This paper discusses effects of adhesive thickness, overlap length and material combinations on t... more This paper discusses effects of adhesive thickness, overlap length and material combinations on the single-lap joints strength from the point of singular stress fields. A useful method calculating the ratio of intensity of singular stress is proposed using FEM for different adhesive thickness and overlap length. It is found that the intensity of singular stress increases with increasing adhesive thickness, and decreases with increasing overlap length. The increment and decrement are different depending on material combinations between adhesive and adherent.
International Journal of Computational Methods, 2018
A convenient evaluation method is proposed for the debonding adhesive strength in terms of the in... more A convenient evaluation method is proposed for the debonding adhesive strength in terms of the intensity of singular stress field (ISSF) appearing at the end of interface. The same FEM mesh pattern is applied to unknown problems and reference problems. It is found that the ISSF is obtained accurately by focussing on the FEM stress at the adhesive corner. Then, the debonding condition can be expressed as a constant value of critical ISSF. The usefulness of the present solution is verified by comparing with the results of the conventional method.
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2017
Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previousl... more Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previously, most studies explained that improper tooth-brushing causes such defects. However, recent clinical observation suggested that the repeated stress due to occlusal force may induce the formation of these wedge-shaped defects. In this study, therefore, two-dimensional human tooth models are considered with and without a wedge-shaped defect by applying the finite element method. To evaluate large stress concentrations accurately, a method of analysis is discussed in terms of the intensity of singular stress fields appearing at the tip of the sharp wedge-shaped defect. The effects of the position and direction of occlusion on the intensity of singular stress fields are discussed before and after restoration with composite resins.
This paper discusses effects of adhesive thickness, overlap length and material combinations on t... more This paper discusses effects of adhesive thickness, overlap length and material combinations on the single-lap joints strength from the point of singular stress fields. A useful method calculating the ratio of intensity of singular stress is proposed using FEM for different adhesive thickness and overlap length. It is found that the intensity of singular stress increases with increasing adhesive thickness, and decreases with increasing overlap length. The increment and decrement are different depending on material combinations between adhesive and adherent.
International Journal of Computational Methods, 2018
A convenient evaluation method is proposed for the debonding adhesive strength in terms of the in... more A convenient evaluation method is proposed for the debonding adhesive strength in terms of the intensity of singular stress field (ISSF) appearing at the end of interface. The same FEM mesh pattern is applied to unknown problems and reference problems. It is found that the ISSF is obtained accurately by focussing on the FEM stress at the adhesive corner. Then, the debonding condition can be expressed as a constant value of critical ISSF. The usefulness of the present solution is verified by comparing with the results of the conventional method.
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2017
Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previousl... more Wedge-shaped defects are frequently observed on the cervical region of the human tooth. Previously, most studies explained that improper tooth-brushing causes such defects. However, recent clinical observation suggested that the repeated stress due to occlusal force may induce the formation of these wedge-shaped defects. In this study, therefore, two-dimensional human tooth models are considered with and without a wedge-shaped defect by applying the finite element method. To evaluate large stress concentrations accurately, a method of analysis is discussed in terms of the intensity of singular stress fields appearing at the tip of the sharp wedge-shaped defect. The effects of the position and direction of occlusion on the intensity of singular stress fields are discussed before and after restoration with composite resins.
Uploads
Papers by Nao-Aki Noda