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Averting biodiversity collapse in tropical forest
protected areas
A list of the authors and their affiliations appears at the end of the paper.

The rapid disruption of tropical forests probably imperils global bio-
diversity more than any other contemporary phenomenon1–3. With
deforestation advancing quickly, protected areas are increasingly
becoming final refuges for threatened species and natural ecosystem
processes. However, many protected areas in the tropics are them-
selves vulnerable to human encroachment and other environmental
stresses4–9. As pressures mount, it is vital to know whether existing
reserves can sustain their biodiversity. A critical constraint in
addressing this question has been that data describing a broad array
of biodiversity groups have been unavailable for a sufficiently large
and representative sample of reserves. Here we present a uniquely
comprehensive data set on changes over the past 20 to 30 years in 31
functional groups of species and 21 potential drivers of environ-
mental change, for 60 protected areas stratified across the world’s
major tropical regions. Our analysis reveals great variation in
reserve ‘health’: about half of all reserves have been effective or
performed passably, but the rest are experiencing an erosion of
biodiversity that is often alarmingly widespread taxonomically
and functionally. Habitat disruption, hunting and forest-product
exploitation were the strongest predictors of declining reserve
health. Crucially, environmental changes immediately outside
reserves seemed nearly as important as those inside in determining
their ecological fate, with changes inside reserves strongly mirroring
those occurring around them. These findings suggest that tropical
protected areas are often intimately linked ecologically to their
surrounding habitats, and that a failure to stem broad-scale loss
and degradation of such habitats could sharply increase the
likelihood of serious biodiversity declines.

Tropical forests are the biologically richest ecosystems on Earth1–3.
Growing concerns about the impacts of anthropogenic pressures on
tropical biodiversity and natural ecosystem services have led to
increases in the number and extent of protected areas across the
tropics10. However, much remains unknown about the likelihood of
biodiversity persisting in such protected areas. Remote-sensing tech-
nologies offer a bird’s-eye view of tropical forests and provide many
important insights6,11–13, but are largely unable to discern crucial on-
the-ground changes in forest biodiversity and ecological functioning14.

To appraise both the ecological integrity and threats for tropical
protected areas on a global scale, we conducted a systematic and
uniquely comprehensive assessment of long-term changes within 60
protected areas stratified across the world’s major tropical forest
regions (Supplementary Fig. 1). To our knowledge, no other existing
data set includes such a wide range of biodiversity and threat indicators
for such a large and representative network of tropical reserves. Our
study was motivated by three broad issues: whether tropical reserves
will function as ‘arks’ for biodiversity and natural ecosystem processes;
whether observed changes are mainly concordant or idiosyncratic
among different protected areas; and what the principal predictors
of reserve success or failure are, in terms of their intrinsic character-
istics and drivers of change.

To conduct our study we amassed expert knowledge from 262
detailed interviews, focusing on veteran field biologists and environ-
mental scientists who averaged nearly 2 decades of experience

(mean 6 s.d., 19.1 6 9.6 years) at each protected area. Each interviewed
researcher completed a detailed 10-page questionnaire, augmented by a
telephone or face-to-face interview (see Supplementary Information).
The questionnaires focused on longer-term (approximately 20–
30-year) changes in the abundance of 31 animal and plant guilds
(trophically or functionally similar groups of organisms), which col-
lectively have diverse and fundamental roles in forest ecosystems
(Table 1). We also recorded data on 21 potential drivers of environ-
mental change both inside each reserve and within a 3-km-wide buffer
zone immediately surrounding it (Table 1).

Our sample of protected areas spans 36 nations and represents a
geographically stratified and broadly representative selection of sites
across the African, American and Asia-Pacific tropics (Supplementary
Fig. 1). The reserves ranged from 160 ha to 3.6 million ha in size, but
most (85%) exceeded 10,000 ha in area (median 5 99,350 ha; lower
decile 5 7,000 ha; upper decile 5 750,000 ha). The protected areas fall
under various International Union for Conservation of Nature
(IUCN) reserve classifications. Using data from the World Database
on Protected Areas (http://www.wdpa.org), we found no significant
difference (P 5 0.13) in the relative frequency of high-protection
(IUCN Categories I–IV), multiple-use (Categories V–VI) and

Table 1 | The 31 animal and plant guilds, and the 21 environmental
drivers assessed both inside and immediately outside each protected
area.
Guilds Potential environmental drivers

Broadly forest-dependent guilds
Apex predators Changes in natural-forest cover
Large non-predatory species Selective logging
Primates Fires
Opportunistic omnivorous mammals Hunting
Rodents Harvests of non-timber forest products
Bats Illegal mining
Understory insectivorous birds Roads
Raptorial birds Automobile traffic
Larger frugivorous birds Exotic plantations
Larger game birds Human population density
Lizards and larger reptiles Livestock grazing
Venomous snakes Air pollution
Non-venomous snakes Water pollution
Terrestrial amphibians Stream sedimentation
Stream-dwelling amphibians Soil erosion
Freshwater fish River & stream flows
Dung beetles Ambient temperature
Army or driver ants Annual rainfall
Aquatic invertebrates Drought severity or intensity
Large-seeded old-growth trees Flooding
Epiphytes Windstorms
Other functional groups
Ecological specialists
Species requiring tree cavities
Migratory species
Disturbance-favouring guilds
Lianas and vines
Pioneer and generalist trees
Exotic animal species
Exotic plant species
Disease-vectoring invertebrates
Light-loving butterflies
Human diseases
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unclassified reserves between our sample of 60 reserves and all 16,038
reserves found in the same tropical nations (Supplemen-
tary Fig. 2). We also found no significant difference (P 5 0.08) in the
geographical isolation of our reserves (travel time to the nearest city
with greater than 50,000 residents) relative to a random sample of 60
protected areas stratified across the same 36 nations (Supplementary
Fig. 3).

We critically assessed the validity of our interview data by compar-
ing them to 59 independent time-series data sets in which change in a
single guild or environmental driver was assessed for one of our
protected areas. Collectively, our meta-analysis included some data
on 15 of the guilds, 13 of the drivers and 27 of the protected areas in
our study (Supplementary Table 1). Most (86.4%) of the independent
data sets supported our interview results, and in no case did an
independent test report a trend opposite in sign to our interview-based
findings.

Our analyses suggest that the most sensitive guilds in tropical pro-
tected areas include apex predators, large non-predatory vertebrates,
bats, stream-dwelling amphibians, terrestrial amphibians, lizards and
larger reptiles, non-venomous snakes, freshwater fish, large-seeded
old-growth trees, epiphytes and ecological specialists (all P , 0.0056,
with effect sizes ranging from 20.36 to 21.05; Supplementary Table 2).
Several other groups were somewhat less vulnerable, including
primates, understory insectivorous birds, large frugivorous birds,

raptorial birds, venomous snakes, species that require tree cavities,
and migratory species (all P , 0.05, with effect sizes from 20.27 to
20.53). In addition, five groups increased markedly in abundance in
the reserves, including pioneer and generalist trees, lianas and vines,
invasive animals, invasive plants and human diseases (all P , 0.0056,
with effect sizes from 0.44 to 1.17).

To integrate these disparate data, we generated a ‘reserve-health
index’ that focused on 10 of the best-studied guilds (data for each
available at $ 80% of reserves), all of which seem to be sensitive to
environmental changes in protected areas. Six of these are generally
‘disturbance avoiders’ (apex predators, large non-predatory vertebrates,
primates, understory insectivorous birds, large frugivorous birds
and large-seeded old-growth trees) and the remainder seem to be
‘disturbance-favouring’ groups (pioneer and generalist trees, lianas
and vines, exotic animals and exotic plants). For each protected area,
we averaged the mean values for each group, using negative values to
indicate increases in abundance of the disturbance-favouring guilds.

The reserve-health index varied greatly among the different pro-
tected areas (Fig. 1). About four-fifths of the reserves had negative
values, indicating some decline in reserve health. For 50% of all
reserves this decline was relatively serious (mean score ,20.25), with
the affected organisms being remarkable for their high functional and
taxonomic diversity (Fig. 2). These included plants with varying
growth forms and life-history strategies, and fauna that differed widely
in body size, trophic level, foraging strategies, area needs, habitat use
and other attributes. The remaining reserves generally exhibited
much more positive outcomes for biodiversity (Fig. 2), although a
few disturbance-favouring guilds, such as exotic plants and pioneer
and generalist trees, often increased even within these areas.

An important predictor of reserve health was improving reserve
management. According to our experts, reserves in which actual,
on-the-ground protection efforts (see Supplementary Information)
had increased over the past 20 to 30 years generally fared better than
those in which protection had declined; a relationship that was con-
sistent across all three of the world’s major tropical regions (Fig. 3).
Indeed, on-the-ground protection has increased in more than half of
the reserves over the past 20 to 30 years, and this is assisting efforts to
limit threats such as deforestation, logging, fires and hunting within
these reserves (Supplementary Table 3), relative to areas immediately
outside (Supplementary Table 4).

However, our findings show that protecting biodiversity involves
more than just safeguarding the reserves themselves. In many
instances, the landscapes and habitats surrounding reserves are under
imminent threat5,6,15 (Fig. 4 and Supplementary Tables 3 and 4). For
example, 85% of our reserves suffered declines in surrounding forest
cover in the last 20 to 30 years, whereas only 2% gained surrounding
forest. As shown by general linear models (Supplementary Table 5),
such changes can seriously affect reserve biodiversity. Among the
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Figure 1 | Distribution of the ‘reserve-health index’ for 60 protected areas
spanning the world’s major tropical forest regions. This relative index averages
changes in 10 well-studied guilds of animals and plants, including disturbance-
avoiding and disturbance-favouring groups, over the past 20 to 30 years.
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Figure 2 | Percentages of reserves that are worsening versus improving for key
disturbance-sensitive guilds, contrasted between ‘suffering’ and ‘succeeding’
reserves (which are distinguished by having lower (,20.25) versus higher
($20.25) values for the reserve-health index, respectively). For disturbance-

favouring organisms such as exotic plants and animals, pioneer and generalist
trees, lianas and vines, and human diseases, the reserve is considered to be
worsening if the group increased in abundance. For any particular guild,
reserves with missing or zero values (no trend) are not included.
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potential drivers of declining reserve health, three of the most import-
ant predictors involved ecological changes outside reserves (declining
forest cover, increasing logging and increasing fires outside reserves;
Supplementary Fig. 6). The remainder involved changes within
reserves (particularly declining forest cover and increasing hunting,
as well as increasing logging and harvests of non-timber forest pro-
ducts; Supplementary Table 5).

Thus, changes both inside and outside reserves determine their
ecological viability, with forest disruption (deforestation, logging and
fires), and overexploitation of wildlife and forest resources (hunting

and harvests of non-timber forest products) having the greatest direct
negative impacts. Other environmental changes, such as air and water
pollution, increases in human population densities and climatic
change (changes in total rainfall, ambient temperature, droughts and
windstorms) generally had weaker or more indirect effects over the last
20 to 30 years (Supplementary Table 5).

Environmental degradation occurring around a protected area
could affect biodiversity in many ways, such as by increasing reserve
isolation, area and edge effects15–19. However, we discovered that its
effects are also more insidious: they strongly predispose the reserve
itself to similar kinds of degradation. Nearly all (19 of 21) of the
environmental drivers had positive slopes when comparing their
direction and magnitude inside versus outside reserves (Fig. 5).
Among these, 13 were significant even with stringent Bonferroni cor-
rections (P , 0.0071) and 17 would have been significant if tested
individually (P , 0.05). As expected, the associations were strongest
for climate parameters but were also strong for variables describing air
and water pollution, stream sedimentation, hunting, mining, harvests
of non-timber forest products and fires. To a lesser extent, trends in
forest cover, human populations, road expansion and automobile traffic
inside reserves also mirror those occurring outside reserves (Fig. 5).

Our findings signal that the fates of tropical protected areas will be
determined by environmental changes both within and around the
reserves, and that pressures inside reserves often closely reflect those
occurring around them. For many reasons, larger reserves should be
more resilient to such changes15–22, although we found that removing
the effects of reserve area statistically did not consistently weaken the
correlations between changes inside versus outside protected areas
(Supplementary Table 6).

Our study reveals marked variability in the health of tropical pro-
tected areas. It indicates that the best strategy for maintaining biodi-
versity within tropical reserves is to protect them against their major
proximate threats, particularly habitat disruption and overharvesting.
However, it is not enough to confine such efforts to reserve interiors
while ignoring their surrounding landscapes, which are often being
rapidly deforested, degraded and overhunted5,6,13,15 (Fig. 5). A failure to
limit interrelated internal and external threats could predispose
reserves to ecological decay, including a taxonomically and functionally
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Figure 3 | Effects of improving on-the-ground protection on a relative index of
reserve health. This positive relationship held across all three tropical
continents (a general linear model showed that the protection term was the
most effective predictor of reserve health (Akaike’s information criterion
weight, 0.595; deviance explained, 11.4%), with the addition of ‘continent’
providing only a small improvement in model fit (Akaike’s information
criterion weight, 0.317; deviance explained, 16.3%).
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sweeping array of changes in species communities (Fig. 2) and an
erosion of fundamental ecosystem processes16,18,23.

Protected areas are a cornerstone of efforts to conserve tropical
biodiversity3,4,13,21. It is not our intent to diminish their crucial role
but to highlight growing challenges that could threaten their success.
The vital ecological functions of wildlife habitats surrounding protected
areas create an imperative, wherever possible, to establish sizeable
buffer zones around reserves, maintain substantial reserve connectivity
to other forest areas and promote lower-impact land uses near reserves
by engaging and benefiting local communities4,15,24–27. A focus on man-
aging both external and internal threats should also increase the resi-
lience of biodiversity in reserves to potentially serious climatic
change28–30 in the future.

METHODS SUMMARY
Our interview protocol, rationale, questionnaire and data analyses are detailed in
the Supplementary Information. We selected protected areas broadly to span the
African, American and Asia-Pacific tropics (Supplementary Fig. 1), focusing on
sites with mostly tropical or subtropical forest that had at least 10 refereed pub-
lications and 4–5 researchers with long-term experience who could be identified
and successfully interviewed.

We devised a robust and relatively simple statistical approach to assess temporal
changes in the abundance of each guild and in each potential environmental driver
across our reserve network (see Supplementary Information). In brief, this involved
asking each expert whether each variable had markedly increased, remained stable
or markedly declined for each reserve. These responses were scored as 1, 0 and 21,
respectively. For each response, the expert was also asked to rank their degree of
confidence in their knowledge. After discarding responses with lower confidence,
scores from the individual experts at each site were pooled to generate a mean value
(ranging from 21.0 to 1.0) to estimate the long-term trend for each variable.

The means for each variable across all 60 sites were then pooled into a single data
distribution. We used bootstrapping (resampling with replacement; 100,000 itera-
tions) to generate confidence intervals for the overall mean of the data distribution. If
the confidence intervals did not overlap zero, then we interpreted the trend as being
non-random. Because we tested many different guilds, we used a stringent Bonferroni
correction (P # 0.0056) to reduce the likelihood of Type I statistical errors, although
we also identified guilds that showed evidence of trends (P # 0.05) if tested individu-
ally. For comparison, we estimated effect sizes (bootstrapped mean divided by s.d.,
with negative values indicating declines) for changes in guild abundances and for
potential drivers inside and outside reserves (Supplementary Tables 2–4).
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Supplementary Information 
 
Methods 
 
Supplementary Figure 1 Names and locations of 60 protected areas stratified across the 
African, American and Asia-Pacific tropics.   
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Representativeness of study sites 
Our 60 tropical protected areas spanned 36 different nations. To provide an indication of the 
degree to which our sites were ‘typical’, we compared the relative frequency of reserves within 
‘high-protection’ (IUCN Categories I-IV), ‘multiple-use’ (IUCN Categories V-VI), and 
unclassified categories between our sample and all 16,038 protected areas within the same 
nations from the World Database on Protected Areas (www.wdpa.org). We excluded China from 
this comparison because its reserve-classification scheme differs from that of other nations in 
having virtually no high-protection reserves; the ratio of multiple-use to high-protection reserves 
in China was 628.3, whereas ratios for all the other 35 nations were < 3.4. We found no 
significant difference in the frequencies of reserves in the three different categories between our 
sample and expected values derived from all 16,038 reserves in the same nations (Gadj = 4.056, 
d.f. = 2, P = 0.13; G-test for goodness-of-fit, with Williams’ correction for sample size) 
(Supplementary Fig. 2). Other kinds of data, such as the budgets and staffing for protected areas, 
were unavailable for most sites, precluding more in-depth comparisons of this nature.    
 
 
Supplementary Figure 2 Number of high-protection (IUCN Categories I-IV), multiple-use 
(Categories V-VI) and unclassified protected areas in our study compared to expected values 
derived from all 16,038 protected areas in the same tropical nations.  
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Reserve isolation 
We also assessed the relative geographical isolation of the protected areas in our study, as 
measured by their distance to the nearest city. We did so because reserve isolation might 
influence the human pressures that a reserve experiences, and we wished to know whether our 
reserves were more or less isolated from nearby human populations than is typical of other 
reserves in the same nations.   
 For each of our 60 protected areas, we overlaid its boundary map onto a mapped surface 
of travel-time accessibility1. This surface estimates, for any point on Earth, the mean travel time 
in minutes required to reach the nearest city of > 50,000 residents, using conventional local 

http://www.wdpa.org/�
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means such as automobiles, boats and hiking. The surface has a spatial resolution of 0.0083 
decimal degrees (925 m at the equator), and we averaged the measurements for every pixel 
within each reserve to estimate its average isolation.  
 We then randomly selected 60 reserves for comparison. We stratified the randomly 
selected reserves across the same 36 nations in which our protected areas occur (choosing for 
each nation an equal number of random reserves as that found in our original sample). The 
randomly selected reserves were chosen from the World Database on Protected Areas 
(www.wdpa.org), using a Mersenne Twist random number generator with a random seed value. 
Marine protected areas were excluded from the random sample by considering only reserves 
whose centre-most point fell on land. 
 We found considerable overlap between the isolation of our reserves (mean ± SD = 741 ± 
761 minutes to the nearest city) and the randomly selected reserves (505 ± 479 minutes) 
(Supplementary Fig. 3). The isolation values did not differ significantly on average, either when 
using a Mann-Whitney U-test (P = 0.071) or a two-way ANOVA that contrasted log-transformed 
isolation values between our sample and the random sites and also among the three major 
tropical regions (Africa, Americas, Asia-Pacific). This latter analysis revealed no significant 
difference between our reserves and the random sites (F1,114 = 3.19, P = 0.077), but some 
difference among the three major regions (F2,114 = 3.33, P = 0.039). In pairwise comparisons, 
reserves in Africa were more isolated (P < 0.05; Tukey’s test) than those in the Asia-Pacific, 
with reserves in the Americas being intermediate and not significantly different from those in the 
other two regions.  
   
 
Supplementary Figure 3 Comparison of the relative isolation (travelling time to the nearest city 
of > 50,000 residents) between the 60 tropical forest protected areas in our study and a random 
sample of 60 protected areas stratified across the same 36 nations.      
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Design of interviews 
We initially tested whether we could use research publications to assess the knowledge-base at 
our research sites, using two of the best-studied sites in the tropics, Barro Colorado Island in 
Panama and La Selva Biological Station in Costa Rica. Despite perusing the entire publication 
lists for both sites (up to early 2008), we found that recognized experts provided more 
comprehensive, up-to-date and time-efficient assessments. Moreover, the number of available 
refereed publications varied enormously among our 60 selected sites, from just 10 to > 3,300 
papers. A reliance solely on publications would have imparted an obvious sampling bias when 
attempting to compare different sites, whereas experts are able to integrate a much wider range 
of knowledge based on personal observations, communications with other researchers and 
critically evaluating the relevant technical literature for their site. 

Our 10-page interview form, coupled with a telephone or face-to-face interview, allowed 
us to plumb in detail the accumulated knowledge of our long-term experts. The form (attached 
below as Appendix 1) includes 120 individual questions, 60 of which have five-part answers. We 
carefully designed our interview form after consulting the relevant survey-method literature2-5 
and with social-science experts who routinely conduct such surveys. Two of the most important 
potential biases to avoid are (a) diluting high-confidence responses with low-confidence 
responses, and (b) interviewing ‘clusters’ of closely affiliated, like-minded experts2,3. To 
minimize the first concern, we asked our experts to rank their level of confidence for each 
question they were asked (‘speculative’, ‘good’, ‘high’). We discarded all speculative responses 
prior to analysis. To minimize the second concern, we used both technical publications and 
communications with an array of different individuals to identify our experts. These experts were 
predominantly ecologists, zoologists, and botanists with long-term field and empirical data-
collection experience in their respective protected area. 

Another concern in surveys such as ours is that respondents might provide biased 
responses either because they fear political or professional retribution2,3 or are personally 
invested in seeing the protected area succeed4. To minimize this concern, we offered all 
respondents complete anonymity, should they wish. We established the following conditions: if 
an outside party wishes to communicate with an expert for a particular reserve, they should 
contact the lead author of this study (William Laurance, email: bill.laurance@jcu.edu.au) who 
will then forward the request to the relevant expert. That expert can then either respond or ignore 
the request at their discretion. In practice, anonymity was not a concern for most of our experts, 
all of whom were offered, and most of whom accepted, co-authorship of this study (however, to 
err on the side of caution, none is explicitly associated with any particularly protected area in this 
study). We also considered and rejected the notion that these experts might have provided overly 
positive responses because they wanted to see the reserve succeed. In practice, many respondents 
(virtually all of whom were independent researchers, not park employees) expressed at least 
some concerns about the condition of their reserve. Further, our interview protocol was so 
exhaustive, specific and objective (with both written and verbal components and interviews of 4-
5 different researchers per reserve) that it would have been difficult for any individual to 
obfuscate important changes in the reserve.          

A final concern we had was whether 4-5 interviews were sufficient to identify the key 
trends at our different sites. To test this we conducted a ‘saturation analysis’5, which is designed 
to determine how much new information is being provided by each additional interview 
(Supplementary Fig. 4). First, we arbitrarily selected four of our response variables that varied 
widely. Second, for each of our 21 reserves for which we had 5 interviews, we pooled the 
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interview data to generate mean scores for each variable. Third, we compared the mean score 
across these reserves from 1, 2, 3, and then 4 interviews to those generated by 5 interviews, using 
linear regression. As shown by the rapid and nonlinear rise in R2 for each variable, the mean 
scores for each reserve rapidly converge on the final values after just 2-4 interviews. We 
conclude from this assessment that our regime of 4-5 interviews per site was sufficient to capture 
the most important aspects of available expert knowledge.   
 

 
Supplementary Figure 4 Saturation curves for four representative response variables, compared 
to values achieved with randomly generated data. 
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Statistical analyses 
For ease of interpretation, we devised a robust and relatively simple statistical approach to assess 
temporal changes in each guild and potential environmental driver. We illustrate our strategy 
using the abundance of a single guild, apex predators, as an example. For each reserve, each 
expert was asked to indicate whether the overall abundance of apex predators had declined by at 
least 10-25%, remained roughly stable, or increased by at least 10-25%, over the past 20-30 
years. These responses were scored as -1, 0, and 1, respectivelyA

                                                           
A We originally collected quantitative data on each guild or environmental driver, using an 
ordinal scale (-3 = decline of > 50%; -2 = decline of 25-50%; -1 = decline of 10-25%; 0 = no 
change; 1 = increase of 10-25%; 2 = increase of 25-50%; 3 = increase of > 50%). However, we 
elected to simplify these data into a three-point scale (+1, 0, -1) because the validity of means 
and standard deviations derived from ordinal data has been questioned6 and because the three-
point and ordinal scales yielded virtually identical results. For example, calculated effect sizes 
for our guilds (using the 27 guilds with adequate sample sizes; Supplementary Table 2) based on 
the three-point and ordinal scales were strongly, positively and linearly related (F1,25 = 744.5, R2 

= 96.8%, P < 0.00001; least-squares regression analysis). 

. If an expert had no knowledge 
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for this particular variable or indicated that their view was speculative, their response was 
discarded. Among the experts with good or high confidence, we combined scores to generate a 
mean value (ranging from -1.0 to 1.0) to estimate the long-term trend in abundance of apex 
predators at their study site.   
 The means for all 60 sites were then pooled into a single data distribution (Supplementary 
Fig. 5). We used bootstrapping (random resampling with replacement; 100,000 iterations) to 
generate confidence intervals for the overall mean of the data distribution. If the confidence 
intervals for the mean did not overlap zero, we then interpreted the trend as non-random. 
Because we tested a number of different guilds, we used a stringent Bonferroni correction (P = 
0.0056) to reduce the likelihood of Type I statistical errors. Given that our study has important 
implications for nature conservation, we also identify guilds that would have shown non-random 
trends (P ≤ 0.05) had we tested them individually.   
 
 
Supplementary Figure 5 Example of a data distribution for 60 tropical protected areas 
(arbitrarily divided into increments of 0.4), for plotting changes in the abundance of apex 
predators. The horizontal black line shows the 95% confidence interval for the mean value, and 
the P indicates the probability of a non-random deviation from zero. 
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We also assessed effect sizes for changes in guild abundances (Supplementary Table 2) 
by estimating the mean value for each guild (from bootstrapping), and then dividing this by the 
standard deviation of that guild. With this procedure, negative values indicate a decline in guild 
abundance, and positive values an increase. We used a similar procedure to identify changes in 
our potential environmental driver variables inside (Supplementary Table 3) and outside 
(Supplementary Table 4) protected areas.   
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Our reserve-protection index provided a simple assessment of the degree to which 
practical, on-the-ground enforcement measures—resulting broadly from the number of park 
guards and their associated infrastructure, vehicles, supporting legal framework, and level of 
professional motivation—had changed over the past 20-30 years inside the protected area. Each 
researcher was asked whether the level of actual protection in their reserve had improved, 
remained constant, or declined over time (scored as +1, 0, and -1, respectively), and the mean 
value was calculated for each reserve. 

We relied on bivariate tests to assess relationships between potential environmental 
drivers and our reserve-health index. Multivariate analyses were not possible because, for some 
reserves, data were unavailable for some response variables and drivers. These missing values 
varied among the reserves, making it impossible to create a complete matrix of drivers and 
response variables needed for multivariate analyses. We used Spearman rank correlations (with 
Bonferroni corrections to limit the likelihood of spurious correlations, using a recommended 
experiment-wise error rate of 0.15 in all cases7) to identify potential relationships between the 
drivers and reserve health, and general linear models to test the efficacy of predictors. We 
evaluated our general linear models using Akaike’s information criterion corrected for finite 
samples (AICc), an information-theoretic index of bias-corrected model weight8. We assessed 
each model’s probability using AICc weights (wAICc); the closer to 1, the stronger the relative 
evidence for that model. The percent deviance explained (%DE) measures the models’ structural 
goodness-of-fit.  The evidence ratio (ER) is the ratio of the wAICc for each model over its null 
(intercept-only model); models with higher ER values have greater support relative to the null.  
 
Validation of interview data 
We explored several strategies for independently testing our interview data. For example, we 
repeatedly attempted to access time-series data on the abundances of selected vertebrate species 
being compiled for the Living Planet Index (http://en.wikipedia.org/wiki/Living_Planet_Index), 
an initiative of WWF and the Zoological Society of London. However, the datasets in this index, 
at least for the 60 protected areas in our study, are currently too sparse and preliminary to 
provide a sound basis for comparison (B. Collen, pers. comm.). We also explored data on 
investments in the management of Amazonian protected areas, but found little usable overlap 
with our study sites (C. A. Peres, pers. comm.). We did find more overlap between our study 
sites and a pantropical assessment of fire incidence in and around protected areas9, but this study 
provided only a single estimate of fire frequency, not a time series, and so could not be used to 
test the trend data from our investigation.    

We finally elected to do an extensive meta-analysis of available time-series studies, using 
data from published or in-press research articles, refereed book chapters, and technical research 
reports.  We established four a priori criteria to include studies. They had to (1) focus on one of 
the 60 protected areas in our study, (2) yield clearly interpretable data on one of the guilds or 
potential driver variables we evaluated, (3) provide a time-series of measurements that 
overlapped at least partially with our study period (the last 20-30 years), and (4) have been 
published recently, ideally after 2009. This final criterion was designed to limit the exposure of 
our experts to the scientific work in question (about 85% of our interviews were conducted 
between mid 2008 and late 2009), thereby providing a more independent test of our findings. We 
used several strategies, including the internet, searches of our own extensive technical-literature 
databases10, consultation with other relevant experts, and personal knowledge, to identify 
potentially suitable time-series.   

http://en.wikipedia.org/wiki/Living_Planet_Index�
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We identified 59 independent datasets that met our four selection criteria and provided a 
direct basis for comparison with our interviews (Supplementary Table 1). These studies used a 
variety of repeated-sampling approaches, such as mark-recapture studies, track counts, 
automatic-camera censuses, plot-based monitoring, and remote sensing, to assess temporal 
changes in their response variables. The datasets, which span 27 different protected areas, are 
approximately evenly distributed across the three major tropical regions (21 in Africa, 20 in the 
Americas, 16 in the Asia-Pacific). Nearly half of these studies (28 of 59) focused on one of six 
well-studied guilds (primates, large non-predatory vertebrates, top predators) or potential driver 
variables (forest cover inside reserves, forest cover outside reserves, hunting inside reserves), but 
the remainder were diverse in nature. Altogether, 15 guilds and 13 driver variables were 
represented by at least one independent dataset. 

To provide a direct basis for comparison with our study, we used a simple three-way 
system (increase, no significant change, decrease) to classify the trend in each independent 
dataset, following the conclusions of the original researchers. Using this approach, the null 
hypothesis is that one third of the 59 independent datasets would agree with the trends in our 
interview data, based simply on chance. We found, however, that the independent datasets 
agreed with our findings in 51 of the 59 comparisons (86.4%). This number is strikingly higher 
than that from random expectation (Gadj = 36.50, d.f. = 1, P <0.0001; G-test for goodness of fit, 
adjusted for sample size).   

In assessing the eight datasets that disagreed with our findings (Supplementary Table 1), 
we discerned only one obvious pattern: four described trends that occurred recently, and thus 
might not have been known to the experts we interviewed, or were regarded as not being 
representative of longer-term trends. For example, one involved recent chytrid-fungus-related 
declines of stream-dwelling amphibians at Manu National Park in Peru11 that were detected only 
in 2009. Two others resulted from recent (2005-2009) efforts to improve protection of Lope 
Reserve, Gabon, which have led to a recent increase there in the abundance of elephants and 
other large non-predatory vertebrates12.   

Notably, none of the eight disagreements was fundamental in nature—our experts never 
reported a trend opposite to that shown by the independent test. For example, in Budongo Forest, 
Uganda, our experts collectively indicated that primate abundance had increased somewhat over 
the last 2-3 decades, whereas standardized field-monitoring data (35 transects of 2 km in length 
that were repeatedly censused from 1992-2009) revealed that individual species abundances 
varied considerably over time, with no clear trend in overall abundance13.  Similarly, our experts 
reported that ambient temperature had increased over time at Los Tuxtlas Biosphere Reserve in 
Mexico, whereas an independent analysis based on long-term records (1925-2006) from 24 
nearby meteorological stations revealed just a slight rise in mean temperature (0.016o C per 
decade) that was not statistically significant14. 

Overall, these validation tests give us considerable confidence in the efficacy of our 
interview data (see refs. 15-17 for relevant discussions). The available comparisons do not span 
all of the protected areas, guilds, or potential driver variables we assessed evenly, but this simply 
illustrates the highly sparse and patchy nature of suitable time-series analyses. Indeed, the 59 
datasets we compiled after extensive efforts represent just a tiny fraction (1.6%) of the 3,589 
assessments of trends in guilds and potential drivers captured by our interview data (our 
interviews provided 1,262 assessments of guild trends and 2,327 assessments of trends in 
environmental drivers, across our network of 60 protected areas). It was precisely this deficit that 
prompted us to undertake this interview-based investigation, to provide a much more systematic 
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and far-reaching comparison of the fate of tropical protected areas than has previously been 
possible.   
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Supplementary Table 1.  Independent tests of identified trends in guild abundances and 
potential environmental drivers from expert interviews, using available time-series data from 
scientific publications and technical reports. For each test, we indicate whether or not the 
independent data validated the overall trend identified by our expert interviews. ‘Time interval’ 
indicates the span of years covered by each empirical dataset.  References for each test are listed 
below. 
 
 
No. Protected area  Region  Guild or driver 

trend based on 
interviews 

Trend  
validated? 

Time 
interval  

Reference 

1 Budongo Africa Primates increased in 
abundance 

No 1992-
2009 

1 

2 Bwindi Africa Harvests of NTFPs 
declined inside park 

Yes 1991-
2003 

2 

3 Kakamega Africa Primates increased in 
abundance 

Yes 1997-
2010 

3, 4 

4 Kakamega Africa Understory birds 
declined in 
abundance 

Yes 1912-
2003 

5 

5 Kakamega Africa Forest cover declined 
inside reserve 

Yes 1912-
2003 

5 

6 Kahuzi-Biega Africa Primates declined in 
abundance 

Yes 1978-
2004 

6 

7 Kibale Africa Primates declined in 
abundance 

No 1975-
2006 

7 

8 Kibale Africa Ambient temperature 
increased inside 
reserve  

Yes 1975-
2006 

8 

9 Kibale Africa Rainfall increased 
inside reserve 

Yes 1900-
2006 

8 

10 Kilum-Ijim Africa Large-seeded old-
growth trees declined 
in abundance 

Yes 1998-
2006 

9 

11 Kilum-Ijim Africa Harvests of NTFPs 
increased inside 
reserve 

Yes 1998-
2006 

9 

12 Lope Africa Large non-predatory 
vertebrates declined 

No 2005-
2009 

10 

13 Lope Africa Hunting increased 
inside reserve 

No 2005-
2009 

10 

14 Nouabale-Ndoki Africa Large non-predatory 
vertebrates declined 

Yes 2006-
2011 

11 

15 Nouable-Ndoki Africa Hunting increased 
inside reserve 

Yes 2006-
2011 

11 
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16 Nouable-Ndoki Africa Hunting increased 
outside reserve 

Yes 2006-
2011 

12 

17 Ngungwe Africa Human populations 
increased outside 
reserve 

Yes 1991-
2007 

13 

18 Okapi Africa Large non-predatory 
vertebrates declined 
in abundance 

Yes 1995-
2006 

14 

19 Udzungwa Africa Primates increased in 
abundance 

No 2004-
2009 

15 

20 Udzungwa Africa Pioneer/generalist 
trees were stable in 
abundance 

Yes 1986-
2007 

16 

21 Udzungwa Africa Large-seeded old-
growth trees were 
stable in abundance 

Yes 1986-
2007 

17 

22 Udzungwa Africa Forest cover 
remained stable 
inside the reserve 

Yes 1983-
2009 

17 

23 Udzungwa Africa Forest cover declined 
outside reserve 

Yes 1983-
2009 

17 

24 Barro Colorado 
Island 

Americas Lianas increased in 
abundance  

Yes 1995-
2007 

18 

25 Brownsberg Americas Illegal mining 
increased inside 
reserve 

Yes 1971-
2005 

19 

26 Chamela-
Cuixmala 

Americas Top predators 
declined in 
abundance 

No 1995-
2008 

20 

27 La Selva Americas Terrestrial 
amphibians declined 
in abundance 

Yes 1970-
2005 

21 

28 La Selva Americas Terrestrial 
lizards/larger reptiles 
declined in 
abundance 

Yes 1970-
2005 

21 

29 La Selva Americas Understory 
insectivorous birds 
declined in 
abundance 

Yes 1960-
1999 

22 

30 Los Amigos Americas Top predators 
increased in 
abundance 

Yes 2004-
2008 

23 

31 Los Amigos Americas Large non-predatory 
vertebrates increased 
in abundance  

Yes 2004-
2008 

23 
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32 Los Amigos Americas Primates increased in 
abundance 

Yes 2004-
2008 

23 

33 Los Amigos Americas Omnivorous 
mammals increased 
in abundance 

Yes 2004-
2008 

23 

34 Los Amigos Americas Game birds increased 
in abundance 

Yes 2004-
2008 

23 

35 Los Amigos Americas Larger frugivorous 
birds increased in 
abundance 

Yes 2004-
2008 

23 

36 Los Amigos Americas Hunting declined 
inside reserve 

Yes 2004-
2008 

23 

37 Los Amigos Americas Forest cover declined 
outside reserve 

Yes 2002-
2010 

23 

38 Los Amigos Americas Illegal mining 
increased outside 
reserve 

Yes 2002-
2010 

24 

39 Los Tuxtlas Americas Ambient temperature 
increased inside 
reserve 

No 1925-
2006 

25 

40 Luquillo Americas Exotic plants 
increased in 
abundance 

Yes 1936-
2003 

26 

41 Manu Americas No change in stream-
dwelling amphibian 
abundance  

No 1999-
2009 

27 

42 Manu Americas No change in 
terrestrial amphibian 
abundance 

Yes 1999-
2009 

27 

43 Nouragues  Americas Illegal mining 
increased inside 
reserve 

Yes 2000-
2008 

28 

44 Anamalai Asia-
Pacific 

Primates increased in 
abundance 

Yes 1996-
2010 

29 
 

45 Khao Yai Asia-
Pacific 

Top predators 
declined in 
abundance 

Yes 1999-
2007 

30 

46 Lambir Asia-
Pacific 

Large non-predatory 
vertebrates declined 
in abundance 

Yes 1984-
2007 

31 

47 Lambir Asia-
Pacific 

Primates declined in 
abundance 

Yes 1984-
2007 

31 

48 Lambir Asia-
Pacific 

Omnivorous 
mammals declined in 
abundance 

Yes 1984-
2007 

31 
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49 Lambir Asia-
Pacific 

Larger frugivorous 
birds declined in 
abundance 

Yes 1984-
2007 

31 

50 Lambir Asia-
Pacific 

Raptorial birds 
declined in 
abundance 

Yes 1984-
2007 

31 

51 Lambir Asia-
Pacific 

Hunting increased 
inside reserve 

Yes 1984-
2007 

31 

52 Lore Lindu Asia-
Pacific 

Forest cover declined 
inside reserve 

Yes 1972-
2007 

32 

53 Mudumalai-
Bandipur 

Asia-
Pacific 

Exotic plants 
increased in reserve 

Yes 1997-
2008 

33 

54 Mudumalai-
Bandipur 

Asia-
Pacific 

Fires increased inside 
reserve 

Yes 1989-
2005 

34 

55 Northern Sierra 
Madre 

Asia-
Pacific 

Forest cover declined 
inside reserve 

Yes 1972-
2002 

35 
 

56 Northern Sierra 
Madre 

Asia-
Pacific 

Forest cover declined 
outside reserve 

Yes 1972-
2002 

35 

57 Northern Sierra 
Madre 

Asia-
Pacific 

Logging increased 
inside reserve 

Yes 2003-
2009 

36 

58 Xishuangbanna Asia-
Pacific 

Forest cover declined 
outside reserve 

Yes 1976-
2003 

37 

59 Xishuangbannna Asia-
Pacific 

Exotic tree 
plantations increased 
around reserve 

Yes 1976-
2003 

37 
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Supplementary Analyses 
 
 
Supplementary Figure 6 Effects of surrounding disturbances on reserve health (mean ± SD). 
Health values declined less in reserves where deforestation, logging or fires were stable or 
declined, relative to those where these disturbances increased over time. P values shown are for 
Mann-Whitney U-tests. Sample sizes are in parentheses.       
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Supplementary Table 2 Trends in the abundance of 27 animal and plant guilds within 60 
tropical protected areas, ranked by effect size (negative values indicate declines in guild 
abundance, and positive values an increase). P values shown in bold are non-random using a 
stringent Bonferroni correction (P ≤ 0.0056), whereas those in italics are non-random at P ≤ 
0.05. The P values, estimated mean, and upper and lower 95% confidence limits (CLs) for each 
guild were estimated by bootstrapping (with 100,000 iterations). Four guilds (aquatic 
invertebrates, army/driver ants, disease-vectoring invertebrates, dung beetles) were too poorly 
known to reliably assess overall trends in their abundance. 

    
 

        
 

Guild P 
Effect 
size Mean SD 

Lower 
CL 

Upper 
CL 

No data 
(%) 

Ecological specialists <0.00001 -1.053 -0.425 0.4035 -0.600 -0.250 50.0 
Stream amphibians 0.00002 -1.012 -0.3495 0.3452 -0.525 -0.17391 56.7 
Freshwater fish <0.00001 -0.893 -0.4411 0.4938 -0.63441 -0.24775 41.7 
Terrestrial amphibians 0.00157 -0.796 -0.2786 0.3497 -0.45455 -0.10256 53.3 
Non-venomous snakes 0.00127 -0.761 -0.2968 0.3903 -0.4881 -0.10556 51.7 
Bats 0.00190 -0.666 -0.1772 0.266 -0.2973 -0.05714 46.7 
Lizards & larger reptiles 0.00382 -0.564 -0.2877 0.5097 -0.49495 -0.08036 40.0 
Venomous snakes 0.01511 -0.53 -0.2261 0.4263 -0.42929 -0.02299 48.3 
Large non-predatory spp. 0.00022 -0.48 -0.2871 0.5985 -0.44583 -0.12845        5.0 
Epiphytes 0.00557 -0.439 -0.151 0.3439 -0.26798 -0.03398 26.7 
Lg-seed old-growth trees 0.00086 -0.436 -0.2033 0.4658 -0.33041 -0.07615   8.3 
Spp. requiring tree cavities 0.01852 -0.389 -0.1794 0.4616 -0.34804 -0.01068 31.7 
Migratory species 0.04674 -0.368 -0.1463 0.3973 -0.31707 0.02451 41.7 
Understory insectiv. birds 0.01112 -0.368 -0.1482 0.4023 -0.27516 -0.02128 20.0 
Apex predators 0.00469 -0.361 -0.2151 0.5958 -0.37557 -0.05455  6.7 
Raptorial birds 0.02587 -0.314 -0.1385 0.4414 -0.27733 0.00043 20.0 
Light-loving butterflies 0.16 -0.299 -0.1082 0.3617 -0.3125 0.09615 55.0 
Larger frugivorous birds 0.03055 -0.276 -0.1269 0.4598 -0.26042 0.00654 13.3 
Primates 0.02777 -0.269 -0.1489 0.553 -0.30121 0.00333   8.3 
Rodents 0.13 -0.188 -0.0975 0.5195 -0.26871 0.07364 23.3 
Larger game birds 0.13 -0.166 -0.0884 0.5312 -0.24691 0.07014 15.0 
Opportunistic omnivores 0.12 -0.164 -0.0996 0.6067 -0.27075 0.07164 10.0 
Human diseases 0.00115 0.438 0.2288 0.5227 0.08025 0.37727 11.7 
Lianas & vines 0.00116 0.467 0.2016 0.4316 0.07516 0.32801 15.0 
Exotic animal species <0.00001 0.904 0.3475 0.3842 0.24214 0.45283 11.7 
Pioneer & generalist trees <0.00001 1.028 0.4592 0.4465 0.3366 0.5817 15.0 
Exotic plant species <0.00001 1.169 0.4823 0.4126 0.375 0.58951   6.7 
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Supplementary Table 3 As in Supplementary Table 1 except for potential environmental 
drivers inside protected areas, and with a different Bonferroni correction (P ≤ 0.0071). 
 

Driver variable P 
Effect 
size Mean SD 

Lower 
CI 

Upper 
CI 

No data 
(%) 

Reserve health <0.00001 -0.910 -0.2313 0.2686 -0.3372 -0.1879          0 
River & stream flows 0.01052 -0.301 -0.1048 0.3484 -0.1944 -0.0153       1.7 
Exotic plantations 0.03395 -0.237 -0.0486 0.2048 -0.1006 0.0033          0 
Selective logging 0.13 -0.147 -0.0649 0.4399 -0.1761 0.0464          0 
Natural-forest cover 0.25 -0.085 -0.0381 0.4501 -0.1519 0.0758   0 
Illegal mining 0.35 -0.047 -0.0116 0.2452 -0.0750 0.0517 1.7 
Fires 0.44 -0.024 -0.0076 0.3169 -0.0883 0.0731   0 
Rainfall 0.40 0.038 0.0156 0.4085 -0.0994 0.1305     10.0 
Hunting 0.11 0.157 0.0982 0.6249 -0.0597 0.2561    0 
NTFP harvests 0.02816 0.247 0.1193 0.4828 -0.0031 0.2417    0 
Soil erosion <0.00001 0.517 0.1800 0.3483 0.0893 0.2708 3.3 
Reserve-protection effort 0.00005 0.520 0.2500 0.4806 0.1286 0.3714    0 
Flooding <0.00001 0.539 0.1489 0.2762 0.0760 0.2217 5.0 
Windstorms <0.00001 0.561 0.1580 0.2819 0.0759 0.2402     15.0 
Roads <0.00001 0.599 0.1294 0.2160 0.0747 0.1842    0 
Stream sedimentation <0.00001 0.633 0.2497 0.3945 0.1404 0.3591     10.0 
Human population density <0.00001 0.668 0.2286 0.3425 0.1417 0.3156    0 
Water pollution <0.00001 0.709 0.2205 0.3111 0.1396 0.3014  3.3 
Ambient temperature <0.00001 0.745 0.2687 0.3609 0.1633 0.3742      16.7 
Livestock grazing <0.00001 0.765 0.2233 0.2919 0.1497 0.2969     0 
Drought severity/intensity <0.00001 0.851 0.3200 0.3759 0.2218 0.4181   5.0 
Air pollution <0.00001 0.892 0.2946 0.3303 0.2068 0.3824   6.7 
Automobile traffic <0.00001 0.906 0.2806 0.3095 0.2022 0.3589      0 
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Supplementary Table 4 As in Supplementary Table 1 except for potential environmental 
drivers outside of protected areas (within a 3 km-wide zone around the protected area), and with 
a different Bonferroni correction (P ≤ 0.0071). 
 

  P 
Effect 
size Mean SD 

Lower 
CI 

Upper 
CI 

No data 
(%) 

Natural-forest cover <0.00001 -1.470 -0.5907 0.4019 -0.6925 -0.489 1.7 
River & stream flows 0.03883 -0.248 -0.1005 0.4052 -0.2115 0.0106 8.3 
Rainfall 0.27 -0.088 -0.0337 0.3819 -0.1431 0.0756     11.7 
Fires 0.00433 0.348 0.1412 0.4054 0.0350 0.2474 3.3 
Hunting 0.00153 0.398 0.2257 0.5674 0.0778 0.3736 3.3 
Livestock grazing 0.00094 0.432 0.1919 0.4442 0.0747 0.3092 5.0 
Windstorms <0.00001 0.593 0.1432 0.2417 0.0677 0.2188     21.7 
Flooding <0.00001 0.605 0.2492 0.4115 0.1358 0.3626     10.0 
Illegal mining <0.00001 0.626 0.2687 0.4295 0.1541 0.3833 6.7 
NTFP harvests <0.00001 0.720 0.3152 0.4378 0.1927 0.4377     11.7 
Selective logging <0.00001 0.729 0.3613 0.4956 0.2325 0.4901 3.3 
Exotic plantations <0.00001 0.749 0.3416 0.4561 0.2199 0.4633 6.7 
Ambient temperature <0.00001 0.818 0.3221 0.3940 0.2067 0.4375     18.3 
Air pollution <0.00001 0.966 0.3716 0.3846 0.2682 0.4750     10.0 
Drought severity/intensity <0.00001 0.978 0.3747 0.3830 0.2674 0.4820     15.0 
Water pollution <0.00001 1.218 0.4936 0.4054 0.3898 0.5975 5.0 
Stream sedimentation <0.00001 1.234 0.5417 0.4390 0.4219 0.6616     18.3 
Soil erosion <0.00001 1.356 0.5638 0.4158 0.4576 0.6699     10.0 
Roads <0.00001 1.671 0.6601 0.3950 0.5607 0.7594 1.7 
Automobile traffic <0.00001 1.845 0.7012 0.3801 0.6078 0.7945 3.3 
Human population density <0.00001 2.294 0.7943 0.3462 0.7097 0.8789 1.7 
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Supplementary Table 5 Assessing effects of potential environmental drivers on the reserve-
health index, using Spearman rank correlations and general linear models (GLMs). For the 
correlations, P values in bold have a Bonferroni-corrected value of P ≤ 0.0071. For the GLMs, 
the strongest models are those with weights of the Akaike’s information criterion corrected for 
sample size (wAICc) that are closest to 1. The percent deviance explained (%DE) measures the 
models’ structural goodness-of-fit, whereas models with higher ER values have greater support 
relative to the null (intercept-only) model. Models with blanks could not be fitted with plausible 
error structures.   
  
             Correlations          General Linear Models   
Potential driver          Rs P       wAICc       ER     %DE          n 
Natural forest cover-outside 0.487 0.0001 0.989 85.9 16.9 59 
Natural forest cover-inside 0.432 0.0006 0.998 502.5 21.7 60 
Livestock grazing-inside 0.178 0.174 0.786 3.7 7.7 60 
Automobile traffic-inside 0.15 0.251 0.393 0.6 2.2 60 
Air pollution-inside 0.052 0.706 0.842 5.2 13.3 56 
Stream sedimentation-outside 0.052 0.722 0.189 0.2 10.3 49 
Ambient temperature-inside 0.046 0.749 0.887 7.5 21.2 50 
Road expansion-outside 0.036 0.784 0.309 0.4 1 59 
Droughts-inside 0.011 0.937 0.529 1.1 7.3 57 
Illegal mining-outside 0.003 0.980 0.703 1.7 7.5 56 
Road expansion-inside -0.017 0.897 0.252 0.3 0.1 60 
Automobile traffic-outside -0.029 0.829 0.224 0.3 0.6 58 
Windstorms-inside -0.049 0.735 ----- ----- ----- 51 
Rainfall-outside -0.054 0.700 0.576 1.3 12.2 53 
Windstorms-outside -0.064 0.667 ----- ----- ----- 47 
Rainfall-inside -0.071 0.609 0.825 4.6 15.1 54 
Ambient temperature-outside -0.086 0.555 0.438 0.7 14.6 49 
Soil erosion-outside -0.089 0.520 0.205 0.3 4.5 54 
Illegal mining-inside -0.107 0.418 ----- ----- ----- 59 
Water pollution-inside -0.111 0.405 0.724 2.6 8.9 58 
Water pollution-outside -0.129 0.335 0.772 3.4 9.7 57 
Stream sedimentation-inside -0.141 0.310 0.579 1.3 11.2 54 
Exotic-tree plantations-outside -0.143 0.288 0.138 0.2 0.7 56 
Livestock grazing-outside -0.155 0.246 0.701 2.3 8.5 57 
Floods-outside -0.158 0.249 ----- ----- ----- 54 
Stream/river flows-outside -0.164 0.227 0.183 0.2 2.9 55 
Human populations-inside -0.171 0.190 0.4 0.7 2.3 60 
Air pollution-outside -0.181 0.185 0.92 11.3 16.8 54 
Stream/river flows-inside -0.19 0.150 0.757 3.1 8.3 59 
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Human populations-outside -0.202 0.122 0.654 1.9 5.7 59 
Hunting-outside -0.205 0.119 0.777 3.5 8.7 58 
Soil erosion-inside -0.213 0.109 0.677 2.1 8.2 58 
Exotic-tree plantations-inside -0.216 0.097 0.622 1.6 5.2 60 
Drought-outside -0.223 0.113 0.977 40.3 24 51 
NTFP harvests-outside -0.239 0.081 0.928 12.5 18.2 53 
Floods-inside -0.253 0.058 ----- ----- ----- 57 
Fires-outside -0.279 0.0323 0.955 21.2 14.1 58 
Fires-inside -0.288 0.0254 0.94 15.7 12.1 60 
NTFP harvests-inside -0.353 0.0057 0.971 33.8 14.3 60 
Selective logging-outside -0.373 0.0036 0.862 6.2 10.5 58 
Selective logging-inside -0.397 0.0017 0.973 36.1 14.5 60 
Hunting-inside -0.452 0.0003 0.998 498.1 21.7 60 
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Supplementary Table 6 Pearson correlations between potential environmental drivers inside 
versus outside of protected areas, and partial Pearson correlations showing the relationship 
between these two variables once the effects of reserve area were removed statistically. P values 
in bold have a Bonferroni-corrected value of P ≤ 0.0071. 
 
Driver        R         P              n     Partial R 
Livestock grazing -0.1722 0.20 57 -0.1643 
Exotic-tree plantations -0.0274 0.84 56 -0.0069 
Selective logging 0.2300 0.0825 58 0.2123 
Soil erosion 0.2401 0.0803 54 0.2418 
Road expansion 0.2749 0.0351 59 0.2814 
Population growth 0.2896 0.0261 59 0.3002 
Natural forest cover 0.3232 0.0125 59 0.3340 
Automobile traffic 0.3445 0.0081 58 0.3529 
Fires 0.3623 0.0052 58 0.3518 
NTFP harvests 0.3707 0.0063 53 0.3707 
Illegal mining 0.4224 0.0012 56 0.4351 
River & stream flows 0.4355 0.0009 55 0.4321 
Hunting 0.4381 0.0006 58 0.4314 
Stream sedimentation 0.4615 0.001 48 0.4608 
Water pollution 0.4978 0.0001 57 0.5145 
Air pollution 0.5874 <0.0001 54 0.5851 
Drought severity/intensity 0.6374 <0.0001 50 0.6374 
Flooding 0.6833 <0.0001 54 0.6995 
Windstorm disturbance 0.7667 <0.0001 47 0.7474 
Rainfall 0.7979 <0.0001 52 0.8060 
Ambient temperature 0.8547 <0.0001 48 0.8496 
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Appendix 1  A non-interactive version of the 10-page interview form used in this study. The 
present study focuses on changes in the abundance of guilds, as well as the potential drivers of 
environmental change in our network of protected areas. Data on changes in species richness and 
composition of guilds are not included in the present analysis, because our experts generally had 
lower confidence in these trends.  

 



24 
 

 

 



25 
 

 

 



26 
 

 

 



27 
 

 

 



28 
 

 

 



29 
 

 

 



30 
 

 

 



31 
 

 

 



32 
 

 


	Laurance et al. 2012-Nature.pdf
	Title
	Authors
	Abstract
	Methods Summary
	References
	Figure 1 
	Figure 2 
	Figure 4 
	Figure 3 
	Figure 5 
	Table 1 The 31 animal and plant guilds, and the 21 environmental drivers assessed both inside and immediately outside each protected area.

	Laurance et al  2012-Supplementary Information



