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Abstract High spatial resolution urban climate modeling is essential for understanding urban
climatology and predicting the human health impacts under climate change. Satellite thermal
remote-sensing data are potential observational sources for urban climate model validation with
comparable spatial scales, temporal consistency, broad coverage, and long-term archives. However, sensor
view angle, cloud distribution, and cloud-contaminated pixels can confound comparisons between satellite
land surface temperature (LST) and modeled surface radiometric temperature. The impacts of sensor view
angles on urban LST values are investigated and addressed. Three methods to minimize the confounding
factors of clouds are proposed and evaluated using 10 years of Moderate Resolution Imaging
Spectroradiometer (MODIS) data and simulations from the High-Resolution Land Data Assimilation System
(HRLDAS) over Greater Houston, Texas, U.S. For the satellite cloud mask (SCM) method, prior to
comparison, the cloud mask for each MODIS scene is applied to its concurrent HRLDAS simulation. For the
max/min temperature (MMT) method, the 50 warmest days and coolest nights for each data set are selected
and compared to avoid cloud impacts. For the high clear-sky fraction (HCF) method, only those MODIS
scenes that have a high percentage of clear-sky pixels are compared. The SCMmethod is recommended for
validation of long-term simulations because it provides the largest sample size as well as temporal
consistency with the simulations. The MMT method is best for comparison at the extremes. And the HCF
method gives the best absolute temperature comparison due to the spatial and temporal consistency
between simulations and observations.

1. Introduction

Approximately half of the world’s population now lives in the metropolitan areas, and urban expansion
is expected to continue [Centre for Health Development World Health Organization, 2010]. The combined
impacts of global climate change, urban heat islands (UHI), urbanization, and demographic trends place
more urban residents at risk to heat-related stressors. More accurate information on urban meteorol-
ogy, high-resolution weather forecasting, and climate change projections for cities are therefore required
[National Research Council, 2012].

Atmospheric models are helpful for understanding the current climate system and projecting future cli-
mate changes. Regional- and local-scale atmospheric model simulations are especially valuable for decision
making at the municipal level; however, they necessitate accurate representations of specific urban fea-
tures (e.g., morphology) and fine-scale climatic background information and ideally are coupled to urban
canopy models (UCMs). UCMs have advanced rapidly during recent decades [Grimmond et al., 2010] and
have been coupled to a variety of atmospheric models [Chen et al., 2011; Oleson et al., 2008; Kusaka and
Kimura, 2004] for use in numerous applications. For example, Chen et al. [2011] integrated the Weather
Research and Forecasting model (WRF) [Skamarock and Klemp, 2008] coupled with the UCM of Kusaka et al.
[2001] at 1 km spatial resolution to assess the impacts of urbanization on Houston’s sea breeze circulation
and found that the city enhances stagnant air at nighttime, which can exacerbate pollution. Despite the
utility of high-resolution urban climate modeling, the heterogeneous surface structures in the urban envi-
ronment, with multiple sources of energy and water, increase the complexity of models and consequently
can increase the uncertainty of model accuracy.

Climate simulations over urban regions are usually validated with in situ measurements [Grimmond and
Oke, 2002;Masson, 2006]. Large collaborative programs that integrate different types of measurements at
multiple temporal and spatial scales are becoming popular in urban climate studies [Mestayer et al., 2005;
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Grimmond, 2006]. Nevertheless, the expense, location, and duration of in situ measurement programs limit
their widespread application for long-term model simulations and validation. Moreover, the heterogeneity
of the urban environment cannot be fully represented by the limited footprint of measurements, which
complicates attempts to analyze the spatial agreement of observations with model output.

Accurate estimation of radiative temperature is required for any coupled climate modeling system, because
it is an integral component of the surface energy budget, water stress evaluation, and soil moisture-climate
feedback [Bodas-Salcedo et al., 2008; Ghent et al., 2010]. Land surface temperature (LST) products from satel-
lite remote-sensing platforms are widely available and are potential sources for model validation, having
comprehensive spatial coverage, comparable scale with models, and constant periodicity. There are many
ways to apply satellite LST data to evaluate and improve atmospheric model simulations at multiple tem-
poral and spatial scales [Jin et al., 1997; Sohrabinia et al., 2012; Miao et al., 2009; Leroyer et al., 2011]. For
example, Jin et al. [1997] compared skin temperatures simulated with NCAR Community Climate Model
(CCM2) coupled with a biosphere-atmosphere transfer scheme with satellite-derived radiative temperature
to evaluate model performance globally. LST can also be incorporated into data assimilation, helping to con-
strain uncertainty in model simulations. For instance, Ghent et al. [2010] found that the LST bias of the Joint
UK Land Environment Simulator was reduced by two thirds by applying observed LST by means of data
assimilation. The limits of satellite remotely sensed LST for improving model performance in the long term
are unknown, especially in complex urban environments.

There are several aspects to consider before comparing LST with urban climate model simulations. First,
the distribution of clouds across the urban area is heterogeneous and varies seasonally [Hu and Brunsell,
2013]. The cloud-screening algorithms for satellite images usually are not perfect for detecting all cloudy
pixels, so cloud-contaminated pixels exist in some “cloud-free” products. The data that are unavailable due
to clouds would otherwise contain important information for model validation, and the impact of clouds
is often larger during daytime than nighttime [Hu and Brunsell, 2013]. Second, the satellite LST is a direc-
tional radiative temperature, representing the information from a certain view angle [Voogt and Oke, 2003].
The anisotropy of LST largely exists due to differences in surface properties, the urban geometric struc-
ture, and the relative geometry between the Sun and the sensor. Additionally, the view angle relates to
the atmospheric path length corresponding to absorption and reemission of radiation, leading to larger
anisotropic effects for large view angles in the remotely sensed LST. Although view angle effects from the
atmosphere are considered in LST retrieval algorithms [e.g.,Wan and Dozier, 1996], the surface structure
induced anisotropy of LST still exists [Voogt and Oke, 1998; Rasmussen et al., 2010; Vinnikov et al., 2012;
Lagouarde et al., 2004]. Third, different sensors have different temporal and spatial resolutions, as well as
data acquisition times. Adequately addressing these issues can allow for satellite LST data to be compara-
ble with model simulations of surface radiative temperature. However, little research on this topic has been
done previously.

This paper addresses the question of how to use satellite remote-sensing LST to validate surface radiative
temperature in an urban canopy model. We propose three practical methods, attempting to decrease the
uncertainty of the satellite LST product and to meet a variety of different demands of validations depending
on the application. The methods are tested using daily LST from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) for the decade spanning 2003 to 2012, compared with simulations of surface radiative
temperature from the High-Resolution Land Data Assimilation System (HRLDAS) [Chen et al., 2007] over
Greater Houston, Texas, U.S. The details of MODIS and the HRLDAS simulations are described in section 2,
and the three sampling methods are discussed in section 3. The temperature distributions and spatial
analysis of the MODIS data and simulations for each method are presented in section 4, as well as the justi-
fication of the assumptions made in the sampling methods. The advantages and disadvantages of the three
sampling methods and their scope of applications are discussed in section 5, and conclusions are drawn
in section 6.

2. HRLDAS andMODISData
2.1. Study Area
We choose Houston, Texas, as the study area, defining the domain from 29.25◦N and 96◦W (southwest) to
30.5◦N and 94.75◦W (northeast). Figure 1 shows the HRLDAS model domain and land use categories based
on the U.S. Geological Survey (USGS) National Land Cover Database [Homer et al., 2004; Fry et al., 2011].
Three urban types are classified in the domain, including light-intensity urban (LU), heavy-intensity urban
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Figure 1. The land use map used in the HRLDAS model simulation.

(HU), and commercial urban (CU, including industrial area), covering approximately 20.6%, 5.0%, and 1.9% of
total land area, respectively. Other majority land cover types include cropland and grassland mosaic (27.9%),
wooded wetland (23%), and dryland cropland and pasture (8.9%).

2.2. HRLDAS Simulations
Here we briefly describe the methodology for simulating radiative temperature, Trad, with HRLDAS. For addi-
tional details, the reader is referred to a full description of the modeling approach in A. J. Monaghan et al.
(Evaluating the impact of urban morphology configurations on the accuracy of urban canopy model tem-
perature simulations with MODIS, Journal of Geophysical Research-Atmospheres, in revision, 2014). HRLDAS
is an offline (i.e., uncoupled to an atmospheric model) version of the Noah Land Surface Model (Noah LSM)
[Chen and Dudhia, 2001; Chen et al., 2007]. The Noah LSM simulates the fluxes of energy and water from
the land surface as a function of the underlying land surface and soil properties while also maintaining
stores of water and energy in four soil layers to a depth of 2m. In order to better represent the physical pro-
cesses involved in the exchange of heat, momentum, and water vapor in the urban environment, the UCM
of Kusaka et al. [2001] is employed within the Noah LSM. The UCM provides a more realistic description of
the urban lower boundary conditions and morphology and therefore more accurate simulations for urban
regions. As mentioned above, the urban land use categories (low-intensity, heavy-intensity, and commer-
cial) for Houston were characterized in the UCM with the 30m resolution 2001 USGS National Land Cover
Database (NLCD) [Homer et al., 2004]. The urban-versus-vegetated (i.e., nonurban) percentage within each
grid cell was specified by the National Urban Database and Access Portal Tool (NUDAPT) [Ching et al., 2009;
Burian and Ching, 2009], a two-dimensional data set of influential urban properties. The use of NUDAPT
leads to a more heterogeneous UHI characterization in the HRLDAS simulations.

Half-hourly, 1 km resolution HRLDAS simulations were performed over metropolitan Houston for
2003–2012, preceded by a 1 year (2002) “spin-up” period to allow the soil temperature and moisture states
to equilibrate [Chen et al., 2007]. The upper boundary conditions for HRLDAS were derived from one-eighth
degree hourly meteorological data from the North American Land Data Assimilation Phase 2 (NLDAS-2)
[Cosgrove et al., 2003; Xia et al., 2012] forcing data set. It was assumed that watering and irrigation was
applied to all vegetated surfaces, a process represented in HRLDAS by setting in the upper soil layer a lower
threshold of 30% water by volume.

In order to ensure that the temperature fields being compared were as similar as possible, we generated a
diagnostic radiative temperature (Trad) variable in HRLDAS such that it is similar to the MODIS LST product.
At each time step, the energy balances for the roof, wall, and road components for each grid cell containing
urban areas were simulated by the UCM subroutine within the Noah LSM. The simulated outward long-
wave radiation values for the roof, wall, and road were then combined into a bulk urban longwave radiation
value for each grid cell, based on the weighted average of the roof and canyon (wall + road) longwave
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components. A bulk urban emissivity value was calculated in the same manner for each grid cell. Concur-
rently, the longwave radiation was calculated in the LSM for the vegetated portion of each grid cell. Then,
the bulk urban and vegetated longwave radiation and emissivity values were averaged by weighting the
fraction of urban-versus-vegetated area in each grid cell. Finally, these resulting “integrated” longwave radi-
ation and emissivity values for each grid cell were used to calculate Trad using the Stefan-Boltzmann law. The
Trad is most representative of nadir for all cases if we do not include wall proportion.

2.3. MODIS Data
The MODIS sensors onboard the Terra and Aqua satellites provide global coverage of LST four times per day.
The satellite Sun-synchronous orbits of MODIS are designed to cross the equator at 10:30 and 22:30 for Terra
and at 13:30 and 1:30 for Aqua (local solar time). The high frequency of global coverage is at the expense of
a large range of view angles spanning from −65◦ to +65◦ from nadir. The retrieved spatial resolution for LST
is as high as 1 km, which coincides with the scale of the HRLDAS output. The 1 km resolution LST data are
produced using the split-window method described byWan and Dozier [1996] and filtered with the MODIS
Cloud Mask products (MOD35 L2). The LST MOD11A1 (Terra) and MYD11A1 (Aqua) Version 5 [Wan, 2008]
products from 2003–2012 summers (June-July-August, JJA) across the Houston area were collected and
processed for this study.

3. Sampling Strategies

To ensure that the samples from MODIS and HRLDAS are comparable, we attempt to minimize the biases
caused by factors other than the model. Three major aspects must be considered and properly addressed
before the MODIS-based model evaluation: satellite overpass time, sensor view angle, and cloud distribu-
tions and cloud-contaminated pixels. Among them, the cloud distributions are the primary issue affecting
sampling strategies, and we describe the different sampling methods to account for this issue in this section.

3.1. Satellite Overpass Time
The overpass times provided by MODIS LST product are in local solar time, which is defined as the MODIS
observation time in coordinated universal time (UTC) plus longitude in degrees divided by 15 [Williamson
et al., 2013]. MODIS overpass times are converted from local solar time to local standard time or UTC to
enable comparison with model simulations. Each overpass time for the Houston area is slightly different
but is usually within 2 h. For example, the daytime overpass data are distributed between 10:00 and 12:10
for Terra and between 12:30 and 14:30 for Aqua over the 10 year summer record. The median local stan-
dard times of satellite overpasses for the data sets are about 11:16 (Terra day), 13:34 (Aqua day), 22:34 (Terra
night), and 02:16 (Aqua night). We selected the HRLDAS outputs at 11:30, 13:30, 22:30, and 2:30 as the four
daily times; therefore, we could conduct the comparison at the nearest half hours to the median MODIS
overpass times.

3.2. View Angle
Thermal angular anisotropy is a widely observed phenomenon and has been reported in soil, grass, savanna
[Pinheiro et al., 2006], forest canopy [Smith et al., 1997], and urban area by modeling [Soux et al., 2004],
surface observations [Zhan et al., 2012], and airborne thermal sensors [Voogt and Oke, 1998] with tempera-
ture biases of several degrees or even larger. The accuracy of LST related to view angle depends largely on
the correction of atmospheric effects, which is a function of wavelength, local meteorological conditions,
time of day, season, and location. Although the MODIS LST products are corrected for atmospheric effects
related to view angles, the anisotropy bias effect can still be detected due to the generalized parameters
used for the atmosphere correction algorithm, as well as the heterogeneous surface structures of various
surface components.

Generally, there are two primary solutions to minimize the impact of different view angles between the
observations and model output: correct the MODIS LST view angles to nadir or adjust the HRLDAS Trad to
the same view angle of MODIS. The use of the split-window atmospheric correction does not adequately
remove the effect of view angle from the MODIS data. We can potentially incorporate additional local
observations to conduct a more accurate atmosphere correction. However, most correction processes are
complex and require knowledge of the atmospheric conditions (e.g., an atmospheric sounding) near the
time of satellite overpass. This ancillary information is sometimes unavailable for a specific location and a
certain period of time [Vinnikov et al., 2012]. On the other hand, Lagouarde et al. [2004, 2012] demonstrated
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Figure 2. The LST probability density distributions for view angle thresholds of 15◦ (green), 35◦ (orange), and 55◦ (blue), respectively. The upper half of the dis-
tribution plots are the pixels with view angles smaller than the given threshold, and the lower shaded half indicates the LST distributions with larger view angles.
The short segment line indicates the mean temperature of each distribution.

with airborne measurements that angular impacts on land surface temperature exist over urban areas. Cor-
rections for this effect require knowledge of the angular anisotropy of urban surfaces, which is even more
complex than that of atmospheric attenuation. The magnitude of biases induced by view angle effects
related to the urban surface structures is unclear at the 1 km scale.

There is also the option to adjust the view angle for simulated Trad based on the morphology of simulated
urban canyon structure due to the availability of each urban component temperature (Troof , Twall, and Troad)
and corresponding emissivity for each grid cell within the model. However, the difficulty of simulating direc-
tional vegetation temperatures prohibits the estimation of the biases in mixed urban-rural and rural-only
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Figure 3. The ratio of sampled pixels with a view angle smaller than
the threshold to the total number of available pixels for the four
times of day corresponding to MODIS overpass times (with four
different colors). The shaded region indicates the range of ratios for
the three urban land use types and the rural classification.

pixels, especially for a heavily vegetated city
like Houston (there are no pure urban pix-
els). Therefore, we applied the view-angle
correction to the temperature of only the
urban fraction in each grid cell and tested
the results only for the daytime. The mean
adjusted daytime Trad is about 1 K lower
than the unadjusted Trad (which is equiv-
alent to the temperature at the nadir);
however, the distributions of adjusted Trad at
different view angles are similar.

Figure 2 illustrates the impact of view angle
on MODIS LST. View angle thresholds of 15◦,
35◦, and 55◦ were applied, and LST distri-
butions with larger and smaller view angles
than the threshold were analyzed. Generally,
the LSTs with smaller view angles tend to be
warmer. The distributions differ with land
cover type and time of day for LSTs with
larger and smaller view angles. For example,
the daytime mean LST differences between

pixels with smaller and larger view angles are about 2.4 K, 2.8 K, and 3.4 K for the view angle thresholds of
15◦, 35◦, and 55◦ over the commercial urban area. The nighttime mean LST differences for the three view
angle thresholds are 1.3 K, 1.3 K, and 1.7 K for Terra and about 0.5 K lower for Aqua. Moreover, we tested the
view angle effect on water bodies. It showed the existence of anisotropy, indicating a large impact from the
atmospheric interaction rather than the surface morphology. Consequently, correcting the view angle of
either MODIS LST or adjusting HRLDAS Trad does not seem practical. In order to minimize the biases caused
by the view angle, we have chosen to only compare HRLDAS Trad at nadir with MODIS LST that has a small
view angle.

However, we should be aware that there are some potential biases comparing the temperature at nadir and
off-nadir. As we mentioned before, the atmospheric attenuation is the major view-angle-dependent bias for
MODIS LST. The LST at off-nadir angles generally will have a lower bias compared with temperature at nadir
due to the longer atmospheric path. From the urban surface morphology perspective, the LST at off-nadir
may further decrease during the daytime due to viewing less road proportion and more wall proportion
in the urban canyon where usually Troad > Twall > Troof . There is a higher Twall than Troad and Troof at night, so
LST bias can be offset at a certain level (please find further details about the urban component temperature
in Monaghan et al., manuscript in revision, 2014). By excluding LST with large view angles, the bias of the
sampled LST at off-nadir angles can be effectively controlled.

In order to maintain a sufficient sample size, we cannot set the view angle threshold too small. Figure 3
shows the ratio of sampled pixels to the total available pixels (excluding outliers). The ratio of sampled ver-
sus total pixels for a given threshold exhibits a nearly linear relationship, indicating a relatively uniform
distribution of view angles. At a view angle threshold of 35◦, more than 40% of pixels are selected for anal-
ysis. The total number of available pixels is dependent on the overpass time due to the variable cloud
coverage throughout the diurnal cycle. The Terra daytime data usually have the fewest clear-sky pixels over
the urban area during summer. With consideration of sample size and view angle impacts on LST, we decide
to use 35◦ as the view angle threshold in this study.

3.3. Cloud Distributions and Cloud-Contaminated Pixels
Cloud-contaminated pixels, i.e., pixels with cloud influences that are not removed during quality control, are
also an issue found in the LST product [Williamson et al., 2013]. In general, the cloud edges and thin clouds
are the major sources of contamination [Platnick et al., 2003]. Thick aerosol content from pollutants over the
urban area also contributes to pixel contamination, which may partially explain why fewer daytime pixels
meet the clear-sky criteria over urban areas compared to adjacent rural areas. It is unclear how advection of
pollution plumes affects outlying suburban and rural areas. When the pixels contaminated by clouds or high
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Table 1. The Statistics of the Outliers for Four Times of Day Corresponding to MODIS
Overpass Times, Including the Mean and Standard Deviation (STD) of Hot and Cold
Outliers, and the Ratio of Outliers to the Total Number of Original Data

Terra Day Aqua Day Terra Night Aqua Night

Hot Cold Hot Cold Hot Cold Hot Cold

Mean (K) 316.2 293.7 318.3 294.5 302.6 289.9 299.8 290.2
STD (K) 3.0 3.6 3.7 5.6 2.6 1.5 0.7 1.8
Ratio 1.16% 0.75% 1.22% 0.92% 0.04% 1.46% 0.12% 3.58%

aerosol content during the daytime remain in the analysis, the MODIS temperature is biased low relative to
the “true” temperature. Most cloud-contaminated pixels have been removed in the Version 5 LST product
[Wan, 2008]. However, some extremely low temperatures were found in the LST product during summer
daytime, presumably due to cloud contamination.

Cloud-contaminated pixels (those that remained in the Version 5 LST product) were removed first from
MODIS LST by retaining only the data within 1.5 times the interquartile range (Q3–Q1) at each pixel point
and time of day. Using a time series to identify the outliers is better, because the detection through spa-
tial analysis may bias the temperature variations caused by land cover type and may also fail to detect all
the contaminated pixels due to the existence of many contaminated pixels in one scene. Table 1 shows
the statistics related to the outliers. After masking the outliers, the lower end temperature during 10 years
increases from 248.3 K and 238.6 K to 290.8 K and 291.5 K for Terra and Aqua daytime images, respectively,
and from 276.2 K and 273.8 K to 289.3 K and 289.9 K threshold for Terra and Aqua night, respectively. The
maximum temperature deceases by about 5 K for daytime, 11 K for Terra night, and 2 K for Aqua night after
filtering the outliers. This process may potentially exclude extreme heat days. However, it is only a small por-
tion (about 1.2% of the total original pixels). Moreover, the extreme days were excluded fromMODIS, as well
as the corresponding data in HRLDAS, so it would not impact the sampling methods or the comparison for
the long term.

Clouds frequently form on summer afternoons in Houston [Burian and Shepherd, 2005], coinciding with
MODIS daytime overpasses. Figure 4 shows the distribution of the ratio of clear days to the total days (there
are 920 total days) during 10 year JJA. The cloud distribution is most heterogeneous during the summer day-
time compared with other seasons or with nighttime [Hu and Brunsell, 2013]. The deep convection due to
the thermal properties of urban surface, urban-rural advection, thick aerosols, etc. all contribute to the large
cloudiness differences between urban and rural areas.

After masking the outliers and pixels with larger view angles, the LST data from 2003 to 2012 from four
times a day were used as the primary samples from MODIS. Clouds are not explicitly resolved in the HRL-
DAS forcing data. Instead, clouds are manifested through fluctuations in the surface downwelling longwave
and shortwave radiative forcing fields, which makes it difficult to define exactly when cloudy conditions are
present in the simulations over a given grid point. We therefore tested the three methodologies described
below as a means of minimizing differences between MODIS and HRLDAS due to clouds.

3.4. Sampling Methods for MODIS-HRLDAS Comparisons
In the first sampling method, satellite cloud mask (SCM) method, we assume that the cloud distributions
in MODIS and HRLDAS are the same. Therefore, we can apply the masks built from MODIS for the clouds,
outliers, and view angles to HRLDAS. As a result, the total sampled pixels for 2003–2012 is 16.8%, 11.6%,
24.2%, and 20.7% of the total pixels in the domain (except the inland water and sea) for the Terra day, Aqua
day, Terra night, and Aqua night passes, respectively.

The second method, max/min temperature (MMT) method, is to independently select the warmest days and
coolest nights in the model output and MODIS observations. This method relies on the fact that clear-sky
LSTs are generally higher (lower) than cloudy or cloud-contaminated pixels during the daytime (nighttime)
because of the tendency of clouds to dampen daytime high and nighttime low temperatures [Dai et al.,
1999]. We applied the common masks from MODIS (outliers and view angles) to both MODIS and HRLDAS
data. It is difficult to determine whether clouds are concurrently impacting both MODIS and HRLDAS fields
at every grid point, and therefore we sampled the warmest days and coolest nights separately for each data
set, in order to minimize the possibility of clouds impacting either data set. Assuming that neither MODIS
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Figure 4. The ratio of selected pixels to total days available for four times of day during 2003–2012 JJA. Inland water and
sea pixels are masked, which are the white regions in the figure.

nor the HRLDAS simulations perfectly characterize clouds in space and time, this approach necessitates that
the comparisons will not be temporally consistent.

There are many missing data in the MODIS fields, especially during daytime when convective clouds are
common (see Figure 4). One of our objectives is to map spatial patterns of the heat island, which ideally
requires a consistent number of days available for each grid point. Despite the large amount of missing data,
we found that for most grid points, there are at least 50 days with available (“clear-sky”) data for a given day-
time pass during 2003–2012 summers. We therefore sampled the warmest 50 days and the coolest 50 nights
from the HRLDAS and MODIS data for each overpass time, respectively, representing about 5.4% of each set
of data. The percentage of available data was slightly lower than 5.4% for daytime due to some grid cells
having less than 50 cloud-free days. There are 2993, 733, and 278 grid cells with LU, HU, and CU, respectively,
and therefore, despite using only a small fraction of the overall total days for the comparison, there remains
an adequate sample size for each land use category to draw statistically meaningful conclusions.

In the third method, high clear-sky fraction (HCF) method, we only choose the daytime and nighttime
MODIS overpasses with a high percentage of clear-sky coverage in a scene after excluding the outliers and
pixels with larger view angles. The same times are selected from the HRLDAS simulations. Approximately
25% of the total pixels in the domain is urban land cover type in this study. We suggest the clear-sky cov-
erage ratio be set to 90% or more, so that we can guarantee at least more than half of urban pixels are
available (clear sky) in each sampled overpass. This method helps eliminate problems caused by cloud mis-
matches and also maintains the temporal and spatial consistency between observations and simulations.
However, based on our selection criteria, there are limited number of days available, due to the prevalence
of clouds. About 28 and 8 cloud-free days and 132 and 97 cloud-free nights are sampled from Terra day,
Aqua day, Terra night, and Aqua night, respectively, for MODIS during the study period.

HU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3192



Journal of Geophysical Research: Atmospheres 10.1002/2013JD021101

Figure 5. The probability density distribution of MODIS LST (K) and HRLDAS Trad (K) for the different sampling methods.
The black horizontal line indicates the mean temperature. The satellite cloud mask (SCM) method uses all pixels after
quality control; the max/min temperature (MMT) method uses the 50 warmest days/coolest nights for each grid; and the
high clear-sky fraction (HCF) method uses all days/nights with a spatial clear-sky coverage ratio over 90%.

4. Results
4.1. Distribution Analyses
The probability density distributions for the three proposed sampling methods were compared between
MODIS observations and HRLDAS simulations at each time of day and each land cover type (Figure 5). If the
conditions are mostly clear sky, the MODIS and HRLDAS samples selected by the SCM and HCF methods
should be similar spatially and temporally, which is the most ideal case for comparison. For example, the LST
distributions of the SCM and HCF methods are analogous during the nighttime in most land cover types.
However, the high frequency of clouds during the daytime in Houston, especially over the urban area, dra-
matically decreases the sample size under the HCF method. The daytime distribution is narrower in the HCF
method compared to the SCM method due to fewer sampled days. The distributions are less coincident in
HU and CU, which is probably due to the smaller sample size compared with rural and LU. The MMT method
is somewhat different in that it scrutinizes the ability of HRLDAS to simulate the two extreme ends of the
temperature distribution, and therefore the distributions are less smooth with much smaller LST ranges.

Trad in daytime HRLDAS simulations are overestimated in most cases (Figure 5). An exception is the relatively
good match between the HRLDAS and MODIS distributions for rural and CU areas in the HCF method for
Aqua daytime overpasses, despite small sample sizes. In general, the nighttime comparisons are in better
agreement. For example, the Terra nighttime comparison in the MMT method indicates good agreement
with differences less than 0.6 K. The largest differences result from using the MMT method which necessarily
compares the coolest nights in both data sets; HRLDAS is about 1.9 K ∼ 2.7 K cooler for different land cover
types. HRLDAS simulates a fast decrease in temperature from 10:30 pm (Terra night) to 2:30 am (Aqua night),
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Figure 6. The temporally averaged LST determined from the three sampling methods and the difference map between
MODIS and HRLDAS. The sampling methods are demonstrated: (a) satellite cloud mask (SCM) method, (b) max/min
temperature (MMT) method, and (c) high clear-sky fraction (HCF) method.
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Figure 7. The comparison between the “cloud-free” and “cloudy” pixels of HRLDAS Trad (K) by using the cloud mask from
MODIS in the SCM method at four times of day and four land cover types.

which is not observed in the MODIS data, suggesting it underestimates the urban heat island. HRLDAS is an
offline model, and therefore it is not coupled with the atmosphere, which can be a source of bias. For exam-
ple, it is possible that a coupled model would mitigate large temperature gradients between the urban area
and atmosphere. Also, the forcing data may have some urban signature but likely not at the scale we are
using the model. Overall, the temperature patterns among different land cover types are generally compa-
rable. Rural areas are cooler than urban areas, and the “most rural” urban type, LU, is cooler than other urban
types for all times and sampling methods in both data sets.

4.2. Spatial Analyses
All the sampled LST and Trad through time were averaged at each pixel, and the resultant spatial distribu-
tions of the averaged LST and Trad maps from the three sampling methods are shown in Figure 6 (Terra only),
indicating different spatial patterns due to the different sampling strategies. The spatial patterns among
the sampling methods are more similar during nighttime than daytime. The HCF method matches well with
the SCM method spatially, with correlations between HRLDAS and MODIS of 0.98 and 0.99 for daytime and
nighttime, respectively. The MODIS LST distribution in the MMT method has correlations of 0.90 and 0.88
with SCM and HCF methods within the urban area and slightly higher correlations in rural areas for most of
the time during day and night. The nighttime urban boundary is better defined among the methods; how-
ever, the UHI is still observed in the mean of warmest 50 pixels during the daytime. The difference maps
between MODIS and HRLDAS show a similar pattern among the methods for daytime and nighttime. The
heterogeneous distribution of bias is related to the land cover type. For example, the wetland tempera-
ture was overestimated at the northeast corner of the domain by about 5 K according to the SCM and MMT
methods and 3.9 K for the HCF method, while the urban areas were overestimated by about 3.6 K, 5.6 K,
and 2.5 K for the three methods for Terra daytime data. The range of differences during the daytime is sim-
ilar among the three methods, about 20 K, while the range during the nighttime is smaller, about 8 K. The
overall domain-average temperature differences are about 4 K and 3 K for Terra and Aqua daytime for the
MMT method, which is about 1 K ∼ 2 K larger than the other two methods, suggesting that HRLDAS has
comparatively lower skill at simulating extremes. We will discuss potential reasons in the next section.

4.3. Justification of Sampling Method Assumptions
For the SCM method, we assumed that the cloud distribution in HRLDAS is coincident with MODIS obser-
vations, so that we could apply the MODIS cloud mask to HRLDAS. Figure 7 shows the probability density
distributions for HRLDAS Trad for clear-sky and cloudy pixels defined by the mask in the MODIS LST prod-
uct in the SCM method. HRLDAS mean Trad is about 0.4 K (about 1 K for LU and rural areas) warmer in the
cloud-free pixels over the cloudy pixels during daytime, which is expected because clear days are warmer

HU ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3195



Journal of Geophysical Research: Atmospheres 10.1002/2013JD021101

−96.0 −95.8 −95.6 −95.4 −95.2 −95.0 −94.8

29
.4

29
.6

29
.8

30
.0

30
.2

30
.4

29
.4

29
.6

29
.8

30
.0

30
.2

30
.4

(a) Terra−Day

−96.0 −95.8 −95.6 −95.4 −95.2 −95.0 −94.8

29
.4

29
.6

29
.8

30
.0

30
.2

30
.4

(b) Aqua−Day

−96.0 −95.8 −95.6 −95.4 −95.2 −95.0 −94.8

(c) Terra−Night

−96.0 −95.8 −95.6 −95.4 −95.2 −95.0 −94.8

29
.4

29
.6

29
.8

30
.0

30
.2

30
.4

(d) Aqua−Night

0.0

0.1

0.2

0.3

0.4

Figure 8. The ratio of the temporally consistent days to the total selected 50 days for four times a day.

than cloudy days. The nighttime differences are smaller, probably due to the lack of interaction of strong
external energy sources (e.g., solar radiation) and also the accuracy of cloud maps. Generally speaking, cloud
detection is more difficult during the nighttime [Platnick et al., 2003] due to less information in the optical
regions of the spectrum. In summary, the assumption we made for SCM method—that cloud distributions
are similar between HRLDAS and MODIS—appears to be true for daytime and inconclusive for nighttime.

The assumption we made for the MMT method was that the warmest (daytime)/coolest (nighttime) pix-
els from MODIS and HRLDAS should be temporally consistent at a certain level. In other words, if the cloud
masks of two data sources are comparable and the model is able to simulate the temperature variability
similar to the MODIS LST observations, the distributions of sampled pixels that are cloud free should share
many of the same hot days and cool nights in common. The ratio of the number of temporally consistent
days to the total sampled days for each grid is shown in Figure 8. The temporal agreement in the urban area
is very low (ratios of about 0.1 (Terra) and 0.09 (Aqua)) compared with northeast-corner rural areas (wetland
and forest land cover types with ratios of about 0.23 (Terra) and 0.18 (Aqua)) during the daytime. The spa-
tial distribution of the ratios is less variable during the night with an average of 0.20 and 0.17 in urban areas
for Terra and Aqua, respectively. The spatial patterns in Figure 8 are closely related to the spatial distribution
of the available-to-total pixels after excluding the outliers and the pixels with large view angles (not shown
here, it is similar to Figure 4), especially during the daytime with correlation coefficients of 0.8 (Terra) and
0.7 (Aqua). The correlation drops to 0.2 for Terra night when the cloud-free ratio is high and with less spatial
variability. Consequently, the cloud distributions and frequency may directly impact this method, i.e., it is
so cloudy during most days that insufficient samples are available over the urban areas. For example, there
are less than 20 clear-sky days in some urban pixels during the 2003–2012 JJA periods. On the other hand,
the poor temporal agreement may also be attributed to model defects, such as the mismatch of clouds
due to the forcing data, or simplified assumptions (we evaluate model performance in the companion
paper by A. J. Monaghan et al., manuscript in revision, 2014). In summary, the MMT method may be better
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Figure 9. The view angle histogram of sampled MODIS LST by the MMT method for four times a day (left y axis, gray bar)
with the mean LST to the corresponding view angle ranges (right y axis, red line).

suited for regions where daytime cloudiness is not as persistent so that a larger distribution of pixels can be
drawn from.

The MMT method is designed to sample the two ends of the temperature distribution from MODIS and the
model. For the observations, potentially it enhances the impact of view angle-induced temperature biases.
In order to minimize this effect, prior to employing any of the sampling methods, we masked all of the pixels
with view angles larger than 35◦. Figure 9 shows the view angle distributions and the corresponding mean
MODIS LST of sampled pixels by the MMT method. The nighttime mean LST indicates that warmer pixels
slightly coincide with larger view angles, which may be attributed to the warmer radiative temperature of
the walls over the roof and roads in the urban area [Kusaka et al., 2001; Voogt and Oke, 2003; Lagouarde et al.,
2012]. However, the temperature trend here is not statistically significant. The nighttime temperature ranges
from 294.5 K to 295.5 K, which is less than the associated daytime temperature variation (about 2 K). Further,
the similar statistics for each urban land cover type and rural area (not shown) show that LU and rural types
share similar LST trends related to view angles with Figure 9, while HU and CU have larger LST variations
due to insufficient pixels for some view angles. In summary, the strategy of excluding the larger view angles
efficiently decreases the view angle impact on LST.

5. Discussion

Before sampling data for model validation, we must be clear of several important facts of using satellite
remotely sensed data. First, the overpass time of the satellite is not constant. There is approximately a 2 h
range for a given MODIS overpass, so we choose a median time for which to make the comparison of MODIS
LST to HRLDAS-simulated Trad. Consequently, biases may be introduced by temporal gaps. The impact will
be larger for the daytime than nighttime because the components of the surface energy balance are gen-
erally larger and more variable during daytime. Also, the periodicity of Sun-synchronous satellites is not
frequent enough for determining diurnal variation. As a result, the diurnal temperature range calculated
from the MODIS day/night difference is unlikely to match the traditional definition, defined as the differ-
ence between daily maximum and minimum temperatures. Less “diurnal” information is available due to
cloud distributions varying at the pair of overpass times. Second, the thermal angular anisotropy should
be considered because of atmospheric correction, surface geometry, solar zenith and azimuth angles, sur-
face materials, etc. Correcting MODIS LST or simulated Trad view angle over large areas is not practical at
this stage. Consequently, we only selected the MODIS data within view angles ± 35◦ from nadir, which we
demonstrated was an effective approach for view-angle-dependent biases in MODIS LST. These facts will be
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Table 2. The Advantages and Disadvantages of the Three Proposed Sampling Methods

Strategies Advantages Disadvantages

SCM method The largest possible sample size Unequal sample size in each grid box
Temporally consistent Possible cloud contamination

Diurnal temperature comparison Possible cloud mismatch
Long-term comparison

MMT method All samples are cloud free Temporal inconsistency
Equal sample size from each grid Only apply to long-term data

point Unsuitable for year-to-year variability or time
series analysis

Sampling extremes Unable to do diurnal temperature comparison

HCF method Temporally consistent Small sample size
Spatially consistent Unsuitable for year-to-year variability

Likely equal sample size from each grid point or time series analysis
Suitable for case studies Hard to do diurnal temperature comparison

also valid for MODIS LST product Version 6, because the difference between Version 5 (used in this study)
and Version 6 products is very small in all regions but hot and warm bare soil zones [Wan, 2014]. For other
narrow-swath satellite remote sensors, view angle may be less influential. Additionally, we had the advan-
tage of having 10 years of data and therefore retained a large sample of MODIS data for comparison, even
after omitting the passes with large view angles. Lastly, clouds can strongly impact the accuracy and applica-
bility of thermal remote-sensing data. The sampling methods we proposed are aimed at minimizing cloudy
pixels in both the MODIS LST data and simulations.

By selecting only cloud-free pixels for comparison, there is the likelihood of biasing the comparison toward
warmer daytime conditions [Hu and Brunsell, 2013]. However, the validation of a clear-sky case could be the
most robust test of how the model surface energy balance performs since it is expected to maximize the dif-
ferences with variations in surface conditions in the clear-sky cases. Due to the limitation of remote-sensing
systems, the land surface temperature cannot be directly measured under the partial-cloudy or cloudy con-
ditions. Bisht and Bras [2010] developed the remote-sensing-based estimation of net radiation under all
sky conditions. However, the surface temperature and other parameters under cloudy conditions are the
result of global model analyses or regressions based on the in situ measurements. The model validation for
long-term simulations is still challenging under cloudy conditions.

Three sampling methods for validating model simulations versus MODIS LST are proposed and compared.
Table 2 summarizes the major advantages and disadvantages of each sampling strategy. The length of
model simulation and the climate of the study area will affect selection of the optimal method. Generally, if
the study area is a cloudy region, such as Houston, we recommend using the SCMmethod to maximize the
sample size of observed data. The HCF method is also an acceptable choice but may lack representativeness
due to small sample size. If the study area is predominantly sunny, such as Phoenix, the difference between
the SCM and HCF methods should be modest. The MMT method may be complimentary to the SCM and
HCF methods, in that it can be used to evaluate model performance for extreme cases, and it provides an
implicit test of the agreement of the simulated-versus-observed cloud distributions. The HCF method is a
better choice when simulations are only available for a short period. In summary, each sampling strategy has
its own best applicable situations. If the length of simulation or cloud conditions are not limiting factors in
the study area, it is also a plausible approach to employ all three approaches for model validation, because
each has different strengths.

The thresholds for the processing as well as for the MMT and HCF methods can be adjusted for the specific
application. The choice of view angle threshold requires balance between the sample size and LST accuracy.
If modelers are interesting in extreme events, for the outlier exclusion, it is also reasonable to keep the tail of
temperature distribution on the side that is unaffected by clouds or keep a larger portion of the tails.

For the MMT method, the number of warmest days/coolest nights depends on the minimum number of
nearly cloud-free days/nights in the study area, so that we can have relatively large coverage for spatial
comparisons. Besides the MMT method, there is another option to select certain high and low quantiles
for days and nights in each pixel. This strategy guarantees spatial coverage but sacrifices the equality of
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sample size in each grid point. We tested 50% of the warmest days and coolest nights (not shown), and the
LST distributions for each land cover types are similar to the case for the MMT method presented above.

We recommend setting the spatial coverage ratio threshold for the HCF method to be larger than the rural
coverage ratio in the domain in this study. For example, we set 90% for the Houston area which is with 25%
of urban pixels in the domain, due to the cloud patterns over the metropolitan areas. As shown in Figure 4,
clouds occur more frequently over the urban area. The decrease in the spatial coverage threshold may result
in enlarging the rural sample size only, which does not benefit the urban temperature comparison.

The SCM method masks all pixels based only on whether clouds exist in the MODIS data. However, it does
not mask pixels based on whether clouds exist in the HRLDAS data, because cloud fields are not present
in the HRLDAS forcing fields (only fluctuations of longwave and shortwave radiation that may indicate the
presence of clouds, though not accurately). Therefore, it is likely that some proportion of HRLDAS pixels
which are designated as “clear sky” by the SCM method may actually be influenced by cloudy or partly
cloudy conditions. The effect of this influence is that the HRLDAS simulations that represent clear sky in the
SCM method may be cooler (warmer) during daytime (nighttime) than they otherwise would if they repre-
sented clear-sky conditions perfectly. It is therefore recommended that if a user does have access to a cloud
mask for their simulations, they apply it, in addition to the MODIS cloud mask, to both the simulations and
the MODIS data to ensure that all pixels represent clear-sky conditions.

The land cover map used for analyses is based on the 30m resolution 2001 USGS NLCD. Compared with
the MODIS annual land cover product (MCD12Q1) from 2003 to 2011, which are resampled to 1 km res-
olution, the land cover types and their distributions have some variability. For instance, the total urban
pixels in MODIS are about 300 less than the urban pixels defined from NLCD. The major disagreement is
with the LU class outside the Houston core urban area, perhaps due in part to having to resample both
data sets from their native resolution to the 1 km HRLDAS domain. For rural land cover types, the biggest
gap is the wetland in NLCD (25% of total land area in the domain), which is classified as grassland in MODIS
(9 year average about 8.2%) in the northeast corner. Similarly, cropland and natural vegetation mosaics from
NLCD are defined as savanna in MODIS. For the land surface temperature, the major impact of this discrep-
ancy in classification is with the emissivity defined according to the land cover type for MODIS, while the
related parameters specified for emissivity in the model also differ by land cover type, affecting the radia-
tive temperature. The land cover dynamics and their disagreements are not directly related to the sampling
methods, but these differences may be an important contribution to the error for model validation.

Only summer season was discussed in this paper, due to the negative impact of extreme summer heat on
human health. Hu and Brunsell [2013] discussed the seasonal cloud distributions during 2000 to 2010 in
Greater Houston. The cloud impact is largest during the summer with few cloud-free days and the most
heterogeneous clear-sky ratio distribution. Consequently, if we apply these three methods to evaluate the
other three seasons, the samples will be more representative for the comparison due to less cloud impact.

We must emphasize that the validation only shows the model performance for radiative temperature. For
urban climate modeling applications aimed at characterizing urban extreme heat events and their impacts
on human health, air temperature observations must also be considered. Radiative temperature and 2m
air temperature are highly correlated [Prihodko and Goward, 1997] but determined by different surface pro-
cesses. Radiative temperature is determined by the radiation budget, which is the part of the energy balance
directly affecting the atmospheric temperature from below. Jin et al. [1997] compared the radiative temper-
ature and air temperature at the global scale, finding that the differences are scale dependent and they are
more agreeable at larger scales (i.e., monthly scale and hemispheric spatial scales). Voogt and Oke [2003]
summarized the relationship between remotely observed radiometric surface temperature and the actual
air temperature of the urban-atmosphere interface. The HRLDAS-simulated 2m air temperatures are com-
pared to air temperature observations throughout Houston in our companion paper (A. J. Monaghan et al.,
manuscript in revision, 2014), and the results are similar to those presented here for LST, although the model
biases of air temperature are smaller. Therefore, LST-based comparisons may exaggerate the magnitude of
model temperature biases because they are based on skin temperatures as opposed to air temperatures,
which typically exhibit smaller diurnal cycles and are less sensitive to changes in the surface energy balance.
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6. Conclusions

Thermal remotely sensed data are good sources of observations for model validation, with comparable
spatial scale, temporal consistency, large coverage, and long-term archives. This study has highlighted sev-
eral important aspects of satellite LST data that can easily be neglected by modelers for model validation,
such as cloud distribution and sensor view angle. From a 10 year case study over Greater Houston during
2003–2012, three sampling strategies were applied to compare MODIS LST with HRLDAS-simulated Trad,
temporally and spatially. The assumptions made by each of the strategies were discussed. We assessed
the strengths and weakness of the three sampling methods and suggested their best applications. The
SCM method gives the best statistical climatological comparison conditioned on the assumed agreement
between MODIS clouds and forcing clouds (the longer the time series, the more appropriate this may be).
The MMT method gives the best comparison between model simulation and MODIS LST at the extremes in
a climatological application. The HCF method gives the best absolute temperature comparison because it is
the most consistent, both spatially and between model and observations.

Further research for the view angle correction related to satellite remotely sensed data or model simulations
appears warranted, which may further increase the consistency of data properties for validation. Also, the
magnitude of impact from temporal gaps between observations and simulations could be tested by model-
ing exactly at satellite overpass time for each image (beyond the scope of this study). Additional evaluations
of the three methods could be performed for other seasons and less cloudy regions. Also, there remains
large potential for using other remotely sensed variables to conduct various model validations, such as soil
moisture, radiation, precipitation, vegetation indices, evapotranspiration, etc. at multiple scales. Researchers
would need to be aware of the accuracy and limitations of the remotely sensed products before proceeding
when comparing different variables.
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