady state after 0.5 s. For the

parameter Set 1 of Table 1.6, which has been used for the simulations, the

overstresses are small and the relaxation time is long. Thus, viscoelastic effects

are difficult to observe.

In Figure 1.19, oscillations are only visible for the shortest ramp. Until the

end of the simulation time, i.e., 0.5 s, these oscillations are still visible. For both

longer ramps, the oscillations are not visible at the scale presented, and thus

66

1.5. NUMERICAL EXPERIMENTS

Time in s
0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.086

0.0865

0.087

0.0875

0.088

0.0885

0.089

0.05s
0.1s
0.2s

Time in s
0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.086

0.0865

0.087

0.0875

0.088

0.0885

0.089

0.05s
0.1s
0.2s

Figure 1.19: Outflow cross-sectional lumen area using P2 elements on Mesh

#1. Hyperelastic (left), and viscoelastic (right) material model

using parameter Set 2 from Table 1.6. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

considered as acceptable. The qualitative behavior of the hyperelastic and the

viscoelastic material is similar, however, we can observe that the cross-sectional

lumen area is lower for the viscoelastic material and slowly increases due to creep

behavior. We not focus on the differences of the material models now, but refer

to the next section, in which we discuss the influence of viscoelasticity in the

FSI simulations with regard to the chosen space discretization.

As a result of the discussions so far, we decide to use a cosine-type ramp

with a length of TR = 0.1 s from now on. After another 0.2 s of constant inflow

flow rate we consider the system to be at steady state, i.e., Tsteady = 0.3 s, and

thus ready for the subsequent simulation of a heartbeat. All further presented

simulations were performed using this ramp.

1.5.1.4 Space Discretization and Viscoelastic Effects

As already mentioned in Section 1.5.1.2, our results suggest that P2 and F̄

discretizations should be favored over simple P1 finite elements.

In this section, we compare the different space discretizations in detail. Us-

ing the viscoelastic material model we observe that P1 elements do not only

show disadvantageous approximation properties but also show a qualitatively

incorrect behavior.

Thus, we first present in Figure 1.20 the results of simulations using the

viscoelastic material model compared to the hyperelastic material model. In

order to detect more clearly the viscoelasticity, we use parameter Set 2 from

Table 1.6, which has a much shorter relaxation time compared to Set 1 from

Table 1.6. In Figure 1.20, the expected behavior can be observed: if we impose

the same pressure (left) as for the hyperelastic material model, the displacement

is smaller in the beginning and converges to the displacement of the hyperelastic

67

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.2 0.4 0.6 0.8 1

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Hyperelastic P2
Viscoelastic P2

Time in s
0 0.2 0.4 0.6 0.8 1

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

Hyperelastic P2
Viscoelastic P2

Figure 1.20: Comparison of the hyperelastic and the viscoelastic material for

P2 elements using the cosine-type ramp for parameter Set 2 from

Table 1.6 on Mesh #1. Outflow average pressure (left), outflow

cross-sectional lumen area (right). Copyright c⃝ 2015 John Wiley

& Sons, Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Figure 1.21: Viscoelastic material on Mesh #1, outflow pressure (left). Note

that the curves for P2 and F̄ are almost identical. Comparison

of the hyperelastic and the viscoelastic material model using the

parameter Set 2 from Table 1.6 and P1 and P2 elements (right).

Copyright c⃝ 2015 John Wiley & Sons, Ltd.

material model over time, cf. Section 1.2.5 and Figure 1.1. The displacement

is here represented by the cross-sectional lumen area (right). This is caused by

the creep behavior introduced in fiber direction, as described in Section 1.2.5.

In contrast to the appropriate results obtained with a P2 discretization, the

use of a P1 discretization leads to a qualitatively wrong behavior, as can be seen

in Figure 1.21: for a constant pressure (left), the displacement (right) decreases

using P1 elements, while F̄ elements again yield the same correct results as P2

elements. Moreover, we observe that P2 elements yield the expected asymptotic

behavior of the viscoelastic material model, while P1 elements do not.

We also observe that P1 elements lead to much smaller displacements than

P2 or F̄ elements for the same mesh. This can be seen for the hyperelastic and

also for the viscoelastic material model; cf. Figure 1.21 (right). We understand

68

1.5. NUMERICAL EXPERIMENTS

this behavior as the property of P1 elements to tend to locking effects and to

be mechanically stiffer compared to P2 and F̄ elements.

These observations, in combination with the discussion in Section 1.5.1.2

about the perturbations which arise in the beginning of the ramp phase for

P1 elements, are convincing arguments that P1 elements are not sufficient to

describe the structural behavior accurately.

Still, it may be sufficient to consider P1 elements for the structure if a hy-

perelastic material is considered, provided that a very fine mesh is used, de-

pending on the quantities under consideration. If, for instance, fluid quantities

or the structural displacement are analyzed, a very fine P1 discretization may

be sufficient, whereas the accuracy of the computed structural stresses strongly

depends on the choice of an appropriate discretization; cf. Section 1.5.2.3.

1.5.1.5 Sensitivity to Parameters of the Absorbing Boundary Condition

A reason for the oscillations observed in Sections 1.5.1.1, 1.5.1.2, and 1.5.1.3

could be the absorbing boundary condition, see Section 1.4.6, which we apply

at the outflow to remove wave reflections. This absorbing boundary condition is

based on a one-dimensional linear elastic model. Since we use highly nonlinear

material models here, it is not obvious if the absorbing boundary condition

is able to completely remove wave reflections at the outlet, especially if the

corresponding linear elastic material parameters are not chosen appropriately.

We investigate the influence of Young’s modulus E in the absorbing boundary

condition. In order to minimize the computational effort, we used P1 elements

and Mesh #1 for these simulations.

As can be seen in Figure 1.22, neither the inflow pressure (left) nor the outflow

cross-sectional lumen area (right) are influenced strongly by the varying Young’s

modulus. These measured quantities showed the strongest oscillations in the

previous sections, which are however relatively small due to the particular choice

of the ramp. This suggests that the remaining oscillations in the constant part

of the ramp are not caused by the absorbing boundary condition.

1.5.1.6 Further Investigations on the Oscillations

Our structure is statically determined only from applying Dirichlet boundary

conditions at both ends. The surrounding tissue is thus neglected. The inflow

of fluid into the curved geometry may therefore excite a bending mode of the

structure.

69

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

81.2

81.3

81.4

81.5

81.6

81.7

81.8

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.0822

0.0822

0.0822

0.0822

0.0822

0.0822

0.0823

0.0823

0.0823

0.0823

0.0823

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Figure 1.22: Sensitivity analysis for the absorbing boundary conditions, per-

formed with P1 elements using Mesh #1: inflow average pres-

sure (left), and outflow cross-sectional lumen area (right). All

curves overlap completely. Global view (top), and zoom (bot-

tom). Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Figure 1.23: Curved tube with a longer straight part (4 cm). Copyright c⃝
2015 John Wiley & Sons, Ltd.

We consider a new geometry, with a longer straight part of length 4 cm; cf.

Figure 1.23. Details about the mesh can be found in Tables 1.12 and 1.13. We

use a cosine ramp of length TR = 0.05 s.

As can be seen in Figure 1.24, there is indeed a strong bending of the tube

over time.

In Figure 1.25, the outflow flow rate (left), inflow average pressure (middle),

and outflow cross-sectional lumen area (right) are shown for P1 and P2 elements,

comparing the geometry described in Figure 1.11 and the similar geometry with

a longer straight section. As expected, the outflow flow rate of the long tube

has a delay compared to the standard geometry, because it takes longer for the

fluid wave to reach the outflow of the tube.

70

1.5. NUMERICAL EXPERIMENTS

t = 0 s t = 0.17 s

t = 0.31 s t = 0.41 s

Figure 1.24: Bending of the long tube. Copyright c⃝ 2015 John Wiley & Sons,

Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

P1
P1 long tube
P2
P2 long tube

Figure 1.25: Comparison of the outflow flow rate (left), the inflow average

pressure (middle), the outflow cross-sectional lumen area (right)

of Mesh #1 and the corresponding mesh of the long tube, cf.

Tables 1.12, 1.13, and Figure 1.23. Copyright c⃝ 2015 John Wiley

& Sons, Ltd.

The oscillations arising in the inflow pressure and the outflow cross-sectional

lumen area show a significantly larger amplitude and also a frequency which is

roughly smaller by a factor of approximately 1/4. Thus, the oscillations may

depend on the length of the geometry. The fact that the amplitude of the

oscillations increases significantly could also be an indication that the source of

oscillations is a bending mode.

Now that we have discussed the ramp, we believe that a reasonable way to

carry out the simulation of the ramp phase, including the type and length of

#Fluid #Structural Total Total Total
elements elements Dofs “P1” Dofs “P2” Dofs “F̄”

2 404 12 348 64 999 391 693 391 693

Table 1.12: Degrees of freedom of the meshes corresponding to the long tube;

see Figure 1.23.

71

CHAPTER 1. FSI IN CORONARY ARTERIES

Discretization Dofs u Dofs p Dofs ds Dofs λ Dofs df

P1 10 641 3 547 32 232 7 938 10 641
P2/F̄ 65 745 3 547 224 784 31 872 65 745

Table 1.13: Degrees of freedom of the meshes corresponding to the long tube:

fluid velocity (u), fluid pressure (p), structural displacement (ds),

coupling (λ), and geometry/fluid mesh motion (df); see Fig-

ure 1.23.

the ramp, and a reasonable space discretization have been found. In the next

sections, we are going to concentrate on the simulation of heartbeats after the

ramp phase.

72

1.5. NUMERICAL EXPERIMENTS

1.5.2 Heartbeat Phase

1.5.2.1 Simulation of Several Heartbeats

We now present and discuss our results of the simulation of several full heart-

beats. In advance of the heartbeat phase, the artery has been prestretched up to

a physiological pressure of 80 mmHg. Referring to Sections 1.5.1.2 and 1.5.1.3,

we choose a cosine-type ramp with length TR = 0.1 s in order to inflate the

tube. As already mentioned in the previous section, we continue the simulation

at a constant inflow flow rate Qsteady until 0.3 s, and consider the system to be

at steady state at this point of simulation time. We neglect some very small

oscillations still remaining after 0.3 s; cf. also Figure 1.19 for TR = 0.1 s.

Time in s
0.4 0.6 0.8 1 1.2

In
fo

w
 F

lo
w

ra
te

 in
 c

m
3
/s

2

3

4

5

6

7

8

Figure 1.26: Inflow flow rate for the heartbeat phase. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

Afterwards, we impose a flow rate profile Qheartbeat over time according to

Figure 1.26, which corresponds to a heartbeat. A typical pressure profile in

coronary arteries is provided by [2, 204]. However, imposing a pressure or,

more precisely, a normal stress at the inflow can lead to instabilities, which we

indeed observed using fine meshes. These instabilities did not occur with Mesh

#1. Therefore, from a full heartbeat simulation with Mesh #1, the resulting

inflow flow rate over time was approximated by means of a Fourier series of

order 20, and thus a periodic function Qheartbeat was obtained. The resulting

flow rate profile ranges from approximately 3 cm3/s in the diastolic phase, where

the heart is at rest and the blood pressure is minimal, to approximately 8 cm3/s

in the systolic phase, where the heart contracts and the blood pressure rises to

the maximum value. In this way, the inflow flow rate results in a pressure (which

mainly influences the stress distribution through the arterial wall) which follows

a typical profile for a coronary artery.

The reason why the pressure and the flow rate profiles used in our simulations

are not significantly different is that, in our model, we do not take into account

73

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.5 1 1.5 2 2.5 3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

P2
Fbar

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

P2
Fbar

Figure 1.27: Simulation of 3 heartbeats using Mesh #1 and the hyperelas-

tic material model: Inflow pressure (left), and outflow cross-

sectional lumen area (right). Copyright c⃝ 2015 John Wiley &

Sons, Ltd.

the forces exerted by the heart muscle on the coronary vessels. Nevertheless, the

flow rate reported in Figure 1.26 is in rough accordance to the one of a right

coronary artery, for which the systolic heart compression through the right

ventricular myocardium has much smaller effect on the flow, compared to the

influence which the left ventricular myocardium has on the left coronary [155,

48].

As already mentioned, the function Qheartbeat describes the inflow flow rate

over time during each heartbeat, cf. Figure 1.26. Analogously to the inflow flow

rate profile Qramp, used for the ramp phase, we use Qheartbeat as a Dirichlet

boundary condition in the second part of the simulation.

During the simulation of a heartbeat, we choose a time step ten times larger

than in the ramp phase, i.e., ∆t = 10−3 s. In Figure 1.27, the average inflow

pressure (left) and outflow cross-sectional lumen area (right) are presented for

P2 and F̄ elements. Similarly to the ramp phase, cf. Section 1.5.1.4, also during

all three heartbeats, we observe a very similar behavior for both discretizations.

In Figures 1.28 and 1.29, the deformation and flow rate profile over time is

depicted. The largest deformation is observed at the inner part of the curvature,

near the inlet. Here, the tube deforms mainly due to the increasing flow rate

at the inlet. Considering the flow rate, we observe that the flow is faster at the

outer part of the curved pipe; see also Figure 1.30.

1.5.2.2 Mesh Convergence for the Heartbeat

In this section, we address the influence of the mesh refinement during the heart-

beat phase, analogously to the discussions in Section 1.5.1.2 and Section 1.5.1.1

about the ramp phase.

74

1.5. NUMERICAL EXPERIMENTS

0.0 s 0.05 s

0.635 s0.3 s

Time in s
0 0.5 1

In
fo

w
 F

lo
w

ra
te

 in
 c

m
3 /s

0

1

2

3

4

5

6

7

8

0.1 s

1.0 s

Figure 1.28: Evolution of the magnitude of the displacement of the structure

for Mesh #3 and F̄ elements in the deformed configuration, at

times 0.0 s (top left), 0.05 s (top middle), 0.1 s (top right), 0.3 s

(bottom left), 0.635 s (bottom middle), and 1.0 s (bottom right).

Displacement is scaled by a factor of 2.0. Copyright c⃝ 2015

John Wiley & Sons, Ltd.

In Figure 1.31, mesh convergence plots for P1 (left), P2 (middle), and F̄

(right) elements are shown. We show the results using Meshes #1 to #7 for

P1 elements and using Meshes #0 to #4 for P2 and F̄ elements. For P2 and F̄

elements, Mesh #4 is only plotted until 0.6 s.

Considering the outflow area, for P1 elements, we do not see mesh conver-

gence. For P2 and F̄ finite elements, the graphs for Mesh #3 and Mesh #4

overlap. With respect to the plots of the inflow pressure (top), there are small

deviations for the different meshes because we do not impose a pressure any-

more, in contrast to the ramp phase. This can be observed for all element

types. The differences are clearly visible in the systolic phase of the heartbeat,

whereas the inflow pressures are very close to each other for all meshes during

the diastolic part. Thus, especially the maximum pressure decreases when re-

fining the mesh. For the coarsest P1 element mesh, the maximum pressure is

significantly higher than for the coarsest P2 or F̄ element mesh. We conclude

that for P1 elements we are still far away from asymptotics, while for P2 and F̄

elements we have an indication of mesh convergence: the graphs for Mesh #3

and Mesh #4 completely overlap for all quantities.

In Figure 1.32, we present the number of Newton iterations for each time

step as well as the sum of GMRES iterations in each time step, using Mesh #3

and F̄ finite elements. Improvements of the monolithic preconditioner and of

the overlapping Schwarz method, to reduce the number of GMRES iterations,

are reported in Chapter 3. Therein, we present results of FSI simulation using

75

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.5 1

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

1

2

3

4

5

6

7

8

A

B
C

D

A B C D

0.05 s

0.3 s

0.635 s

1.0 s

Figure 1.29: Evolution of the flow for Mesh #7 and P1 elements at different

slices; cf. [24]. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

the FaCSI preconditioner as a preconditioner for the monolithic matrix and the

GDSW preconditioner as a preconditioner for the structural block.

76

1.5. NUMERICAL EXPERIMENTS

Time in s
0 0.5 1

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

1

2

3

4

5

6

7

8

0.05 s

0.3 s

0.635 s

1.0 s

0.05 s

0.3 s

0.635 s

1.0 s

Figure 1.30: Evolution of velocity and pressure for Mesh #7 and P1 elements.

77

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.31: Mesh convergence of the inflow pressure (top) and outflow cross-

sectional lumen area (bottom) during the heartbeat phase: P1

(left), P2 (middle) and F̄ (right) elements. Copyright c⃝ 2015

John Wiley & Sons, Ltd.

Figure 1.32: Number of Newton iterations for each time step (left) and sum of

GMRES iterations in each time step (right) during the heartbeat

using Mesh #3 and F̄ finite elements. We use 96 processors and

thus 96 subdomains for the overlapping Schwarz method within

our monolithic Dirichlet-Neumann preconditioner. Copyright c⃝
2015 John Wiley & Sons, Ltd.

78

1.5. NUMERICAL EXPERIMENTS

Figure 1.33: Fluid velocity and first principal Cauchy stress at t = 0.3 s (left)

and at t = 0.635 s (right); for fluid velocities cf. Figure 1.29

and for the stress distribution cf. Figure 1.35. Taken from [24];

courtesy of Balzani, Fausten, and Schröder. Copyright c⃝ 2015

John Wiley & Sons, Ltd.

Figure 1.34: The principal Cauchy shear stress using the F̄ element at

t = 0.3 s (left) and t = 0.635 s (right). Taken from [24]; cour-

tesy of Balzani, Fausten, and Schröder. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

1.5.2.3 Stresses

In this section, we present in Figures 1.33, 1.35 and 1.34 the transmural stress

distributions which have been observed in [24] at simulation times t = 0.3 s

and t = 0.635 s using different spatial discretizations. The stresses have been

exported using the coupling class feapMaterial; see Section 1.3.3.4. In partic-

ular, Figure 1.33 shows the fluid velocity and transmural distribution of the first

principal Cauchy stresses at different slices of the geometry, using P2 elements

on Mesh #3.

In Figure 1.35, the first principal Cauchy stresses are depicted. In correspon-

dence to [24], we observe that the stresses on the inner surface of the tube are

strongly oscillatory with very high peak stresses for P1 elements; we refer to

79

CHAPTER 1. FSI IN CORONARY ARTERIES

the discussion about the stiffness and locking of P1 elements in Section 1.2.6.

On the contrary, F̄ and P2 discretizations show a smoother stress distribution

and are thus preferable to P1 elements when accurate stress distributions are

of interest.

Figure 1.34 presents the maximum shear stresses in the fluid-solid interface

plane. As can be seen, these shear stresses are significantly higher at the inner

curve. This observation corresponds well with the common hypotheses that

the plaque evolves where low flow rates and high shear stresses are found in

domains close to the endothelial cells, which is mostly at the inner curves of

vessel walls.

We refer to [24] for a more detailed discussion on the transmural stress dis-

tribution in the arterial wall.

80

1.5. NUMERICAL EXPERIMENTS

(a)

(b)

(c)

Stress distribution over wall thickness

(a) (b) (c)

Stress distribution over wall thickness

(a) (b) (c)

Stress distribution over wall thickness

(a) (b) (c)

Stress distribution over wall thickness

(a) (b) (c)

Stress distribution over wall thickness

(a) (b) (c)

Stress distribution over wall thickness

(a) (b) (c)

Figure 1.35: Comparison of the first principal Cauchy stress for P1 (top), P2

(middle) and F̄ (bottom) elements at the inner surface and over

the wall thickness at t = 0.3 s (left) and t = 0.635 s (right). Taken

from [24]; courtesy of Balzani, Fausten, and Schröder. Copyright

c⃝ 2015 John Wiley & Sons, Ltd.

81

CHAPTER 1. FSI IN CORONARY ARTERIES

1.6 Collection of Results

For completeness, this section collects systematically the numerical results pre-

sented in the text as well as additional graphs.

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Figure 1.36: P1 mesh convergence study for the hyperelastic material using

the linear ramp with TR = 0.1 s. Flow rate (left), average pres-

sure (middle), and cross-sectional lumen area (right), over time

at the inlet (top) and outlet (bottom); cf. Section 1.5.1.1. Copy-

right c⃝ 2015 John Wiley & Sons, Ltd.

82

1.6. COLLECTION OF RESULTS

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Figure 1.37: P1 mesh convergence study for the hyperelastic material using

the cosine-type ramp with TR = 0.1 s. Flow rate (left), average

pressure (middle), and cross-sectional lumen area (right), over

time at the inlet (top) and outlet (bottom); cf. Section 1.5.1.2.

Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.38: P2 mesh convergence study for the hyperelastic material using

the cosine-type ramp with TR = 0.1 s. Flow rate (left), average

pressure (middle), and cross-sectional lumen area (right), over

time at the inlet (top) and outlet (bottom); cf. Section 1.5.1.2.

Copyright c⃝ 2015 John Wiley & Sons, Ltd.

83

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.05 0.1 0.15 0.2 0.25 0.3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.39: F̄ mesh convergence study for the hyperelastic material using

the cosine-type ramp with TR = 0.1 s. Flow rate (left), average

pressure (middle), and cross-sectional lumen area (right), over

time at the inlet (top) and outlet (bottom); cf. Section 1.5.1.2.

Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.05s
0.1s
0.2s

Figure 1.40: Hyperelastic material using P1 elements on Mesh #1. Flow rate

(left), average pressure (middle), and cross-sectional lumen area

(right), over time at the inlet (top) and outlet (bottom); cf. Sec-

tion 1.5.1.2. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

84

1.6. COLLECTION OF RESULTS

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.05s
0.1s
0.2s

Figure 1.41: Hyperelastic material using P2 elements on Mesh #1. Flow rate

(left), average pressure (middle), and cross-sectional lumen area

(right), over time at the inlet (top) and outlet (bottom); cf. Sec-

tion 1.5.1.3. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.05s
0.1s
0.2s

Figure 1.42: Viscoelastic material with P1 using the parameter Set 1 from

Table 1.6 elements on Mesh #1. Flow rate (left), average pres-

sure (middle), lumen cross section area (right), over time at the

inlet (top) and outlet (bottom); cf. Section 1.5.1.3. Copyright c⃝
2015 John Wiley & Sons, Ltd.

85

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

0.05s
0.1s
0.2s

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.05s
0.1s
0.2s

Figure 1.43: Viscoelastic material with P2 elements using the parameter Set

1 from Table 1.6 on Mesh #1. Flow rate (left), average pressure

(middle), and cross-sectional lumen area (right), over time at the

inlet (top) and outlet (bottom); cf. Section 1.5.1.3. Copyright c⃝
2015 John Wiley & Sons, Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

P1
P2
Fbar

Figure 1.44: Hyperelastic material on Mesh #1. Flow rate (left), average

pressure (middle), and cross-sectional lumen area (right), over

time at the inlet (top) and outlet (bottom); cf. Section 1.5.1.4.

Copyright c⃝ 2015 John Wiley & Sons, Ltd.

86

1.6. COLLECTION OF RESULTS

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

P1
P2
Fbar

Figure 1.45: Viscoelastic material using the parameter Set 1 from Table 1.6

on Mesh #1. Flow rate (left), average pressure (middle), and

cross-sectional lumen area (right), over time at the inlet (top)

and outlet (bottom); cf. Section 1.5.1.4. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

P1
P2
Fbar

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

P1
P2
Fbar

Figure 1.46: Viscoelastic material using the parameter Set 2 from Table 1.6

on Mesh #1. Flow rate (left), average pressure (middle), and

cross-sectional lumen area (right), over time at the inlet (top)

and outlet (bottom); cf. Section 1.5.1.4. Copyright c⃝ 2015 John

Wiley & Sons, Ltd.

87

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

P1 hyperelastic
P1 viscoelastic
P2 hyperelastic
P2 viscoelastic

Figure 1.47: Comparison of the hyperelastic and the viscoelastic material us-

ing the parameter Set 2 from Table 1.6 on Mesh #1. Flow rate

(left), average pressure (middle), and cross-sectional lumen area

(right), over time at the inlet (top) and outlet (bottom); cf. Sec-

tion 1.5.1.4. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.5 1 1.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

Hyperelastic P2
Viscoelastic P2

Time in s
0 0.2 0.4 0.6 0.8 1

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

-10

0

10

20

30

40

50

60

70

80

90

Hyperelastic P2
Viscoelastic P2

Time in s
0 0.2 0.4 0.6 0.8 1

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

Hyperelastic P2
Viscoelastic P2

Time in s
0 0.5 1 1.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Hyperelastic P2
Viscoelastic P2

Time in s
0 0.2 0.4 0.6 0.8 1

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

Hyperelastic P2
Viscoelastic P2

Time in s
0 0.2 0.4 0.6 0.8 1

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

Hyperelastic P2
Viscoelastic P2

Figure 1.48: Comparison of the hyperelastic and the viscoelastic for P2 ele-

ments material using the cosine-type ramp and parameter Set 2

from Table 1.6 on Mesh #1. Flow rate (left), average pressure

(middle), and cross-sectional lumen area (right), over time at the

inlet (top) and outlet (bottom); cf. Section 1.5.1.4. Copyright c⃝
2015 John Wiley & Sons, Ltd.

88

1.6. COLLECTION OF RESULTS

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

E=1200000 dyne/cm2

E=12000000 dyne/cm2

E=120000000 dyne/cm2

E=6000000 dyne/cm2

E=24000000 dyne/cm2

Figure 1.49: Sensitivity analysis of the absorbing boundary conditions. Flow

rate (left), average pressure (middle), and cross-sectional lumen

area (right), over time at the inlet (top) and outlet (bottom); cf.

Section 1.5.1.5. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

0.5

1

1.5

2

2.5

3

3.5

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

10

20

30

40

50

60

70

80

90

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

-10

0

10

20

30

40

50

60

70

80

90

P1
P1 long tube
P2
P2 long tube

Time in s
0 0.1 0.2 0.3 0.4 0.5

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

P1
P1 long tube
P2
P2 long tube

Figure 1.50: Comparison of Mesh #1 and the corresponding mesh of the long

tube, cf. Tables 1.12 and 1.13. Outflow flow rate (left), inflow

average pressure (middle), outflow cross-sectional lumen area

(right); cf. Section 1.5.1.6. Copyright c⃝ 2015 John Wiley &

Sons, Ltd.

89

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

1

2

3

4

5

6

7

8

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

0

1

2

3

4

5

6

7

8

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

0

20

40

60

80

100

120

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1
Mesh2
Mesh3
Mesh4
Mesh5
Mesh6
Mesh7

Figure 1.51: P1 mesh convergence study for the hyperelastic material for the

heartbeat. Flow rate (left), average pressure (middle), lumen

cross section area (right), over time at the inlet (top) and out-

let (bottom); cf. Section 1.5.2.1. Copyright c⃝ 2015 John Wiley

& Sons, Ltd.

Time in s
0 0.5 1 1.5 2 2.5 3

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

-1

0

1

2

3

4

5

6

7

8

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

In
flo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

In
flo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-1

0

1

2

3

4

5

6

7

8

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

0

20

40

60

80

100

120

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1

Figure 1.52: P1 simulation for the hyperelastic material for three heartbeats.

Flow rate (left), average pressure (middle), and cross-sectional

lumen area (right), over time at the inlet (top) and outlet (bot-

tom); cf. Section 1.5.2.1. Copyright c⃝ 2015 John Wiley & Sons,

Ltd.

90

1.6. COLLECTION OF RESULTS

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

1

2

3

4

5

6

7

8

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

0

1

2

3

4

5

6

7

8

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

0

20

40

60

80

100

120

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.53: P2 mesh convergence study for the hyperelastic material for the

heartbeat. Flow rate (left), average pressure (middle), lumen

cross section area (right), over time at the inlet (top) and out-

let (bottom); cf. Section 1.5.2.1. For clarity, Mesh #4 is plotted

only until 0.6 s. Copyright c⃝ 2015 John Wiley & Sons, Ltd.

Time in s
0 0.5 1 1.5 2 2.5 3

In
fo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

-1

0

1

2

3

4

5

6

7

8

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

In
fo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

In
fo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-1

0

1

2

3

4

5

6

7

8

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

0

20

40

60

80

100

120

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1

Figure 1.54: P2 simulation for the hyperelastic material for three heartbeats.

Flow rate (left), average pressure (middle), and cross-sectional

lumen area (right), over time at the inlet (top) and outlet (bot-

tom); cf. Section 1.5.2.1. Copyright c⃝ 2015 John Wiley & Sons,

Ltd.

91

CHAPTER 1. FSI IN CORONARY ARTERIES

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

0

1

2

3

4

5

6

7

8

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

In
flo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

0

1

2

3

4

5

6

7

8

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

0

20

40

60

80

100

120

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Time in s
0 0.2 0.4 0.6 0.8 1 1.2

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh0
Mesh1
Mesh2
Mesh3
Mesh4

Figure 1.55: F̄ mesh convergence study for the hyperelastic material for the

heartbeat. Flow rate (left), average pressure (middle), and cross-

sectional lumen area (right), over time at the inlet (top) and

outlet (bottom); cf. Section 1.5.2.1. For clarity, Mesh #4 is

plotted only until 0.6 s. Copyright c⃝ 2015 John Wiley & Sons,

Ltd.

Time in s
0 0.5 1 1.5 2 2.5 3

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3 /s

-1

0

1

2

3

4

5

6

7

8

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

In
flo

w
 P

re
ss

ur
e

in
 m

m
H

g

0

20

40

60

80

100

120

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

In
flo

w
 A

re
a

in
 c

m
2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 F
lo

w
 R

at
e

in
 c

m
3 /s

-1

0

1

2

3

4

5

6

7

8

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 P
re

ss
ur

e
in

 m
m

H
g

0

20

40

60

80

100

120

Mesh1

Time in s
0 0.5 1 1.5 2 2.5 3

O
ut

flo
w

 A
re

a
in

 c
m

2

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Mesh1

Figure 1.56: F̄ simulation for the hyperelastic material for three heartbeats.

Flow rate (left), average pressure (middle), and cross-sectional

lumen area (right), over time at the inlet (top) and outlet (bot-

tom); cf. Section 1.5.2.1. Copyright c⃝ 2015 John Wiley & Sons,

Ltd.

92

1.7. CONCLUSION

1.7 Conclusion

We have proposed precise simulation settings for a synthetic simulation of blood

flow through a geometry representing an idealized coronary artery, in order to

set the ground for the computation of realistic transmural stresses in the future.

We use a simple geometry to provide a benchmark which is easily reproducible

but which still captures all numerical difficulties arising in realistic simulations.

We discuss our algorithmic approaches and numerical results of our feasibility

study and provide measures which may be useful for comparisons with future

simulations, experiments or for code validation.

An important contribution of this chapter, which is based on [24], is the use of

a highly nonlinear, polyconvex anisotropic structural model in FSI together with

a suitable discretization. The flow conditions were set such that the flow rates

and the pressure inside the artery were physiological. To account for the wall

pre-stresses, we have initialized the simulation starting from the rest condition,

which was then raised to a steady flow. Then, typical flow rates for coronaries

were imposed at the inflow, while using an absorbing boundary condition at

the outflow. Different material properties were studied, including anisotropic

and viscoelastic ones at finite strains. We have found that at least P2 or F̄

finite elements are necessary for reasonable stress approximations in the vessel

wall, since the accuracy of P1 discretizations is comparatively poor. This is of

practical relevance since FSI simulations in biomechanics using simple, linear

finite elements for the structure are not uncommon. Further steps are necessary

to reach our goal of computing realistic transmural stresses. This includes the

use of patient specific geometries with several layers and may include other

improvements such as fiber remodeling and the modeling of plaque including

the fibrous cap.

Numerically, the use of adaptive time stepping schemes may help to further

reduce the computational effort. The use of a better suited two-level Schwarz

preconditioner (cf. Chapter 2 for the presentation of a parallel implementation

of the GDSW preconditioner), which is significantly more robust for the sophis-

ticated material models under consideration for the structural block, is shown

in Chapter 3. It is also shown that the number of GMRES iterations and there-

fore the total simulation time can be reduced significantly by only replacing

the preconditioner for the structure. This indicates that the structure is the

most severe part with respect to preconditioning in our setting. Therefore, the

investigation of better suited preconditioners for the structure is a reasonable

next step to improve our numerical FSI framework.

93

2 A Parallel Implementation of the

Two-Level Overlapping Schwarz

GDSW Preconditioner

In this chapter, which is based on [105, 107], we present a software framework

for two-level overlapping Schwarz preconditioners in Trilinos [109] focusing on

the GDSW (Generalized Dryja-Smith-Widlund) preconditioner as an example.

The GDSW preconditioner is a two-level overlapping Schwarz preconditioner

introduced in [70] with a proven condition number bound for the general case

of John domains for scalar elliptic and linear elastic model problems. The

coarse space is related to that of FETI-DP (Finite Element Tearing and In-

terconnecting - Dual-Primal) and BDDC (Balancing Domain Decomposition

by Constraints) methods [197, 69], and, as for FETI-DP and BDDC methods,

variants are robust for almost incompressible elasticity [72]. The method is

algebraic in the sense that it can be constructed from the assembled system

matrix, and additionally, no coarse triangulation is needed. This is of special

interest for the use as a preconditioner for a block, e.g., in monolithic mul-

tiphysics coupling. The GDSW preconditioner is thus well-suited to be used

in the context of Fluid-Structure Interaction (FSI) simulations, i.e., to replace

Trilinos IFPACK as the default preconditioner used for the blocks in the mono-

lithic matrix in [23, 24] and in Chapter 1. Therefore, we refer to [105, 106, 107]

(see also Chapter 3), where the GDSW preconditioner is used as preconditioner

for the structural block in FSI simulations. However, compared to FETI-DP

or BDDC methods, the standard GDSW coarse space is larger, especially in

three dimensions. It should be expected that, to sustain parallel scalability, the

transition to an inexact method has to be performed earlier. Nonetheless, in

this thesis, we are able to show weak parallel scalability for elasticity for up

to 8 000 cores in three dimensions for the two-level method using exact solvers.

Moreover, reduced coarse spaces are available (cf. [72]) which are smaller but

introduce stronger coupling. First results for GDSW were presented at the

17th International Conference on Domain Decomposition Methods in Science

and Engineering in Strobl, Austria, in the summer of 2006, which were then

95

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

published in early 2008 in [71]. That work could be regarded as a generalization

of earlier work by Dryja, Smith, and Widlund [74], cf. [71], and thus named

GDSW (Generalized Dryja-Smith-Widlund) preconditioner.

Iterative solvers for problems on unstructured grids, which are scalable for

elasticity problems to the full range of today’s supercomputers, are parallel

multilevel methods from the family of Domain Decomposition Methods (DDM)

or Multigrid (MG) algorithms. Algebraic Multigrid (AMG) methods have re-

cently scaled to 262 144 cores and 524 288 MPI processes for elasticity using spe-

cial interpolations [14]. FETI-DP domain decomposition methods have scaled

to 524 288 cores [127] and to 786 432 MPI ranks and cores for 63 billion displace-

ment unknowns [126] in nonlinear hyperelasticity, making this the currently

largest range of parallel scalability reported for any linear or nonlinear domain

decomposition method. BDDC methods have scaled to 458 432 cores [11] for

linear elasticity. These latter domain decomposition methods are, however, not

completely algebraic, i.e., they need access to the matrices of the local Neumann

problems.

This is not the case for domain decomposition methods of the overlapping

Schwarz type, and it has been argued that they are therefore easier to con-

struct. Overlapping Schwarz methods have scaled to 8 192 subdomains and

MPI processes (on 8 192 sockets) in [122, 121]. They have also scaled for large

multi-physics problems such as FSI; see [207], where an overlapping Schwarz

method applied to a monolithic system has scaled to 3 072 cores. In [156], a

two-level Newton-Krylov-Schwarz method has been applied to the bidomain

equation using up to 2 048 cores. A hybrid multilevel version of this Schwarz

preconditioner has scaled to 2 048 cores in [175, 176] by Scacchi et. al using up

to 5 levels. Recently, the multilevel Schwarz preconditioner has also been ap-

plied to cardiac electro-mechanical coupling in [52]. Therein, strong scalability

using 4 levels for up to 512 cores has been reported. In [142], a three-level over-

lapping Schwarz method has been shown to be strongly scalable for up to 10 240

cores of an IBM cluster for a three-dimensional linear elasticity problem. Two

special techniques are used to obtain scalability for unstructured meshes: the

partitioning is performed in two stages, and special care is taken to preserve

the features of the boundary also on the coarse levels [142]. The first technique

may also be of help for us. All geometric features of the boundary, however,

are resolved by the GDSW coarse basis functions automatically.

In this chapter, we present a software framework for parallel scalable two-

level overlapping Schwarz methods in Trilinos and discuss strengths and weak-

nesses of our approach. Further, we discuss possible future improvements to

96

2.1. THE GDSW PRECONDITIONER

obtain a framework for overlapping Schwarz methods with improved robust-

ness and scalability. In GDSW, no coarse triangulation is needed but instead

equivalence classes denoted as vertices, edges, and faces have to be defined

and identified algebraically to construct an energy minimizing coarse space; see

Section 2.3.4. Our techniques to identify vertices, edges, and faces in parallel

(see Section 2.3.3) are also of interest for other related preconditioners such

as FETI-DP and BDDC methods [197, 149]. They may also be helpful in the

parallel implementation of related multiscale discretization methods; see, e.g.,

[111, 103] and Chapter 4 for the ACMS method. On the other hand, multi-

scale discretization methods may enrich the GDSW coarse space to improve the

robustness of the preconditioner with respect to highly heterogeneous (multi-

scale) problems. We address this issue in Chapter 5, where the basis functions

of a special finite element method are employed to build a coarse space for a

two-level overlapping Schwarz preconditioner. Therein, different coarse spaces,

including the GDSW coarse space, are tested for different highly heterogeneous

problems.

The remainder of this chapter is organized as follows: first, we give a descrip-

tion of the GDSW two-level overlapping Schwarz preconditioner with a focus on

the application to elasticity problems in Section 2.1. Next, we describe a hybrid

version of the GDSW preconditioner, which is motivated by the balancing pre-

conditioner for the BDDC method [137]. The implementation of our two-level

overlapping Schwarz framework for Trilinos is described in Section 2.3. In

the two following Sections 2.4 and 2.5, the benchmark problems for our numer-

ical tests and the corresponding results, respectively, are described. Finally, a

conclusion is given in Section 2.6.

2.1 The GDSW Preconditioner

Consider the system of linear equations

Ax = b (2.1)

arising from a finite element discretization of a partial differential equation,

such as, a Laplacian or an elasticity equation on a domain Ω, with sufficient

Dirichlet boundary conditions. Let Ω ⊂ R2 or Ω ⊂ R3 be decomposed into

nonoverlapping and corresponding overlapping subdomains, cf. Figure 2.1 for a

decomposition of a cube in 3D. The overlapping decomposition defines the first

level, whereas the nonoverlapping decomposition is used to define the coarse

level of the preconditioner. The GDSW preconditioner [70, 71] is a two-level

97

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Figure 2.1: Nonoverlapping (left) and corresponding overlapping decomposi-

tion (right) of a cube. The overlap has a width of δ = 1h; cf. [107].

additive overlapping Schwarz preconditioner with exact solvers; cf. [197]. Thus,

the preconditioner can be written in the form

M−1
GDSW = ΦA−1

0 ΦT +

N∑
i=1

RT
i Ã

−1
i Ri︸ ︷︷ ︸

=M−1
OS1

, (2.2)

where

A0 = ΦTAΦ (2.3)

corresponds to the coarse problem and the Ãi = RT
i ARi, i = 1, ...N , correspond

to the concurrent local overlapping problems on the fine level (M−1
OS1). Here, the

matrices Ri represent the restriction operators to the overlapping subdomains.

This definition is equivalent to the definition of the standard two-level Schwarz

preconditioner,

M−1
OS2 = RT

0

(
R0AR

T
0

)−1
R0 +

N∑
i=1

RT
i Ã

−1
i Ri,

if Φ = RT
0 . Indeed, for the GDSW preconditioner, the choice of Φ is the main

ingredient. Instead of a coarse Lagrangian finite element basis, which requires

a coarse triangulation, a partition of unity is defined on the interface of the

decomposition, and an energy-minimizing extension to the interior is then used

to define the coarse basis functions.

For the construction of these coarse basis functions, we consider the nonover-

lapping domain decomposition. In particular, for linear elasticity, the interface

98

2.1. THE GDSW PRECONDITIONER

values of the coarse basis functions are the restrictions of the rigid body modes

of each subdomain to the interface of the nonoverlapping decomposition.

In two dimensions, the space of rigid body motions is spanned by two trans-

lations and one rotation (precisely, the linear approximation of the rotation),

and, in three dimensions, by three translations and three linearized rotations.

From the Korn inequalities, we see that we can control the null space of the

operator if we set essential boundary conditions or if we require the solution to

be orthogonal to all rigid body modes. For the formulae of the linearized rigid

body motions, we refer to Section 1.2.2.

Let Γ be the set of degrees of freedom on the interface of the decomposition,

i.e., the degrees of freedom which belong to more than one subdomain, and I

be the set of the remaining degrees of freedom. All degrees of freedom corre-

sponding to nodes on the Dirichlet boundary are considered as interior degrees

of freedom. The basis functions of the GDSW coarse space are given by

Φ =

[
ΦI

ΦΓ

]
=

[
−A−1

II A
T
ΓIΦΓ

ΦΓ

]
, (2.4)

where ΦΓ is defined from restrictions of the rigid body motions to (in 3D)

faces, edges, and vertices of the interface of the nonoverlapping decomposition.

Note that AII = diagNi=1(A
(i)
II) is a block diagonal matrix containing the local

matrices A
(i)
II from the nonoverlapping subdomains. Its inverse can thus be

computed block-wise and in parallel.

To define ΦΓ, the set Γ is divided into M connected components Γj , i.e., edges

and vertices in 2D and faces, edges, and vertices in 3D, which are common to the

same set of subdomains. For each Γj , we construct a matrix ΦΓj such that the

columns are restrictions of the rigid body modes of the neighboring subdomains

to the interface component. Since only two of the three linearized rotations are

linearly independent for straight edges in 3D, one linearly dependent rotation

is removed. For vertices, however, all rotations are omitted from ΦΓj because

the translations are sufficient. Let RΓj be the restriction from Γ onto Γj . Then

the values of the basis functions on Γ can be written as

ΦΓ =
[
RT

Γ1
ΦΓ1 ... RT

ΓM
ΦΓM

]
and the complete matrix Φ is given by (2.4).

99

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

We can now compute the coarse matrix A0 of the GDSW preconditioner

in (2.2) either by means of (2.3) or by

A0 = ΦTAΦ =

[
−A−1

II A
T
ΓIΦΓ

ΦΓ

]T [
AII AT

ΓI

AΓI AΓΓ

][
−A−1

II A
T
ΓIΦΓ

ΦΓ

]

= ΦT
Γ

[
−A−1

II A
T
ΓI

IΓ

]T [
0

SΓΓΦΓ

]
= ΦT

ΓSΓΓΦΓ,

(2.5)

with SΓΓ = AΓΓ − AΓIA
−1
II A

T
ΓI being the Schur complement arising by elimi-

nating the interior degrees of freedom. Note that, as in FETI-DP and BDDC

methods, such Schur complements are typically not built explicitly but the

application to vectors are computed from right to left.

The condition number estimate for the GDSW preconditioner,

κ
(
M−1

GDSWA
)
≤ C

(
1 +

H

δ

)(
1 + log

(
H

h

))2

, (2.6)

holds also for the general case of Ω decomposed into John domains (in two

dimensions), and thus, in particular, for unstructured domain decompositions;

cf. [70, 71].

100

2.2. A HYBRID GDSW PRECONDITIONER

2.2 A Hybrid GDSW Preconditioner

The GDSW preconditioner is related to other preconditioners using energy-

minimizing coarse spaces, e.g., to the balancing preconditioner applied to

BDDC [137], which is defined by

(I − P)M−1
BDDC (I − P)T + UΓ

(
UT
Γ SΓΓUΓ

)−1
UT
Γ , (2.7)

with P = UΓ

(
UT
Γ SΓΓUΓ

)−1
UT
Γ SΓΓ and the BDDC preconditioner MBDDC .

However, the standard coarse space in BDDC is slightly different from the one

in GDSW (the extension is performed to the non-primal variables in BDDC

and to the interior in GDSW).

The preconditioner

M−1
GDSW−hybrid = (I − P0)M

−1
OS1 (I − P0)

T + Φ
(
ΦTAΦ

)−1
ΦT (2.8)

= (I − P0)M
−1
OS1 (I − P0)

T + ΦA−1
0 ΦT

with P0 = Φ
(
ΦTAΦ

)−1
ΦTA, can be motivated from deflation or balancing.

Since the inverse A−1
0 =

(
ΦTAΦ

)−1
has to be computed in the coarse correction

of

M−1
GDSW = M−1

OS1 + ΦA−1
0 ΦT , (2.9)

it can be reused for the projections (I−P0) and (I−P0)
T . However, in a naive

implementation, the forward and backward substitution for the coarse solve is

performed three times in one application of the hybrid preconditioner (a closer

look reveals that this is not necessary), whereas it is performed only once in the

standard (additive) GDSW preconditioner. The multiplicative version in (2.8),

however, does not allow a completely concurrent solution of the levels.

For a symmetric A, we obtain for the Schwarz operator

PGDSW−hybrid = (I − P0)

(
N∑
i=1

RT
i Ã

−1
i Ri

)
(I − P0)

T A+ ΦA−1
0 ΦTA

= (I − P0)

(
N∑
i=1

Pi

)
(I − P0) + P0.

Thus, this preconditioner is equivalent to the hybrid preconditioner 1 from [197,

Section 2.2] with the GDSW coarse space.

101

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW



x1
x2
x3
x4
x5
x6





x1 x1
x2 x2
x3 x3
x4 x4
x5 x5
x6 x6





x1
x2
x3

x4
x5
x6





x1
x2

x3 x3
x4

x5
x6 x6


Figure 2.2: A local distribution, a fully replicated distribution, a linear distri-

bution, and a specific distribution of a vector with some replicated

elements for two processors (left: processor 0/right: processor 1).

The distribution of parallel vectors is defined by an Epetra_Map.

2.3 Implementation

In this section, we discuss our parallel implementation of the GDSW precon-

ditioner as an Epetra_Operator based on Trilinos 12.0; cf. [109]. Note that,

for compatibility with other libraries such as LifeV [90, 92], which we use for

the finite element discretizations, we use the Trilinos Epetra package for the

parallel linear algebra. The more recent Tpetra package provides the same

functionality in templated form with improved support for shared-memory par-

allelism.

2.3.1 Trilinos Software Library

Trilinos is an object oriented C++ library which supports features for

handling large-scale, complex multi-physics engineering, and scientific prob-

lems [109]. Although it is composed of individual, independently maintained

packages, which could also be used separately, Trilinos presents these pack-

ages within a common framework to facilitate the development of efficient

parallel scientific applications. The packages include a basic parallel linear

algebra infrastructure (Epetra, EpetraExt), direct linear solvers (Amesos),

iterative linear solvers (AztecOO, Belos), a suite of useful tools (Teuchos), and

preconditioners such as algebraic overlapping Schwarz (IFPACK).

Trilinos offers very flexible mechanisms to define the parallel distribution

of linear algebra objects by using maps (Epetra_Map); see Figure 2.2. The

distribution can be arbitrary, and a vector entry can be held redundantly by

the processors.

For a distributed matrix, i.e., a specialization of Epetra_Operator such as

an Epetra_CrsMatrix, four maps determine the parallel distribution of the

matrix and the communication pattern for the application of the matrix to

parallel vectors. In particular, the row and the column map determine the

102

2.3. IMPLEMENTATION

distribution of the rows and the columns of the matrix, respectively, and the

domain and the range map correspond to the maps of the source and destination

vectors. For the multiplication or the summation of matrices, compatible maps

are required as well. Such latter operations are part of the package EpetraExt,

which also contains I/O support for reading and writing files in, e.g., MATLAB

or HDF5 formats, a PETSc interface for Trilinos preconditioners, or a function

to form the explicit transpose of a matrix.

To communicate off-process elements of distributed objects, i.e., of matrices

and vectors, Epetra provides the classes Epetra_Export and Epetra_Import.

By specifying the source and the target map, the content of an object is trans-

ferred to a second object with a different distribution. These operations thus

correspond to gather and scatter operations.

The Amesos package provides object-oriented interfaces to direct solvers

(mostly third-party libraries), like LAPACK [6] (Amesos_Lapack), MUMPS [5]

(Amesos_Mumps), and UMFPACK [59] (Amesos_Umfpack), whereas AztecOO

and Belos provide implementations of iterative Krylov methods such as

conjugate gradients (CG), generalized minimal residual (GMRES), and bi-

conjugate gradients stabilized (BiCGSTAB). The package Teuchos includes,

among others, tools for smart pointers (Teuchos::RCP), parameter lists

(Teuchos::ParameterList), timers (Teuchos::TimeMonitor), and command

line processing (Teuchos::CommandLineProcessor).

For finite element based implementations, special vector and matrix classes,

i.e., Epetra_FEVector and Epetra_FECrsMatrix, are provided. These classes

simplify the parallel assembly compared to the corresponding standard classes

Epetra_Vector and Epetra_CrsMatrix – but we have not used them in our

implementation.

In order to apply an operator to multiple vectors, e.g., the multiplication

of an operator with multiple vectors in block-Krylov methods or the solution

of a linear system with multiple right-hand sides, Trilinos provides the

Epetra_MultiVector class, where a single Epetra_MultiVector can contain

any number of vectors with the same length and distribution. The class

Epetra_Vector is in fact a specialization of an Epetra_MultiVector, i.e., a

multivector with a single column.

2.3.2 Structure of the GDSW Implementation

Our GDSW implementation is structured as follows: we have partitioned the

computational work into two separate classes, i.e., the class SOS (special over-

103

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

1 class Epetra_Operator

2 {

3 public:

4 virtual ~Epetra_Operator ()

5 virtual int SetUseTranspose (bool UseTranspose)

= 0

6 virtual int Apply (const Epetra_MultiVector &X,

Epetra_MultiVector &Y) const = 0

7 virtual int ApplyInverse (const

Epetra_MultiVector &X, Epetra_MultiVector &Y) const = 0

8 virtual double NormInf () const = 0

9 virtual const char * Label () const = 0

10 virtual bool UseTranspose () const = 0

11 virtual bool HasNormInf () const = 0

12 virtual const Epetra_Comm & Comm () const = 0

13 virtual const Epetra_Map & OperatorDomainMap () const = 0

14 virtual const Epetra_Map & OperatorRangeMap () const = 0

15 };

Figure 2.3: Public interface of the abstract Trilinos class Epetra_Operator.

lapping Schwarz preconditioner) and the class SOSSetUp (object to perform the

setup of the preconditioner). The class SOSSetUp computes

• the local overlapping subdomain matrices Ãi and

• the global matrix Φ, which contains the coarse basis functions.

In order to build the matrices Ãi, we first export the fully assembled matrix A to

the overlapping distribution (Epetra_Map) and then extract the local portions

of the matrix.

To build the matrix Φ, the interface components have to be identified (cf. Sec-

tion 2.3.3), and the interface values and the local discrete harmonic extensions

of the coarse basis functions have to be computed (cf. Section 2.3.4).

The class SOS is a specialization of the abstract class Epetra_Operator, which

defines the general interface for parallel operators in Trilinos; see Figure 2.3.

In this way, the preconditioner is compatible with, e.g., the iterative solver

packages of Trilinos. The preconditioner class contains the part of the imple-

mentation which relates to the application of the preconditioner, i.e.,

• the computation of the coarse matrix A0 (cf. Section 2.3.5) from Φ and

A,

• the factorizations of local overlapping and the global coarse problems (cf.

Section 2.3.6), and

• the handling of the parallel application of the preconditioner (cf. Sec-

tion 2.3.7).

104

2.3. IMPLEMENTATION

2D Linear Elasticity

Subdom. 4 16 64 256 1024

Time 0.6 s 1.1 s 1.3 s 2.4 s 4.5 s
% 0.5 0.7 0.9 1.5 2.6

3D Linear Elasticity

Subdom. 8 27 64 125 216 343 512 729

Time 0.2 s 0.8 s 0.7 s 0.8 s 1.0 s 1.1 s 1.6 s 2.2 s
% 0.3 0.4 0.3 0.3 0.4 0.4 0.5 0.8

Subdom. 1 000 1 331 1 728 2 197 2 744 3 375 4 096

Time 3.3 s 5.1 s 7.9 s 12.2 s 18.5 s 27.0 s 39.6 s
% 1.0 1.6 2.3 3.4 4.6 6.3 8.1

Table 2.1: Identification of the interface components: time in seconds and as a

percentage of the total time to solution for a linear problem; GDSW

uses UMFPACK for the local problems. The number of subdomains is

identical to the number of cores. Results are for linear elasticity in

2D with H/h = 100 (top) and linear elasticity in 3D with H/h = 6

(bottom) using P2 finite elements. For the corresponding scaling

results; see [105], and Figures 2.15 and 2.17.

Thus, the class SOS can be used to implement any kind of two-level overlap-

ping Schwarz preconditioner, by modifying or replacing the class SOSSetUp.

2.3.3 Identification of Vertices, Edges, and Faces in Parallel

As in BDDC or FETI-DP domain decomposition methods [197, 149], in GDSW

methods, for the setup of the coarse level, the vertices, edges, and (in 3D) faces

of the nonoverlapping domain decomposition have to be efficiently identified

in parallel. The parallel procedure described in the following is thus also of

interest for FETI-DP and BDDC type preconditioners [197, 149].

We have decided to implement our procedure building purely on the parallel

linear algebra tools from Trilinos. First, we transfer for all nodes the subdo-

main numbers they belong to: for each node x ∈ Ω̄, we communicate the index

set

Nx =
{
i : x ∈ Ω̄i

}
to all processes. This is implemented using Epetra_Exporters and

Epetra_IntVectors, i.e., parallel vectors of integers.

105

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Ωi Ωj

Ωk Ωl

s x̃

Figure 2.4: A vertex x̃ of the nonoverlapping decomposition.

N l k j i 1

P1: 0 ... 0 0 0 ... 0 0 0 ... 0 1 0 ... 0 1 0 ... 0

P2: 0 ... 0 0 0 ... 0 1 0 ... 0 0 0 ... 0 0 0 ... 0

P3: 0 ... 0 1 0 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0

Sum: 0 ... 0 1 0 ... 0 1 0 ... 0 1 0 ... 0 1 0 ... 0

Figure 2.5: Computation of the index set Nx for the node x̃ in Figure 2.4:

assuming that the subdomains i and j are assigned to process P1,

the subdomain k is assigned to process P2, and the subdomain l

is assigned to process P3, the local integers 2i + 2j (P1), 2k (P2),

2l (P3), and their summation are shown in binary representation.

In particular, for a node x̃ which belongs to the subdomains Ωi, Ωj (assigned

to process P1), Ωk (assigned to process P2), and Ωl (assigned to process P3),

integers are added up in parallel; see Figures 2.4 and 2.5.

Then, the indices i, j, k, and l can be retrieved locally from the binary

representation of the sum. In general, the total number of subdomains N is

larger than the size of an integer (typically 32 bit or 64 bit), such that multiple

integers have to be used for one node.

Since Nx has to be computed for all nodes in Ω̄, Epetra_IntVector vectors

of length “number of nodes”, with each entry of the vector corresponding to

one node, have to be added up among neighboring processes. The vectors are

distributed according to the map of the nonoverlapping decomposition which

overlaps only in the interface degrees of freedom. The parallel summation of

the integers is then performed using an Epetra_Export object. Therefore, we

first export the vectors to a uniquely distributed Epetra_Map, summing up the

overlapping entries, and then import the vector back to the original map.

When the index sets are available locally on all processes, the multiplicity of

each node, which is just the cardinality of Nx, can be computed locally.

106

2.3. IMPLEMENTATION

To identify the interface components, we categorize all nodes according to the

sets Nx, i.e., all nodes which belong to the same subdomains are categorized

in the same interface component. A single node which belongs to a set of

subdomains (more than one) is a vertex of the decomposition, and all nodes

which belong to the same two subdomains form a face. Among the remaining

nodes, all nodes which belong to more than two subdomains, reside on an edge

of the decomposition. All nodes with multiplicity one are categorized as interior

nodes.

This procedure does not require any geometric information and makes use of

the Epetra_Map of the nonoverlapping decomposition. All operations can be

performed locally once the index sets Nx have been communicated. The map is

typically available from the partitioning of the mesh (or of the system matrix).

However, for standard mesh partitioners such as ParMETIS (see [123]), we can

typically not guarantee that the interface components are connected. Note that

the ordering is not needed for the computation of the GDSW coarse space but

could be necessary in order to compute other kinds of basis functions; e.g., in

order to compute the vertex-specific basis functions of the ACMS coarse space

in Chapter 5.

Let us note that the procedure described here has quadratic complexity but

with a small constant: the number of export/import operations grows linearly

with the number of subdomains, i.e., for 1 024 subdomains 32 export and im-

port operations with 32 bit integers are needed. As this operation tends to be

latency-dominated it can be beneficial to increase the block size from 32 bits

(int) to 64 bits (long) or even 128 bits.

In Table 2.1, we report the timings for the communication and the identifica-

tion of the interface components (using 32 bit integers) for linear elastic model

problems in 2D and 3D. It can be observed that the timings grow significantly

when increasing the number of cores to 4 096. However, the times are still small

compared to the total time to solution, especially for nonlinear problems, where

this procedure has to be performed only once, in a preprocessing step. For a

smaller number of subdomains (< 1 000), the timings are clearly negligible, even

for linear problems.

2.3.4 Computation of the Coarse Basis Functions

The coarse basis functions are given by their interface values and the discrete

harmonic extension to the interior degrees of freedom of the nonoverlapping

subdomains. Thus, when computing the full coarse space, the index sets of

the interface components and the list of coordinates of the local mesh partition

107

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

are needed. Then, the interface values of the coarse space functions can be

computed locally, according to (1.48) and (1.49) in 2D, and (1.50) and (1.51)

in 3D.

Numerical scalability of the preconditioner can be observed without using

rotations in the coarse space; see the numerical results in Section 2.5. For a

large number of subdomains, savings in the coarse problem can overcompensate

an increase in the number of iterations. When neglecting the rotations in the

coarse space, the list of coordinates is not needed.

We insert the interface values into local Epetra_MultiVectors Φ
(i)
Γ . In or-

der to obtain the values at the interior degrees of freedom, discrete harmonic

extensions have to be computed, cf. (2.4). We solve the local linear systems

−A(i)
II Φ

(i)
I = A

(i)
IΓΦ

(i)
Γ

for the Epetra_MultiVectors Φ
(i)
I using some direct solver, e.g., MUMPS (through

the Trilinos interface Amesos_Mumps). The matrices A
(i)
II and A

(i)
IΓ can be

extracted from the fully assembled matrix A.

Having the Epetra_MultiVectors Φ
(i)
Γ and Φ

(i)
I at hand, we extract the values

from the vectors and insert them into the global Epetra_CrsMatrix Φ.

2.3.5 Computation of the Coarse Operator

The computation of the coarse operator is a triple matrix product and thus

equivalent to the construction of Galerkin coarse operators (RAP product) in

Algebraic Multigrid (AMG) methods. This step is currently implemented using

the matrix-matrix products from the EpetraExt package. Potentially, we could

make use of the corresponding routine from the Trilinos AMG package ML for

this operation. However, the EpetraExt routines currently seem to outpace the

ML routines, at least below 4 000 cores [181].

The coarse matrix can be computed either using the fully assembled ma-

trix A, cf. (2.3), or the Schur complement, cf. (2.5). In both cases, global

matrix-matrix multiplications have to be performed. Alternatively, A0 can be

computed subdomain-wise, exploiting

A0 = ΦTAΦ =

N∑
i=1

Φ(i)TA(i)Φ(i) or

A0 = ΦT
ΓSΓΓΦΓ =

N∑
i=1

Φ
(i)T
Γ S

(i)
ΓΓΦ

(i)
Γ ,

108

2.3. IMPLEMENTATION

1 Teuchos ::RCP <Epetra_CrsMatrix > A0tmp(new Epetra_CrsMatrix(Copy ,Phi

->DomainMap (),Phi ->ColMap ().NumMyElements ()));

2 Epetra_CrsMatrix B(Copy ,K->RowMap (),K0 ->NumMyRows ());

3 EpetraExt :: MatrixMatrix :: Multiply (*A,false ,*Phi ,false ,B);

4 EpetraExt :: MatrixMatrix :: Multiply (*Phi ,true ,Tmp ,false ,*A0tmp);

5 Teuchos ::RCP <Epetra_Export > Export0(new Epetra_Export(Phi ->

DomainMap () ,*CoarseMap));

6 Teuchos ::RCP <Epetra_CrsMatrix > A0(new Epetra_CrsMatrix(Copy ,*

CoarseMap ,K->NumGlobalNonzeros ()/K->NumGlobalRows ());

7 A0 ->Export (*A0tmp ,*Export0 ,Insert);

8 A0 ->FillComplete ();

Figure 2.6: Building the coarse matrix A0 using Trilinos.

where A(i) and Φ
(i)
Γ are the local subdomain matrix and the restriction of ΦΓ

to the i-th subdomain, respectively, and S
(i)
ΓΓ = A

(i)
ΓΓ − A

(i)
ΓI

(
A

(i)
II

)−1
A

(i)
IΓ is the

local Schur complement. Here, the local (Neumann) subdomain matrices A(i)

are needed, which cannot be extracted from the fully assembled matrix A.

Thus, even though the matrix-matrix multiplications can be computed purely

locally, their use leads to a less general implementation since they depend on

the availability of the subdomain matrices A(i).

The representation ΦT
ΓSΓΓΦΓ makes better use of a priori knowledge and

involves operators with smaller dimension. However, in the ΦTAΦ-approach, a

better use of a priori knowledge could also be made, i.e., it is known a priori

that in (2.5) the upper block in

[
0

SΓΓΦΓ

]
is zero and, moreover, the product

ΦΓAIΓA
−1
II · 0 does not need to be computed. Currently, however, we do not

exploit this knowledge.

For the computations, we resort to the representation A0 = ΦTAΦ; see (2.3).

The corresponding lines of code are listed in Figure 2.6, where the parallel

matrix-matrix multiplications Z := AΦ and A0 = ΦTZ can be found in lines 3

and 4, respectively. The resulting matrix A0 is stored in a temporary matrix

A0tmp which is then finally assembled using the unique map CoarseMap and an

Epetra_Export object; see line 7 in Figure 2.6.

Let us briefly comment on the performance of the triple matrix-matrix mul-

tiplication ΦTAΦ using EpetraExt. For instance, in the scalability study pre-

sented in Figure 2.20, for the GDSW preconditioner with full coarse space and

4 096 subdomains and cores, the timings for the computation of the matrix-

matrix multiplications are 1.8 s and 2.4 s, respectively. These times correspond

to only about 2% of the total runtime.

109

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Cores
500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s
0

50

100

150

200

250

300
Second level time, P2, overlap 1h (Umfpack)
Second level time, P2, overlap 1h (Mumps)

Figure 2.7: Comparison of timings for the coarse level using MUMPS

(Amesos_Mumps) and UMFPACK (Amesos_Umfpack) as the coarse

level solver. Already for a number of 123 = 1 728 processes,

Amesos_Umfpack runs out of memory.

2.3.6 Factorizations of the Local and the Coarse Problems

When setting up the preconditioner, factorizations of the local overlapping ma-

trices Ãi and the coarse matrix A0 have to be performed. Note that the ma-

trices Ãi are first extracted from A and then stored in local (i.e., sequential)

Epetra_CrsMatrix objects. On the other hand, A0 is a parallel, globally dis-

tributed matrix.

We perform the factorizations of the local matrices using MUMPS (through

Amesos_Mumps), an MPI parallel multifrontal direct solver, in serial mode. The

coarse matrix can be factorized using either MUMPS as well, or using UMFPACK

(Amesos_Umfpack), which is a serial multifrontal direct solver. MUMPS has a

limited range of parallel scalability, especially for three-dimensional problems,

due to the superlinear complexity of the (parallel) algorithm. However, MUMPS

is usually faster (sometimes significantly) than UMFPACK and larger systems can

be solved as a consequence of lower memory consumption; see Figure 2.7.

The number of processes for solving the coarse problem with MUMPS is chosen

in accordance to

1

2
(1 + min {NumProcs,max {NumRows/10 000, NumNonzeros/100 000}}) ,

with NumNonzeros being the number of non-zero entries of the replicated coarse

matrix in which the off-process entries are not assembled yet. In most cases

presented in this thesis, the formula yields roughly the same number of processes

as

1 + min {NumProcs,max {NumRows/10 000, NumNonzeros/100 000}}

110

2.3. IMPLEMENTATION

using the number of non-zero entries of the corresponding assembled coarse

matrix. Both formulae are typically dominated by the number of non-zero

entries; in Figure 2.22, i.e., for unstructured domain decomposition in 3D, the

average number of non-zeros per row can be as large as 820. The formula is

proposed in Amesos_Mumps, and the distribution and communication can be

performed by Amesos_Mumps, accordingly.

However, Amesos_Mumps distributes the matrices according to a unique lin-

ear Epetra_Map. Since the coarse matrix of the GDSW preconditioner is dis-

tributed according to the partition of the mesh, the redistribution of the matrix

in Amesos_Mumps can be expensive for large coarse problems. Thus, we have

modified Amesos_Mumps such that it uses the unique distribution given by our

implementation. For the case of 4 096 subdomains in Figure 2.18, in this way,

the total time for the factorization phase of the coarse matrix could be acceler-

ated from 11.6 s to 1.3 s.

In order to save memory and computational work, we employ the symmetric

mode of MUMPS for the coarse problem. In this case, MUMPS expects to receive

only the lower or the upper triangular part of the matrix (including the diag-

onal) as an input. This feature is not provided in Trilinos version 12.0, and

had to be added to Amesos_Mumps by the author of this thesis.

In parallel, the symmetric mode of MUMPS accelerates the use of Amesos_Mumps

only by a factor of 1.09 for 4 096 subdomains in the weak scalability run pre-

sented in Figure 2.18. However, we would expect a factor of approximately two

for MUMPS in serial mode. Since LifeV does not symmetrize the matrices when

applying Dirichlet boundary conditions, we use the general (non symmetric)

mode for the local problems.

2.3.7 Application of the Preconditioner to a Vector or Multivector

The application of the preconditioner is implemented in two separate steps,

i.e., the application of the first and the application of the second level. The

application of the first level to a vector v involves the parallel summation of the

local contributions, i.e.,
N∑
i=1

RT
i Ã

−1
i Riv.

Here, the multiplications with Ri and RT
i are just the restrictions to the overlap-

ping subdomains and corresponding prolongations to the whole domain. Again,

we use Trilinos exporters/importers to handle the corresponding communica-

tion. The application of the inverse Ã−1
i is performed using MUMPS in serial or

UMFPACK on the local vector Riv; cf. Section 2.3.6.

111

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

The computation of the coarse correction involves

ΦA−1
0 ΦT v,

i.e., the multiplication of v by ΦT , the solution of the coarse problem using

either a serial direct solver (UMFPACK) or a parallel direct solver (MUMPS), cf.

Section 2.3.6, and the multiplication by Φ.

Note that the default behavior implemented in Amesos_Mumps and

Amesos_Umfpack is to transfer the right-hand side vector to rank 0 before

performing the solution step using the corresponding direct solver, i.e., MUMPS

or UMFPACK, respectively. This transfer is, for our use, very costly in terms of

time, although only one vector is communicated. Instead, we transfer the right-

hand side to an intermediate set of processes reducing the time significantly;

we use the same set of ranks as for the distribution of the coarse matrix, cf.

Section 2.3.5. For, e.g., the case of 4 096 subdomains, in the weak scalability

study in Figure 2.18, the transfer of right-hand side vectors took 128.5 seconds

in total, using the default redistribution to rank 0 in Amesos_Mumps. However,

when manually redistributing the vectors according to our new strategy, the

time can be reduced to only 2.1 seconds.

Finally, the corrections computed on both levels are summed,

M−1
GDSWv = ΦA−1

0 ΦT v +

N∑
i=1

RT
i Ã

−1
i Riv.

Concurrent computations of the levels, although not currently implemented,

would generally be possible in the additive preconditioner but not in the hybrid

version, which, on the other hand, is often numerically more efficient.

2.3.8 User-Interface of the Preconditioner

As shown in the code snippet in Figure 2.8, the use of the preconditioner requires

only a few lines of code. In particular, the preconditioner object from the class

SOS and the set up object from the class SOSSetUp have to be created.

To construct these objects, cf. lines 2 and 3, the following data is needed:

M_DomainMap and M_RangeMap are unique domain and range maps of the

preconditioner as a specialization of the Epetra_Operator. The integers

numVectors and numSubdomainsPerProcess are the number of vectors stored

in the Epetra_MultiVector to which the preconditioner is applied to and

the number of subdomains which are assigned to one process, respectively.

When using the preconditioner in an FSI simulation in LifeV, both integers

112

2.3. IMPLEMENTATION

1 if (useFirstLevel || useSecondLevel) {

2 Teuchos ::RCP <SOS::SOS > M_SOS(new SOS::SOS(numVectors ,

numSubdomainsPerProcess ,M_DomainMap ,M_RangeMap));

3 Teuchos ::RCP <SOS::SOSSetUp > M_SOSSetUp(new SOS:: SOSSetUp(

numSubdomainsPerProcess ,dimension ,dofs ,M_rowMatrixTeuchos ,

M_DomainMap));

4 }

5 if (useFirstLevel) {

6 M_SOSSetUp ->FirstLevel(M_ProcessMapOverlap);

7 }

8 if (useSecondLevel) {

9 M_SOSSetUp ->SecondLevel(M_ProcessMapNodes ,M_ProcessMap ,SOS::

LifeVOrdering ,M_LocalDirichletBoundaryDofs ,"Mumps",

useRotations ,M_LocalNodeList);

10 }

11 if (useFirstLevel || useSecondLevel) {

12 M_SOSSetUp ->SetUpPreconditioner(M_SOS ,"Mumps",

secondLevelSolverParamterList ,Type);

13 }

14 if (Print) {

15 M_SOS ->Print(std::cout);

16 }

Figure 2.8: Lines of code to call the GDSW preconditioner (SOS) inside the

FSI code which was implemented using LifeV.

are set to one, i.e., each application involves only one vector and we use one

subdomain per MPI process. The integers dimension and dofs correspond to

the spatial dimension of the considered problem and to the number of degrees

of freedom per node, respectively, and M_rowMatrixTeuchos is the pointer

(Teuchos::RCP) to the Epetra_CrsMatrix corresponding to A.

In order to set up the first level of the preconditioner, for the case of one

subdomain per process, only the Epetra_Map corresponding to the overlapping

decomposition is needed, cf. line 6 in Figure 2.8.

To build the second level, cf. line 9, more data is needed: the Epetra_Map

for the distribution of the nodes, M_ProcessMapNodes, the corresponding

Epetra_Map for the distribution of the degrees of freedom, M_ProcessMap,

a local list of Dirichlet boundary degrees of freedom,

M_LocalDirichletBoundaryDofs (they are treated as interior degrees of

freedom), a string stating the solver which is used to compute the discrete

harmonic extensions (here MUMPS), a boolean variable, useRotations, which

enables the use of rotations for the coarse space, and the list of coordinates of

the local partition of the mesh, M_LocalNodeList (needed for the computation

of the rotations). Additionally, the parameter SOS::LifeVOrdering specifies

the ordering of the degrees of freedom in the matrix. In particular, in LifeV,

113

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

the degrees of freedom are ordered dimension-wise (i.e., all x coordinates first),

in contrast to most other codes where a nodal ordering is used. LifeV provides

implementations of finite element discretizations used for the simulations in

the next section. It is also the base of the FSI software (see also Chapter 1)

which is employed for the simulations in the next chapter, where the parallel

implementation of the GDSW preconditioner is used as a preconditioner for

the structural block in FSI. Therefore, the ordering of the degrees of freedom

used in LifeV is supported by our implementation.

Calling the SetUpPreconditioner method in line 12 finally sets up the

preconditioner object. Here, all information regarding the first and the sec-

ond level are handed from the SOSSetUp object to the preconditioner object,

the first level solver is set (here "Mumps"), and a Teuchos::ParameterList

secondLevelSolverParamterList including the specific configuration of the

solver for the coarse problem (here "Mumps" and its configuration) is specified.

Finally, the parameter Type specifies whether the additive or the hybrid ver-

sion of the preconditioner is used. The lines 14 to 16 are optional. Here,

information about the state of the preconditioner object is printed.

2.3.9 Third-Party Libraries

In addition to the software library Trilinos [109], we make use of other third-

party libraries. For mesh partitioning, we use ParMETIS [123]. The problems

corresponding to the first level are solved using MUMPS [5] (version 4.10.0) in

sequential mode if not marked otherwise. The coarse level is always solved using

MUMPS [5] in parallel mode. For some experiments, we have used UMFPACK [59]

(version 5.3.0) for the first level problems. Of course, other serial or sequential

sparse direct solvers could be used as well.

Note that, for efficiency, some modifications in the Amesos_Mumps interface

class were performed for the results in Sections 2.5.2 and 2.5.4; see Sections 2.3.6

and 2.3.7. The finite element discretizations, which are used in the next section,

are based on the finite element library LifeV (version 3.8.8).

114

2.4. MODEL PROBLEMS

1
0.9

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

01
0.8

0.6
0.4

0.2
0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.9: Solutions of the Laplacian (left) and the linear elastic (right)

model problems using linear finite elements and a mesh with

h = 1/12.

2.4 Model Problems

As benchmark problems for our implementation of the two-level overlapping

Schwarz GDSW preconditioner, we consider different model problems, i.e., a

Laplacian and a linear elastic problem in 2D and 3D, and a fluid-structure

interaction (FSI) model problem in 3D.

The Laplacian and the linear elastic model problems are rather simple prob-

lems on structured grids which are used in order to study the parallel scalability

of our software and to identify potential scalability limits. We examine the effec-

tiveness of the coarse space (we also consider the first level only) and structured

as well as unstructured domain decompositions. In addition, we compare the

additive (standard) and the hybrid version of the preconditioner. The corre-

sponding results are presented in Section 2.5 and include the first results for the

performance of our preconditioner from the short proceedings article [105] as

well as the more extended set of results (especially, in three dimensions) from

the journal publication [107] about the implementation of the GDSW precon-

ditioner.

The FSI problem is a substantially more sophisticated problem, including

monolithic coupling, time dependence, and nonlinearities in fluid and (possibly)

structure; cf. Chapter 1. We consider different material models for the structure,

i.e., a linear elastic (cf. Section 1.2.2), a Neo-Hookean (cf. Section 1.2.3), and a

highly nonlinear anisotropic hyperelastic material model (ΨA, cf. Section 1.2.4).

The FSI problem is considered to study the robustness of our preconditioner

with respect to (almost) realistic applications and to investigate whether the use

of the GDSW preconditioner can improve the performance of our FSI framework

introduced in Chapter 1; previously an algebraic one-level overlapping Schwarz

115

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

preconditioner has been used. The corresponding results from [106] and [107]

are shown in Chapter 3.

2.4.1 Laplacian

We consider a simple scalar elliptic problem in 2D or 3D: find u ∈ H1 (Ω), such

that
∆u = 1 in Ω,

u = 0 on ∂Ω
(2.10)

with Ω = [0; 1]2 ⊂ R2 or Ω = [0; 1]3 ⊂ R3. The solution for the 2D case is

shown in Figure 2.9 (left).

2.4.2 Linear Elasticity

Secondly, we consider, in 2D and 3D: find u ∈ (H1 (Ω))d, such that

divσ = f in Ω,

u = 0 on ∂ΩD

(2.11)

with the dimension d (either 2 or 3), Lamé parameters λ = 1.0
2.6 and µ = 0.3

0.52 ,

and ∂ΩD = ∂Ω ∩ {x = 0}.

For the 2D case, the right-hand side is f = [0.1, 0]T and

Ω = [0; 1]2 ⊂ R2, whereas for the 3D case, the right-hand side is f = [0.1, 0, 0]T

and Ω = [0; 1]3 ⊂ R3. The solution for the 2D case is shown in Figure 2.9

(right).

116

2.5. NUMERICAL RESULTS

2.5 Numerical Results

In this section, we report numerical results for the Laplacian and the linear

elastic benchmark problems described in Section 2.4.

In [105], we have focussed on the parallel scalability of our implementation of

the GDSW preconditioner for a Laplacian and a linear elastic model problem

in 2D. Also, some first 3D results were given, i.e., weak scalability for linear

elasticity in 3D. In the computations in [105], UMFPACK was used for the first

level.

We have significantly extended these results in [107], mostly by results in 3D.

In particular, we have investigated the performance of our implementation of the

GDSW preconditioner with respect to structured and unstructured decomposi-

tions, to reduced coarse spaces, and to the hybrid version of the preconditioner.

In addition to that, the implementation has been improved compared to [105]

using MUMPS on both levels and including modifications to Amesos_Mumps; see

Sections 2.3.6 and 2.3.7. To highlight the improvements in our implementation,

we present the results from [105], cf. Sections 2.5.1 and 2.5.3, as well as the

improved results from [107], cf. Sections 2.5.2 and 2.5.4.

If not stated otherwise, in our numerical experiments, we have a one-to-one

correspondence of subdomains and processor cores, although this is not nec-

essary in our implementation. For all problems, we use GMRES as a Krylov

method with a relative stopping criterion of 10−7, the GMRES iteration is

stopped when ∥rn∥2/∥r0∥2 < 10−7. With ∥ · ∥2 we refer to the corresponding

vector norm. Note that, since LifeV does not ensure symmetry of the sys-

tem matrix when implementing the Dirichlet boundary conditions, we cannot

use conjugate gradients (CG) even for our symmetric positive definite prob-

lems. The use of GMRES also simplifies comparisons with realistic application

problems, where GMRES is often the Krylov method of choice. For the same

reasons, we also cannot use the symmetric mode of MUMPS for the first level

problems. For the coarse problem, however, we use MUMPS in symmetric mode

for the symmetric positive definite model problems.

The numerical results in this section are generated on the JUQUEEN BG/Q

(Blue Gene/Q) supercomputer [191] at JSC Jülich. We use the clang 4.7.2

compiler and the Engineering and Scientific Subroutine Library (ESSL) 5.1. A

node of the JUQUEEN supercomputer has 16 cores (Power BQC, 1.60 GHz)

and 16 GB of RAM.

Let us briefly comment on the performance of the sparse direct solvers

UMFPACK and MUMPS on the BG/Q (Power BQC, 16 cores, 1.60 GHz) architec-

ture compared to the Intel Ivy Bridge (Intel Xeon E5-2650 v2 @ 2.60 GHz)

117

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Cores
100 101 102 103

T
im

e
in

 s

100

101

102

103

Optimal Scaling
h=1/384, P2, overlap 1h
h=1/384, P2, overlap 2h
h=1/768, P1, overlap 1h
h=1/768, P1, overlap 2h
h=1/768, P2, overlap 1h
h=1/768, P2, overlap 2h

Cores
100 101 102 103

T
im

e
in

 s

100

101

102

103

Optimal Scaling
h=1/400, P2, overlap 1h (ParMETIS)
h=1/400, P2, overlap 2h (ParMETIS)
h=1/800, P1, overlap 1h (ParMETIS)
h=1/800, P1, overlap 2h (ParMETIS)
h=1/800, P2, overlap 1h (ParMETIS)
h=1/800, P2, overlap 2h (ParMETIS)

Figure 2.10: Strong parallel scalability on JUQUEEN using the GDSW pre-

conditioner for the model problem of the Laplacian in 2D,

cf. (2.10): structured decomposition (left), ParMETIS decompo-

sition (right). Using UMFPACK for the first level.

architecture for our subdomain matrices in 3D of size around 50 000: using

MUMPS, the local subdomain matrix (assembled using LifeV; H/h = 12;

piecewise quadratic (P2) finite elements; size 46 875 × 46 875; on average 59

non-zeros per row) is factorized (including the solution of one right-hand side)

on JUQUEEN in 37.30 s and on Intel Ivy Bridge in 9.64 s using 918 MB of

memory. Optimized BLAS libraries are used, i.e., ESSL on JUQUEEN and MKL

on Ivy Bridge. The performance of UMFPACK is, surprisingly, significantly worse

for the P2 matrices of this size from LifeV: using UMFPACK, the same matrix as

above is factorized in 203.94 s on JUQUEEN and in 28.43 s on Ivy Bridge using

2027 MB of memory. We therefore use Mumps in our numerical experiments,

except where explicitly noted otherwise.

2.5.1 Strong Scalability in 2D Using Umfpack as the First Level

Solver

Results of strong parallel scalability tests using UMFPACK as the first level solver

are shown in Figures 2.10 and 2.11 for the Laplacian and linear elasticity, re-

spectively, in 2D. For both problems, we present results for structured and

unstructured (ParMETIS) domain decompositions. Note that the results are

computed using the state of the implementation from [105], whereas only the

results for the linear elastic model problem (see Figure 2.11) are presented

therein.

For both model problems, we observe very good strong scalability for different

problem sizes and with negligible deviations for different sizes of overlap (1h or

2h). Since we increase the number of subdomains with the number of processes,

118

2.5. NUMERICAL RESULTS

Cores
100 101 102 103

T
im

e
in

 s

100

101

102

103

Optimal Scaling
h=1/384, P1, overlap 1h
h=1/384, P1, overlap 2h
h=1/384, P2, overlap 1h
h=1/384, P2, overlap 2h
h=1/768, P1, overlap 1h
h=1/768, P1, overlap 2h
h=1/768, P2, overlap 1h
h=1/768, P2, overlap 2h

Cores
100 101 102 103

T
im

e
in

 s

100

101

102

103

Optimal Scaling
h=1/400, P1, overlap 1h (ParMETIS)
h=1/400, P1, overlap 2h (ParMETIS)
h=1/400, P2, overlap 1h (ParMETIS)
h=1/400, P2, overlap 2h (ParMETIS)
h=1/800, P1, overlap 1h (ParMETIS)
h=1/800, P1, overlap 2h (ParMETIS)
h=1/800, P2, overlap 1h (ParMETIS)
h=1/800, P2, overlap 2h (ParMETIS)

Figure 2.11: Strong parallel scalability using the GDSW preconditioner for

the model problem of linear elasticity in 2D, cf. (2.11): struc-

tured decomposition (left), ParMETIS decomposition (right). Us-

ing UMFPACK for the first level.

Cores
100 101 102 103

T
im

e
in

 s

10-1

100

101

102

103

Optimal Scaling
h=1/384, P1, overlap 1h
h=1/384, P1, overlap 2h
h=1/384, P2, overlap 1h
h=1/384, P2, overlap 2h
h=1/768, P1, overlap 1h
h=1/768, P1, overlap 2h
h=1/768, P2, overlap 1h
h=1/768, P2, overlap 2h

Cores
100 101 102 103

T
im

e
in

 s

10-1

100

101

102

103

Optimal Scaling
h=1/400, P1, overlap 1h (ParMETIS)
h=1/400, P1, overlap 2h (ParMETIS)
h=1/400, P2, overlap 1h (ParMETIS)
h=1/400, P2, overlap 2h (ParMETIS)
h=1/800, P1, overlap 1h (ParMETIS)
h=1/800, P1, overlap 2h (ParMETIS)
h=1/800, P2, overlap 1h (ParMETIS)
h=1/800, P2, overlap 2h (ParMETIS)

Figure 2.12: Strong parallel scalability on JUQUEEN using the GDSW pre-

conditioner for the model problem of the Laplacian in 2D,

cf. (2.10): structured decomposition (left), ParMETIS decompo-

sition (right). Using MUMPS for both levels.

we benefit from the superlinearly increasing speed of the sparse direct solvers

when the subdomain size is decreased.

2.5.2 Strong Scalability in 2D Using Mumps as the First Level

Solver

In Figures 2.12 and 2.13, we present results of strong scaling studies for the

Laplacian in 2D and for linear elasticity in 2D, respectively, using the improved

implementation from [107]. In particular, in contrast to the results from Sec-

119

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Cores
100 101 102 103

T
im

e
in

 s

10-1

100

101

102

103

Optimal Scaling
h=1/384, P1, overlap 1h
h=1/384, P1, overlap 2h
h=1/384, P2, overlap 1h
h=1/384, P2, overlap 2h
h=1/768, P1, overlap 1h
h=1/768, P1, overlap 2h
h=1/768, P2, overlap 1h
h=1/768, P2, overlap 2h

Cores
100 101 102 103

T
im

e
in

 s

10-1

100

101

102

103

Optimal Scaling
h=1/400, P1, overlap 1h (ParMETIS)
h=1/400, P1, overlap 2h (ParMETIS)
h=1/400, P2, overlap 1h (ParMETIS)
h=1/400, P2, overlap 2h (ParMETIS)
h=1/800, P1, overlap 1h (ParMETIS)
h=1/800, P1, overlap 2h (ParMETIS)
h=1/800, P2, overlap 1h (ParMETIS)
h=1/800, P2, overlap 2h (ParMETIS)

Figure 2.13: Strong parallel scalability on JUQUEEN using the GDSW pre-

conditioner for the model problem of linear elasticity in 2D,

cf. (2.11): structured decomposition (left), ParMETIS decompo-

sition (right). Using MUMPS for both levels.

Subdomains 4 16 64 256 1024
Total problem, P2 finite elements 160 801 641 601 2 563 201 10 246 401 40 972 801
Avg. first level, P2, overlap 1h 41 207.5 41 612.6 41 815.7 41 917.3 41 968.1
Avg. first level, P2, overlap 2h 42 020 42 837.8 43 248.7 43 454.7 43 557.8
Coarse level 5 33 161 705 2 945
Avg. first level, P2, overlap 1h (ParMETIS) 41 581.5 41 841.9 42 101.8 42 225.7 42 263.1
Avg. first level, P2, overlap 2h (ParMETIS) 42 686.5 43 243.7 43 752.9 43 999.4 44 077.9
Coarse level (ParMETIS) 3 45 241 1 129 4 822

Table 2.2: Number of degrees of freedom of the total mesh, coarse and local

space dimensions of the GDSW preconditioner for the weak scaling

tests in Figure 2.14.

tion 2.5.1, MUMPS is used as the first level solver and improvements have been

applied to Amesos_Mumps; see Sections 2.3.6 and 2.3.7.

Using the improved implementation, we observe very good strong scalabil-

ity as well, with MUMPS being significantly faster only for larger subdomain

problems. When increasing the number of subdomains and decreasing the sub-

domain sizes, the timings for both solvers are comparable. However, MUMPS re-

quires significantly less memory, such that larger problems could be computed

(for a small number of cores); cf. Figures 2.11 and 2.13.

2.5.3 Weak Scalability Using Umfpack as the First Level Solver

In this section, we present the weak scalability results from [105] using UMFPACK

as the solver for the first level of the preconditioner.

120

2.5. NUMERICAL RESULTS

Cores
100 200 300 400 500 600 700 800 900 1000

G
M

R
E

S
 It

er
at

io
ns

0

50

100

150

200

250

300

350

400

450

500

550
OS1, P2, overlap 1h
OS1, P2, overlap 2h
OS1, P2, overlap 1h (ParMETIS)
OS1, P2, overlap 2h (ParMETIS)
GDSW, P2, overlap 1h
GDSW, P2, overlap 2h
GDSW, P2, overlap 1h (ParMETIS)
GDSW, P2, overlap 2h (ParMETIS)

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

0

50

100

150

200

250

300
OS1, P2, overlap 1h
OS1, P2, overlap 2h
OS1, P2, overlap 1h (ParMETIS)
OS1, P2, overlap 2h (ParMETIS)
GDSW, P2, overlap 1h
GDSW, P2, overlap 2h
GDSW, P2, overlap 1h (ParMETIS)
GDSW, P2, overlap 2h (ParMETIS)

Figure 2.14: Weak parallel scalability on JUQUEEN for model problem of the

Laplacian in 2D, cf. (2.10), using P2 finite elements: number of

iterations (left), runtimes (right). For the structured and the

unstructured decomposition (ParMETIS), we have approximately

40 000 degrees of freedom per subdomain. Using UMFPACK for the

first level.

Cores
100 200 300 400 500 600 700 800 900 1000

G
M

R
E

S
 It

er
at

io
ns

0

50

100

150

200

250

300

350

400

450

500
OS1, P2, overlap 1h
OS1, P2, overlap 2h
OS1, P2, overlap 1h (ParMETIS)
OS1, P2, overlap 2h (ParMETIS)
GDSW, P2, overlap 1h
GDSW, P2, overlap 2h
GDSW, P2, overlap 1h (ParMETIS)
GDSW, P2, overlap 2h (ParMETIS)

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

0

100

200

300

400

500

600

700

800
OS1, P2, overlap 1h
OS1, P2, overlap 2h
OS1, P2, overlap 1h (ParMETIS)
OS1, P2, overlap 2h (ParMETIS)
GDSW, P2, overlap 1h
GDSW, P2, overlap 2h
GDSW, P2, overlap 1h (ParMETIS)
GDSW, P2, overlap 2h (ParMETIS)

Figure 2.15: Weak parallel scalability on JUQUEEN for model problem of lin-

ear elasticity in 2D, cf. (2.11), using P2 finite elements: number

of iterations (left), runtimes (right). For the structured and the

unstructured decomposition (ParMETIS), we have approximately

80 000 degrees of freedom per subdomain. Using UMFPACK for the

first level.

2.5.3.1 Weak Scalability in 2D Using Umfpack as the First Level Solver

For the weak scalability tests, comparing the GDSW preconditioner with only

the first level of the preconditioner (OS1), we use five different meshes with

H/h = 100 and an increasing number of subdomains; see Tables 2.2 and 2.3

for the corresponding problem sizes. The results of weak scaling tests from 4

121

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Subdomains 4 16 64 256 1024
Total problem, P2 321 602 1 286 408 5 126 402 20 492 802 81 945 602
Avg. first level, P2, overlap 1h 82 415 83 225.2 83 631.3 83 834.6 83 936.3
Avg. first level, P2, overlap 2h 84 040 85 675.5 86 497.4 86 909.3 87 115.6
Coarse level 14 90 434 1 890 7 874
Coarse level, no rotations 10 66 322 1 410 5 890
Avg. first level, P2, overlap 1h (ParMETIS) 83 163 83 683.9 84 203.6 84 451.3 84 526.2
Avg. first level, P2, overlap 2h (ParMETIS) 85 373 86 487.4 87 505.8 87 998.7 88 155.9
Coarse level (ParMETIS) 9 120 633 2 950 12 567
Coarse level, no rotations (ParMETIS) 6 90 482 2 258 9 644

Table 2.3: Number of degrees of freedom of the total mesh, coarse and local

space dimensions of the GDSW preconditioner for the weak scaling

tests in Figure 2.15 and Figure 2.16.

to 1024 processor cores for both model problems and an overlap of δ = 1h and

of δ = 2h are presented in Figures 2.14 and 2.15. The GSDW preconditioner is

numerically and parallel scalable, i.e., the number of iterations is bounded, both,

for structured and unstructured decompositions, and the time to solution grows

only slowly. The one-level preconditioner (OS1) does not scale numerically,

and the number of iterations grows very fast. Indeed, considering unstructured

decompositions for the scalar and the elastic model problems, no convergence

is obtained for more than 256 and 16 subdomains, respectively. More precisely,

the maximum number of 500 iterations is exceeded in these cases. This is, of

course, also due to the comparably small overlap. As a result of the better

constant in (2.6), for the GDSW preconditioner, we observe better convergence

for structured decompositions. Note that for the case of four (2×2) subdomains,

the overlapping subdomains are significantly smaller.

A detailed analysis of different phases of the method is presented for linear

elasticity in 2D in Figure 2.16. We consider the standard full GDSW coarse

space as well as the GDSW coarse space without rotations, i.e., the rotation

is omitted from the coarse space for each edge. This latter case is not covered

by the theoretical bound (2.6), but the results indicate numerical and parallel

scalability.

2.5.3.2 Weak Scalability for Linear Elasticity in 3D Using Umfpack as the

First Level Solver

We present results of weak scalability runs for a linear elastic model problem in

3D from 8 to 4 096 cores. Therefore, we consider a structured decomposition of

a cube and use the full GDSW coarse space in 3D. In Figure 2.17, we present

the number of iterations and the timings using P2 elements and an overlap

δ of one or two elements. The number of iterations seems to be bounded by

122

2.5. NUMERICAL RESULTS

Cores
100 200 300 400 500 600 700 800 900 1000

G
M

R
E

S
 It

er
at

io
ns

50

100

150

200

250

300

350

400
P2, overlap 1h
P2, overlap 2h
No rotations, P2, overlap 1h
No rotations, P2, overlap 2h

Cores
100 200 300 400 500 600 700 800 900 1000

G
M

R
E

S
 It

er
at

io
ns

0

50

100

150

200

250

300

350

400

P2, overlap 1h (ParMETIS)
P2, overlap 2h (ParMETIS)
No rotations, P2, overlap 1h (ParMETIS)
No rotations, P2, overlap 2h (ParMETIS)

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

100

200

300

400

500

600

700

800
Total time, P2, overlap 1h
First level time, P2, overlap 1h
Coarse level time, P2, overlap 1h
Total time, no rotations, P2, overlap 1h
First level Time, no rotations, P2, overlap 1h
Coarse level Time, no rotations, P2, overlap 1h

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

0

100

200

300

400

500

600

700

800
Total time, P2, overlap 1h (ParMETIS)
First level time, P2, overlap 1h (ParMETIS)
Coarse level time, P2, overlap 1h (ParMETIS)
Total time, no rotations, P2, overlap 1h (ParMETIS)
First level Time, no rotations, P2, overlap 1h (ParMETIS)
Coarse level Time, no rotations, P2, overlap 1h (ParMETIS)

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

0

100

200

300

400

500

600

700
Total time, P2, overlap 2h
First level time, P2, overlap 2h
Coarse level time, P2, overlap 2h
Total time, no rotations, P2, overlap 2h
First level time, no rotations, P2, overlap 2h
Coarse level time, no rotations, P2, overlap 2h

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

0

100

200

300

400

500

600

700
Total time, P2, overlap 2h (ParMETIS)
First level time, P2, overlap 2h (ParMETIS)
Coarse level time, P2, overlap 2h (ParMETIS)
Total time, no rotations, P2, overlap 2h (ParMETIS)
First level time, no rotations, P2, overlap 2h (ParMETIS)
Coarse level time, no rotations, P2, overlap 2h (ParMETIS)

Figure 2.16: Weak parallel scalability using the GDSW preconditioner for the

model problem of linear elasticity in 2D, cf. (2.11): structured

(left) and unstructured decomposition (right); number of iter-

ations (top), timings for an overlap of δ = 1h (middle), and

timings for an overlap of δ = 2h (bottom). For the structured

and the unstructured (ParMETIS) decomposition we use a subdo-

main size of roughly 40 000 degrees of freedom. Using UMFPACK

for the first level.

a constant number, whereas the solution time increases, i.e., the cost of the

(parallel) sparse direct solver used for the coarse problem is noticeable in 3D.

123

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

0

10

20

30

40

50

60
P2, overlap 1h
P2, overlap 2h

Cores
500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s

0

100

200

300

400

500

600

700
Total time, P2, overlap 1h
First level time, P2, overlap 1h
Coarse level time, P2, overlap 1h
Total time, P2, overlap 2h
First level time, P2, overlap 2h
Coarse level time, P2, overlap 2h

Figure 2.17: Weak parallel scalability using the GDSW preconditioner for the

problem of linear elasticity in 3D: number of iterations (left),

timings (right). We use a subdomain size of H/h = 6 and P2

finite elements. Using UMFPACK for the first level.

Note that by using MUMPS as the first level solver the total time could be

reduced and the parallel scalability could be improved significantly [107]; cf.

Section 2.5.4 and, in particular, Figures 2.19 and 2.20 for the corresponding

results.

2.5.4 Weak Scalability Using Mumps as the First Level Solver

In this section, we present the improved weak scalability results from [107],

where MUMPS has been used to solve the first level problems and parts of

Amesos_Mumps have been modified to improve the parallel performance of the

coarse solves; see Sections 2.3.6 and 2.3.7.

Figures 2.18 and 2.19 show weak parallel scalability for linear elasticity in

2D and 3D, respectively, using structured domain decompositions. For 2D, we

achieve a parallel efficiency of 87 % scaling up from a single node (16 cores) to

4 096 cores; see Figure 2.18. We also observe very good weak scalability from

64 to 8 000 processor cores with a parallel efficiency of 70 % for 3D linear elas-

ticity; see, e.g., Figure 2.19 (right). The largest three-dimensional linear elastic

problem has 334 million unknowns. In the computations in Figure 2.19, we use

four MPI ranks for each node, i.e., we can use up to 4 GB of memory for each

MPI rank. Figure 2.20, however, shows weak scalability in three dimensions

for smaller overlapping problems, i.e., H/h = 15 and P1 finite elements, using

16 MPI ranks for each node, i.e., one MPI rank for each node. The largest

problem has 42 million unknowns and can be solved in 102 seconds. Here, the

parallel efficiency stays above 55 %.

124

2.5. NUMERICAL RESULTS

Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

0

50

100

150
Linear elasticity, H/h=100, P2, overlap 2h
Linear elasticity, H/h=100, P2, overlap 2h

Cores
500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s

0

50

100

150

200

250
Linear elasticity, H/h=100, Total time, P2, overlap 1h
Linear elasticity, H/h=100, First level time, P2, overlap 1h
Linear elasticity, H/h=100, Second level time, P2, overlap 1h
Linear elasticity, H/h=100, Total time, P2, overlap 2h
Linear elasticity, H/h=100, First level time, P2, overlap 2h
Linear elasticity, H/h=100, Second level time, P2, overlap 2h

Subdomains (# Cores): 16 64 256 1 024 4 096

δ = 1h Time 127.1 s 131.0 s 133.8 s 139.5 s 146.2 s
Effic. 91 % 90 % 87 % 83 % 79 %

δ = 2h Time 116.0 s 117.9 s 121.0 s 126.6 s 132.6 s
Effic. 100% 98 % 96 % 92 % 87 %

Figure 2.18: Weak parallel scalability on JUQUEEN using the GDSW pre-

conditioner for linear elasticity in 2D: number of iterations (left)

and timings (right). We use a subdomain size of H/h = 100

and P2 finite elements. Using MUMPS for both levels and 16 MPI

ranks per node. The baseline for the efficiency is the fastest time

on 16 cores.

While the numerical scalability is almost perfect, the parallel efficiency de-

creases slightly as a result of the increasing time spent on the second level.

This is due to the increasing dimension of the coarse space and the superlinear

complexity of the parallel direct solver MUMPS, which does not exhibit perfect

scalability. On the other hand, the time spent on the first level stays almost

constant.

125

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Cores
1000 2000 3000 4000 5000 6000 7000 8000

G
M

R
E

S
 It

er
at

io
ns

0

10

20

30

40

50

60

70

80
Linear elasticity, H/h=12, P2, overlap 1h
Linear elasticity, H/h=12, P2, overlap 2h

Cores
1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
in

 s

0

100

200

300

400

500

600

700

800

900

1000
Linear elasticity, H/h=12, Total time, P2, overlap 1h
Linear elasticity, H/h=12, First level time, P2, overlap 1h
Linear elasticity, H/h=12, Second level time, P2, overlap 1h
Linear elasticity, H/h=12, Total time, P2, overlap 2h
Linear elasticity, H/h=12, First level time, P2, overlap 2h
Linear elasticity, H/h=12, Second level time, P2, overlap 2h

Subdomains (# Cores) : 64 512 1 728 4 096 8 000

δ = 1h Time 358.1 s 374.1 s 386.7 s 418.4 s 512.1 s
Effic. 100% 96 % 93 % 86 % 70 %

δ = 2h Time 480.5 s 497.9 s 513.9 s 549.3 s 633.6 s
Effic. 75 % 72 % 70 % 65 % 57 %

Figure 2.19: Weak parallel scalability on JUQUEEN using the GDSW pre-

conditioner for linear elasticity in 3D: number of iterations (left),

timings (right). We use a subdomain size of H/h = 12 and P2

finite elements. Using MUMPS for both levels. Four MPI ranks

per node. The baseline for the efficiency is the fastest time on

64 cores.

126

2.5. NUMERICAL RESULTS

Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

0

10

20

30

40

50

60

70
Linear elasticity, H/h=15, P1, overlap 1h
Linear elasticity, H/h=15, P1, overlap 2h

Cores
500 1000 1500 2000 2500 3000 3500 4000

T
im

e
in

 s

0

20

40

60

80

100

120

140

160

180

200
Linear elasticity, H/h=15, Total time, P1, overlap 1h
Linear elasticity, H/h=15, First level time, P1, overlap 1h
Linear elasticity, H/h=15, Second level time, P1, overlap 1h
Linear elasticity, H/h=15, Total time, P1, overlap 2h
Linear elasticity, H/h=15, First level time, P1, overlap 2h
Linear elasticity, H/h=15, Second level time, P1, overlap 2h

Subdomains (# Cores) : 64 512 1 728 4 096

δ = 1h Time 56.0 s 62.6 s 74.4 s 101.5 s
Effic. 100% 89 % 75 % 55 %

δ = 2h Time 63.8 s 71.1 s 83.5 s 110.6 s
Effic. 88 % 79 % 67 % 51 %

Figure 2.20: Weak parallel scalability on JUQUEEN using the GDSW pre-

conditioner for linear elasticity in 3D: number of iterations (left),

timings (right). We use a subdomain size of H/h = 15 and P1

finite elements. Using MUMPS for both levels. 16 MPI ranks per

node. The baseline for the efficiency is the fastest time on 64

cores.

127

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

20

40

60

80

100

120

140

160

180

200
OS1, P2, overlap 2h
GDSW, P2, overlap 2h
GDSW, no rotations, P2, overlap 2h
GDSW, no edges, P2, overlap 2h
GDSW, no faces, P2, overlap 2h

Figure 2.21: Numerical scalability of variants of the GDSW preconditioner

for the model problem of linear elasticity in 3D, cf. (2.11): one-

level overlapping Schwarz preconditioner (OS1), GDSW with

full coarse space, GDSW neglecting rotations, GDSW neglecting

edge-based coarse functions, and GDSW neglecting face-based

coarse functions. We use structured domain decompositions with

H/h = 6 and P2 finite elements. The computations are per-

formed on 16 MPI ranks for each node on JUQUEEN and the

local overlapping problems are solved using UMFPACK.

2.5.4.1 Reduction of the Coarse Space

Figure 2.21 shows a numerical scalability study for the linear elastic model

problem in 3D. We present the number of iterations for an overlap of 2h for a

comparison of the one-level overlapping Schwarz preconditioner, GDSW with

the full coarse space, and GDSW neglecting either the rotation-based (cf. (1.49)

and (1.51)), the edge-based, or the face-based coarse space functions.

In accordance with the results in [105] for the 2D case, also in 3D, we observe

numerical scalability of the GDSW preconditioner even if the rotation-based

coarse basis functions are omitted from the coarse space, cf. Figure 2.21. This

is remarkable, since the dimension of the coarse space is reduced substantially;

see Table 2.4. However, if the coarse space is reduced further (by omitting the

edge-based or the face-based basis functions), which is possible in the related

FETI-DP and BDDC methods, numerical scalability is lost for the GDSW

preconditioner as can be expected from the theory, which is based on a partition

of unity; see Figure 2.21.

128

2.5. NUMERICAL RESULTS

Subdomains Full No edges No faces No rotations

8 105 75 33 57
27 528 348 204 294
64 1 485 945 621 837

125 3 192 1 992 1 392 1 812
216 5 865 3 615 2 625 3 345
343 9 720 5 940 4 428 5 562
512 14 973 9 093 6 909 8 589
729 21 840 13 200 10 176 12 552

1 000 30 537 18 387 14 337 17 577
1 331 41 280 24 780 19 500 23 790
1 728 54 285 32 505 25 773 31 317
2 197 69 768 41 688 33 264 40 284
2 744 87 945 52 455 42 081 50 817
3 375 109 032 64 932 52 332 63 042
4 096 133 245 79 245 64 125 77 085

Table 2.4: Coarse space dimensions of the GDSW preconditioner for the weak

scaling tests in Figure 2.21: GDSW with full coarse space, GDSW

neglecting edge-based coarse functions, GDSW neglecting face-

based coarse functions, and GDSW neglecting rotations.

Cores
100 200 300 400 500 600 700 800 900 1000

G
M

R
E

S
 It

er
at

io
ns

0

20

40

60

80

100

120

140

160

180

200
Overlap 2h
No rotations, overlap 2h

Cores
100 200 300 400 500 600 700 800 900 1000

T
im

e
in

 s

0

500

1000

1500
Total time, GDSW, overlap 2h
First level time, GDSW, overlap 2h
Coarse level time, GDSW, overlap 2h
Total time, no rotations, P1, overlap 2h
First level Time, no rotations, P1, overlap 2h
Coarse level Time, no rotations, P1, overlap 2h

Figure 2.22: Weak parallel scalability using the GDSW preconditioner for the

model problem of linear elasticity in 3D for unstructured decom-

positions, cf. (2.11): number of iterations (left), and timings for

overlap δ = 2h (right). We use P2 finite elements and the subdo-

main sizes listed in Table 2.5. The computations are performed

on 4 MPI ranks for each node on JUQUEEN.

2.5.4.2 Unstructured Domain Decomposition

As expected from the theory, cf. [70, 71], the GDSW preconditioner scales well

numerically also for unstructured domain decompositions; see Figure 2.22. For

129

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

Subdomains 64 216 512 1 000

Total problem, P2 1 594 324 5 314 683 12 519 843 24 361 803

Avg. first level, P2, overlap 2h 60 159.8 64 043.3 66 249.1 67 520.5

Full coarse problem 4 611 19 829 53 096 111 296

Coarse problem, no rotations 2 613 11 337 30 516 64 056

Table 2.5: Coarse and local space dimensions of the GDSW preconditioner for

the weak scaling tests in Figure 2.22, i.e., linear elasticity in 3D for

an unstructured decomposition (ParMETIS).

GDSW with the full coarse space, the number of iterations is only slightly

larger than for structured domain decompositions, cf. Figure 2.19. Neglecting

rotations, the GDSW preconditioner is numerically less robust with respect to

an unstructured decomposition.

It is important to note that the dimension of the coarse space grows by more

than a factor of three compared to the case of a structured decomposition as

a consequence of a much higher number of faces, edges, and vertices in the

decomposition; see Figures 2.4 and 2.5. Thus, the time spent on the coarse

level grows substantially, and, for a large number of cores and the full coarse

space, it starts to dominate the total time of the computation. However, when

omitting the rotations from the coarse space, the dimension of the coarse space

is reduced significantly (here, by more than a factor of 1.7). Thus, even though

the number of iterations is increased by a factor of approximately two, the total

time is reduced significantly compared to the full coarse space.

2.5.4.3 Hybrid GDSW Preconditioner

The hybrid version of the GDSW preconditioner (additive on the first level,

multiplicative between levels; cf. Section 2.2), involves additional computational

work in each iteration, compared to the standard (additive) GDSW precondi-

tioner. However, as can be seen in Figure 2.23, the number of iterations is

reduced significantly, i.e., by approximately 10 to 20 iterations. As a conse-

quence, the total computation time for both preconditioners is roughly the

same, whereby the time for the hybrid version depends to some extent on the

implementation.

In particular, when using the naive implementation of the hybrid precondi-

tioner in the simulation of 8 000 subdomains with an overlap of 1h in Figure 2.19,

the total simulation time is 538.3 s. Combining the coarse level solve for the

application of the coarse Schwarz operator P0 and the first projection (I −P0),

the time can be reduced to 506.1 s by saving one solve on the coarse level. Fol-

130

2.5. NUMERICAL RESULTS

Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

0

10

20

30

40

50

60

70
GDSW, P2, overlap 2h
Hybrid GDSW, P2, overlap 2h

Cores
500 1000 1500 2000 2500 3000 3500 4000

G
M

R
E

S
 It

er
at

io
ns

0

10

20

30

40

50

60

70
GDSW, P2, overlap 2h
Hybrid GDSW, P2, overlap 2h

Figure 2.23: Numerical parallel scalability using the GDSW preconditioner

for the model problems of the Laplacian in 3D (left), cf. (2.10),

and of linear elasticity in 3D (right), cf. (2.11). We use structured

domain decomposition with H/h = 12 for the Laplacian, H/h =

6 for linear elasticity, and P2 finite elements. The computations

are performed on 16 MPI ranks for each node on JUQUEEN and

the local overlapping problems are solved using UMFPACK.

lowing a deflation formulation, the computational cost could be reduced further

by omitting the rightmost projection and removing the balancing term from the

iteration.

131

CHAPTER 2. A PARALLEL IMPLEMENTATION OF GDSW

2.6 Conclusion

Our parallel implementation of the GDSW preconditioner is strongly and

weakly scalable to thousands of cores for two- and three-dimensional elastic-

ity problems. Very good numerical scalability can be observed, even when

neglecting the linearized rotations in the coarse space. For a large number of

subdomains (and cores) the cost of the coarse problem becomes significant,

even if a parallel sparse direct solver is used. This is especially the case for

unstructured domain decompositions, where the coarse space grows faster

and is more dense. A two-stage partitioning of the computational domain,

as proposed in [142], may help to obtain decompositions with better quality.

Techniques to further reduce the size of the coarse space [72] could also be

helpful.

Hybrid MPI/OpenMP parallization, i.e., a threaded sparse solver using, e.g.,

four to eight threads on each subdomain [128] (see also [102, 122]) can serve

to extend the scalability beyond the range presented in this thesis by allowing

larger subdomains. A simple approach such as using a threaded BLAS with

MUMPS or UMFPACK will not be successful.

A parallel multilevel extension may also seem like a natural next step. Im-

provements in constructing the coarse problem, which are also most important

for the unstructured case, may also still be possible, e.g., building on the dis-

cussion in Section 2.3.5.

However, even in very challenging model problems (e.g., as a preconditioner

for the structural block in FSI simulations) the preconditioner proves to be

very robust and significantly faster than our previous algebraic default precon-

ditioner, while being constructable from the assembled system matrix; see Sec-

tion 3.2. The implementation is very flexible and the use of the preconditioner

requires just a few lines of code in the Trilinos framework; see Section 2.3.8.

Adaptive coarse spaces may also be of interest to be used for the coarse

space of a parallel two-level overlapping Schwarz preconditioner. Therefore, we

refer to Chapter 5, where the interface basis functions from the finite element

space of a special (multiscale) finite element method are employed in the coarse

space of a two-level Schwarz preconditioner on structured decompositions in 2D.

There, a serial MATLAB implementation of the GDSW preconditioner is used to

test the robustness with respect to heterogeneous problems. Whereas, for some

heterogeneous problems, the GDSW preconditioner seems to be robust, for

more difficult problems additional enrichment of the coarse space is necessary

to sustain the robustness. The results for such enriched coarse spaces presented

in Chapter 5 are still preliminary, but also a version which can be used in a

132

2.6. CONCLUSION

purely algebraic way, just utilizing the fully assembled global stiffness matrix,

is presented. In this regard, basis functions of this type would fit well with the

parallel implementation presented here.

133

3 Application of the GDSW

Preconditioner to Fluid-Structure

Interaction Problems

In the simulations in Chapter 1, more precisely, in Section 1.5, one-level al-

gebraic additive overlapping Schwarz preconditioners have been used to ap-

proximate the inverses of the fluid, the structural, and the geometry blocks in

Fluid-Structure Interaction (FSI). In particular, Trilinos IFPACK [173], i.e., a

parallel algebraic one-level overlapping Schwarz preconditioner, has been used.

However, it is well-known from theory [186, 197] and it has been observed in the

last chapter, in Section 2.5, that one-level overlapping Schwarz preconditioners

are not numerically scalable. In addition to that, the algebraic overlap makes

IFPACK less robust than overlapping Schwarz preconditioners with a geometric

overlap.

The GDSW preconditioner, a two-level Schwarz preconditioner with geomet-

ric overlap, has been proven to be numerically scalable and robust with respect

to unstructured decompositions in elasticity problems; see Section 2.5. Thus,

it seems natural to utilize our implementation of the GDSW preconditioner,

which has already been described in Chapter 2, as a preconditioner for the

structure in FSI simulations. Especially for sophisticated material models, cf.,

e.g., Sections 1.2.4 and 1.2.5, the use of a suitable preconditioner would improve

the performance of the FSI algorithm significantly.

In [105], first numerical results of our parallel GDSW implementation for a

Neo-Hookean structure in FSI have been presented, comparing the GDSW pre-

conditioner to our default preconditioner for the structural block, i.e., Trilinos

IFPACK; see also [23, 24] and Chapter 1. In [106], the comparison has been ex-

tended to a whole study for pressure wave driven FSI simulations: for different

time steps and material models, IFPACK has been compared to the first level

of our implementation, the GDSW preconditioner neglecting rotations in the

coarse space, and the GDSW preconditioner with the full coarse space. These

results have been recalled and extended by the hybrid version of the precondi-

tioner and by results using a smooth ramp at the inflow in [107]. In addition

135

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

to that, in [106], we showed strong parallel scalability results, and we discussed

that the shape of the geometry can have a significant influence on the scalability

of the FSI solver.

Here, we report on all results for our parallel implementation of GDSW used

as a preconditioner for the structural block in FSI from [105], [106], and [107]: a

comparison of different overlapping Schwarz preconditioners for the structural

block in FSI simulations with different settings, cf. Section 3.2, and strong

scalability studies of FSI simulations using GDSW as the preconditioner for the

structural block, cf. Section 3.3. The settings for the simulations are described

in Section 3.1, and a conclusion is given in Section 3.4.

The computations in this chapter have been performed the JUQUEEN

BG/Q supercomputer [191] at JSC Jülich and on the Cray XT6m at Uni-

versität Duisburg-Essen. On the JUQUEEN supercomputer, we use the

clang 4.7.2 compiler and the Engineering and Scientific Subroutine Library

(ESSL) 5.1. A node of the JUQUEEN supercomputer has 16 cores (Power

BQC, 1.60 Ghz) and 16 GB of RAM. On the Cray XT6m supercomputer, we

use the Intel compiler 11.1 and the Cray Scientific Library (libsci) 10.4.4.

A node of the Cray XT6m supercomputer has 24 GB of RAM and two sockets,

each with 12 cores (Opteron 6168, 1.9 GHz).

136

3.1. SIMULATION SETTINGS

Inflow

Outflow Mesh #1: Interior radius of the structure 0.15 cm
Outer radius of the structure 0.21 cm
Length 2.5 cm

Mesh #2: Interior radius of the structure 0.08 cm
Outer radius of the structure 0.1 cm
Length 5 cm

Mesh #3: Interior radius of the structure 0.08 cm
Outer radius of the structure 0.11 cm
Length 10 cm

Figure 3.1: Geometry of the FSI problem. The number of degrees of freedom

is almost identical for all geometries and well-balanced between

fluid (F) and structure (S); cf. Table 3.1.

3.1 Simulation Settings

We consider the FSI problem, as described in Section 1.1. In contrast to [23, 24]

and Section 1.5, where a monolithic Convective Explicit (CE) time discretiza-

tion scheme was used, a monolithic fully implicit (FI) scheme is used here;

see [13, 56, 65] and Section 1.1.2. For the spatial discretization, we use P2-P1

elements for the fluid, P2 elements for the structure, and P2 elements for the

geometry problem. This corresponds to the “P2” discretization used in [24] and

Chapter 1. The fluid and the structural meshes are, again, conforming on the

FSI interface.

We solve the linearized systems using a GMRES iteration with the FaCSI

preconditioner [65], which is based on a factorization of the Dirichlet-Neumann

preconditioner matrix PDN ; cf. Section 1.1.3. The fluid block is treated fur-

ther by static condensation of the interface degrees of freedom and the use of

a SIMPLE [160] preconditioner for the fluid block; see [65] and Section 1.1.3.

The inverses appearing in the application of the FaCSI preconditioner are then

replaced by overlapping Schwarz preconditioners for geometry, fluid, and struc-

ture, separately. The default preconditioner for all blocks is IFPACK. The

systems from LifeV use block coordinate numbering, i.e., all x variables first.

Our parallel preconditioner has two potential advantages over IFPACK: it uses

a geometric overlap and it can use a coarse space for better robustness and

improved numerical scalability. For the strong scalability tests, we consider

three different meshes with different geometries; cf. Figure 3.1 and Table 3.1,

whereas we only use Mesh #1 for the comparison of the preconditioners for the

structure.

We apply zero-displacement Dirichlet boundary conditions to the structure

at the inlet and the outlet as wells as an inflow boundary condition to the fluid.

In particular, we use two different types of inflow conditions, i.e., a pressure

137

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

Mesh Velocity (F) Pressure (F) Displacement (S) Displacement (G)

#1 393 903 17 261 379 080 393 903
#2 401 763 17 775 373 032 401 763
#3 376 623 17 352 346 320 376 623

Table 3.1: Number of degrees of freedom of the discretization of the tube in

Figure 3.1.

Time in s
0 0.002 0.004 0.006 0.008 0.01

In
flo

w
 F

lo
w

 R
at

e
in

 c
m

3
/s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.2: Cosine-type inflow boundary condition.

wave and a cosine-type ramp inflow boundary condition. The pressure wave

results from a constant normal stress σ · n = 1.33 kPa, which is applied to the

fluid inflow for t ≤ 0.003 s. In the cosine-type inflow boundary condition, a

parabolic inflow velocity profile is prescribed such that the inflow flow rate Q

is given by

Q(t) =
QSTEADY

2

(
1 − cos

(π
T
t
))

(3.1)

for 0 ≤ t ≤ T ; the shape of the profile is also shown in Figure 3.2. Here, we use

T = 0.01 s; cf. [105, 106, 107].

We use three different material models for the arterial wall, i.e., a linear

elastic (cf. Section 1.2.2), a Neo-Hookean (cf. Section 1.2.3), and a sophisti-

cated, anisotropic material model [26], which was denoted as ΨA in [41] (cf.

Section 1.2.4).

The hyperelastic energy ΨA has the form

ΨA = c1

(
I1

I
1/3
3

− 3

)
+

2∑
a=1

α1

⟨
I1J

(a)
4 − J

(a)
5 − 2

⟩α2

+ ε1

(
Iε23 +

1

Iε23
− 2

)
,

where I1 = trC, I3 = detC, J
(a)
4 = tr[CM], J

(a)
5 = tr[C2M], and C := F TF ;

F := ∇φ; M := a ⊗ a (structural tensor). It has already been used to model

arterial walls in FSI; see, e.g., [23, 24] and Chapter 1. For linear elasticity, we use

138

3.1. SIMULATION SETTINGS

c1 [kPa] ε1 [kPa] ε2 α1 [kPa] α2

17.5 499.8 2.4 30 001.9 5.1

Table 3.2: Parameters for the nonlinear ΨA material model used

E = 400 kPa and ν = 0.3, for Neo-Hooke, µ = 77.2 kPa and κ = 3833 kPa, and

for the ΨA model, we use the parameters from [41, 20, (ΨA Set 2)], cf. Table 3.2.

Our stopping criterion for Newton is a mixed criterion with a relative

and absolute tolerance of 10−8, i.e., the Newton iteration is stopped when

min{∥rn∥∞, ∥rn∥∞/∥r0∥∞} < 10−8, and for GMRES, we use a relative toler-

ance of 10−6, i.e., the GMRES iteration is stopped when ∥rn∥2/∥r0∥2 < 10−6.

With ∥ · ∥∞ and ∥ · ∥2 we refer to the corresponding vector norms, and rn

denotes the residual in the correspond n-th iteration step.

139

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

3.2 Comparison of Preconditioners for the Structural

Block

In this section, we discuss the performance of the GDSW preconditioner as

a preconditioner for the structural block in the monolithic system in FSI; see

Section 1.1.

The inverses appearing in the application of the FaCSI preconditioner are re-

placed by overlapping Schwarz preconditioners; see Section 1.1.3. We use alge-

braic one-level overlapping Schwarz preconditioners (IFPACK) for the geometry

block and for the fluid block. For the structure, we consider different precon-

ditioners and compare the resulting performance of the complete monolithic

FSI simulation. In particular, we compare the performance using our default

preconditioner for the structural block in [23, 24], i.e., IFPACK, a geometric

one-level overlapping Schwarz preconditioner (OS1), the GDSW preconditioner

neglecting rotations (GDSW-nr), the GDSW with full coarse space (GDSW),

and the hybrid version of the GDSW preconditioner (GDSW-B). Note that we

use the naive implementation of the hybrid version here; cf. Section 2.2. For

IFPACK as well as for our overlapping Schwarz methods, the local subdomain

problems are solved using UMFPACK. We perform the comparison using 128

cores of a Cray XT6m. On the Cray (Opteron 6168, 12 cores, 1.9 GHz) archi-

tecture, the performance of MUMPS and UMFPACK is often similar, especially for

small matrices. In this section, the subdomain problems have only a few thou-

sand degrees of freedom. We specify an overlap of δ = 2h for all overlapping

Schwarz methods. As inflow conditions, we consider the pressure wave as well

as the cosine-shaped ramp for all three (linear and nonlinear) material models

introduced in Section 3.1.

3.2.1 Time to Solution - Pressure Wave Inflow Condition

Using the pressure wave inflow condition, we consider the time steps

∆t = 0.0001s, 0.0002 s, 0.0004 s, and 0.0005 s, i.e., we solve 100, 50, 25 or

20 monolithic nonlinear systems; see also Figure 3.3. The average number

of Newton iterations needed to solve the nonlinear problems for the different

combinations of material model and time step size are listed in Table 3.6.

The corresponding number of iterations and computing times are presented in

Table 3.3 and Figure 3.4.

In Table 3.3, for a small time step, all preconditioners show a very similar

performance with respect to the number of GMRES iteration as well as the

timings. However, for a larger time step, where the weight in front of the mass

140

3.2. PRECONDITIONERS FOR THE STRUCTURAL BLOCK

∆
t

M
a
t.

IF
P
A
C
K

O
n
e-
le
v
el

S
ch
w
a
rz

G
D
S
W

w
it
h
o
u
t

G
D
S
W

H
y
b
ri
d
-G

D
S
W

(O
S
1
)

ro
t.

(G
D
S
W

-n
r)

(G
D
S
W

-B
)

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

it
s.

it
s.

it
s.

it
s.

it
s.

0
.0
0
0
1
s

L
E

5
.0

m
in

5
3
.4

5
.1
m
in

5
0
.8

5
.4
m
in

5
1
.8

5
.3
m
in

5
0
.8

5
.6
m
in

5
4
.1

N
H

8
.6
m
in

8
9
.8

6
.8

m
in

5
9
.3

7
.1
m
in

5
5
.3

7
.0
m
in

5
2
.7

7
.6
m
in

5
7
.7

Ψ
A

1
9
.7
m
in

2
1
4
.7

9
.9

m
in

8
2
.0

1
0
.5
m
in

8
1
.0

1
0
.6
m
in

7
9
.1

1
1
.1
m
in

8
4
.9

0
.0
0
0
2
s

L
E

8
.9
m
in

9
5
.8

7
.8
m
in

7
4
.5

7
.0
m
in

6
0
.7

6
.8

m
in

5
8
.0

7
.3
m
in

6
3
.2

N
H

1
4
.2
m
in

1
5
2
.4

9
.8
m
in

8
7
.5

9
.6
m
in

7
7
.2

9
.0

m
in

6
6
.0

9
.4
m
in

6
8
.2

Ψ
A

3
3
.3
m
in

3
1
6
.7

1
3
.2

m
in

9
6
.9

1
3
.8
m
in

9
4
.1

1
3
.9
m
in

9
0
.7

1
4
.8
m
in

9
9
.6

0
.0
0
0
4
s

L
E

1
5
.3
m
in

1
4
7
.2

1
4
.1
m
in

1
2
4
.5

1
0
.9
m
in

8
4
.4

9
.6

m
in

7
1
.9

1
0
.3
m
in

7
7
.3

N
H

2
4
.7
m
in

2
2
6
.5

1
7
.8
m
in

1
4
5
.7

1
6
.2
m
in

1
1
7
.9

1
3
.6
m
in

8
8
.4

1
3
.5

m
in

8
6
.1

Ψ
A

6
3
.0
m
in

3
9
9
.9

2
7
.0
m
in

1
4
5
.4

2
7
.1
m
in

1
3
5
.5

2
3
.5

m
in

1
0
8
.5

2
4
.3
m
in

1
1
3
.2

0
.0
0
0
5
s

L
E

1
9
.4
m
in

1
6
9
.0

1
7
.7
m
in

1
4
2
.0

1
3
.0
m
in

9
3
.7

1
1
.3

m
in

7
6
.3

1
1
.9
m
in

7
9
.9

N
H

3
3
.5
m
in

2
6
1
.5

2
4
.2
m
in

1
7
1
.0

2
0
.9
m
in

1
3
3
.2

1
7
.1
m
in

9
6
.1

1
6
.7

m
in

9
0
.4

T
a
b
le

3
.3
:

A
v
er

ag
e

co
m

p
u

ti
n

g
ti

m
e

p
er

ti
m

e
st

ep
(i

n
m

in
u

te
s)

o
n

th
e

C
ra

y
X

T
6
m

a
n

d
av

er
a
g
e

n
u

m
b

er
o
f

G
M

R
E

S
it

er
a
ti

o
n

s
p

er

N
ew

to
n

st
ep

fo
r

th
e
p
re
ss
u
re

w
av
e
in

a
tu
b
e

p
ro

b
le

m
d

is
cr

et
iz

ed
o
n

M
es

h
#

1
;

se
e

F
ig

u
re

3
.4

fo
r

th
e

to
ta

l
ru

n
ti

m
es

.
L

in
ea

r

el
as

ti
ci

ty
(L

E
),

N
eo

-H
o
ok

e
(N

H
),

an
d

a
n

on
li

n
ea

r,
a
n

is
o
tr

o
p

ic
h
y
p

er
el

a
st

ic
m

a
te

ri
a
l

la
w

(Ψ
A

)
to

m
o
d

el
th

e
a
rt

er
ia

l
w

a
ll

;

se
e

al
so

F
ig

u
re

3.
3.

T
h

e
ti

m
e

st
ep

is
∆
t

an
d

th
e

fi
n

a
l

si
m

u
la

ti
o
n

ti
m

e
is
T

=
0
.0

1
s.

W
e

co
m

p
a
re

I
F
P
A
C
K

w
it

h
th

e
o
n

e-
le

v
el

ov
er

la
p

p
in

g
S

ch
w

ar
z

p
re

co
n

d
it

io
n

er
(O

S
1)

,
th

e
G

D
S

W
p

re
co

n
d

it
io

n
er

w
it

h
a
n

d
w

it
h

o
u

t
ro

ta
ti

o
n

s
(G

D
S

W
/
G

D
S

W
-n

r)
,

an
d

th
e

h
y
b

ri
d

v
er

si
on

of
th

e
p

re
co

n
d

it
io

n
er

(G
D

S
W

-B
)

o
n

1
2
8

co
re

s
o
f

a
C

ra
y

X
T

6
m

.
N

o
co

n
ve

rg
en

ce
fo

r
Ψ

A
a
n

d

∆
t

=
0.

00
05

s.
B

es
t

n
u

m
b

er
s

in
b
o
ld

fa
c
e
;

cf
.

[1
06

].

141

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

Figure 3.3: Fluid pressure (top) and structural deformation (bottom) for the

linear elastic (left), the Neo-Hookean (middle), and the ΨA (right)

material model at t = 0.003 s. The structural displacement is mag-

nified by a factor of 10. The figure also illustrates the significantly

different behavior for the material models; cf. [106].

∆t Mat. Newton its.
Pressure Wave Cosine Ramp

0.0001s LE 5.1 3.9
NH 5.6 3.9
ΨA 6.6 3.9

0.0002s LE 6.1 4.2
NH 6.3 4.1
ΨA 7.9 4.1

0.0004s LE 7.4 -
NH 7.9 -
ΨA 11.9 -

0.0005s LE 8.4 5.0
NH 9.5 5.0
ΨA - 5.1

Table 3.4: Average number of Newton iterations per time step for FSI for the

pressure wave and the cosine ramp inflow boundary condition in

the tube. Linear elasticity (LE), Neo-Hooke (NH), and a nonlinear,

anisotropic hyperelastic material law (ΨA); cf. [106, 107].

matrix is small, the number of iterations and the timings for IFPACK quickly

deteriorate. The other methods, which use a geometric overlap, show a better

performance. The use of a coarse space gives further improvements: for the two

largest time steps the GDSW preconditioner is the fastest method.

We observe that, when using nonlinear material models, the methods with

geometric overlap perform much better than IFPACK. On the other hand, when

increasing the time step size, a second level is needed to obtain the best perfor-

mance.

In particular, we observe that for linear elasticity and the smallest time step

all preconditioners show a comparable performance. On the contrary, for a

large time step ∆t = 0.0004 s and the highly nonlinear material model (ΨA),

the GDSW preconditioner, in the standard as well as in the hybrid version, is

142

3.2. PRECONDITIONERS FOR THE STRUCTURAL BLOCK

Figure 3.4: Total number of GMRES iterations (top) and total runtime on the

Cray XT6m (bottom) for the pressure wave in a tube FSI problem

for different time step sizes using Mesh #1 and 128 cores; see also

Table 3.3. We use different preconditioners for the structure block.

“OS1” is the one-level Schwarz preconditioner, “GDSW-nr” is the

GDSW preconditioner without rotations, “GDSW” is the GDSW

preconditioner with full coarse space, and “GDSW-B” is the hy-

brid version of the GDSW preconditioner. Linear elasticity (LE),

Neo-Hooke (NH), and a nonlinear, anisotropic hyperelastic mate-

rial law to model the arterial wall (ΨA/PSIA); cf. [106].

more than 2.5 times faster than IFPACK. For the Neo-Hookean material model

and large time steps (∆t = 0.0004 s and ∆t = 0.0005 s), where the improvement

through the second level (GDSW vs. OS1) is most noticeable, we observe the

best performance for the hybrid version of the preconditioner. For smaller time

steps, where the coarse level is less beneficial, the performance of the hybrid

preconditioner (here, in its naive implementation) is worse.

In Figure 3.5, the variation of the computing time over the simulation time

for the time step ∆t = 0.0005 s and the Neo-Hookean material, is depicted.

143

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

Figure 3.5: Runtimes for the monolithic FSI simulation on the Cray XT6m

using a Neo-Hookean material, a time step of 0.0005 s, and a pres-

sure wave inflow condition. For clarity, the runtimes of two sub-

sequent time steps of size ∆t = 0.0005 s are combined. All bars

belonging to one preconditioner sum up to the corresponding total

runtime; “OS1” is the one-level Schwarz preconditioner, “GDSW-

nr” is the GDSW preconditioner without rotations, and “GDSW”

is the GDSW preconditioner with full coarse space; cf. [105].

The variation over the simulation time, as a result of the propagation of the

pressure wave in the tube, is qualitatively the same for all methods. In this

case, GDSW and the hybrid GDSW are almost twice as fast as IFPACK.

In contrast to the results for unstructured domain decompositions in Sec-

tion 2.5.4.2, here, the improvement from a reduction of the coarse space

(GDSW-nr) does not compensate the increase in the number of iterations.

The timings using GDSW-nr are mostly in between the timings for OS1 and

GDSW.

3.2.2 Time to Solution - Cosine Ramp Inflow Condition

In Figure 3.7 and Table 3.5, we present the corresponding results for the cosine-

type inflow boundary condition. A similar inflow condition is used in Chapter 1

and in [24] in order to prestress the artery before the simulation of heartbeats.

For this settings, we use time steps ∆t = 0.0001 s, 0.0002 s, and 0.0005 s. As can

be observed in Table 3.6, the nonlinear problems in each time step are easier to

solve than for the pressure wave problem, cf. Section 3.2.1. Also, when increas-

ing the time step size, the number of Newton iterations grows only slightly, in

contrast to the observations for the pressure wave. Nevertheless, we observe

the same qualitative behavior with respect to the different preconditioners.

144

3.2. PRECONDITIONERS FOR THE STRUCTURAL BLOCK

∆
t

M
a
t.

IF
P
A
C
K

O
n
e-
le
v
el

S
ch
w
a
rz

G
D
S
W

w
it
h
o
u
t

G
D
S
W

H
y
b
ri
d
-G

D
S
W

(O
S
1
)

ro
t.

(G
D
S
W

-n
r)

(G
D
S
W

-B
)

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

T
im

e
G
M
R
E
S

it
s.

it
s.

it
s.

it
s.

it
s.

0
.0
0
0
1
s

L
E

3
.9

m
in

5
3
.7

3
.9

m
in

5
1
.4

4
.0
m
in

5
2
.0

4
.0
m
in

5
1
.0

4
.3
m
in

5
4
.1

N
H

6
.0
m
in

8
9
.1

4
.8

m
in

5
9
.5

5
.0
m
in

5
5
.6

5
.0
m
in

5
2
.6

5
.3
m
in

5
7
.7

Ψ
A

1
1
.6
m
in

2
1
1
.1

6
.1

m
in

8
5

6
.3
m
in

8
2
.6

6
.4
m
in

7
9
.0

6
.6
m
in

8
3
.8

0
.0
0
0
2
s

L
E

6
.2
m
in

9
6
.9

5
.5
m
in

7
6
.4

4
.9
m
in

6
1
.8

4
.8

m
in

5
8
.9

5
.1
m
in

6
4
.2

N
H

9
. 4
m
in

1
5
3
.1

6
. 6
m
in

8
9
.6

6
. 4
m
in

7
7
.5

6
. 0

m
in

6
6
. 1

6
. 1
m
in

6
7
. 6

Ψ
A

1
7
.1
m
in

3
1
3
.3

6
.9

m
in

9
7
.3

7
.2
m
in

9
4
.4

7
.2
m
in

8
9
.7

7
.7
m
in

9
8
.7

0
.0
0
0
5
s

L
E

1
1
.3
m
in

1
6
3
.1

1
0
.7
m
in

1
4
3
.2

7
.0

m
in

9
4
.4

7
.0

m
in

7
9
.6

7
.5
m
in

8
4
.6

N
H

1
7
.4
m
in

2
5
6
.9

1
2
.7
m
in

1
6
8
.8

1
0
.9
m
in

1
3
0
.7

9
.0
m
in

9
5
.4

8
.8

m
in

9
0
.7

Ψ
A

2
6
.7
m
in

4
0
0

1
2
.3
m
in

1
6
0
.7

1
1
.8
m
in

1
4
2
.9

9
.9

m
in

1
1
0
.1

1
0
.1
m
in

1
1
1
.9

T
a
b
le

3
.5
:

A
v
er

ag
e

co
m

p
u

ti
n

g
ti

m
e

p
er

ti
m

e
st

ep
(i

n
m

in
u

te
s)

o
n

th
e

C
ra

y
X

T
6
m

a
n

d
av

er
a
g
e

n
u

m
b

er
o
f

G
M

R
E

S
it

er
a
ti

o
n

s
p

er

N
ew

to
n

st
ep

fo
r

th
e
co
si
n
e
ra
m
p
in

a
tu
b
e

p
ro

b
le

m
d

is
cr

et
iz

ed
o
n

M
es

h
#

1
;

se
e

F
ig

u
re

3
.4

fo
r

th
e

to
ta

l
ru

n
ti

m
es

.
L

in
ea

r

el
as

ti
ci

ty
(L

E
),

N
eo

-H
o
ok

e
(N

H
),

an
d

a
n

on
li

n
ea

r,
a
n

is
o
tr

o
p

ic
h
y
p

er
el

a
st

ic
m

a
te

ri
a
l

la
w

(Ψ
A

)
to

m
o
d

el
th

e
a
rt

er
ia

l
w

a
ll

;

se
e

al
so

F
ig

u
re

3.
3.

T
h

e
ti

m
e

st
ep

is
∆
t

an
d

th
e

fi
n

a
l

si
m

u
la

ti
o
n

ti
m

e
is
T

=
0
.0

1
s.

W
e

co
m

p
a
re

I
F
P
A
C
K

w
it

h
th

e
o
n

e-
le

v
el

ov
er

la
p

p
in

g
S

ch
w

ar
z

p
re

co
n

d
it

io
n

er
(O

S
1)

,
th

e
G

D
S

W
p

re
co

n
d

it
io

n
er

w
it

h
a
n

d
w

it
h

o
u

t
ro

ta
ti

o
n

s
(G

D
S

W
/
G

D
S

W
-n

r)
,

an
d

th
e

h
y
b

ri
d

v
er

si
on

of
th

e
p

re
co

n
d

it
io

n
er

(G
D

S
W

-B
)

o
n

1
2
8

co
re

s
o
f

a
C

ra
y

X
T

6
m

.
B

es
t

n
u

m
b

er
s

in
b
o
ld

fa
c
e
;

cf
.

[1
07

]

145

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

Figure 3.6: Fluid pressure (top) and structural deformation (bottom) for the

linear elastic (left), the Neo-Hookean (middle), and the anisotropic

ΨA (right) material model at t = 0.008 s using a cosine ramp inflow

condition. The structural displacement is magnified by a factor of

40. The figure also illustrates the significantly different behavior

for the material models; cf. [106].

Again, a geometric overlap improves the iterative solution of the linearized

monolithic systems where nonlinear material laws have been used in the models.

This can also be observed in Figure 3.8, where the computation times for single

time steps are plotted for the ΨA material model and a time step of 0.0002 s.

To improve the performance with respect to larger time steps, the second level

of the GDSW preconditioner becomes significant; see Figure 3.7 and Table 3.5.

146

3.2. PRECONDITIONERS FOR THE STRUCTURAL BLOCK

Figure 3.7: Total number of GMRES iterations (top) and total runtime on the

Cray XT6m (bottom) for the cosine ramp in a tube FSI problem

for different time step sizes using Mesh#1 and 128 cores; see also

Table 3.5. We use different preconditioners for the structure block.

“OS1” is the one-level Schwarz preconditioner, “GDSW-nr” is the

GDSW preconditioner without rotations, “GDSW” is the GDSW

preconditioner with full coarse space, and “GDSW-B” is the hy-

brid version of the GDSW preconditioner. Linear elasticity (LE),

Neo-Hooke (NH), and a nonlinear, anisotropic hyperelastic mate-

rial law to model the arterial wall (ΨA/PSIA); cf. [107].

147

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

Figure 3.8: Runtimes for the monolithic FSI simulation on the Cray XT6m

using the ΨA material model, a time step of 0.0002 s, and a cosine-

type ramp inflow condition. For clarity, the runtimes of five sub-

sequent time steps of size ∆t = 0.0002 s are combined. All bars

belonging to one preconditioner sum up to the corresponding total

runtime; “OS1” is the one-level Schwarz preconditioner, “GDSW-

nr” is the GDSW preconditioner without rotations, and “GDSW”

is the GDSW preconditioner with full coarse space; cf. [107].

148

3.3. STRONG SCALING FOR THE FLUID-STRUCTURE INTERACTION
PROBLEM

Mesh \ number of processor cores 16 32 64 128 256 512

Mesh #1, overlap 1h 3 4 4 4 5 4
Mesh #1, overlap 2h 3 4 4 4 4 4

Mesh #2, overlap 1h 4 4 4 4 4 4
Mesh #2, overlap 2h 4 4 4 4 4 4

Mesh #3, overlap 1h 3 3 4 4 4 4
Mesh #3, overlap 2h 3 3 4 4 4 4

Table 3.6: Numbers of Newton steps for the strong scaling results shown in

Figure 3.10.

3.3 Strong Scaling for the Fluid-Structure Interaction

Problem

In Figures 3.9 and 3.10, we present strong parallel scaling results for the first

time step for the pressure wave in a tube problem using time steps of size

∆t = 0.0001 s and ∆t = 0.0002 s, respectively, for a linear elastic tube. For the

structure, we use the GDSW preconditioner including rotations with overlaps

of δ = 1h and δ = 2h. For the fluid and the geometry blocks, we again use

the IFPACK preconditioner with an overlap of δ = 2h. We present the GMRES

iterations per Newton step and the total runtime for one time step. The timings

are for the first time step of the fully coupled FSI simulation.

For all cases, we observe good scalability results, with slightly worse scaling

for a time step of 0.0002 s. This is partially a result of the number of Newton

iterations, which varies from three to five. We also observe a significant influence

of the shape of the geometry on the performance of the FSI solver. For Mesh #3,

Cores
101 102

G
M

R
E

S
 It

er
at

io
ns

20

30

40

50

60

70

80

90

100
Mesh 1, GDSW, overlap 1h
Mesh 1, GDSW, overlap 2h
Mesh 2, GDSW, overlap 1h
Mesh 2, GDSW, overlap 2h
Mesh 3, GDSW, overlap 1h
Mesh 3, GDSW, overlap 2h

Cores
101 102

T
im

e
in

 s

102

103

Optimal Scaling
Mesh 1, GDSW, overlap 1h
Mesh 1, GDSW, overlap 2h
Mesh 2, GDSW, overlap 1h
Mesh 2, GDSW, overlap 2h
Mesh 3, GDSW, overlap 1h
Mesh 3, GDSW, overlap 2h

Figure 3.9: Strong parallel scalability on JUQUEEN (16 to 512 cores) for FSI

using linear elasticity and ∆t = 0.0001 s. The computing time for

the first time step is shown. Always 3 Newton steps; cf. [106].

149

CHAPTER 3. APPLICATION OF GDSW TO FSI PROBLEMS

Cores
101 102

G
M

R
E

S
 It

er
at

io
ns

20

30

40

50

60

70

80

90

100
Mesh 1, GDSW, overlap 1h
Mesh 1, GDSW, overlap 2h
Mesh 2, GDSW, overlap 1h
Mesh 2, GDSW, overlap 2h
Mesh 3, GDSW, overlap 1h
Mesh 3, GDSW, overlap 2h

Cores
101 102

T
im

e
in

 s

102

103

Optimal Scaling
Mesh 1, GDSW, overlap 1h
Mesh 1, GDSW, overlap 2h
Mesh 2, GDSW, overlap 1h
Mesh 2, GDSW, overlap 2h
Mesh 3, GDSW, overlap 1h
Mesh 3, GDSW, overlap 2h

Figure 3.10: Strong parallel scalability on JUQUEEN (16 to 512 cores) for

FSI using linear elasticity and ∆t = 0.0002 s. The computing

time for the first time step is shown. The numbers of Newton

steps are shown in Table 3.6; cf. [106].

we observe the lowest number of iterations, the best numerical scalability, the

lowest computing times, and the best parallel scalability.

150

3.4. CONCLUSION

3.4 Conclusion

By applying our GDSW preconditioner, we are able to improve the perfor-

mance of the FSI simulation by more than a factor of two, compared to the

use of IFPACK. This is especially remarkable since, in our monolithic precondi-

tioner, we only exchange the preconditioner for the structural block, whereas

the timings are for the complete FSI simulation.

From our results, the use of the GDSW preconditioner with the full coarse

space can be recommended as the new default preconditioner for our FSI en-

vironment, especially when sophisticated nonlinear material models are used

to describe the structure appropriately, e.g., in hemodynamics; cf. Chapter 1

and [24]. Thus, using the GDSW preconditioner, the simulation time of FSI

simulations of several heartbeats could be reduced significantly since highly

nonlinear material models (e.g., the ΨA model) are used. The deformations de-

picted in Figure 3.3 illustrate the significantly different behavior of the sophisti-

cated (anisotropic, almost incompressible, polyconvex, nonlinear, hyperelastic)

material model ΨA compared to more standard Neo-Hookean hyperelasticity

or linear elasticity, i.e., the deformation is significantly more localized for ΨA.

This is an interesting result by itself.

Hereby, we conclude our considerations of FSI problems, and focus on the

discretization and preconditioning (using two-level Schwarz preconditioners) of

heterogeneous problems in Chapters 4 and 5, respectively.

151

4 A Special Finite Element Method

Based On Approximate Component

Mode Synthesis

We consider problems of the form

−∇ · (A(x)∇u(x)) = f(x) in Ω ⊂ R2,

u = 0 on ∂Ω,
(4.1)

where the coefficient matrix A is rough or highly varying on a small scale. Such

problems are also often referred to as multiscale problems. Multiscale problems

are challenging to solve with standard finite element methods since very fine

meshes are needed in order to resolve the features of the solution on the fine

scale. The large number of degrees of freedom then leads to high demands with

respect to memory and computational resources. One way to overcome these

issues is to introduce methods which explicitly take into account the informa-

tion on the small scale without resorting to a brute force discretization. By

brute force discretization we refer to a very fine discretization using standard

finite elements. The incorporation of information on the small scale can be

achieved, e.g., by including the coefficient information into the basis functions.

Various approaches have been proposed in this field, including multiscale finite

element (MsFEM) [77, 114], mixed multiscale finite element [7], heterogeneous

multiscale finite element [76], adaptive multiscale [159], generalized finite ele-

ment [8, 9, 10], and Component Mode Synthesis (CMS) [54, 117, 118] methods.

The special finite element method considered in this chapter, which is based

on [103], was introduced by Hetmaniuk and Lehoucq in [111]. Additional theory

has been proven by Hetmaniuk and Klawonn in [110]. The method is designed

as an approximation of the CMS method using three different types of basis

functions in order to do so. It combines bubble-type eigenmodes, vertex-specific

energy minimizing extensions of nodal trace functions, and coupling edge-based

eigenmodes. For a detailed description of the eigenmode problems, see Sec-

tion 4.1.2, especially Formulae (4.19) and (4.20), as well as Figure 4.2. We refer

153

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

to these basis functions as ACMS (Approximate Component Mode Synthesis)1

shape functions or coarse basis functions. An important property of these basis

functions, in addition to their approximation properties, is, in contrast to the

basis functions used in the CMS method, their local support. The resulting

linear system is therefore sparse and the construction of the coarse basis func-

tions parallelizes well. Note that the numerical construction of the ACMS shape

functions can be computationally expensive and, thus, parallelization is crucial

for the efficiency of the ACMS method. In this chapter, we therefore investigate

the computational cost of using an ACMS discretization in a parallel context.

Using the ACMS method, in order to achieve a comparable accuracy, the dis-

cretized system can be smaller by one to two orders of magnitude compared to

a brute force discretization; see also Section 4.4.2. However, these systems can

still be large and ill-conditioned. Hence, we combine the ACMS discretization

with a parallel FETI-DP domain decomposition method as iterative solution

method. We show that the FETI-DP method applied to ACMS discretizations

is numerically scalable and converges in a small number of iterations.

The remainder of this chapter is organized as follows. In Section 4.1, we

first describe the ACMS method as it was introduced in Hetmaniuk and

Lehoucq [111]. Then, we briefly discuss the approximation properties of eigen-

functions and then provide an error estimate for the ACMS method which was

derived in Hetmaniuk and Klawonn [110]. Next, we describe our parallel imple-

mentation of the ACMS method and conclude this section with an algorithmic

description of the solution of the eigenvalue problems needed in the ACMS

approach. In Section 4.2, we first provide a general algorithmic description of

the FETI-DP domain decomposition method, first for standard finite elements

and then applied to the ACMS special finite element discretization. In Sec-

tion 4.3, we introduce several different model problems: the Poisson equation

and two second-order diffusion problems, one with a slightly varying coefficient

matrix and one with a highly oscillating coefficient matrix. We also consider

two additional model problems, where one is even more heterogeneous than

the ones considered before and the other one has a discontinuous coefficient

function with high jumps. Finally, in Section 4.4, we present numerical results

using our parallel implementation of the ACMS method which show that the

assembly of this special finite element method is parallel scalable. We also

provide numerical results which show that the FETI-DP domain decomposition

method applied to the ACMS discretization is weakly parallel scalable. The

conclusion of this chapter is provided in Section 4.5.

1The letter “A” in ACMS stands for “Approximate” and emphasizes the approximation of
a CMS technique.

154

4.1. ACMS DISCRETIZATIONS

4.1 Approximate Component Mode Synthesis

Discretizations

The model problem (4.1) can be transformed into the variational formulation:

find u ∈ H1
0 (Ω), such that

a (u, v) = L(v) ∀v ∈ H1
0 (Ω) (4.2)

with the bilinear form and the linear functional

a (u, v) =

∫
Ω

(∇u(x))TA(x)∇v(x) dx and L (v) =

∫
Ω
f(x)v(x) dx,

respectively, where f ∈ L2(Ω). We assume that the matrix A is uniformly

symmetric positive definite and that it satisfies

0 < αminξ
T ξ ≤ ξTA(x)ξ ≤ αmaxξ

T ξ ∀x ∈ Ω̄ and ξ ∈ R2 \ {0} ,

with constants αmin, αmax independent of x. For the convergence theory devel-

oped in [110], it is assumed that the coefficients aij of the matrix A = (aij)i,j

are in C1(Ω). The ACMS method might be applied with less strict regularity

assumptions on A but no convergence estimate is known so far for this case.

Although the method can be applied in a more general setting, for the theory

in [110], a two-dimensional polygonal domain is assumed.

In order to define the finite element space of our special finite element method,

we consider a family (τh)h of conforming partitions of Ω into triangles or convex

quadrilaterals. The elements of the partition are assumed to be open sets, and

the intersection of the closure of two distinct elements T and T ′ is either empty,

a vertex, or a complete edge with two vertices. This partition introduces

Γ =

 ∪
T∈τh

∂T

 \ ∂Ω (4.3)

and thus we have

Ω =

 ∪
T∈τh

T

 ∪ Γ. (4.4)

Additionally, we define discrete harmonic, i.e., energy-minimizing, extensions

of trace functions on Γ. By WΓ ⊂ H1/2(Γ) we denote the subspace of trace

functions on Γ of all functions in H1
0 (Ω). Thus, a discrete harmonic extension

155

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

EΩ (τ) of τ ∈ WΓ is characterized either by the minimization problem

inf
v∈H1

0 (Ω)
a (v, v) with v|Γ = τ (4.5)

or equivalently by

−∇ · (A(x)∇EΩ (τ)) = 0 in T, ∀T ∈ τh,

EΩ (τ) = τ on Γ,

EΩ (τ) = 0 on ∂Ω.

(4.6)

Based on the partition τh of Ω, subspaces

VT =
{
v ∈ H1

0 (Ω) : v|T ∈ H1
0 (T) and v|Ω\T̄ = 0

}
⊂ H1

0 (Ω) (4.7)

for all T ∈ τh and

VΓ =
{

EΩ(τ) ∈ H1
0 (Ω) : τ ∈ WΓ

}
⊂ H1

0 (Ω) (4.8)

can be introduced, such that

H1
0 (Ω) =

⊕
T∈τh

VT

⊕ VΓ. (4.9)

This decomposition is orthogonal with respect to a(·, ·) and is standard in do-

main decomposition theory; see also [110, eq. (2.4)] and the subsequent discus-

sion given there.

Based on this decomposition, problem (4.2) can equivalently be written as:

find uT ∈ VT and uΓ ∈ VΓ, such that

a (uT , vT) = L (vT) ∀T ∈ τh, ∀vT ∈ VT ,

a (uΓ, vΓ) = L (vΓ) ∀vΓ ∈ VΓ
(4.10)

with

u =
∑
T∈τh

uT + uΓ ∈ H1
0 (Ω). (4.11)

It is, of course, important that our special finite element method can be im-

plemented efficiently. Therefore, we choose basis functions with local support.

These shape functions are designed as local approximations to the CMS finite

element space, which we will describe in the next section.

156

4.1. ACMS DISCRETIZATIONS

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

0

0.2

0.4

0.6

0.8

1

1

Figure 4.1: A vertex-specific coarse basis function with oscillating interface

values (see Problem 3) used in the ACMS method. The basis

function is defined on a fine mesh of width hf .

4.1.1 Discretization Spaces Based on Eigenfunctions

The composed problem (4.10) can be solved by using a discretization space

based on eigenfunctions. This idea leads to the Component Mode Synthesis

(CMS) finite element method which was introduced in [54, 117, 118]. The CMS

discretization has very good approximation properties but at high computa-

tional costs.

As already known for some time, eigenfunctions have good approximation

properties for the solution of variational problems as they are optimal with

respect to the so-called n-th width, which has been introduced by Kolmogo-

roff [141]. This means that they have optimal approximation properties com-

pared to other subspaces of the same dimension; see, e.g., [141, 163, 8] for more

details.

Namely, for the variational problem

a (u, v) = L (v) ∀v ∈ H1
0 (Ω) , (4.12)

let zi be the eigenfunction and λi the corresponding eigenvalue of the eigenvalue

problem

a (zi, v) = λi (zi, v)L2(Ω) ∀v ∈ H1
0 (Ω) , (4.13)

and let those eigenvalues be sorted in non-descending ordering, i.e.,

0 < λ1 ≤ λ2 ≤ Then, the space span {z1, z2, ..., zn} has the best ap-

proximation properties among all subspaces of dimension n.

157

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

Based on this, the basis functions of the CMS discretization space are ob-

tained by solving the following eigenvalue problems:

a (z∗,T , v) = λ∗,T (z∗,T , v)L2(Ω) ∀v ∈ VT , ∀T ∈ τh,

a (z∗,Γ, v) = λ∗,Γ (z∗,Γ, v)L2(Ω) ∀v ∈ VΓ.
(4.14)

Using these eigenfunctions, we assemble the CMS finite element space

VCMS =

⊕
T∈τh

span {zi,T : 1 ≤ i ≤ IT }

⊕ span {zi,Γ : 1 ≤ i ≤ IΓ} (4.15)

with integers IT > 0, ∀T ∈ τh, and IΓ > 0.

As can be seen from the studies in [111], the CMS method provides very good

approximation properties compared to standard, multiscale or special finite

element methods. However, with respect to computational costs, the CMS

method is very expensive and it is not clear how to use this method efficiently

in a parallel context. This is due to the global support of the interface basis

functions.

Therefore, in very recent works of Smetana [184, 185], local approximation

spaces for CMS finite element spaces were combined with the Reduced Basis

Element (RBE) method in order to overcome this drawback of the CMS method.

These local approximation spaces are closely related to the ACMS approach

in [111], which is described here.

4.1.2 Description of the ACMS Method

In order to define the finite element space of the special finite element method,

different types of basis functions are used, i.e., vertex-specific, edge-based, and

fixed-interface shape functions. We refer to the third type of shape functions

also as interior bubble-type functions.

The vertex-specific and the edge-based basis functions form an approximation

of the subspace

span {zi,Γ : 1 ≤ i ≤ IΓ} (4.16)

of the CMS space (4.15), whereas the fixed-interface basis functions are chosen

to be exactly the functions z∗,T from the CMS Space since they already have

local support.

158

4.1. ACMS DISCRETIZATIONS

First, we briefly introduce the vertex-specific basis functions, which are of

MsFEM basis function type, cf. [77, 114], and then describe local eigenvalue

problems which lead to the two other types of shape functions.

A basis function which corresponds to a vertex P of the partition τh is given

by the following boundary value problem

−∇ · (A(x)∇φP) = 0 in T, ∀T ∈ τh,

φP = 0 on ∂Ω,

φP ̸= 0 on Γ,

φP (P ′) = δP,P ′ on Γ,

(4.17)

where P ′ is also a vertex of the partition and δP,P ′ is the Kronecker delta func-

tion. The MsFEM basis functions are therefore discrete harmonic extensions of

trace functions defined on Γ, and thus φP ∈ VΓ.

It remains to define the trace values of φP on Γ, and there are different possi-

bilities to do so. The easiest way is to define φP on each edge as a linear function

between the two endpoints of the edge, cf. Figure 4.4. The corresponding finite

element space is called VACMS−L in [111]. This choice of the trace incorporates

the oscillations of the coefficient matrix A with respect to the inner nodes of

the elements, i.e., by means of the discrete harmonic extension. However, the

oscillations on the edge are ignored.

Instead, the trace can be defined differently, i.e., we require the values on an

edge e ⊂ Γ to satisfy

∂

∂τ
⟨A(x)τ,∇φP (x)⟩ = 0 on e,

φP (P ′) = δP,P ′ on Γ,

(4.18)

where τ denotes the tangential vector of the edge with ∥τ∥ = 1 and ⟨·, ·⟩ is the

standard l2-inner product. This energy minimal extension onto the adjacent

edges can also be seen in Figure 4.1. This leads, together with the eigenmodes

defined below, to the finite element space VACMS−O which, for the sake of sim-

plicity, is also just called VACMS. When the matrix A is a constant multiple of

the identity matrix, both spaces are identical. A numerical comparison of these

two spaces is presented in [111].

The other two types of basis functions are defined by eigenvalue prob-

lems. The so-called fixed-interface shape functions are given by: find

(z∗,T , λ∗,T) ∈ VT × R such that

a (z∗,T , v) = λ∗,T (z∗,T , v)L2(Ω) ∀v ∈ VT , (4.19)

159

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

5

4

3

2

1

0
1

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

6

5

4

3

2

1

0
1

Figure 4.2: Eigenmodes for Problem 1 (2 × 2 ACMS elements: 1/hf = 2,

h/hf = 16): a fixed-interface basis function (left) and a coupling

basis function (right).

on each of the T ∈ τh; cf. Figure 4.2 and 4.3. This corresponds to first type of

eigenvalue problems in (4.14). For any open edge e ⊂ Γ we define the edge-based

coupling basis function by the corresponding eigenvalue problem in the space

of harmonic extensions: find (τ̃∗,e, λ∗,e) ∈ H
1/2
00 (e) × R such that

a (EΩ(τ̃∗,e), EΩ(η̃)) = λ∗,T (EΩ(τ̃∗,e), EΩ(η̃))L2(Ω) ∀η ∈ H
1/2
00 (e) (4.20)

with η̃ being the trivial extension of η by zero to Γ \ e; cf. Figures 4.2 and 4.5.

The eigenvalues {λi,T }∞i=1 and {λi,e}∞i=1 are assumed to be ordered nondecreas-

ingly, and the corresponding eigenmodes accordingly. The eigenmodes form

orthonormal bases for the L2-inner product of VT and of VΓ on the element T

and on the edge e, respectively.

The finite element space of the special finite element method is then given by

VACMS =

⊕
T∈τh

span {zi,T : 1 ≤ i ≤ IT }


⊕

(⊕
P∈Ω

span {φP }

)
⊕

(⊕
e⊂Γ

span {EΩ (τ̃i,e) : 1 ≤ i ≤ Ie}

) (4.21)

with positive integers IT , ∀T ∈ τh, and Ie corresponding to the number of eigen-

modes used as basis functions. Note, that the Dirichlet boundary conditions

are naturally built into the VACMS space.

160

4.1. ACMS DISCRETIZATIONS

4.1.3 Error Estimate

Recently, an a priori error estimate for this special finite element method has

been given by Hetmaniuk and Klawonn in [110, Prop. 3.4]; see also [110,

Prop. 3.6] for an a posteriori error indicator.

Under the assumption that the coefficients aij of A = (aij) are in C1(Ω̄) and

that the solution u of (4.2) belongs to H1
0 (Ω)∩Hs0 (Ω), with s0 >

3
2 , the error

between the solution u and the approximate solution uACMS ∈ VACMS satisfies

a (u− uACMS , u− uACMS) ≤
∑
T∈τh

∥f∥2L2(T)

λIT ,T

+ Cs0,σ,Ah
2s0−3

∑
T∈τh

∥u∥2Hs0 (T)

mine⊂∂T∩Γ λIe,e
,

where the constant Cs0,σ,A does not depend on u and h. For further details,

see [110, Prop. 3.4] and the related proof.

4.1.4 Parallel Implementation of the ACMS Discretization

Hetmaniuk and Lehoucq [111, Section 5.1] explain how to numerically compute

the ACMS basis functions. In this section, we briefly describe the parallel

computation of these coarse basis functions on a refined nested mesh, with

mesh size hf < h, using bilinear (Q1) Lagrangian finite elements. Only the fine

mesh size hf is chosen small enough such that the important features of the

partial differential equation are resolved. Our special finite element method on

the mesh of size h then uses the basis functions constructed above.

For the implementation of the algorithm, the library PETSc 3.2-p7 [15, 17]

and MPI are used. Particularly, we make use of the matrix, vector, and solver

structures which are provided therein. The discrete harmonic extensions occur-

ring in the ACMS method are computed using the sparse Cholesky decomposi-

tion implemented in PETSc.

The first step in the construction of the ACMS system is the assembly of

the local Q1 fine elements. This step is local to a processor core and can be

performed in parallel without communication: the local stiffness-matrices and

right-hand sides are built, and it is sufficient to store them locally. The same

is valid for the local mass matrices which have to be assembled in order to

be used within the generalized eigenvalue problems for the computation of the

eigenmodes; see Section 4.1.2. We conclude that this part of the implementation

needs no communication, and thus we expect it to be perfectly scalable.

161

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

Figure 4.3: Support and shape of a fixed-interface basis function (first eigen-

mode) on a rectangular partition. A concrete such fixed-interface

basis function is depicted in Figure 4.2.

Figure 4.4: Support and trace of a vertex-specific basis function on a rectan-

gular partition. A concrete such vertex-specific basis function is

depicted in Figure 4.1.

Second, we construct the basis functions for the ACMS elements. Basis

functions with local support are used, i.e., the support only contains a bounded

number of coarse elements: the fixed-interface basis functions zi,K have non-

zero values only on one coarse element, cf. Figure 4.3. The computation of

these bubble-type basis functions is independent of other coarse elements and

can therefore be performed locally without any communication. Thus, this part

is scalable as well. Although the vertex-specific basis functions φP are non-zero

on several coarse elements (see, e.g., Figure 4.4 for a rectangular coarse mesh)

the values can be computed separately and in parallel on each of those elements.

For another parallel implementation of the vertex-specific basis functions being

the basis functions of the MsFEM, see [31].

The next step involves nearest neighbor communication if an edge is shared

by two different processes. The support of edge-based coupling basis functions

τi,e consists of two coarse elements. If both adjoint coarse elements reside on the

same process the computation does not require any communication. Otherwise

162

4.1. ACMS DISCRETIZATIONS

Figure 4.5: Support and trace of a edge-based basis function (first eigenmode)

on a rectangular partition. A concrete such edge-based basis func-

tion is depicted in Figure 4.2.

submatrices corresponding to the generalized eigenvalue problem have to be

communicated.

We consider two neighboring subdomains Ω1 and Ω2 and two ACMS elements

T1 ⊂ Ω1 and T2 ⊂ Ω2 which share an ACMS element edge e ⊂ ∂Ω1 ∩ ∂Ω2.

We denote by K11 and K22 the corresponding local stiffness matrices of the

interior degrees of freedom of the ACMS elements T1 and T2, respectively, and

analogously, by M11 and M22 the corresponding local mass matrices. By Kie

and Mie, i = 1, 2, we denote the local stiffness and mass matrices that are

formed from basis functions in Ti and on the edge e.

In order to compute the trace η of an edge-based basis function on the edge

e the generalized eigenvalue problem

 −K−1
11 K1e

−K−1
22 K2e

I


T  K11 0 K1e

0 K22 K2e

KT
1e KT

2e Kee


 −K−1

11 K1e

−K−1
22 K2e

I

 η

= λ

 −K−1
11 K1e

−K−1
22 K2e

I


T  M11 0 M1e

0 M22 M2e

MT
1e MT

2e Mee


 −K−1

11 K1e

−K−1
22 K2e

I

 η

(4.22)

has to be solved. We can derive −K−1
11 K1e

−K−1
22 K2e

I


T  K11 0 K1e

0 K22 K2e

KT
1e KT

2e Kee


 −K−1

11 K1e

−K−1
22 K2e

I


= −KT

1eK
−1
11 K1e −KT

2eK
−1
22 K2e +Kee

= S(1)
e + S(2)

e

163

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

with S
(i)
e = −KT

ieK
−1
ii Kie + K

(i)
ee and K

(i)
ee being the local contribution to Kee

from the element Ti. The matrices S
(i)
e can be computed locally on both coarse

elements without any communication. Analogously, we have

 −K−1
11 K1e

−K−1
22 K2e

I


T  M11 0 M1e

0 M22 M2e

MT
1e MT

2e Mee


 −K−1

11 K1e

−K−1
22 K2e

I


= KT

1eK
−1
11 M11K

−1
11 K1e −KT

1eK
−1
11 M1e −MT

1eK
−1
11 K1e +KT

2eK
−1
22 M22K

−1
22 K2e

−KT
2eK

−1
22 M2e −MT

2eK
−1
22 K2e +Mee

= S̃(1)
e + S̃(2)

e

with S̃
(i)
e = KT

ieK
−1
ii MiiK

−1
ii Kie −KT

ieK
−1
ii Mie −MT

ieK
−1
ii Kie + M

(i)
ee and M

(i)
ee

being the local contribution to Mee from the element Ti. Also the matrix S̃
(i)
e

involves only local computations on the corresponding coarse element.

If an edge e is shared by two different processes, the Schur complement matri-

ces S
(i)
e and S̃

(i)
e are computed independently and in parallel. We then solve the

edge eigenvalue problem on the process with the lower rank. Communication

is therefore involved when transferring S
(i)
e and S̃

(i)
e to the process responsible

for the eigenvalue problem. This is implemented by standard MPI calls. Subse-

quently, the computed eigenmodes are communicated back to the process with

the higher rank. In the results of our numerical experiments, the time for this

communication is visible; see Section 4.4.3.

Finally, (
−K−1

ii Kie

I

)
η (4.23)

computes the local portion of the basis function on the coarse element Ti.

4.1.5 Computation of the Eigenvalue Problems

The edge-based eigenvalue problem (4.22) and the fixed-interface eigenvalue

problem, respectively, are generalized eigenvalue problems of relatively small

size. The latter has the dimension of the interior fine degrees of freedom of a

single coarse element, the first one only of the number of degrees of freedom on

a single edge.

Thus, all matrices needed for the computation can be stored as dense matri-

ces, and the generalized eigenvalue problems are computed directly using the

LAPACK [6] routine DSYGVX. This routine has a cubic complexity. Since our

eigenvalue problems are defined on the edges and the interior of the coarse ele-

ments only, this remains affordable. Approximate iterative eigensolvers could,

164

4.1. ACMS DISCRETIZATIONS

of course, also be used for larger eigenvalue problems. In our current imple-

mentation, the most expensive step is the computation of the fixed-interface

interior bubble functions. In 3D, the cost assessment has to be revisited for

the computation of the fixed-interface interior bubble functions. It also has

to be taken into account that additional eigenvalue problems associated with

subdomain faces have to be computed.

The underlying algorithm of DSYGVX is a Cholesky decomposition in order to

reduce the generalized eigenvalue problem to a standard eigenvalue problem.

Then the resulting matrix is reduced to tridiagonal form using an orthogonal

similarity transformation and a QR-algorithm is employed for the computation

of the eigenvectors.

We recall that some MPI communication is necessary to transfer the necessary

information to build the eigenvalue problems. We apply a very simple load

balancing approach: for each edge, we always gather the information on the

process with the lower rank and we also solve the corresponding eigenvalue

problem on this process.

165

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

4.2 The FETI-DP Method

The FETI-DP domain decomposition method is a divide-and-conquer approach

to the iterative solution of linear systems discretized by finite elements and has

been shown to be scalable and robust for a wide field of applications. It has been

introduced by Farhat et al. in [82, 83]. FETI-DP [82, 83, 136, 138, 134, 139]

and BDDC type [69, 55, 149, 146, 150] methods use coarse spaces constructed

from constraints. These are typically implemented using partial assembly of the

finite elements. This approach has facilitated the extension of the scalability of

these methods; see, e.g., [199, 152, 133, 135, 153, 187]. Among the extensions

are inexact FETI-DP methods which where introduced in [133]. Their paral-

lel scalability has been demonstrated in [136, 169] for up to 65 000 processors.

Recently, new scalable nonlinear versions of the FETI-DP method have been

introduced in [125], and inexact FETI-DP variants scaled up to 786 432 cores

on Mira BG/Q; see [126, 127]. For an introduction to domain decomposition

methods, see, e.g., [197, 186]. The parallel FETI-DP implementation used in

this thesis is based on [134, 169] and uses PETSc [15, 17] and UMFPACK [58]. There

is proven robustness of FETI-DP for standard finite element discretizations of

second-order self-adjoint elliptic partial differential equations, including (almost

incompressible) linear elasticity, when the discontinuities occur only inside of

each subdomain; see Gippert, Klawonn, and Rheinbach [100]. The second level

or coarse space of FETI-DP has to be enhanced in order to obtain a robust

iterative method for more general coefficient distributions. Such an enhance-

ment of the second level of FETI-DP with suitable local eigenvectors could be

done, e.g., along the lines of Klawonn, Radtke, and Rheinbach [132]; see also

[151, 124]. Let us note that we are not considering robustness of FETI-DP

for ACMS in this thesis. For overlapping domain decomposition methods and

MsFEM, see, e.g., Aarnes and Hou [3] and Buck, Iliev, and Andrä [43, 44].

In FETI-DP methods the domain Ω is decomposed into N nonoverlapping

subdomains {Ωi}i=1,...,N . The corresponding local stiffness matrices K(i) and

right hand sides f (i) are assembled for i = 1, ..., N . The system

Ku =


K(1)

. . .

K(N)




u(1)

...

u(N)

 =


f (1)

...

f (N)

 = f (4.24)

has no unique solution because the local stiffness matrices K(i) are not invertible

for subdomains with ∂Ωi ∩ ∂Ω = ∅.

166

4.2. THE FETI-DP METHOD

Ωi

Figure 4.6: Our FETI-DP method uses primal vertices, i.e., we have continu-

ity constraints for the FETI-DP iterates at all subdomain vertices.

To obtain a unique and continuous solution, we partition the interface

Γ′ =
N∪
i=1

∂Ωi \ ∂Ω into dual (∆) and primal variables (Π) first. We strongly

enforce continuity in the primal variables by global assembly of the correspond-

ing degrees of freedom. Continuity in the dual variables is enforced by the

additional constraint Bu = 0. Here, B is the standard FETI jump operator;

see [197].

By introducing Lagrange multipliers λ we can now formulate the FETI-DP

master system which is a saddle point problem of the form(
K̃ BT

B 0

)(
ũ

λ

)
=

(
f̃

0

)
. (4.25)

Here, we have

K̃ =


K

(1)
BB K̃

(1)T
ΠB

. . .
...

K
(N)
BB K̃

(N)T
ΠB

K̃
(1)
ΠB . . . K̃

(N)
ΠB K̃ΠΠ

 and f̃ =


f̃ (1)

...

f̃ (N)

 , (4.26)

with B corresponding to all interior (I) and dual (∆) variables.

If a sufficient number of degrees of freedom are chosen as primal variables,

the matrix K̃ is invertible. Here, we use primal vertices; see Figure 4.6.

The system can then be written as

Fλ = d (4.27)

167

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

Figure 4.7: For the definition of the FETI-DP method we introduce nodes

on the ACMS element and identify the ACMS degrees of freedom

with these nodes.

with F = BK̃−1BT and d = BK̃−1f̃ . By eliminating the interior variables first

and using the Schur complement, F can also be written as BΓS̃
−1
Γ BT

Γ .

The Dirichlet preconditioner

M−1
D = BD,ΓS̃B

T
D,Γ (4.28)

can then be defined using BD,Γ, which is a scaled version of BΓ. We use simple

multiplicity scaling, i.e., we scale by the inverse of the multiplicity of a node.

For the many other possibilities of scaling, we refer to the literature; see, e.g.,

Toselli and Widlund [197] and the references therein and [73].

Typically, condition number bounds of the type

κ
(
M−1

D F
)
≤ C (1 + log (H/h))2 , (4.29)

can be shown for the preconditioned FETI-DP system where h is the size of

the finite elements and H is the size of the subdomains. The constant C is

independent of h, H, and possible coefficient jumps. Such estimates have been

shown for finite element discretizations as well as higher order, spectral element,

and isogeometric analysis discretizations. In all of these cases, the upper bound

implies that the number of conjugate gradient iterations is bounded indepen-

dently of the number of subdomains and thus is independent of the problem

size.

4.2.1 FETI-DP Methods for ACMS Discretizations

Since all our data is distributed, i.e., our mesh is distributed and the ACMS

shape functions are constructed in parallel, we may also apply a parallel solver

168

4.2. THE FETI-DP METHOD

building on the parallel distributed data. We use a parallel FETI-DP domain

decomposition method where the subdomains are defined from the distribution

of the ACMS elements.

A step essential to the fast convergence of the FETI-DP method is the selec-

tion of appropriate primal degrees of freedom. To get a better idea of how these

are chosen, we identify the basis functions with nodes lying in the corresponding

element; see Figure 4.7. One FETI-DP subdomain, in general, contains several

ACMS elements, and following Figure 4.7, we see that the fixed-interface basis

functions always correspond to interior degrees of freedom. In our FETI-DP

method, for the sake of simplicity, we choose only the vertices to be primal, and

thus only the vertex-based basis functions may correspond to primal nodes. The

vertex-based basis functions which are not primal correspond, together with the

edge-based basis functions, to the dual degrees of freedom. For standard finite

element spaces in 2D, a vertex coarse space is sufficient to obtain numerical

scalability in the sense of a (1 + log(H/h))2 condition number bound.

169

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

4.3 Model Problems

For the numerical experiments, we consider only two-dimensional problems on

Ω = [0; 1]2. We first employ the three example problems studied in [111]. We

refer to [111] for comparisons with other special finite element methods. Ad-

ditionally, we consider one coefficient function with much stronger oscillations,

and another one which is even discontinuous. We use homogeneous Dirich-

let boundary conditions for all problems. Note that homogeneous Neumann

boundary conditions can be implemented by treating the nodes on the Neu-

mann boundary like interior nodes.

4.3.1 Laplace Equation (Problem 1)

The first model problem is the Laplace equation,

−∆u = f in Ω,

u = 0 on ∂Ω,
(4.30)

with f(x, y) = 2x(1 − x) + 2y(1 − y). This corresponds to a coefficient matrix

A(x, y) = I, where I denotes the identity matrix. The exact solution is given

by

u(x, y) = x(1 − x)y(1 − y). (4.31)

4.3.2 Equation with a Varying Coefficient (Problem 2)

The second model problem,

−∇ ·
(

1

1.2 + cos(32πx(1 − x)y(1 − y))
∇u(x, y)

)
= f(x, y) in Ω,

u = 0 on ∂Ω,

(4.32)

with f(x, y) = 64π (x(1 − x) + 2y(1 − y)), is equipped with a varying

coefficient-matrix

A(x, y) =

(
1

1.2 + cos(32πx(1 − x)y(1 − y))

)
I, (4.33)

where I denotes the identity matrix; see also Figure 4.8. The exact solution is

given by

u(x, y) = (1.2 · 32π)x(1 − x)y(1 − y) + sin(32πx(1 − x)y(1 − y)). (4.34)

170

4.3. MODEL PROBLEMS

4.3.3 Equation with a Highly-Oscillating Coefficient (Problem 3)

Here, we consider a model problem with a highly-oscillating coefficient matrix.

The model problem is given by

−∇ · (A(x, y)∇u(x, y)) = −1 in Ω,

u = 0 on ∂Ω
(4.35)

with A(x, y) =
(

2+1.8 sin(25πx)
2+1.8 cos(25πy) + 2+sin(25πy)

2+1.8 sin(25πx)

)
I, where I denotes the identity

matrix; see also Figure 4.8.

Figure 4.8: Coefficients of Problems 2 (left) and 3 (right); see Section 4.3.2

and Section 4.3.3, respectively.

4.3.4 Another Equation with a Highly-Oscillating Coefficient

(Problem 4)

We modify the coefficient function of Problem 3 (cf. Figure 4.8) such that

the ratio of the maximum and the minimum coefficient value is much higher.

Therefore, we choose

c(x, y) :=

(
2 + 1.99 sin(25πx)

2 + 1.99 cos(25πy)
+

2 + sin(25πy)

2 + 1.99 sin(25πx)

)
(4.36)

as the coefficient function, such that A(x, y) = c(x, y)I, where I denotes the

identity matrix; see Figure 4.9. The contrast of the coefficient function is

max(x,y)∈[0;1]×[0;1] c(x, y)

min(x,y)∈[0;1]×[0;1] c(x, y)
≈ 230.78. (4.37)

The fourth problem is then given by (4.35) with the coefficient function A(x, y)

given above.

171

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

Figure 4.9: Coefficient function of Problem 4; see Section 4.3.4.

Figure 4.10: Discontinuous coefficient function A. The black channels corre-

spond to a coefficient value of 106, the remaining white parts

correspond to a coefficient value of one.

4.3.5 An Equation with Discontinuous Coefficients (Problem 5)

We also consider the following problem with discontinuous coefficients

−∇ · (A(x, y)∇u(x, y)) = 1 in Ω,

u = 0 on ∂Ω,
(4.38)

with A(x, y) = c(x, y)I, where I denotes the identity matrix. The values of

the discontinuous coefficient function c are depicted in Figure 4.10, where black

corresponds to a value of 106 and white to a value of one. Let us note that the

entries of this matrix A are not in C1(Ω) anymore and thus the convergence

theory from [110] does not apply.

172

4.4. NUMERICAL RESULTS

ΩiH Ωj

Ωk Ωl

Ωi

T h

T t hf

Figure 4.11: Scales and mesh sizes involved in our FETI-DP approach for

ACMS discretizations. The subdomains Ωi,Ωj ,Ωk, and Ωl are

the FETI-DP subdomains of diameter H. Each subdomain con-

tains (H/h)2 ACMS elements. Each ACMS element of diameter

h uses shape functions defined on a fine Q1 mesh of size hf .

4.4 Numerical Results

The linear systems arising from ACMS discretizations can be ill-conditioned as

seen in Table 4.1. Here, for a fixed ratio h/hf = 30, the number of ACMS

elements is increased for Problem 2; see Section 4.3.2. The estimated condition

number seems to grow accordingly to (1/h)2 (see also Figure 4.12) and ap-

proaches 1.80 · 104 for 1/h = 512. The use of an efficient preconditioner for the

solution of the ACMS system is thus advisable. In this chapter, we apply the

FETI-DP domain decomposition method. Many other parallel preconditioners,

such as the GDSW preconditioner (cf. Chapter 2), are, of course, also possible.

For all computations, for the sake of simplicity, we have used IT = Ie = 1 for

all T ∈ τh and for all e ⊂ Γ, i.e., we always use the first eigenmode only. Higher

values of IT and Ie could also be used to further improve the approximation

properties, at the cost of a larger discretization space.

In order to compare the accuracy of the discretized solutions, we apply the

energy functional

E(v) =
a(v, v)

2
− L(v) = −a(v, v)

2
= −L(v)

2
; (4.39)

173

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

cf. [111, eq. (5.4)]. The functional is minimized for the solution of the variational

problem u, and thus is a measure for the quality of the approximate solutions.

1/h Cond.

32 55.69
64 269.22

128 1 098.15
256 4 407.93
512 17 686.94

Table 4.1: Estimated condition number for different ACMS discretizations for

h/hf = 30 (Problem 2). The condition number was estimated from

the Lanzcos process [171].

1/h
101 102 103

C
on

d.

101

102

103

104

105

Figure 4.12: Estimated condition number for different ACMS discretizations

for h/hf = 30; see Table 4.1. The dashed line represents the

slope of 1/h2 growth.

4.4.1 Numerical Scalability of the FETI-DP Method for ACMS

Discretizations

In Table 4.2 and Figure 4.13 the condition number of the preconditioned FETI-

DP system for the ACMS method applied to Problem 2 is presented. Figure 4.13

also includes a least square fit of a second-order polynomial in log(H/h) to the

data. These numerical results strongly suggest a (1+log(H/h))2 bound for this

problem with highly varying coefficients inside ACMS elements and thus inside

174

4.4. NUMERICAL RESULTS

subdomains. No theory is currently known for the setting presented here. The

numerical results are therefore very encouraging.

Additionally, in Tables 4.4, 4.5, 4.6, and 4.7, we observe that the condi-

tion number of the preconditioned FETI-DP operator (“FETI-DP”/“Cond.”)

and thus also the number of FETI-DP conjugate gradient iterations (“FETI-

DP”/“It.”) stay bounded for a growing number of subdomains (1/H)2 if H/h

and h/hf are kept constant; see Section 4.4.3.

We can thus conclude that we obtain numerical scalability for the FETI-DP

method for our ACMS model problems.

H/h Cond.

4 3.52
8 4.60

12 5.31
16 5.81
20 6.20
24 6.52
28 6.80

Table 4.2: Estimated condition number of the preconditioned FETI-DP sys-

tem for the ACMS discretization for 1/H = 16 and h/hf = 20

(Problem 2).

H/h
0 5 10 15 20 25 30

C
on

d.

3.5

4

4.5

5

5.5

6

6.5

7

Figure 4.13: Estimated condition number for different H/h for ACMS dis-

cretizations with h/hf = 20 (Problem 2) and a fit of a second

order polynomial in log(H/h) to the data shown in Table 4.2.

175

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

4.4.2 Using Different Fine Discretizations in ACMS

In Table 4.3 and Figure 4.14 a brute force Q1 discretization (“Q1”) is compared

with different ACMS discretizations (“ACMS”) for Problem 2 using the same

number of (coarse) degrees of freedom (dof). We vary h/hf = 5, 10, 20, 30, i.e.,

we consider a different number of (internal) fine degrees of freedom. For our

comparison we observe the convergence of the energies EACMS and EQ1 to the

(known/extrapolated) energy E∗ of the exact solution.

In Figure 4.14 we see that the expected convergence order is achieved for all

methods. For the same number of (coarse) degrees of freedom, the accuracy of

the ACMS method is always significantly higher than that of the brute force

method.

Results in Table 4.3 show that, for h/hf = 30, the error in the energies of the

(brute force) Q1 discretization falls below that of the ACMS discretization only

if between 60 and 80 times more degrees of freedom are invested. Of course,

a sufficiently fine underlying Q1 mesh is needed in order to approximate the

ACMS basis functions accurately. This is essential for the improvement of

the accuracy compared to a standard Lagrangian finite element discretization.

However, the number of nodes on the underlying fine Q1 mesh also corresponds

to the amount of computational work needed for the generalized eigenvalue

problems to be solved. It also corresponds to the memory needed to store the

local data, such as the corresponding local stiffness and mass matrices, on the

ACMS elements.

The situation is similar for h/hf = 20 although in Figure 4.14 one can clearly

see that the horizontal distance of the black (ACMS) and the blue (Q1) curve

is smaller for h/hf = 20 than for h/hf = 30. For h/hf = 5 and h/hf = 10, the

quality of the approximation is reduced further but we still do not see a break

down. This may be caused by the structure of Problem 2. For problems with a

clearly defined micro scale we would expect a sudden drop in the quality of the

approximation as soon as the ACMS fine mesh fails to resolve the micro scale

properly.

In Figure 4.14, we also see that the ACMS discretization profits from the

use of a fine underlying Q1 mesh in order to approximate the ACMS basis

functions. Of course, in our current implementation, the computational work

to compute the ACMS shape functions increases superlinearly for an increasing

ratio h/hf . In the following sections, we therefore choose h/hf = 20 as a

compromise between accuracy and computational cost.

176

4.4. NUMERICAL RESULTS

dof
100 102 104 106 108 101010-5

10-4

10-3

10-2

10-1

100

101

102
h/h

f
=5

ACMS
Q1
Reference Slope

dof
100 102 104 106 108 101010-5

10-4

10-3

10-2

10-1

100

101

102
h/h

f
=10

ACMS
Q1
Reference Slope

dof
100 102 104 106 108 101010-5

10-4

10-3

10-2

10-1

100

101

102
h/h

f
=20

ACMS
Q1
Reference Slope

dof
100 102 104 106 108 101010-5

10-4

10-3

10-2

10-1

100

101

102
h/h

f
=30

ACMS
Q1
Reference Slope

Figure 4.14: Comparison of EACMS−E∗ (“ACMS”) and EQ1−E∗ (“Q1”) for the

ACMS special finite element discretization and a Q1 discretiza-

tion; cf. Table 4.3. Here, E∗ is the energy of the (known) exact

solution, EACMS the energy of the ACMS solution, and EQ1 the

energy of the (brute force) Q1 solution. The “Reference Slope”

refers to the slope of 1/dof.

177

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

EACMS − E∗ EQ1 − E∗

dof h/hf = 5 h/hf = 10 h/hf = 20 h/hf = 30

49 4.51 · 100 1.56 · 100 8.26 · 10−1 6.89 · 10−1 2.99 · 101

225 1.12 · 100 3.61 · 10−1 1.72 · 10−1 1.37 · 10−1 6.42 · 100

961 2.77 · 10−1 8.69 · 10−2 3.96 · 10−2 3.08 · 10−2 1.63 · 100

3 969 6.90 · 10−2 2.14 · 10−2 9.61 · 10−3 7.42 · 10−3 4.11 · 10−1

16 129 1.72 · 10−2 5.34 · 10−3 2.38 · 10−3 1.83 · 10−3 1.03 · 10−1

65 025 4.30 · 10−3 1.33 · 10−3 5.94 · 10−4 4.57 · 10−4 2.57 · 10−2

261 121 1.08 · 10−3 3.33 · 10−4 1.48 · 10−4 1.14 · 10−4 6.43 · 10−3

1 046 529 2.69 · 10−4 8.33 · 10−5 3.71 · 10−5 1.61 · 10−3

4 190 209 6.72 · 10−5 2.08 · 10−5 4.02 · 10−4

16 769 025 1.68 · 10−5 1.00 · 10−4

Table 4.3: Comparison of the energies for the ACMS special finite element

discretization and a Q1 discretization (Problem 2). Here, E∗ is

the energy of the (known) exact solution, EACMS the energy of the

ACMS solution, and EQ1 the energy of the (brute force) Q1 solution.

4.4.3 Weak Parallel Scalability

In this section, we present weak parallel scaling results for the parallel ACMS

approach as the discretization and using a parallel FETI-DP method as an

iterative solver. The results for h/hf = 20 are shown in Tables 4.4, 4.5, and 4.6.

We recall that h is the size of an ACMS element and hf the size of a fine Q1

finite element; see Figure 4.11. In these experiments, since h/hf = 20 is fixed,

the number of fine degrees of freedom for each ACMS element is kept constant.

Moreover, since H/h = 28 is fixed, the number of ACMS elements for each

FETI-DP subdomain is also constant. Since 1/H is growing, the number of

subdomains increases, as well as the number of MPI ranks and processor cores,

from 22 = 4 to 322 = 1024.

The number of FETI-DP subdomains, i.e., (1/H)2 ∈ {4, 16, 64, 256, 1024}, is

always identical to the number of processor cores, i.e., we use up to 1024 cores

of a Cray XT6. We also always have one FETI-DP subdomain for each process

or processor core. The Cray XT6 has 24 cores per node (AMD Magny Cours

1.9 GHz).

Since the ACMS systems are small compared to the total number of fine

degrees of freedom, the time spent to solve the system with our parallel FETI-

DP method is in the order of only one second or less; cf. Tables 4.4, 4.5, and 4.6.

Let us briefly describe the columns of Tables 4.4, 4.5, and 4.6. In

“ACMS”/“Fine Q1” we measure the time for the assembly of the Q1 ele-

178

4.4. NUMERICAL RESULTS

ments on the fine ACMS mesh of size hf . The fine mesh is needed to compute

the ACMS shape functions. As expected, this phase scales perfectly.

The column “ACMS”/“Shape” presents the time needed for the construction

of the ACMS shape functions by computing harmonic extensions and solving

generalized eigenvalue problems using the local fine Q1 meshes on each ACMS

element. Because of MPI communication that is necessary in the construction

of the ACMS edge shape functions (see Section 4.1.4), this phase does not scale

perfectly, but good scalability is still achieved.

The column “ACMS”/“Ass.” presents the time for the assembly of the ACMS

system using the ACMS shape functions. Since the system is small, the time

spent here is not significant.

The column “FETI-DP”/“Time” denotes the time for the solution of the

ACMS system by the FETI-DP method, “FETI-DP”/“It.” denotes the num-

ber of conjugate gradients iterations, and “FETI-DP”/“Cond.” denotes the

estimated condition number obtained from the Lanzcos process. Since, again,

the system is small compared to the number of processor cores, the time spent

here is also not significant.

“Total Time” denotes the complete time to solution, and “Speedup” and

“Efficiency” denote the corresponding parallel speedup and efficiency where

1/H = 2, i.e., 4 processor cores, is the baseline. For perfect weak parallel

scalability the “Total Time” should stay constant, resulting in a perfect speedup

of 256 on 1024 cores (compared to the baseline of 4 cores) and a perfect parallel

efficiency of 100 %. We achieve a parallel efficiency of 79 %, 83 %, and 84 % for

1024 cores in Tables 4.4, 4.5, and 4.6, respectively.

Comparing the column “Fine Q1” in Tables 4.4, 4.5, and 4.6, we see that the

time for the assembly of the fine Q1 problem is much larger for Problem 2 (21 s)

and again larger for Problem 3 (36 s to 38 s). This is due to the expensive eval-

uations of the trigonometric functions in the coefficient functions of Problem 2

and 3. One evaluation of a cosine function for each Gauß point is needed for

Problem 2 (see Section 4.3.2) and four evaluations of trigonometric functions

for Problem 3 (see Section 4.3.3). The parallel scalability is also illustrated in

Figure 4.15.

In Table 4.7 we have also included weak parallel scalability for Problem 3

and h/hf = 30. Since the eigenvalue problems are now larger, the dense linear

algebra and the computation of the eigenvalue problems by dense QR becomes

increasingly inefficient. Indeed, a quick analysis of detailed timers shows that a

large amount of the computing time is spent in the computation of the eigen-

value problem for the interior bubble function. These results indicate that, for

179

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

Cores
0 200 400 600 800 1000

T
im

e
to

 s
ol

ut
io

n

0

20

40

60

80

100

120

140

Figure 4.15: Weak parallel scalability from 4 to 1024 processor cores on a

Cray XT6; cf. the data in Tables 4.4, 4.5, and 4.6.

three-dimensional problems, an approximate solution of the eigenvalue prob-

lems will have to be used.

ACMS Time FETI-DP Total Parallel
1/H Fine Q1 / Shape / Ass. Time It. / Cond. Time Speedup / Efficiency

2 2.91 s / 75.65 s / 0.97 s 0.09 s 4 / 2.43 79.33 s 1 / 100 %
4 2.94 s / 77.06 s / 1.05 s 0.11 s 6 / 6.11 80.81 s 3.93 / 98.17 %
8 2.93 s / 77.56 s / 1.71 s 0.33 s 6 / 6.66 81.53 s 15.57 / 97.30 %
16 2.98 s / 78.88 s / 2.17 s 0.67 s 14 / 6.78 83.24 s 61.37 / 95.90 %
32 2.97 s / 95.51 s / 4.06 s 1.10 s 13 / 6.80 100.31 s 202.46 / 79.08 %

Table 4.4: Weak scaling for H/h = 28 and h/hf = 20 (Problem 1). The

number of MPI ranks is (1/H)2.

4.4.3.1 Discussion of the FETI-DP Solution Phase

The FETI-DP method is known to scale well, even on large supercomputers,

and for very large problems; cf., e.g., [127, 126]. In our case the ACMS system

is indeed very small compared to the number of processor cores invested.

Let us briefly discuss details. For the FETI-DP method, we see numerical

scalability, i.e., the number of conjugate gradient iterations stays bounded for

increasing 1/H. The parallel scalability of the FETI-DP solution phase by

itself is far from perfect but this is mainly a result of the very short absolute

solution times (0.09 s–1.35 s). The size of the largest ACMS problem solved by

FETI-DP in Tables 4.4, 4.5, and 4.6 is only 804 609 degrees of freedom. This is

180

4.4. NUMERICAL RESULTS

ACMS Time FETI-DP Total Parallel
1/H Fine Q1 / Shape / Ass. Time It. / Cond. Time Speedup / Efficiency

2 21.14 s / 75.30 s / 0.95 s 0.09 s 5 / 2.15 97.20 s 1 / 100 %
4 21.18 s / 76.58 s / 1.04 s 0.11 s 7 / 5.97 98.55 s 3.95 / 98.63 %
8 21.21 s / 77.13 s / 1.73 s 0.34 s 14 / 6.68 99.35 s 15.65 / 97.84 %
16 21.33 s / 78.23 s / 2.83 s 0.71 s 15 / 6.79 100.95 s 61.62 / 96.29 %
32 21.37 s / 94.29 s / 4.22 s 1.16 s 14 / 6.81 117.53 s 211.72 / 82.70 %

Table 4.5: Weak scaling for H/h = 28 and h/hf = 20 (Problem 2). The

number of MPI ranks is (1/H)2.

ACMS Time FETI-DP Total Parallel
1/H Fine Q1 / Shape / Ass. Time It. / Cond. Time Speedup / Efficiency

2 35.94 s / 77.72 s / 0.97 s 0.10 s 6 / 2.69 114.43 s 1 / 100 %
4 35.94 s / 78.99 s / 1.09 s 0.13 s 11 / 8.41 115.74 s 3.95 / 98.87 %
8 36.06 s / 79.47 s / 1.92 s 0.40 s 18 / 8.64 116.62 s 15.70 / 98.12 %
16 36.49 s / 81.27 s / 3.06 s 0.78 s 19 / 8.69 119.24 s 61.42 / 95.97 %
32 37.53 s / 96.52 s / 4.79 s 1.35 s 18 / 8.24 136.12 s 215.21 / 84.07 %

Table 4.6: Weak scaling for H/h = 28 and h/hf = 20 (Problem 3). The

number of MPI ranks is (1/H)2.

a very small problem for a FETI-DP method running on 1 024 processor cores,

resulting in fewer than 800 degrees of freedom for each core. The number of

degrees of freedom on the ACMS fine discretization is of course much larger,

i.e., 321 million degrees of freedom. But these fine degrees of freedom have

been eliminated already in the earlier phase. From a more detailed analysis

we have found that the increase of the FETI-DP time almost completely stems

from an increasing time spent in the FETI-DP conjugate gradient iteration.

This is a result of the growth in conjugate gradient iterations up to 1/H = 8,

i.e., 64 FETI-DP subdomains. Thus, the asymptotic bound is approached only

for more than 256 subdomains. This is typical for FETI-DP methods in 2D.

Moreover, the conjugate gradient iteration for the FETI-DP system includes

global MPI communication as well as MPI collective operations that may indeed

add up to a noticeable amount of a fraction of a second on 1 024 cores of a Cray

XT6. For larger linear systems, this is usually an insignificant portion of the

solution time. We thus expect to achieve good parallel scalability for much

larger problems and numbers of cores than presented here.

181

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

ACMS FETI-DP Total Parallel
1/H Fine Q1 / Shape / Ass. Time It. / Cond. Time Speedup / Efficiency

2 26.27 s / 193.79 s / 0.57 s 0.03 s 6 / 2.41 220.57 s 1 / 100 %
4 26.35 s / 204.12 s / 0.61 s 0.04 s 10 / 7.18 231.00 s 3.82 / 95.48 %
8 26.54 s / 204.32 s / 1.30 s 0.26 s 16 / 7.38 231.62 s 15.24 / 95.23 %
16 26.43 s / 206.80 s / 2.35 s 0.60 s 17 / 7.48 234.35 s 58.46 / 91.35 %
32 26.65 s / 210.85 s / 3.73 s 1.07 s 17 / 7.16 239.08 s 236.18 / 92.26 %

Table 4.7: Weak scaling for H/h = 16 and h/hf = 30 (Problem 3).

4.4.3.2 Highly Heterogeneous Problems

Here, we consider Problem 4 and Problem 5 which have been introduced in

Section 4.3 and which are much more heterogeneous compared to Problems 1,

2, and 3.

Let us first consider Problem 4; cf. Section 4.3.4. The reference energy,

computed using a brute force discretization and Richardson extrapolation, for

the corresponding boundary value problem

−∇ · (A(x, y)∇u(x, y)) = −1 in Ω,

u = 0 on ∂Ω,
(4.40)

is −1.65867679589956 · 103; cf. [111].

As can be seen in Table 4.8, the approximation properties of the ACMS

method compared to standard Q1 elements is even better for this coefficient

function. The best approximation for ACMS elements cannot be reached using

Q1 elements on the same number of MPI processes.

Table 4.9 shows the corresponding numbers of iterations and condition num-

bers, as well as the timings resulting when applying FETI-DP on the ACMS

system. The parallel scaling is as good as for Problem 3, however the condition

and iteration numbers are slightly better for Problem 3, cf. Table 4.6.

Let us now consider Problem 5; cf., Section 4.3.5. The corresponding scala-

bility results are shown in Table 4.10. It can be seen, that the weak scalability is

comparable to the results of Problem 1, cf. Table 4.4. Especially the condition

numbers and timings of the FETI-DP method for the discontinuous case are

very good, even though no special scaling has been applied.

182

4.4. NUMERICAL RESULTS

EACMS − E∗ EQ1 − E∗

dof h/hf = 5 h/hf = 10 h/hf = 20 h/hf = 30

49 5.03 · 10−4 3.23 · 10−4 1.98 · 10−4 1.14 · 10−4 8.82 · 10−4

225 3.48 · 10−4 2.24 · 10−4 8.66 · 10−5 6.34 · 10−5 8.13 · 10−4

961 2.12 · 10−4 7.18 · 10−5 3.70 · 10−5 2.81 · 10−5 4.71 · 10−4

3 969 5.95 · 10−5 2.45 · 10−5 1.23 · 10−5 9.94 · 10−6 2.56 · 10−4

16 129 1.87 · 10−5 6.36 · 10−6 3.19 · 10−6 2.60 · 10−6 7.52 · 10−5

65 025 5.06 · 10−6 1.86 · 10−6 1.05 · 10−6 8.95 · 10−7 2.53 · 10−5

261 121 1.38 · 10−6 5.65 · 10−7 3.60 · 10−7 3.22 · 10−7 6.98 · 10−6

1 046 529 5.01 · 10−7 2.95 · 10−7 2.43 · 10−7 2.34 · 10−7 1.94 · 10−6

4 190 209 2.87 · 10−7 2.35 · 10−7 6.50 · 10−7

16 769 025 2.33 · 10−7 3.25 · 10−7

Table 4.8: Comparison of the energies for the ACMS special finite element

discretization and a Q1 discretization (Problem 4). Here, E∗ is

the energy of the (known) exact solution, EACMS the energy of the

ACMS solution and EQ1 using the (brute force) Q1 solution.

ACMS Time FETI-DP Total Parallel
1/H Fine Q1 / Shape / Ass. Time It. / Cond. Time Speedup / Efficiency

2 35.94 s / 77.72 s / 0.97 s 0.1 s 6 / 2.93 114.43 s 1 / 100 %
4 35.93 s / 79.10 s / 1.11 s 0.14 s 12 / 19.17 115.85 s 3.95 / 98.77 %
8 36.05 s / 79.83 s / 2.15 s 0.48 s 23 / 17.65 117.05 s 15.64 / 97.96 %
16 36.25 s / 80.82 s / 3.89 s 1.06 s 27 / 18.42 118.82 s 61.64 / 96.31 %
32 37.10 s / 96.56 s / 7.94 s 2.40 s 30 / 22.34 136.76 s 214.20 / 83.67 %

Table 4.9: Weak scaling for H/h = 28 and h/hf = 20 (Problem 4). The

number of MPI ranks is (1/H)2.

ACMS Time FETI-DP Total Parallel
1/H Fine Q1 / Shape / Ass. Time It. / Cond. Time Speedup / Efficiency

2 8.44 s / 75.41 s / 0.96 s 0.09 s 6 / 2.69 84.6 s 1 / 100 %
4 8.47 s / 76.66 s / 1.06 s 0.12 s 11 / 8.41 85.94 s 3.94 / 98.44 %
8 8.65 s / 77.08 s / 1.94 s 0.41 s 18 / 8.64 86.83 s 15.59 / 97.43 %
16 8.68 s / 78.53 s / 3.20 s 0.83 s 19 / 8.69 88.72 s 61.03 / 95.36 %
32 8.69 s / 94.71 s / 5.12 s 1.46 s 18 / 8.24 105.57 s 205.15 / 80.14 %

Table 4.10: Weak scaling for H/h = 28 and h/hf = 20 (Problem 5). The

number of MPI ranks is (1/H)2.

183

CHAPTER 4. ACMS SPECIAL FINITE ELEMENT METHOD

4.5 Conclusion

We presented a parallel implementation of the ACMS special finite element

method, which shows good parallel scalability. Using this implementation, we

could perform a comparison with a large brute force discretization using stan-

dard bilinear finite elements. These computations allowed us to compare the

accuracy of the ACMS method with standard bilinear finite elements for differ-

ent settings. It was also possible to study the influence of the approximation

quality of the eigensystems (fine mesh) on the approximation quality of the

ACMS method. We also applied the FETI-DP domain decomposition precon-

ditioner to the ACMS linear system. Our numerical results show that FETI-DP

is numerically scalable in this case, i.e., we could see that the computed con-

dition number of the preconditioned system grows quadratic-logarithmically,

depending on the size of the subdomain problems. This is the condition num-

ber estimate which is usually obtained for FETI-DP applied to standard finite

elements and could motivate further theoretical investigations to analytically

prove such a condition number estimate. In our present study in two dimen-

sions, direct dense eigensolvers were used. For future ACMS discretizations in

three dimensions, iterative sparse eigensolvers are probably necessary.

All three types of the ACMS basis functions are harmonic extensions to the

interior nodes, which is very similar to the construction of the coarse basis

functions of the GDSW coarse space; cf. Chapter 2. However, due to the

generalized eigenvalue problems additional information about the fine scale are

introduced in the finite element space. Thus, it seems natural to test the use

of the ACMS basis functions in a coarse space of two-level overlapping Schwarz

preconditioners to investigate whether this additional information has a positive

effect if used in the coarse space of a preconditioner as well. Therefore, we refer

to the next chapter, Chapter 5, where we follow this approach and present some

preliminary results.

184

5 Coarse Spaces for Overlapping

Schwarz Methods Based on the

ACMS Space

In Chapter 2, a parallel implementation of the GDSW preconditioner, i.e., a

two-level overlapping Schwarz preconditioner with an energy-minimizing coarse

space, has been presented and applied to homogeneous Laplacian and elasticity

problems; it has also been applied to fluid-structure interaction problems in

Chapter 3. However, for highly heterogenous (multiscale) problems, enriched

coarse spaces (by, e.g., eigenfunctions) are required to obtain robust precondi-

tioners for the corresponding systems.

Such coarse spaces, which are typically denoted as adaptive coarse spaces,

have been developed for many different domain decomposition methods.

Mostly, they involve the solution of generalized eigenvalue problems to fa-

cilitate certain estimates which are needed to prove the condition number

bounds for the corresponding domain decomposition method. For instance,

adaptive coarse spaces are available for two-level Neumann-Neumann meth-

ods [37, 36], for overlapping Schwarz algorithms [188, 189, 94, 95] and based

thereon for FETI and BDD methods [190, 101], and for FETI-DP and BDDC

methods [132, 49, 130, 151, 131, 165].

The ACMS special finite element method (cf. [111] and Chapter 4) features

nodal (vertex-specific) as well as edge-based interface basis functions. The latter

are given by the solution of a generalized eigenvalue problem, very similar to

the ones used in the construction of some adaptive coarse spaces. The fixed-

interface basis functions of the ACMS method, however, are not useful for

the construction of a coarse space since they vanish on the interface and are

therefore not related to the coupling of the subdomains.

In this chapter, we first introduce briefly a coarse space for overlapping

Schwarz methods based on the ACMS space; see Section 5.1. Next, we inves-

tigate the numerical performance of the preconditioner for some specific model

problems in Section 5.2. Therefore, we consider model problems from Chap-

ter 4 and some other heterogeneous model problems with jumping coefficients

185

CHAPTER 5. COARSE SPACES BASED ON ACMS

to compare the overlapping Schwarz preconditioner with ACMS coarse space

to other overlapping Schwarz preconditioners. In Section 5.3, we discuss how a

space spanned by edge-based ACMS basis functions can be approximated to ob-

tain a robust preconditioner, without solving generalized eigenvalue problems.

This can be performed by a heuristic procedure in a purely algebraic way. Fi-

nally, we provide a conclusion in Section 5.4. This chapter contains ongoing

joint work with Axel Klawonn, Jascha Knepper, and Oliver Rheinbach; cf. [104]

and Jascha Knepper’s master’s thesis [140].

Note that the vertex-specific ACMS basis functions, i.e., the basis functions

of the Multiscale Finite Element Method (MsFEM), have already been used in

the coarse space for the overlapping Schwarz method for linear elastic model

problems in two and three dimensions by Buck et al. in [43, 44]. In [3], Aarnes

et al. used MsFEM basis functions in the second level of an overlapping Schwarz

preconditioner for an interface problem applied to scalar multiscale problems.

As we are going to discuss later, for some heterogeneous problems, the Ms-

FEM coarse basis functions outperform the standard Lagrangian coarse basis

functions of the standard coarse space, whereas the performance is comparable

for homogeneous problems. However, as for the computation of the GDSW

basis functions, all ACMS basis functions could also be constructed on unstruc-

tured decompositions without the need of an additional coarse triangulation.

This is not the case for the standard Lagrangian basis functions.

We restrict our observations to the serial computations performed with

MATLAB for model problems of the form (4.1). A parallel implementation

would be straight-forward using the software from [103]; see also Sections 4.1.4

and 4.1.5, but it is not considered in this thesis.

186

5.1. DEFINITION OF AN ACMS-BASED COARSE SPACE

5.1 Definition of an ACMS-based Coarse Space

Consider model problems of the form (4.1) on a two-dimensional domain Ω.

Analogously to Chapter 2, Ω is decomposed into nonoverlapping and over-

lapping subdomains, such that a two-level overlapping Schwarz preconditioner

based on the ACMS finite element space is formally given by

M−1
ACMS = ΦACMSA

−1
0 ΦT

ACMS +

N∑
i=1

RT
i Ã

−1
i Ri (5.1)

with

A0 = ΦT
ACMSAΦACMS. (5.2)

Here, ΦACMS is a matrix containing those ACMS basis functions that are used

in the coarse space. Only the matrix ΦACMS distinguishes this preconditioner

from the GDSW preconditioner given in cf. Equation (2.2). To define the

ACMS basis functions in this context, the (triangular or quadrilateral) ACMS

finite elements T ∈ τh correspond to the subdomains of the nonoverlapping

decomposition.

From the set of all ACMS basis functions (cf. Section 4.1.2),

(∪
e⊂Γ

{EΩ (τ̃i,e) : 1 ≤ i ≤ Ie}

)
∪

(∪
P∈Ω

{φP }

)
∪

 ∪
T∈τh

{zi,T : 1 ≤ i ≤ IT }

 ,

(5.3)

we select only the edge-based basis functions, EΩ (τ̃i,e), and the vertex-specific

basis functions, φP . Since they vanish on the interface and are therefore not

related to the coupling of the subdomains, we omit the fixed-interface basis

functions, zi,T . Note that the vertex-specific basis functions are equal to the

standard Lagrangian coarse space functions for tetrahedral or quadrilateral de-

compositions and piecewise constant coefficients on the subdomains.

The simulations of our studies of the ACMS coarse space are performed with

MATLAB, using the CG method for the solution of the linear systems, a rela-

tive stopping criterion of 10−8, and a maximum number of 500 iterations. If

not marked otherwise, we include all vertex-specific basis functions and the

edge-based basis function corresponding to the smallest eigenvalue for each edge

from (5.3) in the coarse space, i.e., Ie = 1. Therefore, the dimension of the

coarse space is the same as for the GDSW preconditioner which, for two-

dimensional scalar problems, includes one basis function for each vertex and

for each edge; cf. Chapter 2.

187

CHAPTER 5. COARSE SPACES BASED ON ACMS

For simplicity, we use square fine meshes with mesh size h and corresponding

bilinear (Q1) finite element functions. The square subdomains have mesh size

H, and the ACMS basis functions are approximated on the fine quadratic mesh.

For all overlapping Schwarz preconditioners, we use an overlap of 2h.

188

5.2. PERFORMANCE OF THE ACMS-BASED COARSE SPACE

Subdomains
500 1000 1500 2000

C
G

 It
er

at
io

ns

0

50

100

150

200

250

300

350

400

450

500
CG
OS1
OS2
GDSW
ACMS OS

Subdomains
500 1000 1500 2000

C
on

di
tio

n
N

um
be

r

100

101

102

103

104

105

106

107

CG
OS1
OS2
GDSW
ACMS OS

Figure 5.1: Numerical scalability of the unpreconditioned system (denoted as

CG), the one-level overlapping Schwarz preconditioner (OS1), the

two-level overlapping Schwarz preconditioner (OS2), the ACMS

coarse space with only the edge-based basis function corresponding

to the smallest eigenvalue (ACMS OS): number of CG iterations

(left) and estimated condition numbers (Lanczos, right) for the

Laplacian model problem (Problem 1) from Section 4.3.1 with

H/h = 32. Note that here OS2 is equal to using multiscale finite

element method (MsFEM) basis functions in the coarse space.

5.2 Performance of the ACMS-based Coarse Space

In Figures 5.1, 5.2, and 5.3, we consider numerical scalability for the model prob-

lems from Sections 4.3.1, 4.3.2, and 4.3.3, i.e., Problems 1–3. We compare the

unpreconditioned system (denoted as CG), a one-level overlapping Schwarz pre-

conditioner (OS1), the standard two-level overlapping Schwarz preconditioner

(OS2), the GDSW preconditioner (GDSW), and the two-level preconditioner

with an ACMS-based coarse space (ACMS OS). The results in Figures 5.1,

5.2, and 5.3 show excellent numerical scalability for OS2, GDSW, and ACMS

OS, with the latter showing a slightly better performance than the other two-

level preconditioners. As expected, the unpreconditioned CG and the one-level

preconditioner are not numerically scalable.

Note that, for Problem 1, the vertex-specific basis functions of the ACMS

coarse space are just the coarse basis functions of the standard two-level Schwarz

preconditioner since the coefficient function is constant. Furthermore, the re-

sults suggest that the standard Lagrangian basis functions are already sufficient

to obtain good scalability for Problems 1–3.

However, when considering problems with high coefficient jumps, like the

coefficient distributions depicted in Figure 5.4, the ACMS coarse space is clearly

189

CHAPTER 5. COARSE SPACES BASED ON ACMS

Subdomains
500 1000 1500 2000

C
G

 It
er

at
io

ns

0

50

100

150

200

250

300

350

400

450

500
CG
OS1
OS2
GDSW
ACMS OS

Subdomains
500 1000 1500 2000

C
on

di
tio

n
N

um
be

r

100

101

102

103

104

105

106

107

CG
OS1
OS2
GDSW
ACMS OS

Figure 5.2: Numerical scalability of the unpreconditioned system (denoted as

CG), the one-level overlapping Schwarz preconditioner (OS1), the

two-level overlapping Schwarz preconditioner (OS2), the ACMS

coarse space with only the edge-based basis function correspond-

ing to the smallest eigenvalue (ACMS OS): number of CG itera-

tions (left) and estimated condition numbers (Lanczos, right) for

Problem 2 from Section 4.3.2 with H/h = 32.

superior to the standard two-level preconditioner. Table 5.1 shows results for

model problem (4.1) with the coefficient distribution from Figure 5.4 (left). We

observe that the edge-based coarse basis functions provide the robustness of

the preconditioner; see the number of iterations and the condition number for

ACMS Schwarz using only the edge-based basis functions (ACMS-E OS). This

is intuitively understood since the severity of the problem is induced by the

channels cutting through the edges of the decomposition. For this example, the

GDSW coarse space is robust as well due to the basis functions belonging to

the corresponding edges.

The results in Table 5.2 show that, for the coefficient function in Figure 5.4

(right), the nodal (vertex-specific) coarse basis functions yield robustness of

the ACMS OS preconditioner (ACMS-V OS), whereas the nodal basis func-

tions of the standard two-level preconditioner and the edge-based basis func-

tions (ACMS-E OS) fail to do so. This is remarkable since the number of nodal

basis functions and their support are the same for OS2 and ACMS-V OS; only

the scaling of the coupling is different because the vertex-specific basis func-

tions of the ACMS coarse space are extended by discrete harmonic extensions,

incorporating information about the coefficient function in that way.

Note that the edge values of the vertex-specific basis functions in (4.18) are

not well-defined for the coefficient function depicted in Figure 5.4 (right). This

is due to the discontinuities of the coefficient function along the edges. To obtain

190

5.2. PERFORMANCE OF THE ACMS-BASED COARSE SPACE

Subdomains
500 1000 1500 2000

C
G

 It
er

at
io

ns

0

50

100

150

200

250

300

350

400

450

500
CG
OS1
OS2
GDSW
ACMS OS

Subdomains
500 1000 1500 2000

C
on

di
tio

n
N

um
be

r

100

101

102

103

104

105

106

107

CG
OS1
OS2
GDSW
ACMS OS

Figure 5.3: Numerical scalability of the unpreconditioned system (denoted as

CG), the one-level overlapping Schwarz preconditioner (OS1), the

two-level overlapping Schwarz preconditioner (OS2), the ACMS

coarse space with only the edge-based basis function correspond-

ing to the smallest eigenvalue (ACMS OS): number of CG itera-

tions (left) and estimated condition numbers (Lanczos, right) for

Problem 3 from Section 4.3.3 with H/h = 32.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Figure 5.4: Coefficient functions with six short vertical channels (left) and

with four inclusions located at the vertices of the decomposition

(right). The red coefficient is 106, the blue coefficient is one.

a good performance, for each vertex on the edge, the maximum coefficient of

all neighboring fine elements has to be chosen.

For the example depicted in Figure 5.5, neither ACMS-E OS, ACMS-V OS,

nor ACMS OS is a robust preconditioner; see Table 5.3. It can be observed

that the edge-based eigenfunctions corresponding to the smallest eigenvalue are

not a suitable choice here, even though each edge is cut by only one channel.

Remarkably, the GDSW coarse space is robust for this distribution of the coef-

191

CHAPTER 5. COARSE SPACES BASED ON ACMS

Preconditioner # Its. Cond. number Dim. coarse space

Unpreconditioned CG n.c. 3.6 · 108 -
OS1 59 9.9 · 105 -
OS2 67 5.3 · 105 4
GDSW 32 14.8 16

ACMS OS 22 6.0 16
ACMS-E OS (only edges) 25 10.9 12
ACMS-V OS (only vertices) 37 5.5 · 105 4

Table 5.1: Number of iterations and estimated condition number for the un-

preconditioned system, the one-level overlapping Schwarz precon-

ditioner (OS1), the two-level overlapping Schwarz preconditioner

(OS2), the ACMS coarse space with only the edge-based basis

function corresponding to the smallest eigenvalue (ACMS OS),

the ACMS coarse space neglecting the vertex- specific basis func-

tions (ACMS-E OS), and the ACMS coarse space neglecting the

edge-based basis functions (ACMS-V OS) solving the model prob-

lem (4.1) with the coefficient function displayed in Figure 5.4 (left);

for the unpreconditioned system, CG did not converge within the

maximum number of 500 iterations: “n.c.” stands for “no conver-

gence” and the condition number estimate is given at the time of

termination of the CG iteration. The mesh is partitioned into 3×3

subdomains with H/h = 16. Note that ACMS-V OS is equal to

using MsFEM basis functions in the coarse space.

ficient function, indicating that its basis functions corresponding to the edges

are a better choice here.

In the next section, we show that, manually, ACMS edge-based eigenfunctions

can be chosen such that a good condition number can be recovered. The number

of necessary eigenfunctions for this strategy is equal to the number of channels

cutting through the corresponding edge. Note that, if the inclusions/channels

with high coefficient value touch the Dirichlet boundary, no edge-based basis

functions are necessary.

192

5.2. PERFORMANCE OF THE ACMS-BASED COARSE SPACE

Preconditioner # Its. Cond. number Dim. coarse space

Unpreconditioned CG n.c. 3.8 · 108 -
OS1 46 3.9 · 106 -
OS2 54 8.7 · 105 4
GDSW 52 1.5 · 106 16

ACMS OS 20 4.2 16
ACMS-E OS (only edges) 49 3.9 · 106 12
ACMS-V OS (only vertices) 21 5.6 4

Table 5.2: Number of iterations and estimated condition number for the un-

preconditioned system, the one-level overlapping Schwarz precon-

ditioner (OS1), the two-level overlapping Schwarz preconditioner

(OS2), the ACMS coarse space with only the edge-based basis

function corresponding to the smallest eigenvalue (ACMS OS),

the ACMS coarse space neglecting the vertex-specific basis func-

tions (ACMS-E OS), and the ACMS coarse space neglecting the

edge-based basis functions (ACMS-V OS) solving the model prob-

lem (4.1) with the coefficient function displayed in Figure 5.4

(right); for the unpreconditioned system, CG did not converge

within the maximum number of 500 iterations: “n.c.” stands for

“no convergence” and the condition number estimate is given at the

time of termination of the CG iteration. The mesh is partitioned

into 3 × 3 subdomains with H/h = 16. Note that ACMS-V OS is

equal to using MsFEM basis functions in the coarse space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Figure 5.5: Coefficient function with three vertical channels. The red coeffi-

cient is 106, the blue coefficient is one.

193

CHAPTER 5. COARSE SPACES BASED ON ACMS

Preconditioner # Its. Cond. number

Unpreconditioned CG n.c. 3.9 · 108

OS1 38 6.4 · 105

OS2 41 3.5 · 105

GDSW 24 10.5

ACMS OS 38 3.6 · 105

Table 5.3: Number of iterations and estimated condition number for the un-

preconditioned system, the one-level overlapping Schwarz precon-

ditioner (OS1), the two-level overlapping Schwarz preconditioner

(OS2), and the ACMS coarse space with only the edge-based ba-

sis function corresponding to the smallest eigenvalue (ACMS OS)

solving the model problem (4.1) with the coefficient function dis-

played in Figure 5.5; for the unpreconditioned system, CG did not

converge within the maximum number of 500 iterations: “n.c.”

stands for “no convergence” and the condition number estimate is

given at the time of termination of the CG iteration. The mesh is

partitioned into 3 × 3 subdomains with H/h = 16.

194

5.3. ALGEBRAIC APPROXIMATIONS OF THE ACMS COARSE SPACE

5.3 Algebraic Approximations of the ACMS Coarse

Space

In this section, we first consider an even more severe coefficient function than

in the previous section, i.e., a coefficient function with 12 vertical channels of

different length cutting through a different number of subdomain edges; see

Figure 5.6. As can be observed from the results shown in Table 5.4, the ACMS

OS coarse space is not sufficient for this coefficient function. We notice that

the eigenfunction corresponding to the smallest eigenvalue captures only the

jumps corresponding to the rightmost channel cutting through the four middle

horizontal edges; cf. Figure 5.7.

We denote the minimal set of edge-based basis functions from (5.3) needed

to obtain a low condition number as the optimal set. For the horizontal edges

with y = 0.5, the optimal basis functions are the eigenfunctions corresponding

to the first, the 13th, and the 14th lowest eigenvalues. Using the corresponding

coarse space incorporating the optimal edge-based basis functions on each edge,

we obtain very good results; cf. Table 5.4. Note that each edge contains 23

nodes, and thus, 23 different eigenfunctions can be computed on each edge.

We have selected the three optimal functions manually by the method of trial

and error because it seems that the choice of the optimal eigenfunctions is

not directly related to the magnitude of the corresponding eigenvalue. Thus,

even if we were able to select the optimal eigenfunctions, it might be necessary

to compute all eigenfunctions first. In a parallel simulation, the solution of

the eigenvalue problems is local work but, nonetheless, the computation of all

eigenfunctions is costly. The number of basis functions needed to achieve good

preconditioning is equal to the number of cuts of channels through subdomain

edges, which is not surprising when reviewing the literature on adaptive coarse

spaces, e.g., [95, 132].

Looking at the values of the optimal eigenfunctions on the middle edges (cf.

Figure 5.7, middle), we observe that each of the eigenfunctions is somehow a

disturbed representation of the coefficient jumps corresponding to one of the

channels. Thus, it seems natural that the ACMS coarse space with optimal

edge-based eigenfunctions can also be approximated by reconstructing the jumps

on the edges corresponding to the channels manually. The edge values of the

basis functions resulting from this strategy are depicted in Figure 5.7 (right),

and the corresponding promising results are shown in Table 5.4. Note that, in

order to obtain these results, the values of the reconstructed basis functions on

the edges are set to zero where the coefficient is low and to one (for means of

195

CHAPTER 5. COARSE SPACES BASED ON ACMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Figure 5.6: Coefficient function with 12 vertical channels. The red coefficient

is 106, the blue coefficient is one.

5 10 15 20 25
10-1

100

101

102

103

104

105

Coefficient function
Diagonal entries

5 10 15 20 25

-15

-10

-5

0

5

10

15 first eigenvalue
13th eigenvalue
14th eigenvalue

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.7: Values of the coefficient function and diagonal entries of the stiff-

ness matrix corresponding to the horizontal edges with y = 0.5

from Figure 5.6 (left); the corresponding three optimal edge-based

eigenfunctions selected for the coarse space (middle); the three

reconstructed edge functions (right). The eigenfunctions corre-

sponding to the first, 13th, and 14th lowest eigenvalues have been

selected.

normalization) where the coefficient is high. Then, as for the edge-based basis

functions in the ACMS space, we extend the edge values to the interior nodes

by discrete harmonic extensions; cf. Equation (4.6). We denote the resulting

overlapping Schwarz preconditioner by ACMS-R OS.

The fact that, following this strategy, we approximate the space spanned by

the optimal edge-based ACMS basis functions rather than the functions them-

selves can be observed from the example depicted in Figures 5.9 and 5.10. In

this case, each optimal edge-based ACMS basis function does not clearly corre-

spond to one of the channels, however the channels can be represented as linear

combinations of the basis functions.

Note that, for the coefficient function in Figure 5.6, the dimension of all

ACMS based coarse spaces (ACMS OS, ACMS-O OS, and ACMS-R OS) is

196

5.3. ALGEBRAIC APPROXIMATIONS OF THE ACMS COARSE SPACE

Preconditioner # Its. Cond. number Dim. coarse space

Unpreconditioned CG n.c. 7.0 · 108 -
OS1 184 3.4 · 106 -
OS2 222 9.3 · 105 9
GDSW 153 2.9 · 105 33

ACMS OS 151 7.9 · 105 33
ACMS-O OS 32 23.3 33
ACMS-R OS 28 9.7 33

Table 5.4: Number of iterations and estimated condition number for the un-

preconditioned system, the one-level overlapping Schwarz precon-

ditioner (OS1), the two-level overlapping Schwarz preconditioner

(OS2), the ACMS coarse space with only the edge-based basis func-

tion corresponding to the smallest eigenvalue (ACMS OS), the

ACMS coarse space with the manually selected three optimal edge-

based basis functions (ACMS-O OS), and the ACMS coarse space

with reconstructed edge-based basis functions (ACMS-R OS) solv-

ing the model problem (4.1) with the coefficient function displayed

in Figure 5.6; for the unpreconditioned system, CG did not con-

verge within the maximum number of 500 iterations: “n.c.” stands

for “no convergence” and the condition number estimate is given

at the time of termination of the CG iteration. The mesh is parti-

tioned into 4 × 4 subdomains with H/h = 24.

the same; however, the results for ACMS-O and ACMS-R OS are significantly

better; cf. Table 5.4.

We present two strategies to reconstruct the jumps corresponding to the

channels on an edge:

(a) using the values of the coefficient function, or

(b) using the diagonal entries of the stiffness matrix.

The second approach arises from the idea of constructing the coarse space

functions algebraically, i.e., without the need of additional information about

the geometry or about the coefficient function. This is also a crucial advantage

of the GDSW preconditioner since it can be constructed in an algebraic fashion

as well; cf. Chapter 2. As can be observed in Figure 5.7 (left), the plot of

the diagonal entries of the stiffness matrix has almost the same shape as the

coefficient function on the edge. Thus, we can also employ the matrix entries

to define the edge values of the edge-based basis functions.

197

CHAPTER 5. COARSE SPACES BASED ON ACMS

Note that, if the width of a channel is equal to or less than the size of one fine

element, the detection of the jump may be difficult using the diagonal entries

of the stiffness matrix. This is because of the averaging effect of the integrals

in the matrix. We do not go into detail here, but in these cases the strategy

can be extended by looking at the off-diagonal entries.

For both strategies, we specify a threshold (here, e.g., 100) and go through all

nodes of an edge of the decomposition. If the quotient of the coefficient values of

two neighboring nodes (or of the corresponding diagonal entries, respectively)

is higher than the threshold, we set the values of the edge-based basis function

to one, until the quotient again gets lower, i.e., lower than the reciprocal value

of the threshold; we set the values to zero elsewhere. Then we continue going

through the nodes to set the values of the second edge-based basis function, and

so on. In this way, one basis function is constructed for each channel cutting

through the edge which is under consideration. We carry out this procedure for

each edge of the decomposition.

Additionally, to obtain a purely algebraic implementation, the values of the

coefficient function A(x) in (4.18), i.e., in the definition of the vertex-specific

basis functions on the edges, can also be approximated using the corresponding

diagonal entries of the stiffness matrix; cf. Figure 5.7 (left). As a result, the

edge values are well-defined, even if the coefficient function is discontinuous

along the edge, as, e.g., in Figure 5.4 (right). For this coefficient function, we

obtain 22 CG iterations and an estimated condition number of 5.7 when using

the diagonal entries of the stiffness matrix instead of the coefficient function

itself. To obtain these results, no edge-based basis functions have been used.

The results are therefore comparable to the results obtained with the exact

values of the coefficient function (ACMS-V OS/MsFEM); cf. Table 5.2.

Remarkably, for an even more complicated example, like the coefficient func-

tion depicted in Figure 5.8, three edge-based basis function from the ACMS

space (see Figure 5.9, right) are still sufficient to obtain a low condition num-

ber and a small number of CG iterations: the estimated condition number is

8.53, and 25 CG iterations are needed. However, the basis functions have been

selected manually here as well.

For all three approaches for the reconstruction of the jumps which are de-

picted in Figure 5.10, we obtain excellent results as well. In particular, we

observe that three edge-based ACMS-R OS functions are sufficient, and thus,

no special treatment of the jump from 104 to 108 is necessary here.

198

5.3. ALGEBRAIC APPROXIMATIONS OF THE ACMS COARSE SPACE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Figure 5.8: Coefficient function with vertical channels and three different val-

ues: the red coefficient is 108, the yellow coefficient is 104, and the

blue coefficient is one.

0 5 10 15 20 25
10-2

100

102

104

106

108

1010

Coefficient function
Diagonal entries

0 5 10 15 20 25
-8

-6

-4

-2

0

2

4

6

8

first eigenvalue
second eigenvalue
third eigenvalue

Figure 5.9: Values of the coefficient function and diagonal entries of the stiff-

ness matrix corresponding to the horizontal edges with y = 1/3

from Figure 5.8 (left) and the corresponding three optimal edge-

based eigenfunctions selected for the coarse space (right); the

eigenfunctions corresponding to the three lowest eigenvalues have

been selected.

199

CHAPTER 5. COARSE SPACES BASED ON ACMS

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

basis functions # Its. Cond. number

1 (left) 28 7.9
2 (middle) 30 7.9
3 (right) 27 7.9

Figure 5.10: Reconstructed edge-based basis functions for the the horizontal

edges with y = 1/3 from Figure 5.8 using one (left), two (middle),

or three (right) basis functions for each channel, and the corre-

sponding number of iterations and estimated condition number

(Lanczos) for the solution of problem (4.1) with the coefficient

function depicted in Figure 5.8.

200

5.3. ALGEBRAIC APPROXIMATIONS OF THE ACMS COARSE SPACE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.11: Another coefficient function with vertical channels and three dif-

ferent values (left): the red coefficient is 108, the yellow coeffi-

cient is 104, and the blue coefficient is one; the corresponding

reconstructed edge-based basis functions.

However, for the coefficient function depicted in Figure 5.11 (left), more than

one basis function is needed for each edge: three basis functions are needed

for each edge to obtain good results, i.e., 23 CG iterations and an estimated

condition number of 8.6; cf. Figure 5.11 (right). To fully understand how the

edge values have to be chosen for general jumping coefficient functions, further

investigation is necessary.

Note that for this coefficient function, also the GDSW coarse space leads

to comparably good results, i.e., 50 CG iterations and an estimated condition

number of 2 572.4, keeping in mind that only one basis function is employed for

each edge.

201

CONCLUSION AND FUTURE WORK

5.4 Conclusion

We have presented a coarse space for two-level overlapping Schwarz precondi-

tioners which is based on the ACMS space. The ACMS OS preconditioner scales

well for the oscillating model problems under consideration. However, for some

model problems with high coefficient jumps (e.g., channel problems), the edge-

based basis functions corresponding to the smallest eigenvalue may neither be

optimal nor sufficient. Hence, we have found that an optimal set of edge-based

eigenfunctions from the full ACMS space can be selected manually to obtain a

robust coarse space, where the number of eigenfunctions appears to correspond

to the number of channels cutting through the edge. However, no correlation

of the magnitude of the eigenvalue to the optimality of the eigenfunction could

be observed here.

From investigating the edge values of the optimal edge-based basis functions,

we could approximate heuristically the space spanned by the optimal edge-based

basis functions reconstructing the jumps on the edges. Therefore, we use either

the values of the coefficient function or, alternatively, the diagonal entries of

the stiffness matrix. These coarse basis functions lead to very good condition

numbers and do not require the solution of generalized eigenvalue problems,

which clearly reduces the computational work needed for construction of the

coarse space. However, our heuristic strategy still needs to be extended to

general coefficient distributions.

Nonetheless, these strategies are promising as an extension of our parallel im-

plementation of the GDSW preconditioner (cf. Chapter 2): we observed that the

AMCS-R OS coarse space may be built in a completely algebraic fashion, i.e.,

just from the global stiffness matrix. An extension of the GDSW coarse space

is not always necessary for heterogeneous problems since the basis functions of

the GDSW coarse space which correspond to an edge help to cope with one

channel cutting through this edge. However, for more complicated problems,

the GDSW coarse space should be enriched by additional basis functions.

Another advantage of the reconstructed basis functions is that, since no gen-

eralized eigenvalue problems have to be solved, no mass matrices are needed for

their construction. In contrast to that, in the ACMS space the mass matrices

have to be build additionally; cf. (4.22).

202

Conclusion and Future Work

Conclusion

In this thesis, the development of a complete framework for the simulation of

Fluid-Structure Interaction (FSI) in coronary arteries has been described. To

accurately simulate the distribution of stresses in the arterial wall, the software

libraries LifeV and FEAP have been coupled and a benchmark problem for the

testing of the numerical framework and the corresponding software has been set

up. An extensive numerical study has been carried out to investigate different

boundary conditions and various space discretizations. The results of fully-

coupled FSI simulations of several heartbeats using an anisotropic polyconvex

hyperelastic material model and an anisotropic viscoelastic material model for

the structure have been presented, and the stress distributions in wall of the

benchmark geometry have been discussed. For both parts of the simulations,

i.e., the ramp phase and the heartbeat phase, extensive mesh convergence stud-

ies have been carried out. The results indicate that, for the highly nonlinear

material models considered in this thesis, piecewise quadratic or F̄ elements

should be preferred instead of piecewise linear elements.

Initiated by the immense computation times required for the simulations, a

parallel two-level Schwarz preconditioner has been implemented to be used as a

preconditioner for the structural block. Indeed, as it turned out, the structural

block is the most crucial part for preconditioning in the presented setting. As a

consequence, for larger time steps and for the nonlinear material models which

have been used in this thesis, a significant reduction of the simulation time

could be achieved, just by replacing the preconditioner for the structural block.

In addition to that, the parallel implementation of the GDSW preconditioner

has been tested for Laplacian and linear elastic model problems. Very good

numerical and parallel scalability has been observed for the full coarse space as

well as for the resulting coarse space when omitting the rotation-based basis

functions. These observations involved structured and unstructured domain

decompositions in two and three dimensions. The largest three-dimensional

linear elastic problem includes 334 million unknowns and has been solved on

8 000 MPI-processes. A hybrid version of the GDSW preconditioner has been

203

CONCLUSION AND FUTURE WORK

presented, and it has been observed that the hybrid version reduces the number

of Krylov iterations significantly for the Laplacian and the linear elastic model

problems. The parallel implementation is held flexible with respect to the

extension of the preconditioner by, e.g., additional coarse basis functions.

A parallel implementation of a special finite element method based on Ap-

proximate Component Mode Synthesis (ACMS) in two dimensions has been

presented. Convergence results for up to 1 024 MPI ranks and more than 16

million unknowns indicate very good approximation properties of the special fi-

nite element method for highly heterogeneous problems. The FETI-DP method

has been used to solve the linear system of equations arising from the ACMS dis-

cretization, with condition numbers similar to the case of standard Lagrangian

basis functions. Excellent parallel scalability could be observed.

Finally, the interface-based basis functions of the ACMS special finite element

method have been used to construct a coarse space for overlapping Schwarz

preconditioners. First preliminary results show very good scalability and ro-

bustness for highly heterogenous problems. In addition, a heuristic strategy to

approximate an ACMS-based coarse space, which avoids the solution of gen-

eralized eigenvalue problems, has been presented. For channel problems with

high coefficient jumps, first results indicate that the ACMS coarse space and

the reconstructed ACMS coarse space show a similar performance as adaptive

coarse spaces which are already available. However, an adaptive strategy to

select the optimal ACMS basis functions for general coefficient functions with

jumps has not been presented here yet.

Future Work

In our FSI simulations, we have only considered idealized geometries and only

one material layer so far. Thus, to proceed to more realistic configurations, we

will take patient-specific geometries, multiple material layers, and surrounding

tissue of the artery into account. In particular, the latter will help to reduce

oscillations occurring in our simulations and to replace our artificial boundary

conditions. Whereas the computational work for the structural part will in-

crease, the parallel implementation of the GDSW preconditioner will enable us

to cope with larger structural problems. In addition to that, the movement

induced by the pulse of the heart itself should be included as well to obtain

more realistic flow rates and pressure over time.

To further reduce the computation time of our FSI simulations, adaptive time

stepping schemes as well as parallel-in-time methods, such as Parareal [148] or

204

MGRIT (Multigrid Reduction in Time) [93], could be considered. Whereas the

use of adaptive time stepping schemes is clearly promising, it is not clear yet if

and how parallel-in-time approaches can be applied to FSI problems; cf., e.g.,

[81].

As a next step, the GDSW preconditioner could be applied to the fluid and

the geometry blocks as well, and as a preconditioner for the whole monolithic

matrix; cf. [129], where two-level overlapping Schwarz preconditioners were ap-

plied to saddle point problems. Therefore, the parallel implementation of the

GDSW preconditioner should be improved further, by either implementing re-

duced coarse spaces [72] or by using inexact solvers for the coarse level, e.g., ap-

proximating the inverse of the coarse matrix by an Algebraic Multigrid (AMG)

preconditioner or, again, by a GDSW preconditioner, which would lead to a

multilevel GDSW preconditioner. With these approaches, it could be possible

to further improve the parallel scalability up to a larger number of cores.

It would also be interesting to incorporate the vertex-specific (MsFEM) basis

functions of the ACMS coarse space and the reconstructed ACMS basis func-

tions into the coarse space of our parallel implementation of the GDSW pre-

conditioner. This would enable the simulations of large highly heterogeneous

problems in parallel. The ACMS finite element method should therefore be

extended to unstructured decompositions, elastic model problems, and three-

dimensional problems; cf. [43], where the multiscale finite element method (Ms-

FEM) was used for three-dimensional elasticity problems. With respect to the

ACMS coarse space, an adaptive strategy for the selection of the optimal edge-

based basis functions and the heuristic strategy for the approximation of the

ACMS coarse space should be extended to more general coefficient functions,

with and without jumps.

205

Bibliography

[1] Boost C++ Libraries. http://www.boost.org.

[2] Hemolab, 2014. http://hemolab.lncc.br/adan-web. [Accessed on Novem-
ber 2014].

[3] Jørg Aarnes and Thomas Y. Hou. Multiscale domain decomposition meth-
ods for elliptic problems with high aspect ratios. Acta Math. Appl. Sin.
Engl. Ser., 18(1):63–76, 2002.

[4] James Ahrens, Berk Geveci, and Charles Law. ParaView: An End-User
Tool for Large Data Visualization. Visualization Handbook, Elsevier,
2005.

[5] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko
Koster. A fully asynchronous multifrontal solver using distributed dy-
namic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41, 2001.

[6] E. Anderson, Z. Bai, C. Bischof, L. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[7] Todd Arbogast. Mixed multiscale methods for heterogeneous elliptic
problems. In Ivan G. Graham, Thomas Y. Hou, Omar Lakkis, and Robert
Scheichl, editors, Numerical analysis of multiscale problems, volume 83
of Lect. Notes Comput. Sci. Eng., pages 243–283. Springer, Heidelberg,
Berlin, Heidelberg, 2012.

[8] Ivo Babuška, Uday Banerjee, and John E. Osborn. On principles for the
selection of shape functions for the generalized finite element method.
Comput. Methods Appl. Mech. Engrg., 191(49-50):5595–5629, 2002.

[9] Ivo Babuška, Uday Banerjee, and John E. Osborn. Generalized finite
element methods - main ideas, results and perspective. International
Journal of Computational Methods, 1(1):67–103, 2004.

[10] Ivo Babuška and John E. Osborn. Generalized finite element methods:
their performance and their relation to mixed methods. SIAM J. Numer.
Anal., 20(3):510–536, 1983.

[11] Santiago Badia, Alberto Martin, and Javier Principe. Multilevel balanc-
ing domain decomposition at extreme scales. SIAM J. Sci. Comput. In
press, 2015.

207

Bibliography

[12] Santiago Badia, Annalisa Quaini, and Alfio Quarteroni. Modular vs.
non-modular preconditioners for fluid-structure systems with large added-
mass effect. Comput. Methods Appl. Mech. Engrg., 197(49-50):4216–
4232, 2008.

[13] Santiago Badia, Annalisa Quaini, and Alfio Quarteroni. Splitting methods
based on algebraic factorization for fluid-structure interaction. SIAM J.
Sci. Comput., 30(4):1778–1805, 2008.

[14] Allison H. Baker, Axel Klawonn, Tzanio Kolev, Martin Lanser, Oliver
Rheinbach, and Ulrike Meier Yang. Scalability of classical algebraic multi-
grid for elasticity to half a million parallel tasks. 2015. Submitted 11/2015
to Lect. Notes Comput. Sci. Eng. TUBAF Preprint: 2015-14, http://tu-
freiberg.de/fakult1/forschung/preprints.

[15] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,
Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong Zhang. PETSc
Web page, 2015. http://www.mcs.anl.gov/petsc.

[16] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter
Brune, Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D.
Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes,
Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong Zhang. PETSc
users manual. Technical Report ANL-95/11 - Revision 3.6, Argonne Na-
tional Laboratory, 2015. http://www.mcs.anl.gov/petsc.

[17] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press, 1997.

[18] John M. Ball. Convexity conditions and existence theorems in nonlinear
elasticity. Arch. Rational Mech. Anal., 63(4):337–403, 1977.

[19] Daniel Balzani. Polyconvex Anisotropic Energies and Modeling of
Damage Applied to Arterial Walls. Phd thesis, University Duisburg-
Essen, Verlag Glückauf Essen, 2006.

[20] Daniel Balzani, Dirk Böse, Dominik Brands, Raimund Erbel, Axel Kla-
wonn, Oliver Rheinbach, and Jörg Schröder. Parallel simulation of
patient-specific atherosclerotic arteries for the enhancement of intravas-
cular ultrasound diagnostics. Engineering Computations, 29(8), 2012.

[21] Daniel Balzani, Dominik Brands, Axel Klawonn, and Oliver Rheinbach.
Large-scale simulation of arterial walls: mechanical modeling. PAMM,
7(1):4020017–4020018, 2007. Special Issue: Sixth International Congress
on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meet-
ing, Zürich 2007.

208

Bibliography

[22] Daniel Balzani, Dominik Brands, Axel Klawonn, Oliver Rheinbach, and
Jörg Schröder. On the mechanical modeling of anisotropic biological
soft tissue and iterative parallel solution strategies. Archive of Applied
Mechanics, 80(5):479–488, 2010.

[23] Daniel Balzani, Simone Deparis, Simon Fausten, Davide Forti, Alexander
Heinlein, Axel Klawonn, Alfio Quarteroni, Oliver Rheinbach, and Jörg
Schröder. Aspects of arterial wall simulations: Nonlinear anisotropic ma-
terial models and fluid structure interaction. In Proceedings of the WCCM
XI, number WCCM XI, pages 1–12, 2014.

[24] Daniel Balzani, Simone Deparis, Simon Fausten, Davide Forti, Alexan-
der Heinlein, Axel Klawonn, Alfio Quarteroni, Oliver Rheinbach, and
Jörg Schröder. Numerical modeling of fluidstructure interaction in arter-
ies with anisotropic polyconvex hyperelastic and anisotropic viscoelastic
material models at finite strains. International Journal for Numerical
Methods in Biomedical Engineering, pages 1–41, 2015.

[25] Daniel Balzani, Friedrich Gruttmann, and Jörg Schröder. Analysis of thin
shells using anisotropic polyconvex energy densities. Comput. Methods
Appl. Mech. Engrg., 197(9-12):1015–1032, 2008.

[26] Daniel Balzani, Patrizio Neff, Jörg Schröder, and Gerhard A. Holzapfel.
A polyconvex framework for soft biological tissues. Adjustment to exper-
imental data. Internat. J. Solids Structures, 43(20):6052–6070, 2006.

[27] Daniel Balzani, Jörg Schröder, Dominik Brands, Axel Klawonn, and
Oliver Rheinbach. Computer simulation of damage in overstretched
atherosclerotic arteries. Proceedings of ICCB 2007 - III. International
Congress on Computational Bioengineering, 2007.

[28] Daniel Balzani, Jörg Schröder, and Dietmar Gross. Simulation of discon-
tinuous damage incorporating residual stresses in circumferentially over-
stretched atherosclerotic arteries. Acta Biomaterialia, 2(6):609–618, 2006.

[29] Andrew T. Barker. Parallel monolithic fluid-structure interaction
algorithms with application to blood flow simulation. PhD thesis, Uni-
versity of Colorado, 2009.

[30] Andrew T. Barker and Xiao-Chuan Cai. Scalable parallel methods for
monolithic coupling in fluid-structure interaction with application to
blood flow modeling. J. Comput. Phys., 229(3):642–659, 2010.

[31] Peter Bastian, C. Engwer, J. Fahlke, M. Geveler, D. Göddeke, Oleg
Iliev, O. Ippisch, R. Milk, J. Mohring, S. Müthing, Mario Ohlberger,
D. Ribbrock, and Stefan Turek. Advances concerning multiscale meth-
ods and uncertainty quantification in EXA-DUNE . In Proceedings of the
SPPEXA Symposium 2016. Springer Berlin Heidelberg, 2016. Submitted.

209

Bibliography

[32] Yuri Bazilevs, V. M. Calo, T. J R Hughes, Y. Zhang, M.-C. Hsu, and
M. A. Scott. Isogeometric fluid-structure interaction analysis with em-
phasis on non-matching discretizations, and with application to wind tur-
bines. Comput. Methods Appl. Mech. Engrg., 249/252(1):28–41, 2012.

[33] Yuri Bazilevs, Kenji Takizawa, and Tayfun E. Tezduyar. Computational
Fluid–Structure Interaction. Methods and Applications. Wiley, 2013.

[34] Michele Benzi and Maxim A. Olshanskii. An augmented Lagrangian-
based approach to the Oseen problem. SIAM J. Sci. Comput., 28(6):2095–
2113, 2006.

[35] Michele Benzi, Maxim A. Olshanskii, and Zhen Wang. Modified aug-
mented Lagrangian preconditioners for the incompressible Navier-Stokes
equations. Internat. J. Numer. Methods Fluids, 66(4):486–508, 2010.

[36] Petter E. Bjørstad, Jacko Koster, and Piotr Krzyzanowski. Domain de-
composition solvers for large scale industrial finite element problems. In
PARA2000 Workshop on Applied Parallel Computing, PARA ’00, pages
373–383, London, UK, UK, 2001. Lecture Notes in Computer Science
1947, Springer-Verlag.

[37] Petter E. Bjørstad, Piotr Krzyzanowski, and Piotr Krzy. A flexible 2-
level neumann-neumann method for structural analysis problems. In
Proceedings of the th International Conference on Parallel Processing
and Applied Mathematics-Revised Papers, PPAM ’01, pages 387–394,
London, UK, UK, 2002. Springer-Verlag.

[38] J.-P. Boehler. Introduction to the invariant formulation of anisotropic
constitutive equations. In Applications of tensor functions in solid
mechanics, volume 292 of CISM Courses and Lectures, pages 13–30.
Springer, Vienna, 1987.

[39] Dirk Böse, Sarah Brinkhues, Raimund Erbel, Axel Klawonn, Oliver
Rheinbach, and Jörg Schröder. A simultaneous augmented lagrange
approach for the simulation of soft biological tissue. In Randolph
Bank, Michael Holst, Olof Widlund, and Jinchao Xu, editors, Domain
Decomposition Methods in Science and Engineering XX, volume 91 of
Lecture Notes in Computational Science and Engineering, pages 369–376.
Springer Berlin Heidelberg, 2013.

[40] Dietrich Braess. Finite Elemente: Theorie, schnelle
Löser und Anwendungen in der Elastizitätstheorie, volume 25 of
Springer-Lehrbuch Masterclass. Springer Berlin Heidelberg, 2013.

[41] Dominik Brands, Axel Klawonn, Oliver Rheinbach, and Jörg Schröder.
Modelling and convergence in arterial wall simulations using a parallel feti
solution strategy. Comput. Methods Biomech. Biomed. Engin., 11(5):569–
583, 2008.

210

Bibliography

[42] Sarah Brinkhues, Axel Klawonn, Oliver Rheinbach, and Jörg Schröder.
Augmented lagrange methods for quasi-incompressible materials - ap-
plications to soft biological tissue. International Journal for Numerical
Methods in Biomedical Engineering, 29(3):332–350, 2013.

[43] Marco Buck. Overlapping Domain Decomposition Preconditioners for
Multi-Phase Elastic Composites. PhD thesis, Technische Universität
Kaiserslautern, 2013.

[44] Marco Buck, Oleg Iliev, and Heiko Andrä. Multiscale finite elements
for linear elasticity: Oscillatory boundary conditions. In J Erhal, M J
Gander, L Halpern, G Pichot, T Sassi, and O Widlund, editors, Domain
Decomposition Methods in Science and Engineering XXI, volume 98 of
Lecture Notes in Computational Science and Engineering, pages 237–245.
Springer, 2014.

[45] Erik Burman and Miguel Ángel Fernández. Continuous interior penalty
finite element method for the time-dependent Navier–Stokes equa-
tions: space discretization and convergence. Numerische Mathematik,
107(1):39–77, 2007.

[46] Sunčica Čanić, Craig J. Hartley, Doreen Rosenstrauch, Josip Tambača,
Giovanna Guidoboni, and Andro Mikelić. Blood flow in compliant arter-
ies: An effective viscoelastic reduced model, numerics, and experimental
validation. Annals of Biomedical Engineering, 34(4):575–592, 2006.

[47] Paola Causin, Jean-Frédéric Gerbeau, and Fabio Nobile. Added-mass
effect in the design of partitioned algorithms for fluid-structure problems.
Comput. Methods Appl. Mech. Engrg., 194(42-44):4506–4527, 2005.

[48] R Chandramouli. Textbook of Physiology. Jaypee Brothers Medical Pub-
lishers, 3rd edition, 2010.

[49] Eric T. Chung and Hyea Hyun Kim. A deluxe FETI-DP algorithm for a
hybrid staggered discontinuous Galerkin method for H(curl)-elliptic prob-
lems. Internat. J. Numer. Methods Engrg., 98(1):1–23, 2014.

[50] Philippe G. Ciarlet. Mathematical elasticity. volume I. ,
Three-dimensional elasticity, volume I of Studies in mathematics
and its applications. North-Holland, Amsterdam, New York, 1988.

[51] C.M. Colciago, Simone Deparis, and Alfio Quarteroni. Comparisons be-
tween reduced order models and full 3d models for fluidstructure interac-
tion problems in haemodynamics. Journal of Computational and Applied
Mathematics, 265:120–138, 2014.

[52] P. Colli Franzone, Luca F. Pavarino, and Simone Scacchi. Parallel mul-
tilevel solvers for the cardiac electro-mechanical coupling. Appl. Numer.
Math., 95:140–153, 2015.

211

Bibliography

[53] Georges-Henri Cottet, Emmanuel Maitre, and Thomas Milcent. Eule-
rian formulation and level set models for incompressible fluid-structure
interaction. M2AN Math. Model. Numer. Anal., 42:471–492, 2008.

[54] Roy R. Craig Jr. and Mervyn C. C. Bampton. Coupling of substruc-
tures for dynamic analyses. AIAA Journal, 6(7):1313–1319, 1968. doi:
10.2514/3.4741.

[55] Jean-Michel Cros. A preconditioner for the Schur complement domain de-
composition method. In O Widlund I. Herrera D. Keyes and R Yates, ed-
itors, Domain Decomposition Methods in Science and Engineering, pages
373–380. National Autonomous University of Mexico (UNAM), Mexico
City, Mexico, ISBN 970-32-0859-2, 2003. Proc. 14th Int. Conf. Domain
Decomposition Methods; http://www.ddm.org/DD14.

[56] Paolo Crosetto, Simone Deparis, Gilles Fourestey, and Alfio Quarteroni.
Parallel algorithms for fluid-structure interaction problems in haemody-
namics. SIAM J. Sci. Comput., 33(4):1598–1622, 2011.

[57] Paolo Crosetto, Philippe Reymond, and Simone Deparis. Fluidstructure
interaction simulation of aortic blood flow. Computers & Fluids, 43(1):46–
57, 2011.

[58] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-
pattern multifrontal method. ACM Transactions on Mathematical
Software, 30(2):165–195, 2004.

[59] Timothy A. Davis and Iain S. Duff. An unsymmetric-pattern multi-
frontal method for sparse LU factorization. SIAM J. Matrix Anal. Appl.,
18(1):140–158, 1997.

[60] Joris Degroote, Klaus-Jürgen Bathe, and Jan Vierendeels. Performance
of a new partitioned procedure versus a monolithic procedure in fluid-
structure interaction. Comput. Struct., 87(11-12):793–801, 2009. Fifth
MIT Conference on Computational Fluid and Solid Mechanics.

[61] Joris Degroote and Jan Vierendeels. Multi-level quasi-newton coupling
algorithms for the partitioned simulation of fluidstructure interaction.
Comput. Methods Appl. Mech. Engrg., 225228(0):14–27, 2012.

[62] Simone Deparis. Numerical analysis of axisymmetric flows and methods
for fluid-structure interaction arising in blood flow simulation. PhD thesis,
SB, Lausanne, 2004.

[63] Simone Deparis, Marco Discacciati, Gilles Fourestey, and Alfio Quar-
teroni. Fluid-structure algorithms based on Steklov-Poincaré operators.
Comput. Methods Appl. Mech. Engrg., 195(41-43):5797–5812, 2006.

[64] Simone Deparis, Marco Discacciati, and Alfio Quarteroni. A domain de-
composition framework for fluid-structure interaction problems. In Clin-
ton Groth and David W. Zingg, editors, Computational Fluid Dynamics
2004, pages 41–58. Springer Berlin Heidelberg, 2006.

212

Bibliography

[65] Simone Deparis, Davide Forti, Gwenol Grandperrin, and Alfio Quar-
teroni. FaCSI: A block parallel preconditioner for fluid-structure interac-
tion in hemodynamics. Technical report, MATHICSE, 2015.

[66] Simone Deparis, Davide Forti, Alexander Heinlein, Axel Klawonn, Alfio
Quarteroni, and Oliver Rheinbach. A Comparison of Preconditioners
for the Steklov-Poincaré Formulation of the Fluid-Structure Coupling in
Hemodynamics. PAMM, 15(1):93–94, 2015.

[67] Simone Deparis, Davide Forti, and Alfio Quarteroni. A rescaled localized
radial basis function interpolation on non-Cartesian and nonconforming
grids. SIAM J. Sci. Comput., 36(6):A2745–A2762, 2014.

[68] Simone Deparis, Gwenol Grandperrin, and Alfio Quarteroni. Parallel
preconditioners for the unsteady Navier-Stokes equations and applications
to hemodynamics simulations. Comput. & Fluids, 92:253–273, 2014.

[69] Clark R. Dohrmann. A preconditioner for substructuring based on con-
strained energy minimization. SIAM J. Sci. Comput., 25(1):246–258,
2003.

[70] Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund. Domain de-
composition for less regular subdomains: overlapping Schwarz in two di-
mensions. SIAM J. Numer. Anal., 46(4):2153–2168, 2008.

[71] Clark R. Dohrmann, Axel Klawonn, and Olof B. Widlund. A family of
energy minimizing coarse spaces for overlapping schwarz preconditioners.
In Domain decomposition methods in science and engineering XVII, vol-
ume 60 of Lect. Notes Comput. Sci. Eng., pages 247–254. Springer, Berlin,
2008.

[72] Clark R. Dohrmann and Olof B. Widlund. Hybrid domain decomposition
algorithms for compressible and almost incompressible elasticity. Internat.
J. Numer. Methods Engrg., 82(2):157–183, 2010.

[73] Clark R. Dohrmann and Olof B. Widlund. Some recent tools and a bddc
algorithm for 3d problems in h(curl). Lecture Notes in Computational
Science and Engineering, 91:15–25, 2013.

[74] Maksymilian Dryja, Barry F. Smith, and Olof B. Widlund. Schwarz anal-
ysis of iterative substructuring algorithms for elliptic problems in three
dimensions. SIAM J. Numer. Anal., 31(6):1662–1694, 1994.

[75] Thomas Dunne. Adaptive Finite Element Approximation of
Fluid-Structure Interaction Based on Eulerian and Arbitrary
Lagrangian-Eulerian Variational Formulations. PhD thesis, Ruprechts-
Karls Universität Heidelberg, 2007.

[76] Weinan E, Bjorn Engquist, Xiantao Li, Weiqing Ren, Eric Vanden-
Eijnden, E Weinan, Bjorn Engquist, Xiantao Li, Weiqing Ren, Weinan E,
Bjorn Engquist, Xiantao Li, Weiqing Ren, and Eric Vanden-Eijnden. The

213

Bibliography

heterogeneous multiscale method: A review. Commun. Comput. Phys.,
2(3):367–450, 2007.

[77] Yalchin Efendiev and Thomas Y. Hou. Multiscale finite element methods,
volume 4 of Surveys and Tutorials in the Applied Mathematical Sciences.
Springer, New York, 2009. Theory and applications.

[78] Howard Elman, Victoria E. Howle, John Shadid, Robert Shuttleworth,
and Ray Tuminaro. Block preconditioners based on approximate commu-
tators. SIAM J. Sci. Comput., 27(5):1651–1668, 2006.

[79] Howard Elman, Victoria E. Howle, John Shadid, Robert Shuttleworth,
and Ray Tuminaro. A taxonomy and comparison of parallel block multi-
level preconditioners for the incompressible Navier-Stokes equations. J.
Comput. Phys., 227(3):1790–1808, 2008.

[80] Howard Elman, Victoria E. Howle, John Shadid, David Silvester, and Ray
Tuminaro. Least squares preconditioners for stabilized discretizations of
the Navier-Stokes equations. SIAM J. Sci. Comput., 30(1):290–311, 2007.

[81] Charbel Farhat, Julien Cortial, Climène Dastillung, and Henri
Bavestrello. Time-parallel implicit integrators for the near-real-time
prediction of linear structural dynamic responses. Internat. J. Numer.
Methods Engrg., 67(5):697–724, 2006.

[82] Charbel Farhat, Michael Lesoinne, and Kendall Pierson. A scalable dual-
primal domain decomposition method. Numer. Linear Algebra Appl.,
7(7-8):687–714, 2000. Preconditioning techniques for large sparse matrix
problems in industrial applications (Minneapolis, MN, 1999).

[83] Charbel Farhat, Michel Lesoinne, Patrick LeTallec, Kendall Pierson, and
Daniel Rixen. FETI-DP: a dual-primal unified FETI method. I. A faster
alternative to the two-level FETI method. Internat. J. Numer. Methods
Engrg., 50(August 1999):1523–1544, 2001.

[84] Simon Fausten, Daniel Balzani, and Jörg Schröder. Modeling the physi-
ological behavior of arterial walls - comparative study regarding the vis-
coelastic response. Proceedings of Applied Mathematics and Mechanics,
14:95–96, 2014.

[85] Miguel Ángel Fernández, Luca Formaggia, Jean-Frédéric Gerbeau, and
Alfio Quarteroni. The derivation of the equations for fluids. In
Cardiovascular Mathematics, pages 77–121. Springer, 2009.

[86] Miguel Ángel Fernández, Jean-Frédéric Gerbeau, Antoine Gloria, and
Marina Vidrascu. Domain decomposition based Newton methods for
fluid-structure interaction problems. In CANUM 2006—Congrès National
d’Analyse Numérique, volume 22 of ESAIM Proc., pages 67–82. EDP Sci.,
Les Ulis, 2008.

214

Bibliography

[87] Miguel Ángel Fernández and M Moubachir. An exact block-Newton algo-
rithm for solving fluid-structure interaction problems. C. R. Math. Acad.
Sci. Paris, 336(8):681–686, 2003.

[88] Miguel Ángel Fernández and Marwan Moubachir. A newton method
using exact jacobian for solving fluid-structure coupling. Computers &
Structures, 83(2-3):127–142, 2005.

[89] Andreas Fischle. A Parallel Newton-Krylov-FETI-DP Solver Based on
FEAP. PhD thesis, Fakultät für Mathematik, Universität Duisburg-
Essen, 2014.

[90] Luca Formaggia, Miguel Ángel Fernández, A Gauthier, Jean-Frédéric
Gerbeau, Christophe Prud’homme, and Alessandro Veneziani. The LifeV
Project. Web. http://www.lifev.org.

[91] Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani, editors.
Cardiovascular mathematics, volume 1 of MS&A. Modeling, Simulation
and Applications. Springer-Verlag Italia, Milan, 2009. Modeling and
simulation of the circulatory system.

[92] Gilles Fourestey and Simone Deparis. LifeV user manual. pages 0–32,
2012. http://www.lifev.org.

[93] S Friedhoff, R D Falgout, T V Kolev, Scott P MacLachlan, and Jacob B
Schroder. A multigrid-in-time algorithm for solving evolution equations
in parallel. In Presented at: Sixteenth Copper Mountain Conference on
Multigrid Methods, Copper Mountain, CO, United States, Mar 17 - Mar
22, 2013, 2013.

[94] Juan Galvis and Yalchin Efendiev. Domain decomposition precondition-
ers for multiscale flows in high-contrast media. Multiscale Model. Simul.,
8(4):1461–1483, 2010.

[95] Juan Galvis and Yalchin Efendiev. Domain decomposition precondition-
ers for multiscale flows in high contrast media: reduced dimension coarse
spaces. Multiscale Model. Simul., 8(5):1621–1644, 2010.

[96] Michael W. Gee, Christiane Förster, and Wolfgang A. Wall. A compu-
tational strategy for prestressing patient-specific biomechanical problems
under finite deformation. Int. J. Numer. Methods Biomed. Eng., 26:52–72,
2010.

[97] Michael W. Gee, Ulrich Küttler, and Wolfgang A. Wall. Truly monolithic
algebraic multigrid for fluid-structure interaction. Internat. J. Numer.
Methods Engrg., 26:52–72, 2010.

[98] Michael W. Gee, Chris M. Siefert, Jonathan J. Hu, Ray S. Tuminaro, and
Marzio G. Sala. ML 5.0 Smoothed Aggregation User’s Guide. Technical
Report SAND2006-2649, Sandia National Laboratories, 2006.

215

Bibliography

[99] Jean-Frédéric Gerbeau and Marina Vidrascu. A quasi-Newton algorithm
based on a reduced model for fluid-structure interaction problems in blood
flows. M2AN Math. Model. Numer. Anal., 37(4):631–647, 2003.

[100] Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach. Analysis of FETI-
DP and BDDC for linear elasticity in 3D with almost incompressible
components and varying coefficients inside subdomains. SIAM J. Numer.
Anal., 50(5):2208–2236, 2012.

[101] Pierre Gosselet, Daniel Rixen, François-Xavier Roux, and Nicole Spillane.
Simultaneous FETI and block FETI: Robust domain decomposition with
multiple search directions. International Journal for Numerical Methods
in Engineering, 104(10):905–927, 2015.

[102] Ibrahima Guèye, S El Arem, Fédéric Feyel, François-Xavier Roux, and
Georges Cailletaud. A new parallel sparse direct solver: Presentation
and numerical experiments in large-scale structural mechanics parallel
computing. Internat. J. Numer. Meth. Engrg, 88(4):370–384, 2011.

[103] Alexander Heinlein, Ulrich L. Hetmaniuk, Axel Klawonn, and Oliver
Rheinbach. The approximate component mode synthesis special finite
element method in two dimensions: parallel implementation and numer-
ical results. J. Comput. Appl. Math., 289:116–133, 2015. Sixth Interna-
tional Conference on Advanced Computational Methods in Engineering
(ACOMEN 2014).

[104] Alexander Heinlein, Axel Klawonn, Jascha Knepper, and Oliver Rhein-
bach. Coarse spaces for overlapping Schwarz methods based on the ACMS
space. 2016. In preparation.

[105] Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. Parallel over-
lapping Schwarz with an energy-minimizing coarse space. 2015. Sub-
mitted to the Proceedings of the 23rd International Conference on Do-
main Decomposition Methods, Springer Lect. Notes Comput. Sci. Eng.;
http://tu-freiberg.de/fakult1/forschung/preprints.

[106] Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. Parallel
two-level overlapping Schwarz methods in fluid-structure interaction.
2015. Accepted to Springer Lect. Notes Sci. Comput.; Proceedings of
ENUMATH 2015; TUBAF Preprint 15/2015: http://tu-freiberg.de/
fakult1/forschung/preprints.

[107] Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. A parallel
implementation of a two-level overlapping schwarz method with energy-
minimizing coarse space based on trilinos. 2016. In preparation.

[108] Amy Henderson and Jim Ahrens. The Paraview guide : a parallel
visualization application. Kitware, Inc., New York, 2004.

216

Bibliography

[109] Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoek-
stra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R.
Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K.
Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams,
and Kendall S. Stanley. An overview of the trilinos project. ACM Trans.
Math. Softw., 31(3):397–423, 2005.

[110] Ulrich L. Hetmaniuk and Axel Klawonn. Error estimates for a two-
dimensional special finite element method based on component mode syn-
thesis. Electron. Trans. Numer. Anal., 41:109–132, 2014.

[111] Ulrich L. Hetmaniuk and Richard B. Lehoucq. A special finite ele-
ment method based on component mode synthesis. M2AN Math. Model.
Numer. Anal., 44(3):401–420, 2010.

[112] Gerhard A. Holzapfel and Thomas Christian Gasser. A viscoelastic
model for fiber-reinforced composites at finite strains: Continuum basis,
computational aspects and applications. Computer Methods in Applied
Mechanics and Engineering, 190(34):4379–4403, 2001.

[113] Gerhard A. Holzapfel, Thomas Christian Gasser, and Ray W. Ogden. A
new constitutive framework for arterial wall mechanics and a comparative
study of material models. Journal of elasticity and the physical science
of solids, 61(1):1–48, 2000.

[114] Thomas Y. Hou and Xiao-Hui Wu. A multiscale finite element method for
elliptic problems in composite materials and porous media. J. Comput.
Phys., 134(1):169–189, 1997.

[115] Jaroslav Hron and Stefan Turek. A monolithic fem/multigrid solver
for ALE formulation of fluid structure interaction with application in
biomechanics. In H Bungartz and M Schäfer, editors, Fluid-Structure
Interaction - Modelling, Simulation, Optimization, volume 53 of Lecture
Notes in Computational Science and Engineering, pages 146–170.
Springer, 2006. ISBN 3-540-34595-7.

[116] Björn Hübner, Elmar Walhorn, and Dieter Dinkler. A monolithic
approach to fluidstructure interaction using spacetime finite elements.
Computer Methods in Applied Mechanics and Engineering, 193(23-
26):2087–2104, 2004.

[117] Walter C. Hurty. Vibrations of structural systems by component mode
synthesis. Journal of the Engineering Mechanics Division, 86(4):51–70,
1960.

[118] Walter C. Hurty. Dynamic analysis of structural systems using component
modes. AIAA journal, 3(4):678–685, 1965.

[119] Mikhail Itskov and Alexander E. Ehret. A universal model for
the elastic, inelastic and active behaviour of soft biological tissues.
GAMM-Mitteilungen, 32(2):221–236, 2009.

217

Bibliography

[120] Bärbel Janssen and Thomas Wick. Block preconditioning with Schur
complements for monolithic fluid-structure interactions. In Proceedings
of V European Conference on Computational Fluid Dynamics ECCOMAS
CFD 2010, Lisbon, Portugal,, 2010.

[121] Pierre Jolivet. Domain decomposition methods. Application to
high-performance computing. PhD thesis, Université de Grenoble, 2014.

[122] Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, and Christophe
Prud’homme. Scalable domain decomposition preconditioners for hetero-
geneous elliptic problems. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC
’13, pages 80:1–80:11, New York, NY, USA, 2013. ACM.

[123] George Karypis, Kirk Schloegel, and Vipin Kumar. ParMETIS - Parallel
graph partitioning and sparse matrix ordering. Version 3.2. Technical
report, University of Minnesota, Department of Computer Science and
Engineering, 2011.

[124] Axel Klawonn, Martin Lanser, Patrick Radtke, and Oliver Rheinbach.
On an adaptive coarse space and on nonlinear domain decomposition.
In Jocelyne Erhel, Martin J. Gander, Laurence Halpern, Géraldine Pi-
chot, Taoufik Sassi, and Olof B Widlund, editors, Domain Decomposition
Methods in Science and Engineering XXI, volume 98 of Lect. Notes
Comput. Sci. Eng., pages 71–83. Springer-Verlag, 2014. Proceedings of
the 21st International Conference on Domain Decomposition Methods,
Rennes, France, June 25-29, 2012.

[125] Axel Klawonn, Martin Lanser, and Oliver Rheinbach. Nonlinear FETI-
DP and BDDC methods. SIAM J. Sci. Comput., 36(2):A737–A765, 2014.

[126] Axel Klawonn, Martin Lanser, and Oliver Rheinbach. FE2TI:
Computational scale bridging for dual-phase steels. 2015. Ac-
cepted to ParCo 2015. TUBAF Preprint: 2015-12, http://tu-
freiberg.de/fakult1/forschung/preprints.

[127] Axel Klawonn, Martin Lanser, and Oliver Rheinbach. Toward Extremely
Scalable Nonlinear Domain Decomposition Methods for Elliptic Partial
Differential Equations. SIAM J. Sci. Comput., 37(6):C667—-C696, 2015.

[128] Axel Klawonn, Martin Lanser, Oliver Rheinbach, Holger Stengel, and
Gerhard Wellein. Hybrid MPI/OpenMP parallelization in FETI-DP
methods. In Miriam Mehl, Manfred Bischoff, and Michael Schäfer, edi-
tors, Recent Trends in Computational Engineering - CE2014, volume 105
of Lecture Notes in Computational Science and Engineering, pages 67–84.
Springer International Publishing, 2015.

[129] Axel Klawonn and Luca F. Pavarino. Overlapping Schwarz methods for
mixed linear elasticity and Stokes problems. Comput. Methods Appl.
Mech. Engrg., 165(1-4):233–245, 1998.

218

Bibliography

[130] Axel Klawonn, Patrick Radtke, and Oliver Rheinbach. FETI-DP with
different scalings for adaptive coarse spaces. PAMM, 14(1):835–836, 2014.

[131] Axel Klawonn, Patrick Radtke, and Oliver Rheinbach. A comparison of
adaptive coarse spaces for iterative substructuring methods in two dimen-
sions. Submitted for publication to ETNA, 2015.

[132] Axel Klawonn, Patrick Radtke, and Oliver Rheinbach. FETI-DP Methods
with an Adaptive Coarse Space. SIAM J. Numer. Anal., 53(1):297–320,
2015.

[133] Axel Klawonn and Oliver Rheinbach. Inexact FETI-DP methods.
Internat. J. Numer. Methods Engrg., 69(2):284–307, 2007.

[134] Axel Klawonn and Oliver Rheinbach. Robust FETI-DP methods for
heterogeneous three dimensional elasticity problems. Comput. Methods
Appl. Mech. Engrg., 196(8):1400–1414, 2007.

[135] Axel Klawonn and Oliver Rheinbach. A hybrid approach to 3-level FETI.
PAMM, 8(1):10841–10843, 2008.

[136] Axel Klawonn and Oliver Rheinbach. Highly scalable parallel domain
decomposition methods with an application to biomechanics. ZAMM Z.
Angew. Math. Mech., 90(1):5–32, 2010.

[137] Axel Klawonn and Oliver Rheinbach. Deflation, projector precondition-
ing, and balancing in iterative substructuring methods: connections and
new results. SIAM J. Sci. Comput., 34(1):A459–A484, 2012.

[138] Axel Klawonn and Olof B. Widlund. Dual-primal FETI methods for linear
elasticity. Comm. Pure Appl. Math., 59(11):1523–1572, 2006.

[139] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-primal
FETI methods for three-dimensional elliptic problems with heterogeneous
coefficients. SIAM J. Numerical Analysis, 40(1):159–179, 2002.

[140] Jascha Knepper. Master’s thesis. 2016. In preparation.

[141] A. Kolmogoroff. Uber Die Beste Annaherung Von Funktionen Einer
Gegebenen Funktionenklasse. Annals of Mathematics, 37(1):107–110,
1936.

[142] Fande Kong and Xiao-Chuan Cai. A scalable Schwarz method for 3D
linear elasticity problems on domains with complex geometry, 2013.
Poster presented at The International Conference for High Performance
Computing, Networking, Storage and Analysis (SC13), Denver, Col-
orado, USA, 2013. http://sc13.supercomputing.org/sites/default/
files/PostersArchive/post147.html.

[143] Ulrich Küttler, Michael W. Gee, Christiane Förster, Andrew Comerford,
and Wolfgang A. Wall. Coupling strategies for biomedical fluidstructure

219

Bibliography

interaction problems. International Journal for Numerical Methods in
Biomedical Engineering, 26(3-4):305–321, 2010.

[144] Ulrich Langer and Huidong Yang. Domain decomposition solvers for some
fluid-structure interaction problems. PAMM, 12(1):375–376, 2012.

[145] Ulrich Langer and Huidong Yang. Partitioned solution algorithms for
fluid-structure interaction problems with hyperelastic models. J. Comput.
Appl. Math., 276:47–61, 2015.

[146] Jing Li and Olof B. Widlund. FETI-DP, BDDC, and block Cholesky
methods. Internat. J. Numer. Methods Engrg., 66(2):250–271, 2006.

[147] Florian Lindner, Miriam Mehl, Klaudius Scheufele, and Benjamin Uek-
ermann. A comparison of various quasi-newton schemes for partitioned
fluid-structure interaction. In Coupled Problems. Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik, Germany,
ECCOMAS, 2015.

[148] Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. A parareal in
time discretization of PDEs. Comptes Rendus de l’Académie des Sciences
- Series I - Mathematics, 332:661–668, 2001.

[149] Jan Mandel and Clark R. Dohrmann. Convergence of a balancing domain
decomposition by constraints and energy minimization. Numer. Linear
Algebra Appl., 10(7):639–659, 2003. Dedicated to the 70th birthday of
Ivo Marek.

[150] Jan Mandel, Clark R Dohrmann, and Radek Tezaur. An algebraic theory
for primal and dual substructuring methods by constraints. Appl. Numer.
Math., 54(2):167–193, 2005.

[151] Jan Mandel and Bedřich Soused́ık. Adaptive selection of face coarse de-
grees of freedom in the BDDC and the FETI-DP iterative substructuring
methods. Comput. Methods Appl. Mech. Engrg., 196(8):1389–1399, 2007.

[152] Jan Mandel, Bedřich Soused́ık, and Clark R. Dohrmann. Multispace and
multilevel BDDC. Computing, 83(2-3):55–85, 2008.

[153] Jan Mandel, Bedřich Soused́ık, and Jakub Š́ıstek. Adaptive BDDC in
three dimensions. Math. Comput. Simulation, 82(10):1812–1831, 2012.

[154] Matthias Mayr, Thomas Klöppel, Wolfgang A. Wall, and Michael W. Gee.
A temporal consistent monolithic approach to fluid-structure interaction
enabling single field predictors. SIAM J. Sci. Comput., 37(1):B30—-B59,
2015.

[155] D. Mohrman and L. J. Heller. Cardiovascular Physiology. McGraw Hill
Professional, 8th edition, 2013.

220

Bibliography

[156] M. Munteanu, Luca F. Pavarino, and Simone Scacchi. A scalable Newton-
Krylov-Schwarz method for the bidomain reaction-diffusion system. SIAM
J. Sci. Comput., 31(5):3861–3883, 2009.

[157] Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen. A note
on preconditioning for indefinite linear systems. SIAM J. Sci. Comput.,
21(6):1969–1972, 2000.

[158] Fabio Nobile and Christian Vergara. An effective fluid-structure interac-
tion formulation for vascular dynamics by generalized Robin conditions.
SIAM J. Sci. Comput., 30(2):731–763, 2008.

[159] James Nolen, George Papanicolaou, and Olivier Pironneau. A framework
for adaptive multiscale methods for elliptic problems. Multiscale Model.
Simul., 7(1):171–196, 2008.

[160] Suhas V. Patankar and Dudley Brian Spalding. A calculation procedure
for heat, mass and momentum transfer in three-dimensional parabolic
flows. International Journal of Heat and Mass Transfer, 15(10):1787–
1806, 1972.

[161] M. Pernice and M. D. Tocci. A multigrid-preconditioned Newton-Krylov
method for the incompressible Navier-Stokes equations. SIAM J. Sci.
Comput., 23(2):398–418, 2001. Copper Mountain Conference (2000).

[162] Charles S. Peskin. The immersed boundary method. Acta Numer.,
11:479–517, 2002.

[163] Allan Pinkus. n-widths in approximation theory, volume 7 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)]. Springer-Verlag, Berlin, Berlin, Heidelberg, New York,
1985.

[164] Alfio Quarteroni, Fausto Saleri, and Alessandro Veneziani. Factoriza-
tion methods for the numerical approximation of Navier-Stokes equations.
Comput. Methods Appl. Mech. Engrg., 188(1-3):505–526, 2000.

[165] Patrick Radtke. Adaptive Coarse Spaces for FETI-DP and BDDC
Methods. PhD thesis, 2015.

[166] Rolf Rannacher and Thomas Richter. An adaptive finite element method
for fluid-structure interaction problems based on a fully eulerian formu-
lation. In Hans-Joachim Bungartz, Miriam Mehl, and Michael Schäfer,
editors, Fluid Structure Interaction II, volume 73 of Lecture Notes in
Computational Science and Engineering, pages 159–191. Springer Berlin
Heidelberg, 2010.

[167] Mudassar Razzaq, Hogenrich Damanik, Jaroslav Hron, Abderrahim
Ouazzi, and Stefan Turek. FEM multigrid techniques for fluid-structure
interaction with application to hemodynamics. Appl. Numer. Math.,
62(9):1156–1170, 2012.

221

Bibliography

[168] Mudassar Razzaq, Jaroslav Hron, and Stefan Turek. Numerical simulation
of laminar incompressible fluid-structure interaction for elastic material
with point constraints. In Advances in mathematical fluid mechanics,
pages 451–472. Springer, Berlin, Berlin, 2010.

[169] Oliver Rheinbach. Parallel iterative substructuring in structural mechan-
ics. Arch. Comput. Methods Eng., 16(4):425–463, 2009.

[170] Thomas Richter. A fully eulerian formulation for fluid-structure-
interaction problems with large deformations and free structure move-
ment. In Proceedings of the V European Conference on Computational
Fluid Dynamics ECCOMAS CFD 2010, Lisbon, Portugal, 14-17 June
2010, 2010.

[171] Yousef Saad. Iterative Methods for Sparse Linear Systems. Engineering-
Pro collection. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2nd edition, 2003.

[172] Phillip A. Sackinger, Peter Randall Schunk, and Rekha R. Rao. A
Newton-Raphson pseudo-solid domain mapping technique for free and
moving boundary problems: a finite element implementation. J. Comput.
Phys., 125(1):83–103, 1996.

[173] Marzio G. Sala and Michael A. Heroux. Robust algebraic precondition-
ers with IFPACK 3.0. Technical Report SAND-0662, Sandia National
Laboratories, 2005.

[174] Carlo Sansour. On the physical assumptions underlying the volumetric-
isochoric split and the case of anisotropy. European Journal of Mechanics
- A/Solids, 27(1):28–39, 2008.

[175] Simone Scacchi. A hybrid multilevel Schwarz method for the bidomain
model. Comput. Methods Appl. Mech. Engrg., 197(45-48):4051–4061,
2008.

[176] Simone Scacchi. A multilevel hybrid Newton-Krylov-Schwarz method for
the Bidomain model of electrocardiology. Computer Methods in Applied
Mechanics and Engineering, 200(58):717–725, 2011.

[177] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[178] Jörg Schröder and Patrizio Neff. Invariant formulation of hyperelastic
transverse isotropy based on polyconvex free energy functions. Internat.
J. Solids Structures, 40(2):401–445, 2003.

[179] Jörg Schröder, Patrizio Neff, and Daniel Balzani. A variational ap-
proach for materially stable anisotropic hyperelasticity. Internat. J. Solids
Structures, 42(15):4352–4371, 2005.

[180] Hermann Amandus Schwarz. Gesammelte mathematische Abhandlungen.
Number 2. Springer Berlin, 15 edition, 1890.

222

Bibliography

[181] Chris M. Siefert. (Developer of the Trilinos packages ML, MueLu, Ifpack,
Ifpack2 and EpetraExt). Private communication May 2015, 2015.

[182] Juan Carlos Simo. On a fully three-dimensional finite-strain viscoelas-
tic damage model: Formulation and computational aspects. Comput.
Methods Appl. Mech. Engrg., 60(2):153–173, 1987.

[183] Juan Carlos Simo. Numerical analysis and simulation of plasticity.
In Philippe G. Ciarlet and Jacques-Louis Lions, editors, Handbook of
numerical analysis, volume VI. Elsevier Science, 1998.

[184] Kathrin Smetana. A new certification framework for the port reduced
static condensation reduced basis element method. Computer Methods
in Applied Mechanics and Engineering, 283:352–383, 2015.

[185] Kathrin Smetana and Anthony T. Patera. Optimal local approximation
spaces for component-based static condensation procedures. Technical
report, 2015.

[186] Barry F. Smith, Petter E. Bjørstad, and William D. Gropp. Domain
decomposition. Cambridge University Press, Cambridge, 1996. Parallel
multilevel methods for elliptic partial differential equations.

[187] Bedřich Soused́ık, Jakub Š́ıstek, and Jan Mandel. Adaptive-multilevel
BDDC and its parallel implementation. Computing, 95(12):1087–1119,
2013.

[188] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein, and Robert Scheichl. A robust two-level domain de-
composition preconditioner for systems of PDEs. C. R. Math. Acad. Sci.
Paris, 349(23-24):1255–1259, 2011.

[189] Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein, and Robert Scheichl. Abstract robust coarse spaces
for systems of PDEs via generalized eigenproblems in the overlaps.
Numer. Math., 126(4):741–770, 2014.

[190] Nicole Spillane and Daniel J. Rixen. Automatic spectral coarse spaces
for robust finite element tearing and interconnecting and balanced do-
main decomposition algorithms. Internat. J. Numer. Methods Engrg.,
95(11):953–990, 2013.

[191] Michael Stephan and Jutta Docter. JUQUEEN: IBM Blue Gene/Q Su-
percomputer System at the Jülich Supercomputing Centre. Journal of
large-scale research facilities, 1:A1, 2015.

[192] Masato Tanaka, Masaki Fujikawa, Daniel Balzani, and Jörg Schröder.
Robust numerical calculation of tangent moduli at finite strains based on
complex-step derivative approximation and its application to localization
analysis. Comput. Methods Appl. Mech. Engrg., 269:454–470, 2014.

223

Bibliography

[193] Robert L Taylor. FEAP - A Finite Element Analysis Program, Version
8.2. http://www.ce.berkeley.edu/projects/feap/.

[194] Robert L. Taylor. FEAP - A Finite Element Analysis Program, Version
8.2, User Manual. http://www.ce.berkeley.edu/projects/feap, 2008.

[195] Tayfun E. Tezduyar, Sunil Sathe, and Keith Stein. Solution techniques
for the fully discretized equations in computation of fluid-structure inter-
actions with the space-time formulations. Comput. Methods Appl. Mech.
Engrg., 195(41-43):5743–5753, 2006.

[196] The HDF Group. Hierarchical data format version 5. http://www.

hdfgroup.org/HDF5.

[197] Andrea Toselli and Olof Widlund. Domain decomposition
methods—algorithms and theory, volume 34 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2005.

[198] Paolo Tricerri, Luca Dedè, Simone Deparis, Alfio Quarteroni, Anne M.
Robertson, and Adélia Sequeira. Fluid-structure interaction simulations
of cerebral arteries modeled by isotropic and anisotropic constitutive laws.
Comput. Mech., 55(3):479–498, 2015.

[199] Xuemin Tu. Three-level BDDC in three dimensions. SIAM J. Sci.
Comput., 29(4):1759–1780 (electronic), 2007.

[200] Stefan Turek, Jaroslav Hron, Mudassar Razzaq, Hilmar Wobker, and
Michael Schäfer. Numerical benchmarking of fluid-structure interaction:
a comparison of different discretization and solution approaches. In Hans-
Joachim Bungartz, Miriam Mehl, and Michael Schäfer, editors, Fluid
structure interaction. II, volume 73 of Lect. Notes Comput. Sci. Eng.,
pages 413–424. Springer, Heidelberg, 2010.

[201] Mehfooz ur Rehman, Kees Vuik, and Guus Segal. A comparison of pre-
conditioners for incompressible Navier-Stokes solvers. Internat. J. Numer.
Methods Fluids, 57(12):1731–1751, 2008.

[202] Wolfgang A. Wall, Axel Gerstenberger, Ulrich Küttler, and Ursula M.
Mayer. An XFEM based fixed-grid approach for 3D fluid-structure in-
teraction. In Fluid structure interaction. II, volume 73 of Lect. Notes
Comput. Sci. Eng., pages 327–349. Springer, Heidelberg, 2010.

[203] Hongwu Wang, Jack Chessa, Wing Kam Liu, and Ted Belytschko. The
immersed/fictitious element method for fluidstructure interaction: Volu-
metric consistency, compressibility and thin members. Internat. J. Numer.
Meth. Engrg., 74(1):32–55, 2008.

[204] Sansuke M. Watanabe. ADAN: Um Modelo Anatomicamente Detalhado
da Rede Arterial Humana para Hemodinâmica Computacional. PhD the-
sis, 2013.

224

Bibliography

[205] WHO. Cardiovascular diseases (CVDs) Fact sheet N◦317. Updated Jan-
uary 2015. http://www.who.int/mediacentre/factsheets/fs317/en/.
[Retrieved January 26, 2016].

[206] Yuqi Wu and Xiao-Chuan Cai. A parallel two-level method for simulating
blood flows in branching arteries with the resistive boundary condition.
Computers & Fluids, 45(1):92–102, 2011. 22nd International Conference
on Parallel Computational Fluid Dynamics (ParCFD 2010)ParCFD.

[207] Yuqi Wu and Xiao-Chuan Cai. A fully implicit domain decomposition
based ALE framework for three-dimensional fluid-structure interaction
with application in blood flow computation. J. Comput. Phys., 258:524–
537, 2014.

[208] Huidong Yang, Walter Zulehner, and Michael Kuhn. A newton based
fluidstructure interaction solver with algebraic multigrid methods on hy-
brid meshes. In Yunqing Huang, Ralf Kornhuber, Olof Widlund, and
Jinchao Xu, editors, Domain Decomposition Methods in Science and
Engineering XIX, volume 78 of Lecture Notes in Computational Science
and Engineering, pages 285–292. Springer Berlin Heidelberg, 2011.

[209] Olgierd C. Zienkiewicz, Robert L. Taylor, and David D. Fox. The Finite
Element Method for Solid and Structural Mechanics. Elsevier/Butter-
worth Heinemann, Amsterdam, seventh edition, 2014.

225

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut
oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich
gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität
zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublika-
tionen - noch nicht veröffentlicht worden ist, sowie, dass ich eine solche Veröffentlichung
vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte

Dissertation ist von Prof. Dr. Axel Klawonn betreut worden.

Teilpublikationen

• Daniel Balzani, Simone Deparis, Simon Fausten, Davide Forti, Alexander Heinlein,
Axel Klawonn, Alfio Quarteroni, Oliver Rheinbach, and Jörg Schröder. Aspects of
Arterial Wall Simulations: Nonlinear Anisotropic Material Models and Fluid Structure
Interaction, Proceedings of the WCCM XI, 2014.

• Alexander Heinlein, Ulrich Hetmaniuk, Axel Klawonn, and Oliver Rheinbach. The ap-
proximate component mode synthesis special finite element method in two dimensions:
parallel implementation and numerical results, J. Comput. Appl. Math., 289:116–133,
2015, Sixth International Conference on Advanced Computational Methods in Engi-
neering (ACOMEN 2014).

• Simone Deparis, Davide Forti, Alexander Heinlein, Axel Klawonn, Alfio Quarteroni,
and Oliver Rheinbach. A Comparison of Preconditioners for the Steklov-Poincare For-
mulation of the Fluid-Structure Coupling in Hemodynamics. PAMM, 15(1):93–94,
2015.

• Daniel Balzani, Simone Deparis, Simon Fausten, Davide Forti, Alexander Heinlein, Axel
Klawonn, Alfio Quarteroni, Oliver Rheinbach, and Jörg Schrder. Numerical Modeling
of Fluid-Structure Interaction in Arteries with Anisotropic Polyconvex Hyperelastic
and Anisotropic Viscoelastic Material Models at Finite Strains. IJNMBE, pages 1–41,
2015.

• Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. Parallel Two-Level Over-
lapping Schwarz Methods in Fluid-Structure Interaction. 2016. Accepted to Springer
Lect. Notes Sci. Comput.; Proceedings of ENUMATH 2015.

• Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. Parallel Overlapping
Schwarz with an Energy-Minimizing Coarse Space. 2016. Submitted to the Pro-
ceedings of the 23rd International Conference on Domain Decomposition Methods,
Springer Lect. Notes Comput. Sci. Eng.

• Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach. A Parallel Implementation
of a Two-Level Overlapping Schwarz Method with Energy-Minimizing Coarse Space
based on Trilinos. 2016. In preparation.

• Alexander Heinlein, Axel Klawonn, and Jascha Knepper, and Oliver Rheinbach. Coarse
spaces for overlapping Schwarz methods based on the ACMS space. 2016. In prepara-
tion.

Köln, den 06.06.2016 (Alexander Heinlein)

