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Abstract

We propose a new definition of entropy of basic probability assignments (BPAs) in the Dempster-Shafer (DS) theory
of belief functions, which is interpreted as a measure of total uncertainty in the BPA. Our definition is different from
those proposed by Höhle, Smets, Yager, Nguyen, Dubois-Prade, Lamata-Moral, Klir-Ramer, Klir-Parviz, Pal et al.,
Maeda-Ichihashi, Harmanec-Klir, Abellán-Moral, Jousselme et al., Pouly et al., and Deng. We state a list of six
desired properties of entropy for DS belief functions theory, four of which are motivated by Shannon’s definition of
entropy of probability functions, and the remaining two are requirements that adapt this measure to the philosophy
of the DS theory. Three of our six desired properties are different from the five properties proposed by Klir and
Wierman. We demonstrate that our definition satisfies all six properties in our list, whereas none of the existing
definitions do. Our new definition has two components. The first component is Shannon’s entropy of an equivalent
probability mass function obtained using the plausibility transform, which constitutes the conflict measure of entropy.
The second component is Dubois-Prade’s definition of entropy of basic probability assignments in the DS theory,
which constitutes the non-specificity measure of entropy. Our new definition is the sum of these two components. Our
definition does not satisfy the subadditivity property. Whether there exists a definition that satisfies our six properties
plus subadditivity remains an open question.1

1. Introduction

The main goal of this paper is to propose a new definition of entropy of a basic probability assignment (BPA) in
the Dempster-Shafer (DS) theory of belief functions [9, 42]. Since 1982, when Höhle [20] gave a first definition
of entropy of a BPA in the DS theory, there have been numerous definitions of entropies of a BPA. So an obvious
question is: Why do we need another definition of entropy of a BPA? In the remainder of this section, we attempt to
answer this question.

We follow an axiomatic approach to defining entropy of a BPA. First, we state a list of six desirable properties,
and then we provide a definition that satisfies the six properties. The axiomatic approach to defining entropy of a BPA
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is not new. Klir and Wierman [26] state five properties that they claim are essential in defining entropy of a BPA.
However, as we will argue, Klir-Wierman’s properties are unsatisfactory to us. Our set of six properties is designed
to address some of the shortcomings of Klir-Wierman’s properties. Abellán and Moral [4] also propose additional
properties. Some of these are also discussed in this paper.

First, there are several theories of belief functions in the literature. In this paper, we are concerned only with
the Dempster-Shafer theory, which has as its centerpiece, Dempster’s combination rule as the rule for aggregating
evidence. For example, in the imprecise probability community, belief functions are regarded as encoding a set of
probability mass functions (PMFs), whose lower envelope constitutes a belief function. Such a set of PMFs is called
a credal set. However, as we will argue in Section 4, credal set semantics of belief functions are incompatible with
Dempster’s combination rule [43, 44, 45, 16]. Our goal is to define entropy of a BPA in the DS theory. Therefore, the
first property we propose, called “consistency with DS theory semantics,” is that a definition of entropy of a BPA in
the DS theory should be based on interpretations of the BPA that are compatible with the basic tenets of DS theory,
namely, Dempster’s combination rule.

One method for defining entropy of a BPA m is to first transform the BPA to a corresponding PMF Pm, and then
use Shannon’s entropy of Pm as the entropy of m (see, e.g., [31, 17, 4, 22, 38]). However, there are many ways to
make such a transformation. Voorbraak [55], and Cobb and Shenoy [6], argue that any transform of BPA m in the DS
theory should be consistent with Dempster’s combination rule in the sense that Pm1⊕m2 = Pm1⊗Pm2 , where ⊕ denotes
Dempster’s combination rule, and ⊗ denotes Bayesian combination rule, i.e., pointwise multiplication followed by
normalization. They propose a plausibility transform that satisfies this consistency requirement, and it can be shown
that the plausibility transform is the only transform that satisfies such a consistency requirement. Our consistency with
DS theory semantics property entails that if such a transform is used to define entropy of a BPA, then the transform
must be the plausibility transform. This is to ensure that any definition of entropy of a BPA is relevant for the DS
theory of belief functions.

Klir-Wierman’s set of five properties, and our proposed set of six properties, include an additivity property that
states that if mX and mY are distinct BPAs for distinct variables X and Y , then entropy of mX ⊕mY should be the sum
of the entropies of mX and mY . Unfortunately, this additivity property is extremely weak, and is satisfied by almost all
definitions that have been proposed in the literature. Our consistency with DS semantics property helps to bolster the
additivity property.

Second, the DS theory is considered more expressive than probability theory in representing ignorance. In prob-
ability theory, both vacuous knowledge of variable X with state space ΩX , and knowledge that all states in ΩX are
equally likely are represented by the equally-likely PMF of X . In DS theory, we can represent vacuous knowledge of
X by the vacuous BPA for X , and we can represent the knowledge that all states are equally likely by the equally-likely
Bayesian BPA for X . Ellsberg [14] demonstrates that when offered a choice, many prefer to bet on the outcome of
an urn with 50 red and 50 blue balls rather than on one with 100 total balls but for which the number of blue or red
balls is unknown. This phenomenon is called Ellsberg paradox, as Savage’s subjective expected utility theory [41] is
unable to account for this human behavior. Two of Klir-Wierman’s properties (called “set consistency” and “range”)
entail that the entropy of the vacuous BPA for X is equal to the entropy of the equally-likely Bayesian BPA for X .
In our opinion, this is unacceptable. Clearly, there is greater uncertainty in a vacuous BPA than in an equally-likely
Bayesian BPA, a fact demonstrated by Ellsberg paradox. Therefore, instead of these two properties, we formulate
a “maximum entropy” property that states that entropy of a BPA m for X is less than or equal to the entropy of the
vacuous BPA for X , with equality if and only if m is the vacuous BPA for X . Abellán and Moral [4] were the earliest
to propose such a maximum entropy property.

An outline of the remainder of the paper is as follows. In Section 2, we briefly review Shannon’s definition of
entropy for PMFs of discrete random variables, and its properties. In Section 3, we review the basic definitions in the
DS belief functions theory. In Section 4, we propose six properties that an entropy function for BPA should satisfy.
We compare our properties with those proposed by Klir and Wierman [26], and also with a set monotonicity property
proposed by Abellán and Masegosa [3]. In Section 5, we discuss the various definitions that have been proposed in
the literature, and how they compare vis-a-vis our list of six properties. In Section 6, we propose a new definition
of entropy for DS theory, and show that it satisfies all six properties proposed in Section 4. In Section 7, we discuss
some additional properties of our definition. Finally, in Section 8, we summarize our findings, and conclude with
some open questions.
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2. Shannon’s Entropy of PMFs of Discrete Random Variables

In this section we briefly review Shannon’s definition of entropy of PMFs of discrete random variables, and its prop-
erties. Most of the material in this section is taken from [47, 30].

Information Content. Suppose X is a discrete random variable, with state space ΩX , and PMF PX . Consider a state
x ∈ ΩX such that PX (x) > 0. What is the information content of this state? Shannon [47] defines the information
content of state x ∈ΩX as follows:

I(x) = log2

(
1

PX (x)

)
. (1)

Information content has units of bits. Intuitively, the information content of a state is inversely proportional to
its probability. Observing a state with probability one has no information content (0 bits). Notice that I(x) ≥ 0, and
I(x) = 0 if and only if PX (x) = 1.

Although we have used logarithm to the base 2, we could use any base (e.g., e, or 10), but this will change the
units. Henceforth, we will simply write log for log2.

Shannon’s Entropy. Suppose X is a random variable with PMF PX . The entropy of PX is the expected information
content of the possible states of X :

Hs(PX ) = ∑
x∈ΩX

PX (x)I(x) = ∑
x∈ΩX

PX (x) log
(

1
PX (x)

)
. (2)

Like information content, entropy is measured in units of bits. One can interpret entropy Hs(PX ) as a mea-
sure of uncertainty in the PMF PX (x). If PX (x) = 0, we follow the convention that PX (x) log(1/PX (x)) = 0 as
limθ→0+ θ log(1/θ) = 0.

Suppose Y is another random variable, and suppose that the joint PMF of X and Y is PX ,Y with PX and PY as the
marginal PMFs of X and Y , respectively. If we observe Y = a such that PY (a)> 0, then the posterior PMF of X is PX |a
(where PX |a(x) = PX ,Y (x,a)/PY (a)), and the respective posterior entropy is Hs(PX |a).

From our viewpoint, the following properties of Shannon’s entropy function for PMFs are the most important
ones:

1. Hs(PX )≥ 0, with equality if and only if there exists x ∈ΩX such that PX (x) = 1.
2. Hs(PX )≤ log(|ΩX |), with equality if and only if PX (x) = 1

|ΩX | for all x ∈ΩX . |ΩX | denotes the cardinality (i.e.,
number of elements) of set ΩX .

3. The entropy of PX does not depend on the labels attached to the states of X , only on their probabilities. This is in
contrast with, e.g., variance of X , which is defined only for real-valued random variables. Thus, for a real-valued
discrete random variable X , and Y = 10X , it is obvious that Hs(PY ) = Hs(PX ), whereas V (PY ) = 100V (PX ).

4. Shannon [47] derives the expression for entropy of X axiomatically using four axioms as follows.
(a) Axiom 0 (Existence): H(X) exists.
(b) Axiom 1 (Continuity): H(X) should be a continuous function of PX (x) for x ∈ΩX .
(c) Axiom 2 (Monotonicity): If we have an equally likely PMF, then H(X) should be a monotonically increas-

ing function of |ΩX |.
(d) Axiom 3 (Compound distributions): If a PMF is factored into two PMFs, then its entropy should be the

sum of entropies of its factors, e.g., if PX ,Y (x,y) = PX (x)PY |x(y), then
H(PX ,Y ) = H(PX )+∑x∈ΩX PX (x)H(PY |x).

Shannon [47] proves that the only function Hs that satisfies Axioms 0–3 is of the form

Hs(PX ) = K ∑
x∈ΩX

PX (x) log
(

1
PX (x)

)
,

where K is a constant depending on the choice of units of measurement.
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Suppose X and Y are discrete random variables with joint PMF PX ,Y . Analogous to the one-dimensional case, the
joint entropy of PX ,Y is:

Hs(PX ,Y ) = ∑
x∈ΩX

∑
y∈ΩY

PX ,Y (x,y) log
(

1
PX ,Y (x,y)

)
. (3)

Let PY |X : Ω{X ,Y}→ [0,1] be a function such that PY |X (x,y) = PY |x(y) for all (x,y) ∈Ω{X ,Y}. Though PY |X is called
a conditional PMF, it is not a PMF. It is a collection of conditional PMFs, one for each x ∈ ΩX . If we combine PX
and PY |X using pointwise multiplication followed by normalization, an operation that we denote by ⊗, then we obtain
PX ,Y , i.e., PX ,Y = PX ⊗PY |X , i.e., PX ,Y (x,y) = PX (x)PY |X (x,y) = PX (x)PY |x(y) for all (x,y) ∈ Ω{X ,Y}. As PX and PY |x
are PMFs, there is no need for normalization (or the normalization constant is 1).

Shannon defined the entropy of PY |X as follows:

Hs(PY |X ) = ∑
x∈ΩX

PX (x)Hs(PY |x). (4)

We call Hs(PY |X ) the conditional entropy of Y given X .
It follows from Axiom 3 that

Hs(PX ,Y ) = Hs(PX ⊗PY |X ) = Hs(PX )+Hs(PY |X ). (5)

We call Hs(PX ) the marginal entropy of X , and Eq. (5) is the compound distribution axiom underlying Shannon’s
entropy expressed in terms of marginal and conditional entropies. Eq. (5) is also called the chain rule of entropy.

If X and Y are independent with respect to PX ,Y , i.e., PY |x(y) = PY (y) for all (x,y) ∈ Ω{X ,Y} such that PX (x) > 0,
then it follows from Eq. (4) that Hs(PY |X ) = Hs(PY ). Thus, if X and Y are independent with respect to PX ,Y , then
Hs(PX ,Y ) = Hs(PX )+Hs(PY ).

Suppose PX and PY are the marginal PMFs obtained from the joint PMF PX ,Y . Then, it can be shown that

Hs(PX ,Y )≤ Hs(PX )+Hs(PY ), (6)

with equality if and only if X and Y are independent with respect to PX ,Y . The inequality in Eq. (6) is called subaddi-
tivity in the literature (see e.g., [13]).

3. Basic Definitions of the DS Belief Functions Theory

In this section we review the basic definitions in the DS belief functions theory. Like the various uncertainty theories,
DS belief functions theory includes functional representations of uncertain knowledge, and operations for making
inferences from such knowledge.

Basic Probability Assignment. Suppose X is a random variable with state space ΩX . Let 2ΩX denote the set of all
non-empty subsets of ΩX . A basic probability assignment (BPA) m for X is a function m : 2ΩX → [0,1] such that

∑
a∈2ΩX

m(a) = 1. (7)

The subsets a ∈ 2ΩX (recall that we exclude the empty set from 2ΩX ) such that m(a) > 0 are called focal elements
of m. An example of a BPA for X is the vacuous BPA for X , denoted by ιX , such that ιX (ΩX ) = 1. We say m is
deterministic (or categorical) if m has a single focal element (with probability 1). Thus, the vacuous BPA for X is
deterministic with focal element ΩX . If all focal elements of m are singleton subsets of ΩX , then we say m is Bayesian.
In this case, m is equivalent to the PMF P for X such that P(x) = m({x}) for each x ∈ΩX . Let mu denote the Bayesian
BPA with uniform probabilities, i.e., mu({x}) = 1

|ΩX | for all x ∈ ΩX . If ΩX is a focal element of m, then we say m is
non-dogmatic, and dogmatic otherwise. Thus, a Bayesian BPA is dogmatic.

Plausibility Function. The plausibility function Plm corresponding to BPA m is defined as follows:

Plm(a) = ∑
b∈2ΩX :b∩a, /0

m(b) (8)
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for all a∈ 2ΩX . For an example, suppose ΩX = {x, x̄}. Then, the values of the plausibility function PlιX corresponding
to BPA ιX , are identically one for all three subsets in 2ΩX .

Belief Function. The belief function Belm corresponding to BPA m is defined as follows:

Belm(a) = ∑
b∈2ΩX :b⊆a

m(b) (9)

for all a ∈ 2ΩX . For the example above with ΩX = {x, x̄}, the belief function BelιX corresponding to BPA ιX is given
by BelιX ({x}) = 0, BelιX ({x̄}) = 0, and BelιX (ΩX ) = 1.

Commonality Function. The commonality function Qm corresponding to BPA m is defined as follows:

Qm(a) = ∑
b∈2ΩX :b⊇a

m(b) (10)

for all a ∈ 2ΩX . For the example above with ΩX = {x, x̄}, the commonality function QιX corresponding to BPA ιX
is given by QιX ({x}) = 1, QιX ({x̄}) = 1, and QιX (ΩX ) = 1. If m is non-dogmatic, then Qm(a) > 0 for all a ∈ 2ΩX .
Notice also that for singleton subsets a ∈ 2ΩX , Qm(a) = Plm(a). This is because for singleton subsets a, the set of all
subsets that have non-empty intersection with a coincide with the set of all supersets of a. Finally, Qm is a normalized
function in the sense that:

∑
a∈2ΩX

(−1)|a|Qm(a) = ∑
b∈2ΩX

m(b) = 1. (11)

All four representations—BPA, belief, plausibility, and commonality—are bearers of exactly the same informa-
tion. Given any one, we can transform it to another [42].

Next, we describe the two main operations for making inferences.

Dempster’s Combination Rule. In the DS theory, we can combine two BPAs m1 and m2 representing distinct pieces
of evidence by Dempster’s rule [9] and obtain the BPA m1⊕m2, which represents the combined evidence. In this
paper, it is sufficient to define Dempster’s rule for BPAs for a single variable, and for BPAs for distinct variables.

Suppose m1 and m2 are two BPAs for X . Then,

(m1⊕m2)(a) = K−1
∑

b1,b2∈2ΩX :b1∩b2=a

m1(b1)m2(b2), (12)

for all a ∈ 2ΩX , where K is a normalization constant given by

K = 1− ∑
b1,b2∈2ΩX :b1∩b2= /0

m1(b1)m2(b2). (13)

The definition of Dempster’s rule assumes that the normalization constant K is non-zero. If K = 0, then the two BPAs
m1 and m2 are said to be in total conflict and cannot be combined. If K = 1, we say m1 and m2 are non-conflicting.

Dempster’s rule can also be described in terms of commonality functions [42]. Suppose Qm1 and Qm2 are com-
monality functions corresponding to BPAs m1 and m2, respectively. The commonality function Qm1⊕m2 corresponding
to BPA m1⊕m2 is as follows:

Qm1⊕m2(a) = K−1Qm1(a)Qm2(a), (14)

for all a ∈ 2ΩX , where the normalization constant K is as follows:

K = ∑
a∈2ΩX

(−1)|a|+1Qm1(a)Qm2(a). (15)

It is shown in [42] that the normalization constant K in Eq. (15) is exactly the same as in Eq. (13). So we see that in
terms of commonality functions, Dempster’s rule is pointwise multiplication of commonality functions followed by
normalization.
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Suppose that mX and mY are two BPAs for X and Y , respectively. In this case, mX ⊕mY is a BPA for {X ,Y} such
that each of its focal element is a Cartesian product of a focal element of mX and a focal element of mY . Formally,

(mX ⊕mY )(a×b) = mX (a)mY (b), (16)

for all a×b ∈ 2Ω{X ,Y} . Notice that in this case there is no need for normalization as there is no mass on the empty set,
i.e., mX and mY are always non-conflicting.

Marginalization. Marginalization in DS theory is addition of values of BPAs. To define marginalization formally,
we first need to define projection of states, and then projection of subset of states.

Projection of states simply means dropping extra coordinates; for example, if (x,y) is a state of {X ,Y}, then the
projection of (x,y) to X , denoted by (x,y)↓X , is simply x, which is a state of X .

Projection of subsets of states is achieved by projecting every state in the subset. Suppose b ∈ 2Ω{X ,Y} . Then
b↓X = {x ∈ΩX : (x,y) ∈ b for some y ∈ΩY}. Notice that b↓X ∈ 2ΩX .

Suppose m is a BPA for {X ,Y}. Then, the marginal of m for X , denoted by m↓X , is a BPA for X such that for each
a ∈ 2ΩX ,

m↓X (a) = ∑
b∈2

Ω{X ,Y} :b↓X=a

m(b). (17)

In Eq. (16), if we compute the marginals of the joint belief function mX ⊕mY for X and Y , then we obtain the
original BPAs mX and mY , respectively. Klir and Wierman [26] use the terminology: marginals m↓X and m↓Y are
noninteractive if m = m↓X ⊕m↓Y .

This completes our brief review of the DS belief function theory. For further details, we refer the reader to [42].

4. Required Properties of Entropy of BPAs in the DS Theory

In this section, we propose six basic properties that an entropy function for BPAs in the DS theory should satisfy,
and compare them with those proposed by Klir and Wierman [26] for the same purposes. As a prelude to our first
property, called consistency with DS theory semantics, we give some examples of interpretations of a BPA m that are
inconsistent with DS theory semantics.

Credal Set Semantics of a BPA
For each BPA m for X , there exists a set Pm of PMFs for X that is defined as follows [16]. Let P denote the set of
all PMFs for X . Then,

Pm = {P ∈P : ∑
x∈a

P(x)≥ Belm(a) = ∑
b⊆a

m(b) for all a ∈ 2ΩX }. (18)

Thus, a BPA m can be interpreted as an encoding of a set of PMFs as described in Eq. (18). If m = ιX , then PιX

includes the set of all PMFs for X . If m is a Bayesian BPA for X , then Pm includes a single PMF PX corresponding
to the Bayesian BPA m.

Pm is referred to as a credal set corresponding to m (see, e.g. [56]). Notice that Pm is yet another equivalent
representation of m, like Belm, Plm, and Qm. Given Pm, we can recover the other representations. As already
mentioned in Section 1, this interpretation of a BPA function is incompatible with Dempster’s combination rule
[43, 44, 45, 16], which is also illustrated in the following example.

Example 1. Consider a BPA m1 for X with state space ΩX = {x1,x2,x3} as follows: m1({x1}) = 0.5, m1(ΩX ) = 0.5.
With the credal set semantics of a BPA function, m1 corresponds to a set of PMFs Pm1 = {P ∈P : P(x1) ≥ 0.5},
where P denotes the set of all PMFs for X. Now suppose we get a distinct piece of evidence m2 for X such that
m2({x2}) = 0.5, m2(ΩX ) = 0.5. m2 corresponds to Pm2 = {P ∈P : P(x2) ≥ 0.5}. The only PMF that is in both
Pm1 and Pm2 is P ∈P such that P(x1) = P(x2) = 0.5, and P(x3) = 0. Notice that if we use Dempster’s rule to
combine m1 and m2, we have: (m1⊕m2)({x1}) = 1

3 , (m1⊕m2)({x2}) = 1
3 , and (m1⊕m2)(ΩX ) =

1
3 . The set of

PMFs Pm1⊕m2 = {P∈P : P(x1)≥ 1
3 ,P(x2)≥ 1

3} is not the same as Pm1 ∩Pm2 . Thus, credal set semantics of belief
functions are incompatible with Dempster’s combination rule.

6
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Fagin and Halpern [15] propose another rule for updating beliefs, which is referred to as the Fagin-Halpern com-
bination rule. If we start with a set of PMFs characterized by BPA m for X , and we observe some event b⊂ΩX , then
one possible updating rule is to condition each PMF in the set Pm on event b, and then find a BPA m′ that corresponds
to the lower envelope of the revised set of PMFs. The Fagin-Halpern rule [15] does precisely this, and is different
from Dempster’s rule of conditioning, which is a special case of Dempster’s combination rule.

Transforming a BPA to a PMF
Given a BPA m for X in the DS theory, there are many ways to transform m to a corresponding PMF Pm for X
[8, 7, 46]. The main transforms used in the literature are the pignistic transform [12, 49], the maximum entropy credal
set transform [31, 17], and the plausibility transform [55, 6]. However, only the plausibility transform, is consistent
with m in the DS theory in the sense that Pm1⊕m2 = Pm1⊗Pm2 , where, as mentioned in Section 2, ⊗ is the combination
rule in probability theory, and⊕ is Dempster’s combination rule in DS theory [55, 6]. Thus, if a probability transform
is used to define entropy of m, then we argue that it must be the plausibility transform as it is the only one that is
consistent with Dempster’s combination rule.

First, let’s define BetPm. Suppose m is a BPA for X . Then BetPm is a PMF for X defined as follows:

BetPm(x) = ∑
a∈2ΩX :x∈a

m(a)
|a|

(19)

for all x ∈ ΩX . It is easy to verify that BetPm is a PMF. It is argued in [6] that BetPm is an inappropriate probabilistic
representation of m in the DS theory. The following example provides one reason why BetPm is incompatible with
Dempster’s combination rule.

Example 2. This example is taken from [50]. Consider a situation where we have vacuous prior knowledge of X with
ΩX = {x1, . . . ,x70} and we receive evidence represented as BPA m for X as follows: m({x1}) = 0.30, m({x2}) = 0.01,
and m({x2, . . . ,x70}) = 0.69. Then BetPm is as follows: BetPm(x1) = 0.30, BetPm(x2) = 0.02, and BetPm(x3) = . . .=
BetPm(x70) = 0.01. If BetPm were appropriate for m, then after receiving evidence m, x1 is 15 times more likely than
x2. Now suppose we receive another distinct piece of evidence that is also represented by m. As per the DS theory,
our total evidence is now m⊕m. If on the basis of m (or BetPm), x1 was 15 times more likely than x2, then now that we
have evidence m⊕m, x1 should be even more likely (exactly 152 = 225 times) than x2. But BetPm⊕m(x1)≈ 0.156 and
BetPm⊕m(x2)≈ 0.036. So according to BetPm⊕m, x1 is only 4.33 more likely than x2. This implies that the second piece
of evidence favors x2 over x1 (by a factor of 15/4.33 = 3.46). But the two distinct pieces of evidence are represented
by the same BPA. This doesn’t make much sense, and the only rational conclusion is that BetPm is inconsistent with
Dempster’s combination rule.

Next, let’s define maximum entropy credal set transform, CrPm. Suppose m is a BPA for X . Then CrPm is a PMF
for X defined as follows:

CrPm = arg max
PX∈Pm

Hs(PX ). (20)

In words, CrPm is the PMF of X that has the highest Shannon entropy of all PMFs in the credal set Pm. Regarding
numerical computation of the first component of CrPm, which involves nonlinear optimization, some algorithms are
described in [32, 34, 18, 29, 5].

The following example illustrates the CrPm transform, and shows that it does not satisfy the consistency with DS
theory semantics requirement Pm1⊕m2 = Pm1 ⊗Pm2 .

Example 3. This example is adapted from [51]. A mafia boss has decided to assassinate Mr. Jones. He has three
assassins on his payroll, Peter (pe), Paul (pa), and Mary (ma). We have two pieces of distinct evidence. First, the
mafia boss will toss a fair coin to decide on the assassin—if the toss results in heads, he will pick either pe or pa,
and we know nothing about the process of picking pe or pa. If the toss results in tails, he will pick ma. This piece of
evidence can be represented by a BPA m1 for K (ΩK = {pe, pa,ma}) such that m1({pe, pa}) = 0.5,m1({ma}) = 0.5.
The second piece of evidence is that Peter has a perfect alibi, and therefore cannot be the killer of Mr. Jones. This
piece can be modeled by the BPA m2 for K such that m2({pa,ma}) = 1. Mr Jones is found dead. The main question
of interest is: Who killed Mr. Jones?
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For m1, Pm1 = {P ∈P : P(pe) + P(pa) = 0.5,P(ma) = 0.5}, and CrPm1 is as follows: CrPm1(pe) = 0.25,
CrPm1(pa)= 0.25, and CrPm1(ma)= 0.50. For m2, Pm2 = {P∈P : P(pe)= 0}, and CrPm2 is as follows: CrPm2(pe)=
0, CrPm2(pa) = 0.50, and CrPm2(ma) = 0.50.

m1⊕m2 is as follows: (m1⊕m2)({pa}) = 0.5, and (m1⊕m2)({ma}) = 0.5. Pm1⊕m2 = {P ∈P : P(pa) =
0.5,P(ma) = 0.5}, which is a singleton subset. Therefore, CrPm1⊕m2 is such that CrPm1⊕m2(pe) = 0, CrPm1⊕m2(pa) =
0.5, and CrPm1⊕m2(ma) = 0.5.

Notice that CrPm1 ⊗CrPm2 is as follows: (CrPm1 ⊗CrPm2)(pe) = 0, (CrPm1 ⊗CrPm2)(pa) = 1/3, and (CrPm1 ⊗
CrPm2)(ma) = 2/3, which is different from CrPm1⊕m2 . Thus, CrPm is inconsistent with Dempster’s combination rule.

Finally, let’s define the plausibility transform [55, 6]. Suppose m is a BPA for X . The plausibility transform,
denoted by Pl Pm, is based on the plausibility function Plm corresponding to m, and is defined as follows:

Pl Pm(x) = K−1 ·Plm({x}) = K−1 ·Qm({x}) (21)

for all x ∈ ΩX , where K is a normalization constant that ensures Pl Pm is a PMF, i.e., K = ∑x∈ΩX Plm({x}) =
∑x∈ΩX Qm({x}).

[6] argues that of the many methods for transforming belief functions to PMFs, the plausibility transform is
one that is consistent with Dempster’s combination rule in the sense that if we have BPAs m1, . . . ,mk for X , then
Pl Pm1⊕...⊕mk = Pl Pm1 ⊗ . . .⊗Pl Pmk , where ⊗ denotes Bayes combination rule (pointwise multiplication followed
by normalization). It can be shown that the plausibility transform is the only transform that has this property, which
follows from the fact that for singleton subsets, the values of the plausibility function Plm are equal to the values of the
commonality function Qm, and the fact that Dempster’s combination rule is pointwise multiplication of commonality
functions followed by normalization (Eq. (14)).

Example 4. Consider a BPA m for X as described in Example 2 as follows: m({x1}) = 0.30, m({x2}) = 0.01,
m({x2, . . . ,x70})= 0.69. Then, Plm for singleton subsets is as follows: Plm({x1})= 0.30, Plm({x2})= 0.70, Plm({x3})=
· · · = Plm({x70}) = 0.69. The plausibility transform of m is as follows: Pl Pm(x1) = 0.3/49.72 ≈ 0.0063, and
Pl Pm(x2) = 0.7/49.72 ≈ 0.0146, and Pl Pm(x3) = · · · = Pl Pm(x70) ≈ 0.0144. Notice that Pl Pm is qualitatively
different from BetPm. In BetPm, x1 is 15 times more likely than x2. In Pl Pm, x2 is 2.33 times more likely than x1.

Now suppose we get a distinct piece of evidence that is identical to m, so that our total evidence is m⊕m. If we
compute m⊕m and Pl Pm⊕m, then as per Pl Pm⊕m, x2 is 2.332 more likely than x1. This is a direct consequence of the
consistency of the plausibility transform with Dempster’s combination rule.

One practical use of an uncertainty theory is to make decisions under uncertainty. To achieve this, we must first
agree on the semantics of the theory. The semantics of the DS belief function theory cannot be “a matter of personal
opinion” [50]. For the BPA m in Example 2, does it mean that x1 is 15 times more probable than x2 (as suggested
by the pignistic transform)? Or does it mean that x2 is 2.33 more probable than x1 (as suggested by the plausibility
transform)? One way to decide is to base our decisions on the center-piece of the DS theory, Dempster’s combination
rule. It is Dempster’s combination rule that distinguishes the DS theory from the Fagin-Halpern theory, which views
a belief function as a credal set of PMFs.

There are, of course, semantics that are consistent with DS theory, such as multivalued mappings [9], random
codes [43], transferable beliefs [51], and hints [27].

Desired Properties of Entropy of BPAs in the DS Theory
The following is a list of six desired properties of entropy H(m), where m is a BPA. Most of these are motivated by
the properties of Shannon’s entropy of PMFs described in Section 2. Before listing the properties, let us emphasize
that we implicitly assume existence and continuity—given a BPA m, H(m) should always exist, and H(m) should be
a continuous function of m. We do not list these two requirements explicitly.

Let X and Y denote random variables with state spaces ΩX and ΩY , respectively. Let mX and mY denote distinct
BPAs for X and Y , respectively. Let ιX and ιY denote the vacuous BPAs for X and Y , respectively.

1. (Consistency with DS theory semantics) If a definition of entropy of m, or a portion of a definition, is based on a
transform of BPA m to a PMF Pm, then the transform must satisfy the condition Pm1⊕m2 = Pm1⊗Pm2 . Notice that
this property is not postulating the use of a probability transform. Only that if a transform is used, then it must
be consistent with Dempster’s rule. As the plausibility transform is the only one that satisfies this property, any
definition that uses a transform different from the plausibility transform will not satisfy this property.
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2. (Non-negativity) H(mX ) ≥ 0, with equality if and only if there is a x ∈ ΩX such that mX ({x}) = 1. This is
similar to the probabilistic case.

3. (Maximum entropy) H(mX ) ≤ H(ιX ), with equality if and only if mX = ιX . This makes sense as the vacuous
BPA ιX for X has the most uncertainty among all BPAs for X . Such a property is also advocated in [4].

4. (Monotonicity) If |ΩX |< |ΩY |, then H(ιX )< H(ιY ). This is similar to Axiom 2 of Shannon.
5. (Probability consistency) If mX is a Bayesian BPA for X , then H(mX ) = Hs(PX ), where PX is the PMF of X

corresponding to mX , i.e., PX (x) = mX ({x}) for all x ∈ ΩX , and Hs(PX ) is Shannon’s entropy of PMF PX . In
other words, if mX is a Bayesian BPA for X , then H(mX ) = ∑x∈ΩX mX ({x}) log

(
1

mX ({x})

)
.

6. (Additivity) Having distinct BPAs mX and mY for X and Y , respectively, we can combine them using Dempster’s
rule yielding BPA mX ⊕mY for {X ,Y}. Then,

H(mX ⊕mY ) = H(mX )+H(mY ). (22)

This is a weak version of the compound axiom for Shannon’s entropy of a PMF (for the case of independent
random variables).

The additivity property is quite weak, and is satisfied by most definitions of entropy that are on a log scale. The
consistency with DS theory semantics property helps to bolster the additivity property, and ensures that any definition
of entropy for m in the DS theory is consistent with Dempster’s combination rule. As we will see in Section 5, not
all previous definitions in the literature are consistent with Dempster’s combination rule, even though they satisfy the
additivity property.

Klir and Wierman [26] also describe a set of properties that they believe should be satisfied by any meaningful
measure of uncertainty based on intuitive grounds. Some of the properties that they suggest are also included in the
above list. For example, probability consistency and additivity appear in both sets of requirements. Nevertheless, two
of them do not make intuitive sense to us.

First, Klir and Wierman suggest a property that they call “set consistency” as follows:

7. (Set consistency) H(m) = log(|a|) whenever m is deterministic with focal set a, i.e., m(a) = 1.

This property would require that H(ιX ) = log(|ΩX |). The probability consistency property would require that
for the Bayesian uniform BPA mu, H(mu) = log(|ΩX |). Thus, these two requirements would entail that H(ιX ) =
H(mu) = log(|ΩX |). We disagree. Recall the Ellsberg paradox [14] phenomenon described in Section 1, also called
ambiguity aversion. According to our requirements, H(ιX )> H(mu), which make more intuitive sense than requiring
H(ιX ) = H(mu). The Ellsberg paradox phenomenon is an argument in favor of our requirements. The persons who
prefer the urn with 50 red balls and 50 blue balls (whose uncertainty is described by H(mu)) to the urn with 100 total
balls for which the number of blue or red balls is unknown (whose uncertainty is described by H(ιX )) do so because
they are convinced that there is less uncertainty in H(mu) than in H(ιX ).

Second, Klir and Wierman require a property they call “range” as follows:

8. (Range) For any BPA mX for X , 0≤ H(mX )≤ log(|ΩX |).

The probability consistency property requires that H(mu) = log(|ΩX |). Also including the range property prevents us,
e.g., from having H(ιX )> H(mu). So we do not include it in our list as it violates our intuition.

Finally, Klir and Wierman require the subadditivity property defined as follows.

9. (Subadditivity) Suppose m is a BPA for {X ,Y}, with marginal BPAs m↓X for X , and m↓Y for Y . Then,

H(m)≤ H(m↓X )+H(m↓Y ). (23)

This property is the analog of the corresponding property for Shannon’s entropy for probability distribution. We agree
that it is an important property, and the only reason we do not include it in our list is because we are unable to meet
this requirement in addition to the six requirements that we do include.

Abellán and Moral [4] interpret a BPA m as a credal set of PMFs as in Eq. (18). With this interpretation, they
propose a set monotonicity property as follows.
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10. (Set monotonicity) If m1 and m2 are BPA functions for X with credal sets Pm1 and Pm2 , respectively, such that
Pm1 ⊆Pm2 , then H(m1)≤ H(m2).

If the credal set semantics of a BPA function were appropriate for the DS theory, then it would be reasonable to
adopt the set monotonicity property. However, as we have argued earlier, credal set semantics are not compatible
with Dempster’s combination rule. If our current knowledge of X is represented by BPA m1, and we obtain a piece
of evidence represented by BPA m2 for X that is distinct from m1, then in the DS theory, our new knowledge is
represented by m1⊕m2. In general, it is not possible to formulate any relationship between Pm1 and Pm1⊕m2 . For
these reasons, we do not adopt Abellán-Moral’s set monotonicity property.

5. Previous Definitions of Entropy of BPAs in the DS Theory

In this section, we review all previous definitions of entropy of BPAs in the DS theory of which we are aware. We
also verify whether or not these previous definitions satisfy the six basic properties described in Section 4.

Höhle. One of the earliest definitions of entropy for DS theory is due to Höhle [20], who defines entropy of BPA m
as follows. Suppose m is a BPA for X with state space ΩX .

Ho(m) = ∑
a∈2ΩX

m(a) log
(

1
Belm(a)

)
, (24)

where Belm denotes the belief function corresponding to m as defined in Eq. (9). Ho(m) captures only the conflict
measure of uncertainty. Ho(ιX ) = 0. Thus, Ho does not satisfy non-negativity, maximum entropy, and monotonicity
properties. For Bayesian BPA, m({x}) = Belm({x}), and therefore, Ho does satisfy the consistency with DS theory
semantics and probability consistency property. It satisfies the additivity property but not the subadditivity property
[13].

Smets. Smets [48] defines entropy of BPA m as follows. Suppose m is a non-dogmatic BPA for X , i.e., m(ΩX ) > 0.
Let Qm denote the commonality function corresponding to BPA m. As m is non-dogmatic, it follows that Qm(a)> 0
for all a ∈ 2ΩX . The entropy of m is as follows:

Ht(m) = ∑
a∈2ΩX

log
(

1
Qm(a)

)
. (25)

If m is dogmatic, Ht(m) is defined as +∞. Smets’ definition Ht(m) is designed to measure “information content” of
m, rather than uncertainty. Like Höhle’s definition, Ht(ιX ) = 0, and therefore, Ht does not satisfy the non-negativity,
maximum entropy, and monotonicity properties. As a Bayesian BPA is not non-dogmatic, the probabilistic consis-
tency property is not satisfied either. If m1 and m2 are two non-conflicting (i.e., normalization constant in Dempster’s
combination rule K = 1) and non-dogmatic BPAs, then Ht(m1⊕m2) = Ht(m1)+Ht(m2). Thus, it satisfies the additiv-
ity property for the restricted class of non-dogmatic BPAs. It also satisfies the consistency with DS theory semantics
property. It does not satisfy the subadditivity property [13].

Yager. Another definition of entropy of BPA m is due to Yager [57]:

Hy(m) = ∑
a∈2ΩX

m(a) log
(

1
Plm(a)

)
, (26)

where Plm is the plausibility function corresponding to m as defined in Eq. (8). Yager’s definition Hy(m) measures
only conflict in m, not total uncertainty. Like Höhle’s and Smets’ definitions, Hy(ιX ) = 0, and therefore, Hy does not
satisfy the non-negativity, maximum entropy, and monotonicity properties. It does satisfy the probability consistency
property because for Bayesian BPA, Plm({x}) = m({x}). It satisfies the consistency with DS theory semantics, the
additivity property, but not the subadditivity property [13].
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Nguyen. Nguyen [35] defines entropy of BPA m for X as follows:

Hn(m) = ∑
a∈2ΩX

m(a) log
(

1
m(a)

)
(27)

The same definition is stated in [33]. Like all previous definitions, it captures only the conflict portion of uncertainty.
As in the previous definitions, Hn(ιX ) = 0. Thus, Hn does not satisfy the non-negativity, maximum entropy, and
monotonicity properties. However, as it immediately follows from the properties of Shannon’s entropy, it does sat-
isfy the probabilistic consistency property. The fact that it also satisfies the additivity property follows from the fact
that log of a product is the sum of the logs. Thus, H(mX ⊕mY ) = ∑

a∈2
Ω{X ,Y} mX (a↓X )mY (a↓Y ) log

(
1

mX (a↓X )mY (a↓Y )

)
=
(

∑a↓X∈2ΩX mX (a↓X ) log
(

1
mX (a↓X )

))
+
(

∑a↓Y∈2ΩY mY (a↓Y ) log
(

1
mY (a↓Y )

))
=H(m↓X )+H(m↓Y ). It satisfies the con-

sistency with DS theory semantics property, but not the subadditivity property as can be seen from Example 5.

Example 5. Consider BPA m for {X ,Y} as follows: m({(x,y),(x̄, ȳ)}) = m({(x, ȳ),(x̄,y)}) = 1
2 . For this BPA,

Hn(m) = 1. Also, m↓X = ιX , and m↓Y = ιY . Therefore, Hn(m↓X ) = 0, and Hn(m↓Y ) = 0. Thus, subadditivity is
not satisfied.

Dubois and Prade. Dubois and Prade [13] define entropy of BPA m for X as follows:

Hd(m) = ∑
a∈2ΩX

m(a) log(|a|). (28)

Dubois-Prade’s definition captures only the non-specificity portion of uncertainty. If X is a random variable with state
space ΩX , Hartley [19] defines a measure of entropy of X as log(|ΩX |). Dubois-Prade’s definition Hd(m) can be
regarded as the mean of Hartley entropy of m. If ιX denotes the vacuous BPA for X , then Hd(ιX ) = log(|ΩX |). If m is
a Bayesian BPA, then Hd(m) = 0 as all the focal elements of m are singletons. Thus, Hd satisfies the consistency with
DS theory semantics, maximum entropy, and monotonicity properties, but it does not satisfy the non-negativity and
probabilistic consistency properties. However, it does satisfy the additivity and subadditivity properties [13]. Ramer
[39] proves that Hd is the unique definition of non-specificity entropy of m that satisfies additivity and the subadditivity
properties.

Lamata and Moral. Lamata and Moral [28] suggest a definition of entropy of BPA m as follows:

Hl(m) = Hy(m)+Hd(m), (29)

which combines Yager’s definition Hy(m) as a measure of conflict, and Dubois-Prade’s definition Hd(m) as a measure
of non-specificity. It is easy to verify that Hl(ιX ) = Hl(mu) = log(|ΩX |), which violates the maximum entropy prop-
erty. It satisfies the consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, and
additivity, properties. It does not satisfy the subadditivity property [13].

Klir and Ramer. Klir and Ramer [25] define entropy of BPA m for X as follows:

Hk(m) = ∑
a∈2ΩX

m(a) log

 1

1−∑b∈2ΩX m(b) |b\a||b|

+Hd(m). (30)

The first component in Eq. (30) is designed to measure conflict, and the second component is designed to measure
non-specificity. It is easy to verify that Hk(ιX ) = Hk(mu) = log(|ΩX |), which violates the maximum entropy prop-
erty. It satisfies the consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, and
additivity, properties. It does not satisfy the subadditivity property [53].

Klir and Parviz. Klir and Parviz [24] modify Klir and Ramer’s definition Hk(m) slightly to measure conflict in a
more refined way. The revised definition is as follows:

Hp(m) = ∑
a∈2ΩX

m(a) log

 1

1−∑b∈2ΩX m(b) |a\b||a|

+Hd(m). (31)
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Klir and Parviz argue that the first component in Eq. (31) is a better measure of conflict than the first component
in Eq. (30). Like Hk(m), Hp(m) satisfies the consistency with DS theory semantics, non-negativity, monotonicity,
probability consistency, and additivity properties, but not the maximum entropy, and subadditivity [54] properties.

Pal et al. Pal et al. [36, 37] define entropy Hb(m) as follows:

Hb(m) = ∑
a∈2ΩX

m(a) log
(
|a|

m(a)

)
. (32)

Hb(m) satisfies consistency with DS theory semantics, non-negativity, monotonicity, probability consistency, and
additivity [37], properties. Hb(ιX ) = Hb(mu) = log(|ΩX |). Thus, it does not satisfy the maximum entropy property.
The maximum value of Hb(m) is attained for m such that m(a) ∝ |a|, for all a ∈ 2ΩX . Thus, for a binary-valued
variable X , the maximum value of Hb(m) is 2 whereas Hb(ιX ) = 1.

Maeda and Ichihashi. Maeda-Ichihashi [31] define Hi(m) using the credal set Pm semantics of m described in
Section 4 as follows:

Hi(m) = max
PX∈Pm

{Hs(PX )}+Hd(m),

= Hs(CrPm)+Hd(m) (33)

where the first component is interpreted as a measure of conflict only, and the second component is interpreted as a
measure of non-specificity. Hi(m) satisfies all properties including the subadditivity property described in Eq. (23)
[31]. As discussed in Section 4, the maximum entropy credal set transform CrPm is not consistent with Dempster’s
combination rule. Hi(m) may be appropriate for a theory of belief functions interpreted as a credal set with the
Fagin-Halpern combination rule. It is, however, inappropriate for the Dempster-Shafer theory of belief functions with
Dempster’s rule as the rule for combining (or updating) beliefs.

Harmanec and Klir. Harmanec-Klir [17] define Hh(m) as follows:

Hh(m) = max
PX∈Pm

Hs(PX ) = Hs(CrPm), (34)

where they interpret Hh(m) as a measure of total uncertainty. Abellán [1] interprets minPX∈Pm Hs(PX ) as a measure of
conflict, and the difference between Hh(m) and minPX∈Pm Hs(PX ) as a measure of non-specificity. Hh(ιX ) =Hh(mu) =
log(|ΩX |). Thus, it doesn’t satisfy the maximum entropy property. It does, however, satisfy all other properties
including subadditivity. Like Maeda-Ichihashi’s definition, Harmanec-Klir’s definition based on the CrPm transform
is inconsistent with Dempster’s combination rule, and, thus, violates consistency with DS theory semantics property.

Abellán and Moral. Maeda-Ichihashi’s definition Hi(m) does not satisfy the set monotonicity property in Eq. (10)
suggested by Abellán-Moral [4]. They suggest a modification of Maeda-Ichihashi’s definition in Eq. (33) where they
add a third component so that the modified definition satisfies the set monotonicity property in addition to the six
properties satisfied by Maeda-Ichihashi’s definition. Their definition is as follows:

Ha(m) = Hs(CrPm)+Hd(m)+ min
PX∈Pm

KL(PX ,QX ), (35)

where KL(PX ,QX ) is the Kullback-Leibler divergence between PMFs PX and QX defined as follows:

KL(PX ,QX ) = ∑
x∈ΩX

PX (x) ln
(

PX (x)
QX (x)

)
, (36)

and QX ∈Pm is a PMF of X that has the maximum Shannon entropy in the first term, i.e.,
Hs(QX ) = maxPX∈Pm{Hs(PX )}. Like Maeda-Ichihashi’s definition, Abellán-Moral’s definition does not satisfy the
consistency with DS theory semantics property.
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Jousselme et al. Jousselme et al. [22] define H j(m) based on first transforming a BPA m to a PMF BetPm using the
pignistic transform [12, 49], and then using Shannon’s entropy of BetPm.

H j(m) = Hs(BetPm) = ∑
x∈ΩX

BetPm(x) log
(

1
BetPm(x)

)
. (37)

(A similar definition, called pignistic entropy, appears in [11] in the context of the Dezert-Smarandache theory, which
can be considered a generalization of the DS belief functions theory.) H j(m) satisfies the non-negativity, monotonicity,
probability consistency, and additivity properties [22]. It does not satisfy the maximum entropy property as H j(ιX ) =
H j(mu) = log(|ΩX |). Although Jousselme et al. claim that H j(m) satisfies the subadditivity property (Eq. (23)), a
counter-example is provided in [23]. One basic assumption behind H j(m) is that BetPm is an appropriate probabilistic
representation of the uncertainty in m in the DS theory. As we have argued in Section 4, BetPm is inconsistent with
Dempster’s combination rule.

Pouly et al. Pouly et al. [38] define entropy of a “hint” associated with a BPA m. A hint is a formalization of the
multivalued mapping semantics for BPAs, and is more fine-grained than a BPA. Formally, a hint H = (Ω1,Ω2,P,Γ)
consists of two state spaces Ω1 and Ω2, a PMF P on Ω1, and a multivalued mapping Γ : Ω1→ 2Ω2 . The PMF P and
multivalued mapping Γ induces a BPA m for Ω2 such that m(Γ(θ1)) = P(θ1). An example of a hint is as follows.

Example 6. A witness claims that he saw the defendant commit a crime. Suppose that we have a PMF on the
reliability R of the witness as follows. Let r and r̄ denote the witness is reliable or not, respectively. Then, P(r) = 0.6,
and P(r̄) = 0.4. The question of interest, denoted by variable G, is whether the defendant is guilty (g) or not (ḡ).
If the witness is reliable, then given his or her statement, the defendant is guilty. If the witness is not reliable, then
his or her claim has no bearing on the question of guilt of the defendant. Thus, we have a multivalued mapping
Γ : {r, r̄} → 2{g,ḡ} such that Γ(r) = {g}, and Γ(r̄) = {g, ḡ}. In this example, the hint H = ({r, r̄},{g, ḡ},P,Γ). The
hint H induces a BPA for G as follows: m({g}) = 0.6,m({g, ḡ}) = 0.4.

Pouly et al.’s definition of entropy of hint H = (Ω1,Ω2,P,Γ) is as follows:

Hr(H ) = Hs(P)+Hd(m), (38)

where m is the BPA on state space Ω2 induced by hint H . The expression in Eq. (38) is derived using Shannon’s
entropy of a joint PMF on the space Ω1×Ω2 whose marginal for Ω1 is P, and an assumption of uniform conditional
PMF for Γ(ω)⊆ Ω2 given ω ∈ Ω1. This assumption results in a marginal PMF for Ω2 that is equal to BetPm, where
m is the BPA on state space Ω2 induced by hint H . Dempster’s combination rule never enters the picture in the
derivation on Hr(H ). Hr(H ) has nice properties (on the space of hints). Hr(H ) is on the scale [0, log(|Ω1|)+
log(|Ω2|)]. For a BPA m defined on the state space Ω2, it would make sense to use only the marginal of the joint PMF
on Ω1×Ω2 for Ω2, which is BetPm. Thus, if one were to adapt Pouly et al.’s definition for BPAs, it would coincide
with the Jousselme et al.’s definition, i.e.,

Hr(m) = H j(m) = Hs(BetPm) = ∑
θ∈Ω2

BetPm(θ) log
(

1
BetPm(θ)

)
. (39)

Thus, Pouly et al.’s definition of entropy of BPA m has the same properties as Jousselme et al.’s definition.

Deng. Deng [10] proposes a definition of entropy of BPA m for X as follows:

Hg(m) = Hn(m)+ ∑
a∈2ΩX

m(a) log(2|a|−1) (40)

The first component, Nguyen’s definition of entropy, is a measure of conflict, and the second component is a measure
of non-specificity. Deng’s definition satisfies the probability consistency property. Abellán [2] shows that Deng’s
definition does not satisfy monotonicity, additivity, and subadditivity properties. It also does not satisfy the maximum
entropy property.

A summary of the properties of the various definitions of entropy of DS belief functions is shown in Table 1.
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Table 1: A Summary of the Six Desired Properties and Subadditivity of the Various Definitions of Entropy of DS Belief Functions

Definition Cons. w DS Non-neg. Max. ent. Monoton. Prob. Cons. Additivity Subadd.

Höhle, Eq. (24) yes no no no yes yes no

Smets, Eq. (25) yes no no no no yes no

Yager, Eq. (26) yes no no no yes yes no

Nguyen, Eq. (27) yes no no no yes yes no

Dubois-Prade, Eq. (28) yes no yes yes no yes yes

Lamata-Moral, Eq. (29) yes yes no yes yes yes no

Klir-Ramer, Eq. (30) yes yes no yes yes yes no

Klir-Parviz, Eq. (31) yes yes no yes yes yes no

Pal et al., Eq. (32) yes yes no yes yes yes no

Maeda-Ichihashi, Eq. (33) no yes yes yes yes yes yes

Harmanec-Klir, Eq. (34) no yes no yes yes yes yes

Abellán-Moral, Eq. (35) no yes yes yes yes yes yes

Jousselme et al., Eq. (37) no yes no yes yes yes no

Pouly et al., Eq. (39) no yes no yes yes yes no

Deng, Eq. (40) yes yes no no yes no no

6. A New Definition of Entropy for DS Theory

In this section, we propose a new definition of entropy for DS theory. The new definition of entropy is based partially
on the plausibility transform.

A New Definition of Entropy of a BPA. To explain the basic idea behind the following definition consider a simple
example with an urn containing n balls of up to two colors: white (w), and black (b). Suppose we draw a ball at
random from the urn and X denotes its color. What is the entropy of the BPA for X in the situation where we know
that there is at least one ball of each color in the urn? The simplest case is when n = 2. In this case the entropy
is exactly the same as in tossing a fair coin: log(2) = 1. Naturally, the greater n is, the greater uncertainty in the
model. As there is no information preferring one color to another one, the only probabilistic description of the model
is a uniform PMF. In DS theory, the BPA describing this situation is m({w}) = m({b}) = 1

n , and m({w,b}) = n−2
n .

Therefore, the entropy function for this BPA must be greater than or equal to Shannon’s entropy of a uniform PMF
with two states (log(2) = 1), and increasing with increasing n. This is why the following definition of entropy of a
BPA m consists of two components. The first component is Shannon’s entropy of a PMF that corresponds to m, and
the second component includes entropy associated with non-singleton focal sets of m.

Suppose m is a BPA for X . The entropy of m is defined as follows:

H(m) = Hs(Pl Pm)+Hd(m) = ∑
x∈ΩX

Pl Pm(x) log
(

1
Pl Pm(x)

)
+ ∑

a∈2ΩX

m(a) log(|a|). (41)

Like some of the definitions in the literature, the first component in Eq. (41) is designed to measure conflict
in m, and the second component is designed to measure non-specificity in m. Both components are on the scale
[0, log(|ΩX |)], and therefore, H(m) is on the scale [0,2log(|ΩX |)].

Theorem 1. The entropy H(m) for BPA m for X defined in Eq. (41) satisfies the consistency with DS theory semantics,
non-negativity, maximum entropy, monotonicity, probability consistency, and additivity properties.

Proof. The entropy H(m) has two components, both of which are consistent with DS theory semantics. Thus, it
satisfies the consistency with DS theory semantics property.

We know that Hs(Pl Pm)≥ 0, and Hd(m)≥ 0. Thus, H(m)≥ 0. For H(m) = 0 to hold, both Hs(Pl Pm) = 0, and
Hd(m) = 0 must be satisfied. Hs(Pl Pm) = 0 if and only if there exists x ∈ ΩX such that Pl Pm(x) = 1, which occurs
if and only if m({x}) = 1. Hd(m) = 0 if and only if m is Bayesian. Thus, H(m) satisfies the non-negativity property.
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Let n denote |ΩX |. Then PPlιX
(x) = 1

n for all x ∈ΩX , and therefore Hs(PPlιX
) = log(n), which is the maximum of

all PMFs defined on ΩX . Also Hd(ιX ) = log(n), which is the maximum of Dubois-Prade’s entropy over all BPAs m
for X . Thus, H(m) satisfies the maximum entropy property.

H(ιX ) = 2log(|ΩX |). Thus, since it is monotonic in |ΩX |, H(m) satisfies the monotonicity property.
If m is Bayesian, then Pl Pm(x) = m({x}) for all x ∈ ΩX , and Hd(m) = 0. Thus, H(m) satisfies the probability

consistency property.
Suppose mX is a BPA for X , and mY is a BPA for Y . Then, as it is shown in [6], PPlmX⊕mY

= PPlmX
⊗PPlmY

, and the
normalization constant in the case of PMFs for disjoint arguments is 1. Thus, Hs(PPlmX⊕mY

) = Hs(PPlmX
)+Hs(PPlmY

).
Also, it is proved in [13], that Hd(mX ⊕mY ) = Hd(mX )+Hd(mY ). Thus, H(m) satisfies the additivity property.

The additivity property was stated in terms of BPAs mX for X and mY for Y . Suppose we have a set of variables,
say v, and r,s⊆ v. This property could have been stated more generally in terms of BPAs m1 for r and m2 for s where
r∩ s = /0. In this case still H(m1⊕m2) = H(m1)+H(m2) because both components of the new definition (i.e., Hs
and Hd) satisfy the more general property. However, if r∩ s , /0, then generally H(m1⊕m2) may be different from
H(m1)+H(m2). This is because neither the first component of the new definition, nor the Dubois-Prade component,
satisfy the stronger property. An example illustrating this is described next.

Example 7. Consider BPA m1 for binary-valued variable X as follows:

m1({x}) = 0.1,
m1({x̄}) = 0.2,
m1(ΩX ) = 0.7,

and BPA m2 for {X ,Y} as follows:

m2({(x,y),(x̄,y)}) = 0.08,
m2({(x,y),(x̄, ȳ)}) = 0.72,
m2({(x, ȳ),(x̄,y)}) = 0.02,
m2({(x, ȳ),(x̄, ȳ)}) = 0.18.

Assuming these two BPAs represent distinct pieces of evidence, we can combine them with Dempster’s rule ob-
taining m = m1⊕m2 for {X ,Y} as follows:

m({(x,y)}) = 0.08,
m({(x, ȳ)}) = 0.02,
m({(x̄,y)}) = 0.02,
m({(x̄, ȳ)}) = 0.18,

m({(x,y),(x̄,y)}) = 0.056,
m({(x,y),(x̄, ȳ)}) = 0.504,
m({(x, ȳ),(x̄,y)}) = 0.014,
m({(x, ȳ),(x̄, ȳ)}) = 0.126.

Now, the PMF Pl Pm1 of X obtained using the plausibility transform of m1 is as follows:
Pl Pm1(x) = 0.47, and Pl Pm1(x̄) = 0.53, and its Shannon’s entropy is Hs(Pl Pm1) = 0.998. Hd(m1) = 0.7. Thus,
H(m1) = 1.698.

The PMF Pl Pm2 of {X ,Y} obtained using the plausibility transform is as follows:
Pl Pm2(x,y) = 0.4, Pl Pm2(x, ȳ) = 0.1, Pl Pm2(x̄,y) = 0.05, Pl Pm2(x̄, ȳ) = 0.45, and its Shannon’s entropy is
Hs(Pl Pm2) = 1.595. Hd(m2) = 1. Thus, H(m2) = 2.595.

The joint PMF of {X ,Y} obtained using the plausibility transform is as follows:
Pl Pm(x,y) = 0.38, Pl Pm(x, ȳ) = 0.09, Pl Pm(x̄,y) = 0.05, Pl Pm(x̄, ȳ) = 0.48, and its Shannon’s entropy is
H(Pl Pm) = 1.586. Also, Dubois-Prade’s entropy of m is Hd(m) = 0.7. Thus, H(m) = 2.286.

Notice that H(m) = 2.286 ,H(m1)+H(m2) = 1.698+2.595 = 4.293, H(Plm) = 1.586 ,H(PPlm1
)+H(PPlm2

) =

0.998+1.595 = 2.593, and Hd(m) = 0.7 , Hd(m1)+Hd(m2) = 0.7+1 = 1.7.
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7. Additional Properties of H(m)

In this section, we describe some additional properties of H(m) defined in Eq. (41).

Entropy as an Expected Value. One interpretation of Shannon’s entropy in probability theory is that it equals the
expected value of information received when learning state x ∈ΩX , i.e.,

Hs(PX ) = ∑
x∈ΩX

PX (x)I(x), (42)

where

I(x) = log2

(
1

PX (x)

)
represents the information received when learning that state x ∈ ΩX has occurred. Notice that the amount of this
information is not the property of state x, but that of its probability.

In the case where our knowledge is encoded by a BPA m (instead of a PMF), we can decompose the information in
m into two parts. The first part is the PMF Pl Pm, and the second part (not captured by the first part) is log(|a|), which
happens with probability m(a). Consider the vacuous BPA function ιX for X , where ΩX = {x, x̄}. We can decompose
the uncertainty in ιX into the uncertainty in the PMF PPlιX

(which is given by PPlιX
(x) = 1/2, and PPlιX

(x̄) = 1/2). But
this doesn’t capture the entire uncertainty in ιX . We also have to include the uncertainty log(|ΩX |). The expected value
of the first part is Shannon’s entropy H(PPlιX

) = 1 bit, and the expected value of the second is ιX (ΩX ) log(|ΩX |) = 1
bit.

Thus, we can interpret H(m) as an expected value, but with respect to two different sources of uncertainty. The
first part is expected value of information I(x) with respect to PMF Pl Pm, and the second part is expected value
of information necessary to eliminate the uncertainty emerging from the size of ΩX , i.e., log(|a|), with respect to
“distribution” m, i.e., ∑a∈2ΩX m(a) log(|a|). The second part corresponds to the measure of uncertainty suggested by
Richard Hartley in 1928 [19], about which Rényi showed that it is the only one satisfying additivity and monotonicity
properties (for a precise formulation of this property see [40]). Notice that both parts are measured in same units
(bits), and it makes sense to add the two.

Subadditivity Property. As shown in Example 8 below, our definition does not satisfy the subadditivity property in
Eq. (23).

Example 8. Consider a two-dimensional BPA m for binary-valued variables {X ,Y} with five focal elements:

m({(x,y)}) = m({(x, ȳ)}) = 0.1, m({(x̄,y)}) = m({(x̄, ȳ)}) = 0.3, and m(Ω{X ,Y}) = 0.2.

The joint PMF of {X ,Y} using the plausibility transform is as follows: Pl Pm((x,y))= 0.1875, Pl Pm((x, ȳ))= 0.1875,
Pl Pm((x̄,y)) = 0.3125, Pl Pm((x̄, ȳ)) = 0.3125. Its Shannon’s entropy is Hs(Pl Pm) = 1.9544. The Dubois-Prade’s
entropy of m is Hd(m) = 0.4. Thus, H(m) = 2.3544.

The marginal BPA m↓X is as follows: m↓X ({x}) = 0.2, m↓X ({x̄}) = 0.6, and m↓X (ΩX ) = 0.2. The PMF PPlm↓X
of

X obtained using the plausibility transform of m↓X is as follows: PPlm↓X
(x) = 0.333, and PPlm↓X

(x̄) = 0.667, and its
Shannon’s entropy is Hs(PPlm↓X

) = 0.9183.

Similarly, the marginal BPA m↓Y is as follows: m↓Y ({y}) = 0.4, m↓Y ({ȳ}) = 0.4, and m↓Y (ΩY ) = 0.2. The PMF
PPlm↓Y

of Y is as follows: PPlm↓Y
(y) = PPlm↓Y

(ȳ) = 0.5, and therefore its Shannon’s entropy is Hs(PPlm↓Y
) = 1.

Thus, Hs(Pl Pm) = 1.9544 > Hs(PPlm↓X
)+Hs(PPlm↓Y

) = 0.9183+ 1 = 1.9182. Dubois-Prade’s entropies are as

follows: Hd(m↓X ) =Hd(m↓Y ) = 0.2. Thus, Hd(m) = 0.4=Hd(m↓X )+Hd(m↓Y ) = 0.2+0.2= 0.4. Therefore, H(m) =
2.3544 > H(m↓X )+H(m↓Y ) = (0.9183+0.2)+(1+0.2) = 1.1183+1.2 = 2.3183.

Entropy of m⊕m. Shannon’s entropy of PMFs has the following property:

Hs(PX ⊗PX )≤ Hs(PX ) (43)
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Repetitio est mater studiorum. Learning the same knowledge twice should contribute to our cognizance more than
learning it only once. In general, the Bayes combination rule is not idempotent, i.e., PX ⊗PX , PX . Some PMFs
are idempotent. For example, the equally likely PMF, and PMFs that rule out some states and have equally likely
probabilities for the others, are idempotent. For non-idempotent PMFs, if we combine PX with itself, then the states
with higher probabilities are now more likely, and states with lower probabilities are less likely. Consider the following
property of Shannon entropy [52]:

Suppose X is a random variable with state space ΩX = {x1, . . . ,xn}, and suppose P1 and P2 are PMFs for X such
that P1(xi) = pi and P2(xi) = qi. Suppose that q1 ≥ q2 ≥ . . .≥ qn, and p1 = q1−∆, p2 = q2+∆, pi = qi for i = 3, . . . ,n,
where 0≤ ∆≤ q1. Then Hs(P2)≥ Hs(P1).

Using this property repeatedly, it can be shown that the inequality in Eq. (43) holds. One may be tempted to
believe that such a property also holds for all BPAs, i.e., H(m⊕m) ≤ H(m). But, as shown in Example 9, it is not
true.

Example 9. Consider a BPA m for X, where ΩX = {x1,x2,x3} as follows: m({x1}) = 1
3 , m({x2,x3}) = 2

3 . Dubois-
Prade’s entropy Hd(m) = 2

3 . Also, for this BPA m, the PMF Pl Pm is as follows: Pl Pm(x1) =
1
5 , Pl Pm(x2) =

Pl Pm(x3) =
2
5 . Thus, Hs(Pl Pm) = 1.522, and H(m) = Hs(Pl Pm)+Hd(m) = 2.189.

If we compute m⊕m, we have (m⊕m)({x1}) = 1
5 , and (m⊕m)({x2,x3}) = 4

5 . Dubois-Prade’s entropy Hd(m⊕
m) = 4

5 . Notice that Hd(m⊕m)>Hd(m). The PMF PPlm⊕m is as follows: PPlm⊕m(x1) =
1
9 , PPlm⊕m(x2) =PPlm⊕m(x3) =

4
9 .

And, its Shannon’s entropy Hs(PPlm⊕m) = 1.392. Notice that Hs(PPlm⊕m)< Hs(Pl Pm). However, H(m⊕m) =
Hs(m⊕m)+Hd(m⊕m) = 2.192, which is greater than H(m) = 2.189.

To understand this more intuitively, notice that our definition of entropy H(m) has two components. The first one,
Hs(Pl Pm) can be considered a measure of conflict (or confusion or dissonance or discord or strife), and the second
one, Hd(m) can be considered a measure of non-specificity. Thus, while the property in Eq. (43) holds for PMFs, it
is not valid for BPAs in the DS theory because of the non-specificity component. When we combine m with itself,
probability migrates from subsets with lower plausibility to subsets with larger plausibility [6]. If we have a BPA such
that a larger subset has higher plausibility, then Hd(m⊕m)> Hd(m).

8. Summary and Conclusion

Interpreting Shannon’s entropy of a PMF of a discrete random variable as the amount of uncertainty in the PMF [47],
we propose six desirable properties of entropy of a basic probability assignment in the DS theory of belief functions.
Four of the six properties are motivated by the analogous properties of Shannon’s entropy of PMFs. The maximum
entropy property is based on our intuition that a vacuous belief function has more uncertainty than a Bayesian belief
function. Some of these six properties are different from the five properties proposed by Klir and Wierman [26]. Two
of the properties they require, set consistency and range, are inconsistent with some of the properties we propose.
Also, one of the properties that they require, subadditivity, is not included in our set as we are unable to formulate a
definition of entropy that would simultaneously satisfy the six properties we suggest plus subadditivity. Also, besides
the six properties, we also require that H(m) should always exist, and H(m) should be a continuous function of
m. Thus, a set monotonicity property suggested by Abellán-Masegosa [3] based on credal set semantics of belief
functions that are not compatible with Dempster’s rule is not included in our set of requirements.

We review some earlier definitions given by Höhle [20], Smets [48], Yager [57], Nguyen [35], Dubois-Prade
[13], Lamata-Moral [28], Klir-Ramer [25], Klir-Parviz [24], Pal et al. [37], Maeda-Ichihashi [31], Abellán-Moral [4],
Harmanec-Klir [17], Jousselme et al. [22], Pouly et al. [38], and Deng [10]. None of these definitions satisfy all the
six properties listed earlier. Pouly et al.’s definition is for the joint space of hints, Ω1×Ω2. If one were to adapt Pouly
et al.’s definition for BPAs, then as the marginal entropy for Ω2 reduces to the pignistic entropy, their definition for
BPAs would coincide with that proposed by Jousselme et al.

Smets’ definition is motivated by interpreting H(m) as a measure of information contained in m, rather than
uncertainty. Höhle’s, Yager’s, and Nguyen’s definitions are motivated by interpreting entropy of a BPA as a measure
of conflict (or confusion or discord or strife) only. Dubois-Prade’s definition is motivated by interpreting entropy of a
BPA as a measure of its non-specificity (or imprecision) only.
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As first suggested by Lamata and Moral [28], we propose a new definition of entropy of BPA as a combination of
Shannon’s entropy of an equivalent PMF that captures the conflict measure of entropy, and Dubois-Prade’s entropy of
a BPA that captures the non-specificity (or Hartley) measure of entropy. The equivalent PMF is that obtained by using
the plausibility transform [55, 6]. We show that this new definition satisfies all six properties we propose.

One could create a definition, e.g., that combines Jousselme et al.’s definition (Eq. (37)) with Dubois-Prade’s
definition (Eq. (28)), i.e., H(m) = H j(m)+Hd(m), and such a definition would also satisfy five of our six properties,
but as we have argued before, the first component, pignistic entropy, is not consistent with semantics for the DS theory.

We also describe some additional properties of our definition of entropy of BPA m. In particular, we describe our
definition as the sum of an expected value of Shannon’s entropy, which is a measure of conflict, and expected value
of Hartley’s entropy, which is a measure of non-specificity. We demonstrate that our definition does not satisfy the
subadditivity property. This is because the first component, Hs(Pl Pm), does not satisfy the subadditivity property.
Finally, we show that while Shannon’s entropy satisfies the inequality Hs(PX ⊗PX )≤ H(PX ), our definition of H(m)
does not satisfy the corresponding inequality, H(m⊕m) ≤ H(m). This is because the Dubois-Prade component,
generalized Hartley entropy, does not satisfy this inequality, i.e., Hd(m⊕m) may be greater than Hd(m).

An open question is whether there exists a definition of entropy of BPA m in the DS theory that satisfies the six
properties we list in Section 4, and the subadditivity property. Our definition satisfies the six properties, but it does
not satisfy the subadditivity property.
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[54] J. Vejnarová and G. J. Klir. Measure of strife in Dempster-Shafer theory. International Journal of General Systems, 22(1):25–42, 1993.
[55] F. Voorbraak. A computationally efficient approximation of Dempster-Shafer theory. International Journal of Man-Machine Studies,

30(5):525–536, 1989.

19

This paper appears in International Journal of Approximate Reasoning, Vol. 92, No. 1, January 2018, pp. 49--65.



[56] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, 1991.
[57] R. Yager. Entropy and specificity in a mathematical theory of evidence. International Journal of General Systems, 9(4):249–260, 1983.

20

This paper appears in International Journal of Approximate Reasoning, Vol. 92, No. 1, January 2018, pp. 49--65.


	Introduction
	Shannon's Entropy of PMFs of Discrete Random Variables
	Basic Definitions of the DS Belief Functions Theory
	Required Properties of Entropy of BPAs in the DS Theory
	Previous Definitions of Entropy of BPAs in the DS Theory
	A New Definition of Entropy for DS Theory
	Additional Properties of H(m)
	Summary and Conclusion



