
Unified Debugging of Distributed Systems with Recon

Kyu Hyung Lee Nick Sumner Xiangyu Zhang Patrick Eugster

Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
{kyuhlee,wnsumner,xyzhang,p}@cs.purdue.edu

Abstract—To scale to today’s complex distributed software
systems, debugging and replaying techniques mostly focus on
single facets of software, e.g., local concurrency, distributed
messaging, or data representation. This forces developers to
tediously combine different technologies such as instruction-
level dynamic tracing, event log analysis, or global state
reconstruction to gradually explain non-trivial defects.

This paper proposes Recon, a debugging system that pro-
vides iterative and interactive homogeneous debugging ser-
vices. As related systems, Recon promotes SQL-like queries
for debugging distributed systems. Unlike other approaches,
however, Recon allows for all system artifacts including nodes,
communication channels, events, or instructions to be uniformly
described by relations. Also, an application in Recon originally
runs with a lightweight logger that only collects replay logs for
individual nodes. Developers debug a complete program by
replaying the execution with fine-grained instrumentation that
is capable of exposing instruction-level information.

We illustrate the effectiveness of Recon on programs as
diverse as BerkeleyDB, i3/Chord, RandTree, and Pastry. Our
evaluation includes executions in local clusters as well as in
Amazon EC2 and exhibits an unreported bug in RandTree.

Keywords-Software reliability, distributed systems,
debugging, replay, instrumentation

I. INTRODUCTION

As computing infrastructures continue to become more
powerful and pervasive, software for these systems continues
to increase in complexity. As a consequence, debugging
and replaying techniques are facing increasing scalability
challenges, in particular for distributed systems. A natural
response to these challenges is to focus on subsets of
the equation, that is, to focus on an individual abstraction
such as local concurrency, distributed messaging, or data
representation. The downside of this approach is that it
fails to capture the oftentimes subtle interactions of the
different abstractions. Developers are thus commonly forced
to manually combine technologies such as instruction level
dynamic tracing, event log analysis, or global state recon-
struction to gradually explain non-trivial defects that cross
the boundaries of individual abstractions.

This paper proposes Recon, a homogeneous debugging
system that provides iterative and interactive debugging
services through a unified relational view of pervasive
distributed systems. Figure 1 presents an overview of our
approach. Originally, the distributed application runs with a

Figure 1: Overview of the Recon approach. The original program
executes in a lightweight logger. The replay occurs with heavy-
weight instrumentation for fine-grained inspection.

lightweight logger that collects minimal logs for determinis-
tic replay of individual nodes. Developers then debug a com-
plete program by replaying the execution with heavyweight
instrumentation that is capable of exposing instruction-level
information. Like related systems (e.g., [25], [18], [11]),
Recon supports SQL-like queries for describing system
artifacts that are of interest. Unlike these systems, Recon
supports the uniform description by relations of all system
artifacts, from the highest level to the lowest level, including
nodes, communication channels, messages, event causality
and dependencies, method invocations, instructions, and
dependencies between instructions; also, Recon does not im-
pose a specific programming language, and supports online
analysis as well as replay. Due to resource constraints, most
relations are populated in a demand-driven way. In other
words, large tables are not explicitly maintained. Rather,
queries are compiled into program instrumentation that is
executed during replay to answer the query. Developers
iteratively refine queries based on previous results. Such
a unified view is highly beneficial because the onus is no
longer on the developer but on the Recon query system to
decide what level of instrumentation to employ to efficiently
collect the queried information.

In summary, this paper makes the following contributions:

• Debugging of distributed systems based on unified

views. Recon enables a unified view that overcomes the
heterogeneous requirements for various technologies
in debugging distributed systems. The key idea is to
formulate all system artifacts, system wide or node
local, event level or instruction level, static or temporal,
as relations. Debugging is carried out by writing SQL-
like queries over any number of such relations.

• Compilation of queries to various instrumentation lev-

els. Due to resource constraints, most relations are
not explicitly maintained by Recon. We describe how
Recon’s query compiler translates queries into event log
filtering components and code instrumentation. Execut-
ing these evaluates queries on demand.

• Separation of lightweight logging and fine-grained re-

play. Most existing logging and replay techniques are
monolithic. That is, they are integrated into one tool that
is either lightweight, and hence adequate for produc-
tion runs but not sufficiently powerful for debugging,
or relies on expensive infrastructures such as virtual
machines that favor functionality over efficiency. Recon
separates logging from replay to avoid expensive instru-
mentation during original executions. More powerful
heavyweight instrumentation is only activated during
replay.

• Evaluation of efficiency and effectiveness. We evaluate
the efficiency and effectiveness of Reconon a diverse
set of distributed programs and their bugs. The results
conducted in a local cluster as well as in Amazon
Elastic Compute Cloud (EC2) show that our record-
ing overhead is only about 3% and that instrumented
replay causes a constant factor slowdown, depending on
the queries. 8 bugs, including a previously unreported
bug in RandTree, are effectively resolved by querying
various levels of information.

Roadmap. This paper presents Recon in a top-down man-
ner: Section II uses real examples to illustrate the use of
Recon. Section III presents a design overview of Recon’s
architecture. Section IV introduces Recon’s debugging view.
Section V presents the separation of logging from instru-
mented replay in Recon. Experimental results are presented
in Section VI. Section VII discusses related work. Sec-
tion VIII concludes with final remarks.

II. OVERVIEW BY EXAMPLES

In this section, we present an overview of our technique
through examples. The sample bugs are from a Macedon [2]
implementation of the Chord [27] distributed hash table
protocol. Chord maps a key to a node so that the correspond-
ing data item can be stored and maintained in that node.
Chord has been extensively used in pervasive computing
environments [4]. The protocol is able to find the host for
a key in O(log N) within N nodes, and to handle nodes
joining and leaving at a cost of O(log2 N).

The Macedon Chord was found to have a number of bugs
in [14]. Some of them cause failures that are local to the
node, i.e., they do not manifest directly in the interaction
with other nodes. Let us first consider an uninitialized-
pointer-dereference bug that crashes the local execution.
In the beginning, the observable symptom is merely the
crash. The developer may have no idea what caused the
crash. It may be an incorrect local assignment or faulty

!"#$%&'()*$$$$+,--
.$$$$$$/.012$$$$$1
1$$$$$$/1032$$$$$1
3$$$$$$/3042$$$$$5

4

.

1

6
3

5

7

8

!"#$%&'()*$$$$+,--
6$$$$$$/6032$$$$$5
3$$$$$$/3072$$$$$5
7$$$$$$/7012$$$$$4

!"#$%&'()*$$$$+,--
5$$$$$$/5072$$$$$5
7$$$$$$/7042$$$$$4
4$$$$$$/4032$$$$$4

Figure 2: Triangles represent nodes. Each table denotes a partial
image of global key distribution. More particularly, a key value
is stored in node succ; queries for key values in intvl. should
be relayed to node succ.

interaction with other nodes. With our technique, the system
is originally running with a lightweight logger. Upon the
crash, replay logs are collected from nodes for debugging.
The distributed execution is described by a set of conceptual

relations that contain information such as values defined or
used at a given execution point, data and control depen-
dences of a given statement execution, and node interactions.
The developer can write queries about such relations as
though the relations were fully populated. In the above crash,
suppose the failed node n crashed at execution point t when
accessing variable d. The simplest way to proceed is to query
when d was defined by writing the following query.

SELECT definition FROM Data Dependence
WHERE use = t AND variable = d AND host = n

The query compiler generates instrumentation that collects
data dependences. Then the execution of n is replayed
with the instrumentation. The query returns an empty table,
indicating the pointer was never initialized.

Consider a more subtle Chord-related bug [14]. In the
protocol, keys are distributed to nodes and each node has a
partial image of the global distribution. In Figure 2, the key
domain [0,7] is represented in a ring. Three nodes (triangles)
have ids 0, 2, and 5. A key is stored in a node whose id is
the key value or the first clockwise node successor of the
key value in the ring, e.g., key 6 is stored in node 0. The
tables at each node show the partial images. For example,
the first row of the table at node 0 says that it knows keys
1, 2, and 4 are stored at nodes 2, 2, and 5, respectively.
Furthermore, keys falling in the range of [1,2), [2,4), and
[4,0) are relayed to the nodes specified in the succ column.

In these tables, a pair of (key, succ) is a perfect pair if
key=succ. That means the key is stored in the node with
the key value as its id. For example, (5,5), denoting that key
5 is stored at node 5, constitutes a perfect pair. According
to the Chord protocol, upon the joining of a new node with
id x, if x falls into the range of (key, succ), indicating the
key has a new successor that is closer to being perfect, the
succ entry will be updated to x, and x becomes the new host
of the key. The bug occurs when a pair is perfect; upon the
joining of any node x, the Macedon implementation updates

the succ entry to x.

In Figure 2, the failure occurs if a new node 6 joins. The
table at node 5 is updated by setting the succ of key 5 to
6 due to the fault. Assume the request for key 5 is issued
at node 2. Node 2 relays the request to node 5 according
to its table, which returns 6 as the node that hosts key 5.
The attempt from node 2 to access the key at node 6 returns
null, which is the failure. The programmer observes the
null return at node 2. A local query performed at node
2 reveals that node 6 was returned as the successor by the
previous request sent to node 5. The programmer now can
write another query to retrieve, at node 5, who defined the
returned value. The answer to that query reveals that the
successor was updated to 6 in the method that handles the
joining of new nodes. Note that these queries operate at
various levels including communication across nodes. How
to answer them is completely handled by our technique and
hence transparent to the developer.

III. DESIGN OVERVIEW

Recon consists of several components, as shown in
Figure 1. During normal execution, a light-weight logger
records a minimal application log for deterministic replay,
containing non-deterministic effects on the execution such as
system calls, CPU instructions, or signals. Recon provides
an SQL-based interface to the user for debugging operations;
a query compiler generates program instrumentation that is
executed during replay.

A. Logging and Replay System

One unique feature of Recon is the separation of logging
and replay to allow for fine-grained replay with necessary
heavyweight instrumentation only upon this replay, whilst
only requiring lightweight logging at runtime. Most existing
logging and replay systems are monolithic, collapsing both
the recording and replay capabilities. If low recording over-

head is the target, typical logging and replay architectures
(e.g. [9]) change the table for system calls (syscalls) or
rewriting instructions around syscalls in the executable to
redirect them to wrappers. The perturbations imposed on the
application execution are usually very limited. During replay,
the same interception is performed to read values from the
log file without executing the actual syscalls. Jockey [24]
is an example of such a system. Jockey provides low-
overhead logging and deterministic replaying for interactive
or distributed programs. Jockey records invocations of non-
deterministic system calls and CPU instructions for deter-
ministic replay.

Alas, such OS-level interception is not able to expose
fine-grained execution information such as values and de-
pendences of individual instructions necessary for debugging
distributed systems. The necessary information is obtained
with heavyweight instruction-level instrumentation through

dynamic binary instrumentation tools like Pin [17] or Val-

grind [20], but at a high cost in terms of runtime overhead.
For example, [21] shows the overhead of Pin is up to 60% for
intercepting syscalls. An alternative is to realize the logging
and replay functionality in a full-fledged virtual machine that
allows intercepting both fine-grained instruction execution
and coarse-grained system calls. However, this requires that
applications run on the virtual machine.

Recon, in short, uses the Jockey recording/replaying tool
as a logger at recording time, yet we implemented a replay-
ing tool which is combined with a dynamic instrumentation
tool in Pin. Our replay tools also provide guarantees on
deterministic replay of individual nodes by trapping system
calls and CPU instructions of application and retrieving
events from the log file without actually passing syscall
requests on to the OS. We will discuss our implementation
in Section V in detail.

B. User Interface

Recon provides a declarative interface based on SQL
to the developer. Various levels of system artifacts are
encoded uniformly into relations. Debugging operations can
be composed as queries on one or more such relations.
For example, if the developer is concerned about the local
instruction-level status and global network status, he/she can
easily write a join query of a local table and a global table on
conditions about time, etc. Relations are solely conceptual,
i.e., they are not explicitly populated and stored. Instead the
query compiler translates queries into binary instrumentation
at selected program points to evaluate queries online during
replay. Note that queries can vary between replays, thus
supporting iterative debugging. In the past, SQL interfaces
have been proposed for logging and profiling related applica-
tions, such as in [25], [16], [11], [18]. Existing work mostly
focuses on querying event logs. In other words, an event
log is collected beforehand and serves as a database; events
are often at a coarse level, otherwise the space consumption
would be prohibitive. Some [11], [18] feature online query
evaluation. However, they do not support replay and their
schema designs are not debugging oriented. For example,
they do not support data and control dependence. In contrast,
under the hood of a SQL interface, we support iterative
and interactive debugging through replay and expose critical
execution artifacts through various relations.

The query language supports standard relational oper-
ations including selection, projection, join, anti join, and
aggregation, i.e., the GROUPBY operation. The aggregation
operation can be useful in finding anomalous behavior. The
semantics of the query language also largely follow the stan-
dard SQL semantics. The precise information that queries
may work with and how the queries can be effectively
answered are discussed in the following sections.

State (ST)
Field Type Description

host INT host id
location EXE_PNT exec. point
variable STRING variable
value BYTE[] untyped value

Control Dependence (CD)
Field Type Description

host INT host id
branch EXE_PNT branch point
location EXE_PNT current exec. point

Data Dependence (DD)
Field Type Description

host INT host id
definition EXE_PNT definition point
use EXE_PNT use point
variable STRING variable of dependence

Output (OUT)
Field Type Description

host INT host id
location EXE_PNT output point
value BYTE[] output value

Control Flow (CF)
Field Type Description

host INT host id
location EXE_PNT instruction point
pc INT program counter
instance INT instance
file STRING source file
line INT line number

Communication (COM)
Field Type Description

sender INT sender id
send_point EXE_PNT send point
receiver INT receiver id
recv_point EXE_PNT receive point
message BYTE[] message

Figure 3: Schema for system properties that may be queried.

IV. SQL INTERFACE

Recon’s logging system collects minimal information for
deterministic replay at runtime. Queries are evaluated by
executing corresponding instrumentation generated by the
query compiler at replay. This section describes schemas,
instrumentation generation, and our query compiler.

A. Schemas

A set of relations that describe common aspects of dis-
tributed systems is predefined. These relations include State,
Data Dependence, Control Dependence, Control Flow,
Output, and Communication. The detailed schemas are
shown in Figure 3. In particular, type EXE_PNT is used to
describe an execution point. Intuitively, one can interpret it
as a triple (source file, line number, instance) that
pinpoints a specific instance of a source code statement1. In
our implementation, we use a more precise representation,
which will be discussed in the next section. Variables are
represented by their symbolic names.

Relation State records variable information observed
within the system. It describes variable values on any host
at any point over the duration of the system’s execution.
Recall that the relation is conceptual and only populated
on demand, driven by queries. For example, if a variable
value is queried at a specific location l for a node n, only
the execution of n is replayed, and only the variable value
at l is reported. Variables are not necessarily those that are
defined or used at a location but rather those that are live.

The Data Dependence (DD) relation describes which
definition (assignment) of a variable is used at a given
execution point. For example, executing the code snippet
in Figure 4(a) on node 0 conceptually inserts a tuple
(host=0, definition=(f1.c, 1, 1), use=(f1.c, 2, 1),
variable=x) in the table, meaning that the use of variable
x at the first instance of statement 2 is defined at the first
instance of 1 in file f1.c.

Similarly, Control Dependence (CD) describes the
branch point that directly determines whether or not an

1A statement can get executed multiple times, leading to many instances.

f1.c

1. x = ...;

2. y = x+1;

f2.c

1. if (P) {

2. s1;

3. s2;

4. }

5. s3;

(a) Data dependence (b) Control dependence.

Figure 4: Data\control dependence examples.

instruction at location on host is executed. Assume an
execution of the code snippet in Figure 4(b) takes the
true branch and the host is 0. The CD table conceptu-
ally contains two tuples (host=0, branch=(f2.c, 1, 1),
location=(f2.c, 2, 1)) and (host=0, branch=(f2.c,
1, 1), location=(f2.c, 3, 1)). Relation Control Flow
(CF) associates each execution point with a binary program
counter, execution instance, and symbolic information.

Besides the above relations describing fine-grained infor-
mation, we also have relations for coarser-grained informa-
tion. The output of a host is described by the Output (OUT)
relation. The interaction between hosts is captured by the
Communication (COM) relation. This relation observes all
messages sent between hosts along with the hosts involved
and when they sent or received the message in question.

B. Instrumentation Primitives

We now discuss how we leverage instrumentation to
populate the aforementioned relations. The population is
controlled by our query compiler.

Representing Execution Point. As discussed earlier, an ex-
ecution point can be conceptually considered a triple of file
name, source code line, and execution instance. However,
this is not sufficiently accurate because it is common that a
source code line may be composed of multiple statements
and even different parts of a statement may lead to different
instructions. For example, if a predicate has a conjunctive
condition, the different clauses may have different execution
instances at runtime. In Recon, we use the instruction
count as the internal representation of an execution point
(EXE_PNT), i.e., the number of executed instructions up to

the point in the same process. This is because replay is
deterministic (we will discuss how we handle concurrency in
Section V-A) and thus the same execution point always has
the same instruction count. While instruction count is not
a user-friendly representation, the symbolic information can
be easily acquired by joining a query with the CF relation.
For example, the following query identifies the source code
location that outputs a string “Hello”.

SELECT file, line, instance FROM CF
INNER JOIN OUT
ON CF.location = OUT.location

WHERE OUT.value=“Hello”

Resolving Variables. For usability, we allow developers
to specify variables in their queries using symbolic names.
Because the instrumentation to answer queries has to be at
the binary level, we have to resolve variables to their ad-
dresses. We leverage a tool called dwarfdump [1] to establish
the mappings between symbolic names and addresses. For
global variables, the tool can directly yield their addresses.
The offset of a local variable in the stack frame of its
enclosing function can also be identified by the same tool.
At runtime — combined with the stack base address which
can be acquired from the binary instrumentation tool Pin —
Recon can compute the stack addresses of local variables.
For heap variables, their reference paths are followed to
identify their addresses. Note that it must be true that the
reference path of a heap variable starts with a global or stack
variable, whose address we have already resolved.

Primitives for Relations. To answer a query on the State
relation, we first replay the specified host up to the re-
quested execution point; then we resolve the addresses of
the specified variables and retrieve their values. For the OUT
and COM relations, as both output emission and message
sending have to go through system calls, queries can be
answered by simple processing of the replay log. Queries of
the CF relation are straightforward to answer as the Pin
infrastructure allows identifying the precise PC (program
counter) of each instruction and its symbolic information.

The remaining two relations (DD and CD) require more
effort. Consider the DD relation first. We detect data depen-
dences through a data structure called shadow memory – a
small piece of memory allocated inside Pin for each program
variable. This memory can be considered the shadow of the
respective variable. Upon the definition of the variable, the
location that defines the variable is recorded in its shadow
memory. Later, when the variable is used, a dependence is
detected. Let SM(x) be the shadow memory of x. Consider
the example in Figure 4(a). When line 1 is executed, SM(x)
is set to 1. When line 2 is executed, since x is used, a
dependence is detected between 2 and SM(x) ≡ 1 on
variable x. We developed an instrumentation module for Pin
to carry out the detection.

Control dependences in the CD table are detected as
follows. Immediately after a branch point, the linear control
flow from that point is dependent upon the branch point
because whether or not an instruction is executed is directly
determined by the branch. At the postdominator [8] of
the branch, i.e, the join point of the branch, execution is
no longer determined by the branch point. This implies
that control dependence is organized into nested regions
much like function calls, and similarly, control dependence
can be efficiently observed throughout an execution by
pushing a branch point onto a stack called the control

dependence stack, and popping once its postdominator is
encountered [28]. Thus, in the same way that the function
call on the top of the call stack is the currently executed
function, the control dependence for the current execution
point is observed at the top of the control dependence
stack. By maintaining this stack during replay with Pin,
control dependences can be detected on the fly. Consider the
example in Figure 4(b). Upon executing the branch point
at line 1, line 1 is pushed onto the control dependence
stack. The following executions of lines 2 and 3 are control
dependent upon the top entry on the stack, which is line
1. The entry is popped at the execution of line 5, the
postdominator of 1, indicating that the following executions
are no longer decided by the branch at 1.

C. Query Compiler

Above, we discussed how to detect information defined in
the relations in Figure 3 through instrumentation primitives.
However, we cannot afford first populating the relations and
then answering queries. We rely on the query compiler to
collect as little information as possible to answer queries.
The compiler takes a query provided by the user, performs
instrumented replay of the relevant hosts using Pin to collect
the specific information needed to answer the query, and
then performs the post-processing or aggregation necessary
to present the results in the format requested by the user.

The compiler front end is a query parser. Because we
support queries with a grammar structured like SQL, we
leverage an existing SQL parser [3] to build an abstract syn-
tax tree representing the query structure. Answering a single
query then involves replaying precisely the desired subset
of hosts with instrumentation that collects the information
requested in the query. Determining which relations should
be populated can be done by looking at the relations refer-
enced in the query itself. The corresponding instrumentation
primitives are enabled through command line options of Pin.
A primitive can be easily attached to (or detached from) Pin
by providing (removing) the corresponding instrumentation
module name via the command line.

To avoid collecting too much information, it is necessary
to control the elements or rows of the relations to be
populated. That is, we never want to return results for the
entire duration of any given host’s execution, e.g., answering

a query like “SELECT * FROM CF WHERE host=0”, as it
entails recording the entire control flow trace of a process.
Hence, we only want to observe the relations at specific
times or intervals. This is ensured through two different
aspects of the system: WHERE clause filtering and join

operations. First, let us consider simple queries over a single
relation. In this case, the filters over which elements should
be recorded are explicitly provided by the user in the form
of the WHERE clause. Note that we require the WHERE clause
to restrict at least one more field other than the host id
when querying the State, DD, or CD relations because these
relations reflect execution properties that may be viewed as
continuous over the entire execution, yielding an intractable
quantity of information.

When performing a join operation, or more specifically
an inner join, results from a query over one relation are
combined with results from another relation based on some
common attributes. For example,

SELECT use FROM DD
INNER JOIN COM
ON DD.definition = COM.recv_point

is a query that collects the execution points for all uses of
variables defined at the reception of a message. Conceptu-
ally, it requires retrieving the DD and COM relations and
then finding pairs of results that satisfy the join predicate
as specified by ON. In practice, however, implementing the
query this way would be intractable, requiring not only the
explicit capture of both already large relations, but also some
filtering over their Cartesian product. To deal with this, we
pipeline the data collection of the relations used within a join
operation, such that the concrete results from one relation
are explicitly used in the collection of another. For example,
in the above join operation, the query over COM, returning
all recv_points observed in the system, can be executed
immediately. If that query is executed first, and the results
from that query are used as the basis for restricting the query
over DD, then finding a solution to the join can become
practical because the number of communication events is
expected to be tractable in practice.

Precedence Relations
(High) 1 Output

2 Communication
3 CD, DD, CF

(Low) 4 State

Table I: Relation precedence in joins.

To generalize the above observation, we thus roughly
use the expected approximate size of the implicit relations
to prioritize which information should be collected first.
The priorities are given in Table I. For example, output is
expected to be a relatively rare occurrence on any particular
node in the system, so evaluating queries on the Output
relation is often directly feasible. Thus, it has the highest pri-

ority, and the results from an output query will be collected
first in a join operation. Communication between nodes is
not a rare event, but it does not happen at every instruction
across all hosts, so COM has the next highest priority. The
CD, DD, and CF relations all contain a bounded number
elements at every instruction executed within the system, so
they are all larger relations than COM and should only be
evaluated afterward in order to winnow their results. Finally,
State has a theoretically unbounded number of elements for
every instruction executed on every host, so it clearly has
the lowest priority when joining. In the event that the size of
a result set still exceeds a maximum limit, we simply stop
data collection and return the partial result set. The user can
then refine the query further.

V. REPLAY WITH INSTRUMENTATION

This section describes the separation of logging from
replay in Recon and the implementation of its replay system.

Low overhead is important during logging execution. In
contrast, replay is often conducted during the debugging
phase, in which overhead is not a major concern and more
functionality is highly desirable. Hence, we separate Recon
into two subsystems. One is the logging tool that is very
lightweight for normal runs; the other is the replayer built
on a powerful dynamic instrumentation infrastructure.

Achieving such a separation is, however, far from trivial.
Ideally, we could have combined existing industrial strength
tools such as Jockey to record an execution and Pin for
dynamic instrumentation. Unfortunately, the nature and the
complexity of the tools don’t allow this to happen straight-
forwardly as we explain in the following.

Jockey runs in user space. When an application is run
on Jockey, Jockey calls an initialization method before the
application gains control, in which Jockey scans through
the binary, including the libraries loaded by the application,
looking for any syscall sites. Those syscalls are redirected
to Jockey by overwriting the instructions at the syscall sites.

In contrast, the dynamic instrumentation engine Pin takes
a binary. During execution, before executing any new (never
instrumented) code regions, it calls a provided instrumenting
function. This function instruments the given code regions
and returns a new code region that contains both the original
semantics and the instrumentation semantics that expose
execution details. Pin executes the instrumented code instead
of the original code. The instrumented code region is also
copied to a new code space and thus it can be reused without
calling the instrumentor again during the same execution.
Note that such instrumentation is dynamic, meaning that it
occurs during execution of the program.

Simple aggregation of the two tools can occur in two
ways: one is Jockey+Pin+application, meaning that both
Pin and the application run on top of Jockey; the other is
Pin+Jockey+application. Alas, neither works. In the former
case, Jockey gains control first and the subject program of

Jockey is Pin instead of the application, which is itself the
subject of Pin. Recall that Pin instruments the application on
the fly during execution, and only the instrumented version
gets executed. The instrumented version does not exist at the
beginning, and hence its syscalls are not visible to Jockey.
In fact, Jockey will search for syscalls in Pin and patch
them. Thus, during Pin execution, all those syscalls will be
undesirably redirected to Jockey.

Inversely, if Jockey and the application run on top of Pin,
Jockey first intercepts all the syscalls of the application. The
patches by Jockey and then the logging/replay code become
part of the application. When the patched application ex-
ecutes inside Pin, Pin will try to instrument the patches
and the Jockey code along with the application code. Such
instrumentation is not only undesirable but often destructive
because Jockey patches and code are at a very low level.
Also, both tools reserve an overlapping virtual space region
for their own purposes, which causes intricate conflicts.
Finally, the threading models of the tools are incompatible.
As a result, even after solving the compatibility problem,
the integration would still fail on threading programs.

Our solution is to avoid using Jockey for replay. Instead,
we implement the replay functionality inside Pin. The insight
is that since Pin can potentially trap each instruction in
the application, we can easily trap all the syscalls in the
application. In particular, we implement an event log parser
that can parse the logs generated by Jockey. Then we trap all
the syscalls of the application inside Pin. Upon the execution
of a syscall, we retrieve the corresponding event from the log
through the parser. Note that Pin allows us to compose and
attach multiple instrumentation modules exposing various
aspects of application execution. We still benefit from the
low logging overhead by using Jockey to generate logs.

A. Handling Threading

Jockey supports multithreaded applications using its em-
ulation library called fakethread to allow maximal con-
trol over recording thread execution. Fakethread support is
composed as a library that can be linked with threaded
applications, providing the same interface as pthreads. It
is completely inside user space and threads are opaque to the
kernel, which is different from pthreads. Fakethread allows
one thread to execute at a time. A thread is never preempted.
Instead, it runs continuously until a blocking syscall, such as
a blocking read or write, or until it fails to acquire a lock.
In such cases, fakethread performs a (user space) context
switch to the next ready thread. Jockey records all thread
creation, join, termination, and context switch events.

In contrast, Pin’s threading model is based on pthreads.
It relies on the kernel to manage threads. In particular, the
existence of a user thread is relayed to Pin by the kernel
so that Pin can allocate space dedicated to the thread. Such
space maintains thread local information related to analysis
modules attached to Pin, e.g., a stack inside Pin for the

thread in addition to the stack in user space. Pin does
not interfere with thread scheduling. Context switches and
synchronizations are managed by pthreads independently.

The differences between the two threading models make
replaying Jockey logs inside Pin challenging. The problem
stems from Pin not being aware of threads created through
the user level fakethreads. As a result, thread specific space
is not allocated inside Pin, leading to various problems.

!""#$%&'$()
!"#$%&'!"(!!!!!!"#$%&'!")
(*!+,%%-./0!!!!((*!$%&'./0
)*!!***!!!!!!!!()*!!***

*&+,'-.,&/0#$1.&.2
1(*!234+5637#./!8
1)*!!!"#$%&'$&(')!(*'$&*(+,'%-.$(/$!0
11*!!$%39$:0
!!!!;

3$)
)(*!6:3%$7%-34+,%%-./!8
))*!!!***
)1*!!!234+5637#./0
)<*!;
)=*!6:3%$7%-34$%&'./!8
)>*!!!*(+,'1*-2'3-40
)?*!!!234+5637#./0
!!!!;

Figure 5: Example for fakethreads in Pin.

B. Achieving Separation in Recon

Consider an example in Figure 5, in which fakethreads
are used. The application has two threads, T1 and T2.
Their respective calls to sleep() and read() lead to
blocking syscalls. The Pin box shows the functions (inside
Pin) that intercept the two syscalls, which in turn call the
fakethread context switch function. The Fakethread box
shows the context switch function inside the fakethread
library. Upon a syscall from the application, Pin traps the
call and dispatches the call to the right handler inside Pin,
e.g., intercept_read() for the read() call in T2. The
handler first reads the event from the log file. If the syscall
is blocking, the fakethread context switch is called.

Figure 6 shows a sample execution that executes T1
to the blocking syscall sleep() at line 1, then executes
T2 to the blocking call read() at line 11, and finally
switches back to T1, ending with a segmentation fault. The
reason is the invisibility of fakethreads inside Pin. The stacks
shown beneath the trace inside Figure 6 explain the problem.
Figure 6(a) shows the stacks after line 32 and before the
context switch. Upon the switch, the user stack is changed
from T1 to T2. The problem lies in the trap of read() by
Pin. Since Pin does not know that there are two threads, it
uses the same internal stack such that the activation record
of the intercept_read() invocation is pushed on top of
that of intercept_sleep() (from T1), as shown in (b).
As a result, in (c), when the fakethread scheduler switches
back to T1, the user stack is correctly recovered but not the
Pin stack. In particular, the return at line 33 would direct the
control flow to intercept_read() while it should return
to intercept_sleep().

Our solution is to use real pthreads during replay so that
Pin is aware of the user threads. In particular, we create
pthreads during replay at places where the log indicates that
fakethreads were created during the original run; pthread

!"#$%%&
!"#$%&'()*%+,-. /01%&'()*

!""""""'!""""""'(""""""(!""""""('""""""!!"""""')"""""'*""""'+"""""(!"""""('"""""((""""",-./"012345"

,- /01 ,- ,2 /01 ,2 ,-

(!"678#9:7;<
'!":=7%>;%&78#$%%& !!">%?@

!"#$%&'()*%+,2. /01%&'()*

')":=7%>;%&78>%?@
'!":=7%>;%&78#$%%& !"""#$%%&

!"#$%&'()*%+,-.

(!"678#9:7;<

+(.%34'#$%52%01%,- +).%6#47$#%55%01%,-+8.%34'#$%29%01%/01

,$()#:

&'()*:
/01%&'()*

')":=7%>;%&78>%?@
'!":=7%>;%&78#$%%&

Figure 6: Fakethreads are problematic. The highlighted Pin stacks cause the problem.

joins and exits also strictly follow the log. The challenge lies
in forcing the pthread scheduler to respect the schedule spec-
ified by the fakethread log. More specifically, fakethreads are
not preemptive, but pthreads’ default scheduling policy is
preemptive, e.g., a thread’s time slice may expire, such that
undesirable context switches may occur. Furthermore, the
pthread scheduler is external to Pin; thus forcing a context
switch between two specific threads is not straightforward.

We use a global pthread lock to enforce the recorded
schedule. More specifically, a thread has to own the global
lock to start or resume its execution. A thread yields the lock
only when the fakethread log indicates a context switch.
Hence, a pthread originated context switch during replay
does not lead to the execution of a different thread if the
log does not say so.

VI. EVALUATION

To establish the practicality of Recon, we examined the
runtime overhead it incurs for logging and replay. We also
evaluated Recon on several real world bugs, including one
unreported bug, from four distributed applications.

A. Efficiency

We first examined the runtime overhead incurred for
both the logging that occurs in original runs and for the
instrumented replays in the debugging phase. Overhead was
measured on a set of four distributed programs including
BerkeleyDB, i3/Chord, Pastry, and RandTree. BerkeleyDB
is a popular open-source database engine that provides data
replication capability to enable a group of processes to
service the workload. The Pastry and RandTree implemen-
tations are those from the Mace infrastructure [12]. All tests
were performed on an Intel dual core 1.66GHz machine
with 3GB memory. Individual nodes in the network were
executed in independent virtual machines, each running
Linux 2.6.11. We also measured the logging overhead of
BerkeleyDB on a real distributed environment, Amazon
EC2. Each node had 2.66GHz CPU with 1.7GB memory.

Let us first consider the runtime overhead during log-
ging and uninstrumented replay (on Pin), as presented in
Figure 7. Here we deploy 4 nodes for all benchmarks. We
use the insertion of 10,000 key/value pairs as the input to
BerkeleyDB. For I3/Chord, we use the test suite provided
by I3. We use the appmacedon tool, included in the Mace

Figure 7: Logging/replay overhead.

release, as a driver for multicast and randomly generated
streaming data to measure overhead of RandTree and Pastry.
All times are normalized against the original execution
time. Original marks the unmodified runtime of the original
program. Record denotes the logging time. It was measured
from the starting time of the first action of the system to
the finishing time of the last action. Replay denotes the
most significant overhead for replaying a single node in the
system. Replay time is normalized against the original time
for that same node. Note that our system allows multiple
node replay, controlled by the query compiler.

Observe first that the logging overhead is both consistent
and tolerable. The maximum overhead is only 4%, for Pastry,
and all other cases have 3% overhead, which is tolerable
for realistic runs. For replay, the overhead results appear
surprising at first. Indeed, the time taken for replay is
significantly less than the original run and only 8% of the
original run on average. This results from the time saved by
emulating all system calls during replay. When no waiting
time is incurred during replayed system calls, the overall
execution is, in fact, much faster than the original.

We also vary the size of our deployment to observe
overhead changes for BerkeleyDB. We use the same input
and vary the number of nodes from 1 to 8. We executed
the same set of experiments on both the local machine
and Amazon EC2 cluster. Note that the same set of data
is replicated to all nodes in the system. The results are
presented in Table II. Observe that the logging overhead
is high for one node but less for other settings. The reason
is that the communication delay masks some overhead when

of nodes exec. time (s) logging overhead log size
Local EC2 Local EC2

1 180.5 25.58 7.19% 2.88% 6.79 MB
2 414.4 396.33 3.14% 0.54% 9.13 MB
4 512.0 212.74 3.19% 1.11% 12.28 MB
8 594.7 313.4 3.04% 1.05% 17.07 MB

Table II: Logging costs vs. # Nodes for BerkeleyDB.

multiple nodes are involved. The execution time with 2
nodes is a lot slower than the 1 node execution because
the data has to be replicated to the second node. When
the node count goes higher, the overhead does not increase
as substantially because the replication is done through
broadcasting. In the EC2 cluster, execution time with 2 nodes
is slower than the 4 node execution because the master
node must wait until receiving at least one acknowledgment
message from clients for each input data. When we have
2 nodes, one master and one client, the only client needs
to store all replicas and sends ack messages to the master,
but in the 4 node case, any available client can send ack to
the master. When we have 8 nodes, the master node needs
at least 3 ack messages from clients, so the execution time
is slower than with 4 nodes but still faster than the 2 node
case. Local machine execution does not show this symptom
because increasing the number of nodes causes CPU and
memory congestion. The log file sizes are also presented in
the last column.

Figure 8: Instrumentation overhead.

The instrumentation overhead for collecting several differ-
ent execution artifacts is presented in Figure 8. Once again,
all runtimes are normalized, this time against the replay
time for each program. Replay presents the base replay time,
i.e., replay inside Pin without instrumentation. Replay+State

gives the time necessary to locate a particular point in
the replay of a node such that the requested state can be
extracted with the help of dwarfdump. Note that populating
the Output and Communication relations demands the
same online instrumentation and hence the same overhead
applies to those primitives as well. Replay+CD gives the
time necessary for detecting the control dependence for each
execution point within a node. Replay+DD Bin presents the
time for detecting the data dependence for each execution
point in the application binary while Replay+DD Full covers

both the application binary and libraries. We separate these
two options because instrumenting libraries may not be
necessary for all programs. BerkeleyDB builds some of its
own libraries as well, so those are included in its Bin results.
Replay+All Bin presents the overhead of all instrumentation
primitives for the application binary while Replay+All Full

does so for both the binary and the libraries.

In all cases, tracking the execution position to collect state
information takes less than 3 times the replay runtime, and
in most cases, it takes less than 2× as long to execute,
1.8× on average. Tracking control dependence alone usu-
ally has less than 3× overhead with respect to the base
replay runtime, 2.6× on average. For most benchmarks,
data dependence is the most expensive execution artifact
to detect, with full data dependence detection, including
through library calls, taking an average of 9.11× to execute.
Note that the overhead from BerkeleyDB is the dominant
contributor to this average. The BerkeleyDB tests involve
significantly more data than those for the other programs,
resulting in a higher number of data dependencies being
detected. Sometimes, it may be beneficial to exclude data
dependencies that occur inside external library calls. When
we do this, tracking data dependence can be done with 5.5×
the base runtime on average. Having all primitives activated
incurs more slowdown. Overall, considering that replay is
much faster than the original run (0.08×), the instrumented
runs are even faster or comparable to the original runs. Such
overhead is acceptable in the debugging phase.

B. Effectiveness

We tested our tool with eight bugs from four distributed
applications. One of them (RandTree #1) is an unreported
bug and we can easily generate queries to find a root cause.
We will discuss details in the Case Study #2. Figure 9
presents the total number of queries generated for debug-
ging, and also the frequency with which they involved each
relation from Figure 3. The right-most column represents
the number of nodes we needed to replay in order to find
the cause of each bug. From the table, we can observe that
all these real bugs can be resolved in a few queries with
14 being the maximum, showing the effectiveness of our
technique. Queries at different levels, from variable state to
node interactions, are needed, and most of these bugs require
reasoning across node boundaries, illustrating the necessity
of a unified debugging view. Next, we will present a few
case studies.

Case Study #1: The first case is a failure of a leader
election scheme in BerkeleyDB 4.7.25 that supports the
single master/multiple clients model. This bug was originally
analyzed in [32].

When a master crashes, all remaining nodes in the system
automatically start a new round of leader election. However,
in the case of this bug, the system permanently fails to
elect a new master because all nodes in the system believe

Bug Summary Total Queries STATE CD DD OUTPUT CF COM # of nodes

DB#1 Permanent election failure [32] 13 1 4 6 1 0 2 2
DB#2 Master node panic [32] 14 1 3 8 1 0 1 2
Chord#1 Packet handling failure [9] 7 3 2 3 1 0 0 1
Chord#2 Inconsistent ring [10] 7 0 2 1 1 2 2 2
RandTree#1 Permanent join fail 9 0 2 4 1 0 3 3
RandTree#2 Disjoint tree [10] 7 0 3 2 1 1 1 2
RandTree#3 Fail to find peer [13] 5 1 1 3 1 0 1 2
Pastry#1 Buffer overflow [13] 5 1 2 1 1 0 1 2

Figure 9: Analyzed bugs with the number of queries used and relation usage distributions.

!"#$%#&#'()'*

!"#$ %&$'+#,-%./(# 00123%452%5678952($)

!*+$,,-.,/001'/234

!*5$ 66/1#&#'(:;<64

7-.,/00189:

;+*$,,-.,/001'/234$ &<=4$3>,>?%@=($)

=>? +$"@,(AB,#C%AD(E1FG-)G- H1G+FE1(@D#)(.%+#'<I

!"#$%#&#'()'*

!A+$ +#,-%./(# 01"#$J*C@,,#"K

!"#$%&'(&!"#"$%& '()*+,'- ./01&$2&'3&045645&7&

89"/"&'(:7'+5;7,<&7(:7'+5;7, +,=&7(>+:4?<@A7&

?:?'5+):?((B&+,=&7(-7C5<D&

!"#$%&)&(&!"#"$%& =(=?E;,;5;7, ./01&22&=

89"/"&=(4C? <&;=FGHI&+,=&=(>+*;+):?<@C?,=F>75?B&&J

B#+$ @A1B$"@/"@(L1 M01N1OO19P%5QQ4RBS4TUR9%494UR8394II1V

B##$ W1#&+#1V

XYX1 "#$J*C@,,#"10123%452%5678952K

BBC$ 0/DE:F,D0%G0%=H I$CJ

!"#$%&*K&!"#"$%& '()*+,'- ./01&$2&'&89"/"&

'(:7'+5;7,<;=FLIL&+,=&'(-7C5<D

!"#$%&+K&!"#"$%& C(>+:4? ./01&!5+5?&C&89"/"&

C(:7'+5;7,<;=FLID&+,=&C(>+*;+):?<@6*;7*;5MB

5A5$ %&$'0/DE:&?>K@$L$'MNO,P,MNQRS,QOT$U$

MNO,P,MNQRS,VO$U S4T%P%S4UZ74S%9Z[(()$

5A*$ $"@/"@(L101NK

!"#$%&,&(&!"#"$%& =(=?E;,;5;7, ./01&22&&=&89"/"&

=(4C?<;=FLID&+,=&=(>+*;+):?<@6*;7*;5MB&J&

!"#$%"#'/"-)' *

=\]1 +C@(' 1̂B"$J*"#'(L$#I1 V

#*!$ ':+#1S4T%_T28R4H

#*#$ 0/=$I %%"#$%`$-:(#%+#(`$B#,.E1 #@-E1"$E1 "#'IJ

!"#$%;:'a`$)' *

,,0/D,WD->=/,@/=WD'88($)

5CB*$ P%Q4RB"#$E1S4T%P%S4UZ74S%9Z[IK

!"#$%&-&K&!"#"$%& '()*+,'- ./01&$2&'&89"/"&

'(:7'+5;7,<;=FNOLP&+,=&'(-7C5<D

!"#$%&'.&(&!"#"$%& =(=?E;,;5;7, ./01&22&=&89"/"&

=(4C?<;=FQPH&+,=&=(-7C5<D

!"#$%&/K&!"#"$%& '()*+,'- ./01&$2&'&89"/"&

'(:7'+5;7,<;=FNRP&+,=&'(-7C5<D

!"#$%&0&(&!"#"$%& =(=?E;,;5;7, ./01&22&=&89"/"&

=(4C?<;=FNRN&+,=&=(>+*;+):?<@*?6STE:+UCB&J&

!"#$%:`(/)'*

bcX1 23%6RZd9%UZTe56B#,.E1:"f$J*"#'(L$#E1;$IK

!"#$Df"%$/+@g)'*

A5+$ X$"#:-.BA-E1@/.#'E1;`A%'/`,(IX

!"#$%&''&(&!"#"$%& =(=?E;,;5;7, ./01&22&=&89"/"&

=(4C?<;=FDNL&+,=&22(>+*;+):?<@)6B& +,=&22(-7C5<D

!"#$"%&'(&)*+,&-

5++5$$'3G%-(,,0/D,@/2-,</@@>K/'/234$/%-4$$X$($$$$$

!"#$Df"%$/+@g)'*

AC!$ X$C"@(#.BA-E1@/.#'E1;`A%'/`,(IX$

!"#$%&')&(!"#"$%& $01(C?,=?*3&$01(C?,=F67;,5

./01&$01&89"/"&$01(*?'?;>?*<D&+,=&

$01(*?'>F67;,5<;=FRND

!"#$%&'1(&!"#"$%& $01(*?'?;>?* ./01&$01&89"/"&

$01(C?,=?*<O&+,=&$01(C?,=F67;,5 T&;=FRND

!"#$%&1&(!"#"$%&=(=?E;,;5;7, ./01&22&=&89"/"&

=(4C?<;=FGRD&+,=&=(>+*;+):?<@*?6STV;,,?*B&J&

Figure 10: Case study 1: BerkeleyDB - failure in election.

they cannot be the master. Suppose node 0 is the original
master node and is synchronizing data with all other client
nodes, nodes 1 and 2. The steps of synchronization are as
follows. First, when node 0 receives modified data, it sends
a REP_PAGE message with the modified data to all clients.
All clients who receive this message change their state to
LOG_RECOVERY by setting a flag to REP_F_RECOVERY_LOG,
meaning they expect the corresponding log update in the
next step. When this flag is set, the node cannot be a master.
The clients send a REP_LOG_REQ message to the master
node, requesting the updated log. In the next step, when node
0 receives the REP_LOG_REQ message, it sends a REP_LOG

message with the updated log records. When clients receive
the REP_LOG message from the master, they restore to the
normal state. The bug happens when node 0 is down after it
sends a REP_PAGE message but before sending the REP_LOG
message. When the master is down, all clients start election
but permanently fail to elect a new master. The symptom
is an error message on all client nodes – “No electable

site found : . . .”

We generated 13 queries. Figure 10 presents the code
snippets related to the failure appended with the correspond-
ing queries. We started debugging with node 1, which is
one of the client nodes that printed the error message. From
QUERY1 (Q1), we can obtain the execution point where the
message was printed, line 435, and we can also reach the
branch point controlling the execution there, which is line
368. From the first query, we find that this error happens be-

cause variable send_vote has the value DB_EID_INVALID.
Now we want to know where the value of send_vote

was defined. In Q2, we query the data dependence of
send_vote at line 368. Here, we use id_368 to denote
the execution point of line 368 for readability. Q2 returns
the execution point of line 351, and now we need to know
where the variable rep→winner was defined. From Q3, we
reach line 989, where rep→winner was given the constant
value DB_EID_INVALID. Now we need to obtain the control
dependence of the execution point at line 989. Q4 shows
that line 981 controls line 989. In order to decide which
condition caused the wrong branch outcome, we query the
value of priority at 981 (Q5), which reveals that it has
an undesirable value of 0. Through Q6 and Q7, we reach
line 252, the branch controlling the definition of priority
to 0 at line 257.

From queries Q8-11, we can reach the line 521, where the
message was received from another node. At this point, Q12
reveals that that node 1 has received the message from node
0 at line 503. Node 0 was supposed to send REP_LOG after
the execution of line 503 (sending REP_PAGE). However,
according to Q13, whose result is an empty set, node 0
did not send any further message to node 1. From these
combined queries, we thus discover the reason for the
election failure.

Case Study #2: The second case study is for a previously
unreported bug in RandTree. This bug exhibits as a perma-
nent failure when a node joins the tree. In the experiment, we

!"#$%&'%$()$*!"#$%&'()*#(%+,-.)-/0&!'12+$,

3456,7!'/08996:;;;&'!'#<'%6=/#(6 *&/,6:699626

!"#$%&'(&!"#"$%& '()*+,'- ./01&$2&'3&045645&7&

89"/"&'(:7'+5;7,<&7(:7'+5;7, +,=&7(>+:4?<&

@AAA*?'?;>?=&B7;7,C&+,=&7(-7D5<E

!"#$%&)&(&!"#"$%& =(=?F;,;5;7, ./01&22&=&89"/"&

=(4D?<;=GHIE&&+,=&=(>+*<@'-;:=*?,(F;,=JKDL(D74*'?MC&

!-! *./(&01%23'(4%*+$5$6789:;<=>?@A++$,

35> !"#$%&'()#(-'&8+,-.)-/0&!'1?

!"#$"%&'(&)*+,&-

BC$$$$(2D 1E&'!<*&/,*D1F2'GH1DIH.J%DK$ 1LM)K$$N+O

4>3 #*6+26+,-.)-/0&!' ;@6&//81AA6 2616B

4CD %/E(!7$$F&/08'+&//8G6 ,-.1?

PQB$$$$$$$$$(2D 1E-'(%8/*D1F2'GH1DIH.J%DK$ R30FDF*+K$R3'(4%*+KN+O

!"#$%&*&(!"#"$%&$2()*+,'- ./01&$2&89"/"&

$2(:7'+5;7,<;=GNOP&+,=&$2(-7D5<N

!"#$%&+Q&(&!"#"$%&22(=?F;,;5;7, ./01&22

89"/"&22(4D?<;=GIOH&+,=&22(>+*;+):?<&

@KDL(D74*'?C&+,=&22(-7D5<N

!"#$%&,(&!"#"$%& $01(D?,=?*3&$01(D?,=G67;,5

./01&$01&89"/"&$01(*?'?;>?*<N&+,=&

$011(*?'>G67;,5<;=GPRGN

!"#$"%&'(&)*+,&.&/*0+1

99(2(D(F&(4FD(H2N$

PSTB$$$$$$'DFD%9./F2U%*VH(2(2U+O

HIDI %/E(!7$$F&/08'+J//8-8&7KG21?

PQB$$$$$$$$$$$(2D 1E-'(%8/*D1F2'GH1DIH.J%DK$R30FDF*+K$R3'(4%*+KN

BC (2D 1E&'!<*&/,*D1F2'GH1DIH.J%DK$ 1LM)K$$

67896@II7W@9I<X@K$#K$*'D1M.D 'H.JF001Y+Z'FK$Z'F&%2+O

!"#$%&-&(&!"#"$%& 22(=?F;,;5;7, ./01&22

89"/"&22(4D?<;=GHIE&+,=&22(>+*;+):?<@KDL(D74*'?C&

+,=&22(-7D5<E

BC (2D 1E&'!<*&/,*D1F2'GH1DIH.J%DK$ 1LM)K$$N+O

!"#$%&.(&!"#"$%& $01(D?,=?*3&$01(D?,=G67;,5

./01&$01&89"/"&$01(*?'?;>?*<E&+,=&

$01(*?'>G67;,5<;=GPR

!"#$%&/(&!"#"$%& $01(D?,=?*3&$01(D?,=G67;,5

./01&$011&89"/"&$011(*?'?;>?*<E&+,=&

$011(*?'>G67;,5<;=GPRGS

!"#$%&0&(&!"#"$%& =(=?F;,;5;7, ./01&22&=

89"/"&&=(4D?<;=GHSO&+,=&=(>+*;+):?<@KDL(D74*'?CT&

!"#$"%&'(&)*+,&.&/),21

99(2(D(F&(4FD(H2N$

PSTB$$$$$$'DFD%9./F2U%*VH(2(2U+O

HIDI %/E(!7$$F&/08'+J//8-8&7KG21?

PQB$$$$$$$$$$$(2D 1E-'(%8/*D1F2'GH1DIH.J%DK$R30FDF*+K$R3'(4%*+KN

34'#5&6789&:4&:;"&4%'5'#7<&<'#"&=>?

Figure 11: Case study 2: RandTree – permanent failures to join tree.

have two nodes in the tree, nodes 0 and 1, in the initial phase.
Later, node 2 starts and sends a join message to node 1. The
message is relayed to the root node 0. Node 0 sends a join
reply message to node 2 and updates its own child list, which
now includes node 2, but node 2 resets right after sending the
join message. After node 2 is reset, it ignores the join reply
message from node 0 because it is in the initialization phase.
After node 2 finishes initialization, it sends a join message
to node 0. Node 0 ignores that message because node 2 is
already its child. Node 2 keeps sending join messages to
node 0, but all of them are ignored and thus node 2 cannot
join the tree. When node 0 ignores the join message from
node 2, it prints the error message “!!!received Join

from XX, already child.”

We used 9 queries to debug this failure, all presented in
Figure 11. We started from the error message. After Q1, we
reach line 650, meaning node 2 is found in the child list.
From this point, we seek to know why node 2 is already
in the list. Using Q2, we find that node 2 is added at line
627, as the result of a message received at line 84 (Q3).
Q4 discloses that the message was sent from node 1, as the
result of a message received at line 84 in node 1 (Q5-6). Q7
identifies that the message was from the previous process of
node 2 expressing its intention of joining the tree. Node 1
simply relayed the join message. Then, we go back to line
650 and try to understand why msg.source has the value
of node 2. Through Q8 and Q9, we know that this join is
from the new node 2 process.

The full queries for the remaining bugs in Figure 9 are
omitted due to space restrictions.

VII. RELATED WORK

Debugging pervasive systems is becoming increasingly
important. D3S [15] and WiDS [14] are projects that aim
to detect runtime errors in distributed systems. They are
based on runtime property checking at the event level. These
systems assume the user knows exactly what properties
to check. In contrast, our system provides an interface
that exposes artifacts at various levels, allowing the user

to examine them regardless of foresight, starting from the
observed symptoms. Another thread of work for debug-
ging distributed systems uses model checking [19], [31].
MaceMC [12] is an explicit state model checker that checks
liveness properties. In general, model checking also requires
the user to have prior knowledge about the property to check
and generally scales poorly. CrystalBall [30] is a tool that
checks predefined properties on the fly.

In [25], Singh et al. propose a declarative language based
debugging interface that is similar to our SQL interface.
However, their system is specialized to their own declarative
pervasive system programming language [16]. Our system is
much more general, working on arbitrary binaries. PTQL [11]
and PQL [18] propose query languages for single process
execution. These techniques are not combined with replay
and their schema design does not focus on debugging.
Magpie [5], Pinpoint [6], and Pip [23] are projects based
on log mining. In other words, they try to identify problems
by looking at event logs. These techniques are quite effective
in debugging performance problems, but less so for faults. In
[29], Xin et al. present a technique to analyze distributed sys-
tems by building task graphs from event log files. Pothier et

al. [22] present a portable Trace-Oriented Debugger for Java
which uses efficient instrumentation techniques for event
generation and a scalable storage system for completeness
and efficient querying. All attributes of all events are logged
at all times which is considered feasible in the targeted
centralized setting targeted and with the assumption of a
wireline connection to a dedicated scalable backend. Log-
ging and replay [7], [9], [26], [21] is an important strategy
for pervasive debugging. Existing work focuses on single
node replay, which is insufficient for pervasive debugging.
Friday’s replay system [10] supports replay with a GDB-like
interface, but it cannot handle fine-grained instrumentation.

VIII. CONCLUSION

We have presented Recon, a system for debugging dis-
tributed systems based on a novel architecture, providing
a consistent view of salient system properties. This view

exposes properties via a relational framework that can be
queried with a simple language based on SQL. Information
collection is performed on demand to answer the queries,
using filtering and prioritization to avoid collecting data
unnecessary to formulating the answer.

We qualitatively evaluated Recon on several bugs in
popular distributed programs. Furthermore, we have evalu-
ated our design that separates a logging infrastructure from
heavyweight analyses during replay, showing that it allows
Recon to be used to record realistic runs with acceptable
overhead (3%) and debug the runs later by replaying them.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their insightful comments. This research is supported in
part by the National Science Foundation (NSF) under grants
0845870 and 0834529. Any opinions, findings, and conclu-
sions or recommendations in this paper are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] dwarfdump, http:// reality.sgiweb.org/davea/dwarf.html.

[2] Macedon, http://www.macesystems.org/macedon.

[3] python-sqlparse, http://code.google.com/p/python-sqlparse.

[4] M. Balazinska, H. Balakrishnan, and D. Karger, “Ins/twine:
a scalable peer-to-peer architecture for intentional resource
discovery,” in Pervasive, 2002.

[5] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie:
online modelling and performance-aware systems,” in HotOS,
2003.

[6] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. A. Brewer,
“Pinpoint: problem determination in large, dynamic internet
services,” in DSN, 2002.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen, “Revirt: enabling intrusion analysis through virtual-
machine logging and replay,” in OSDI, 2002.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The pro-
gram dependence graph and its use in optimization,” ACM
TOPLAS, vol. 9, no. 3, 1987.

[9] D. Geels, G. Altekar, S. Shenker, and I. Stoica, “Replay
debugging for distributed applications,” in USENIX, 2006.

[10] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica,
“Friday: global comprehension for distributed replay,” in
NSDI, 2007.

[11] S. Goldsmith, R. O’Callahan, and A. Aiken, “Relational
queries over program traces,” in OOPSLA, 2005.

[12] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life,
death, and the critical transition: finding liveness bugs in
systems code,” in NSDI, 2007.

[13] C. E. Killian, “Systems and language support for building
correct, high performance distributed systems,” in Ph.D. dis-
sertation. University of California, San Diego, 2008.

[14] X. Liu, W. Lin, A. Pan, and Z. Zhang, “WiDS checker:
combating bugs in distributed systems,” in NSDI, 2007.

[15] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. Kaashoek, and Z. Zhang, “D3S: debugging deployed
distributed systems,” in NSDI, 2008.

[16] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica, “Implementing declarative overlays,” in SOSP,
2005.

[17] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumen-
tation,” in PLDI, 2005.

[18] M. C. Martin, V. B. Livshits, and M. S. Lam, “Finding
application errors and security flaws using PQL: a program
query language,” in OOPSLA, 2005.

[19] M. Musuvathi and D. R. Engler, “Model checking large
network protocol implementations,” in NSDI, 2004.

[20] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in PLDI, 2007.

[21] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. Lee, S. Lu, and
Y. Zhou. “Pres: probabilistic replay with execution sketching
on multiprocessors,” in SOSP, 2009.

[22] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient
debugging,” in OOPSLA, 2007.

[23] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat, “Pip: detecting the unexpected in
distributed systems,” in NSDI, 2006.

[24] Y. Saito, “Jockey: a user-space library for record-replay
debugging,” in AADEBUG, 2005.

[25] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel, “Using
queries for distributed monitoring and forensics,” in EuroSys,
2006.

[26] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou,
“Flashback: a lightweight extension for rollback and deter-
ministic replay for software debugging,” in ATEC, 2004.

[27] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan, “Chord: a scalable peer-to-peer lookup service for
internet applications,” in SIGCOMM, 2001.

[28] B. Xin and X. Zhang, “Efficient online detection of dynamic
control dependence,” in ISSTA, 2007.

[29] B. Xin, P. Eugster, X. Zhang, and J. Yang, “Lightweight task
graph inference for distributed applications,” in SRDS, 2010.

[30] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak, “Crys-
talball: predicting and preventing inconsistencies in deployed
distributed systems,” in NSDI, 2009.

[31] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi, “Using
model checking to find serious file system errors,” ACM
TOCS, vol. 24, no. 4, 2006.

[32] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,
F. Long, L. Zhang, and L. Zhou, “MODIST: transparent
model checking of unmodified distributed systems,” in NSDI,
2009.

