
Introduction to LanQ – an Imperative

Quantum Programming Language

Hynek Mlnař́ık∗

July 21, 2006

Abstract

LanQ is an imperative high-level quantum programming language
that allows combining of quantum and classical computations in the
way of classical control, quantum data. Moreover, it offers tools for
communication and parallel running of programs. In the paper, we
introduce the language.

1 Introduction

Quantum programming languages started to be developed when there was
a need to write quantum algorithms in a machine-readable form. Several
languages have been developed so far, mainly λ-calculi [vT03a, vT03b, SV05]
and functional languages [Sel04, AG04].

Even though interest in quantum programming languages is still growing,
only few of the developed are imperative: QCL developed by Ömer [Öme00,
Öme03] or Q language based on C++ developed by Bettelli, Calarco and
Serafini [BCS01]. Another language qGCL developed by Sanders and Zuliani
[Zul01] can be viewed as an imperative language as well as a specification
language.

Programming languages mentioned in the previous paragraph do not
support communication and process management. This restricts their use
to implementation of quantum algoritms. Implementation of multiparty
quantum protocols is not possible in these languages at all.

Implementation of multiparty quantum protocols requires a language
that can handle both quantum phenomena and process management – allow-
ing processes to run in parallel and to mutually communicate. Interprocess

∗Faculty of Informatics, Masaryk University, Brno, CZ. e-mail: xmlnarik@fi.muni.cz

1

communication and process parallelism are studied in the field of quantum
process algebras [LJ04, Lal05, GN04, GN05]. Even though quantum algo-
rithms can be implemented in these algebras, they are primarily designed
for process description. The syntax is therefore unclear to programmers.

The limitation of current quantum programming languages mentioned
earlier led the author to development of a new language – LanQ. Contrary
to previously mentioned programming languages, LanQ offers also tools for
process creation and classical/quantum interprocess communication. There-
fore, it is possible to implement multiparty quantum protocols in LanQ.

LanQ is an imperative high-level language with syntax similar to that
of C language that allows expression of both quantum and classical com-
putations. It offers tools for creation of new processes and interprocess
communication. In the following text, we will describe the language.

2 Informal introduction

We begin our introduction to LanQ by an example of implementation of
a well-known multiparty quantum protocol – teleportation [BBC+93]. In
LanQ, it can be written as a program shown in the Figure 1.

We now briefly describe the program. Three methods, main, angela
and bert, are defined. Method main() can be invoked with no parameters.
It returns no value what can be seen from the void in front of method name.
Method angela() has to be invoked with two parameters – a channel end
of a channel that can be used to send values of type int and one qubit. It
also returns no value. Method bert() takes the other end of the channel
and another qubit. This method returns a value of type qbit.

The main() method declares variables used in the method body in its
first three lines. The type of variables ψA, ψB is qbit. Variable ψEPR is
declared to be alias for ψA ⊗ ψB. Channel c capable of sending integer
numbers is declared on the next line. The individual channel ends are named
c0 and c1.

On next lines, method main invokes method createEPR() which cre-
ates an EPR-pair and stores reference to the created pair into variable ψEPR.
After that, a new channel is allocated and assigned to the variable c. The
next command causes the running process to split into two. One of the pro-
cesses continues its run and invokes method angela(). The second process
starts its run from the method bert().

The angela() method receives one channel end and one qubit as argu-
ments. After declaring variables r and φ, it assigns a result of running of

2

void main() {
qbit ψA, ψB ;
ψEPR aliasfor [ψA, ψB];
channel[int] c withends [c0, c1];

ψEPR = createEPR();
c = new channel[int]();
fork bert(c0, ψB);

angela(c1, ψA);
}

void angela(channelEnd[int] c1, qbit ats) {
int r;
qbit φ;

φ = doSomething();
r = measure (BellBasis, φ, ats);
send (c1, r);

}

qbit bert(channelEnd[int] c0, qbit stto) {
int i;

i = recv (c0);
if (i == 0) {

opB0(stto);
} else if (i == 1) {

opB1(stto);
} else if (i == 2) {

opB2(stto);
} else {

opB3(stto);
}
doSomethingElse(stto);

}

Figure 1: Teleportation implemented in LanQ

the method doSomething() to φ. Then it measures qubits φ and ats in
the Bell basis, assigns the result of the measurement to the variable r and
sends it over the channel end c0.

The bert() method receives one channel end and one qubit as arguments.
After declaring variable i, it receives an integer value from the channel end
c1 and assigns it to the variable i. Depending on the received value it applies
one of the operators opB0, opB1, opB2 and opB3 onto the qubit stto. Finally,
it invokes method doSomethingElse() and passes the variable stto as an
argument of this method.

The reason for distinguishing between channels and channel ends is de-
scribed in the Section 4.2.

3 Syntax

Syntax of LanQ is similar to the syntax of C language. Therefore we will not
describe it in more detail, it can be found in Appendix A. We will mention
three extensions of the syntax – syntax of process creation, quantum variable
aliasing and channel declaration.

3

LanQ has a primitive for creating a new process: reserved word fork.
Its usage is the following:

fork methodName(arg1, arg2, . . .);

This construction creates a new process and runs given method with
given arguments as a root method of the new process. This is the way of
running multiple processes in parallel.

Quantum variable aliasing is an important part of the language. Us-
ing variable alias, it is possible to work either with a compound quantum
system or with individual subsystems of that system as needed. The dec-
laration of an compound system ψC which is a composition of subsystems
ψ0, ψ1, . . . , ψN is:

ψC aliasfor [ψ0, ψ1, . . . , ψN];

A type of a channel for sending values of a type T is channel[T]. When
the process needs to access individual channel ends of that channel then the
declaration of that channel (named c int the example) must read:

channel[T] c withends [c0, c1];

Then the process can access both the channel c and its ends c0 and c1
after the channel allocation (see Section 5).

4 Process management

4.1 Forking

As LanQ is designed to be a language that can be used for implementation
of multiparty protocols, it must provide tool for process management. For
creation of a new process, a language primitive fork is introduced.1 Its
syntax has been shown in the Section 3.

After forking, the original process where fork was invoked continues its
run by execution of subsequent statements. fork creates a new process
which is started from the method specified as an argument of the fork.
After forking, these two processes run in parallel.

Values of duplicable variables that are passed as arguments of the forked
method are available in both processes after forking. On the other hand,
values of non-duplicable types passed as arguments to the forked method
are not available in the original method after forking.

1The idea of process forking is similar to UNIX process creation.

4

Moreover, passing a channel end to the forked process causes also the
corresponding channel to become unavailable in the original process. The
reason is that the channel is controlled by a process just till the process
controls both its ends.

4.2 Communication

The language offers tools for communication between processes. It is pos-
sible for a process to allocate a channel. When two different processes get
individual ends of the channel (eg. by passing a channel end to a forked
process), they can communicate over these channel ends.

The reason for distinguishing between channels and channel ends is the
following. It is natural to require that one channel is controlled by at most
two processes at one time – a sender and a receiver. However, it is hard to
ensure this property. But it is simple to ensure that only one channel end can
be controlled by just one process at one time. The papers [KPT96, GH05]
are relevant to this approach.

LanQ offers two primitives for controlling a channel end – send for send-
ing a value over a corresponding channel and recv for receiving a value from
that channel. These primitives are synchronous, ie. recv delays program
run until there is a value received from the channel and send delays a pro-
gram run until the sent value is received.

5 Types

Types are very important part of the language. Types help to check well-
formedness of the program before its run. The other benefit of using types is
a possibility to distinguish whether a value can be copied or not. Depending
on the latter criterion we separate types into two groups: duplicable and
non-duplicable.

• Duplicable (ie. non-linear) types are types of classical values, eg. bits,
integers, booleans etc.. They are characterized by the fact that any
value of a duplicable type can be exactly copied.

• Non-duplicable (ie. linear) types are types of resources – quantum
values, channels and channel ends. Any value of a non-duplicable type
can be neither perfectly cloned nor copied at all. Any non-duplicable
resource must be allocated before it is used.

5

We require quantum types to be non-duplicable because cloning is
impossible due to no-cloning theorem.

We require a channel to be controlled by at most two processes at one
time – a sender and a receiver. Handling individual channel ends sepa-
rately gives us a similar requirement – channel ends are not duplicable
as we want any channel end to be owned by exactly one process. If
we allowed copying, some process could allocate a channel, create a
number of copies of its channel ends and these ends distribute among
its children processes. This would break our requirement that one
channel is controlled by at most two processes at one time.

6 Abstract syntax

Abstract syntax defines internal representation of the programs. Semantics
of a programming language is defined on the level of its abstract syntax. For
this reason, abstract syntax is much more interesting than specific syntax.

Semantics of LanQ language can be found in the article [Mln06].
Symbols of abstract syntax of LanQ are expressions and statements.

Definition 6.1. Expression is any phrase derivable from nonterminal expr.

Definition 6.2. Statement is any phrase derivable from nonterminal code.

6.1 Expressions

LanQ recognizes expressions listed below:

• Constant – a predefined constant, eg. true, false, 0, 1,...

• Variable – a variable name

• Bracketted expression – an expression enclosed in brackets

• Allocation – allocation of a quantum system or a channel

• Assignment – assignment of a value to a variable

• Method call – invocation of an method

• Measurement – measurement of a quantum variable

• Receiving a value from a channel end

6

Expressions evaluate to a value which is called a return value. LanQ deals
with expressions in a by-reference manner where the reference determines
memory type (classical, quantum, channel, channel end) and position of the
value in the memory. For this reason, whenever it is possible, both the
value and the reference to that value is returned to the evaluator. A special
reference none is reserved for the cases when the return value is not stored
in memory and hence cannot be referred in the time of evaluation.

Assignment, method call, measurement, allocation and receiving from
a channel can also act as statements. In that case a return value of such
expressions is discarded.

6.2 Statements

LanQ recognizes following statements:

• Skip statement

• Block – block statement defines sequence of statements

• Variable declaration

• If – conditional execution of code

• While – conditional looping of code

• Return – return from a method, possibly returning some value from
the method

• Fork – forking a new process

• Sending a value over a channel end

Statements are characterized by the fact that they do not evaluate to
any return value. If an expression acts as a statement, then its return value
is simply discarded.

Acknowledgements

I would like to thank Philippe Jorrand and Rajagopal Nagarajan for an
invaluable discussion and Simon Gay for pointing me to the articles [KPT96]
and [GH05]. I would also like to thank Stefano Bettelli and Michael Nölle
for their comments.

7

7 Conclusion and future work

LanQ imperative programming language was introduced in the paper. It
was shown that it can be used for implementation of both quantum algo-
rithms and quantum multiparty protocols. Ideas of process management
and interprocess communication were shown.

The operational semantics of the language is actually being developed.
After that, denotational and categorical semantics will be developed. Devel-
opment of the semantics is crucial for further development of optimization
in LanQ.

The optimization techniques can be among other used to safely turn
pieces of classical code that fulfil certain criteria into purely quantum code
by a compiler/interpreter (eg. by conversion of if statements into controlled
gates).

A Syntax

In this appendix, we define the syntax of the LanQ language.
The reserved words of the language are written in bold and the identifier

names are in italic. The syntax of these names is left to the implementation.
Grammar is given in nondeterministic extended Backus-Naur form (EBNF).
The root of grammar is the nonterminal program.

A.1 Code

program ::= method+
code ::= assignment ; | methodCall ; | quantumOp ; |

measurement ; | fork ; | send ; | recv ; | return ; |
block | if | while | ;

methodCall ::= methodName (methodParams?)
methodParams ::= expr (, expr)*
assignment ::= variableName = expr
measurement ::= measure (basisName (, variableName)+)
expr ::= indivExpr (op expr)? | new nonDupType ()
indivExpr ::= value | variableName | (expr) | recv |

assignment | methodCall | measurement
op ::= + | – | ⊗ | etc.
quantumOp ::= quantumOpName (methodParams?)

8

A.2 Block structure

method ::= methodHeader block
block ::= { varDeclaration code* }
methodHeader ::= type methodName (methodDeclParamList?)
methodDeclParamList ::= methodDeclParam (, methodDeclParam)*
methodDeclParam ::= nonVoidType paramName
varDeclaration ::= (oneVarDecl ;)*
oneVarDecl ::= nonVoidType variableName (, variableName)* |

channelType variableName (withends
[variableName , variableName])? |

variableName aliasfor
[variableName (, variableName)*]

A.3 Program flow

fork ::= fork methodCall
return ::= return expr

A.4 Conditionals and loops

if ::= if (expr) code (else code)?
while ::= while (expr) code

A.5 Communication

recv ::= recv (expr)
send ::= send (expr , expr)

A.6 Types

type ::= void | nonVoidType
nonVoidType ::= dupType | nonDupType
dupType ::= int | boolean | etc.
nonDupType ::= channelEnd [nonVoidType] | channelType | qType
channelType ::= channel [nonVoidType]
qType ::= qBasicType (⊗ qType)?
qBasicType ::= qbit | qtrit | etc.

References

[AG04] Thorsten Altenkirch and Jonathan Grattage. A functional quantum
programming language. quant-ph/0409065, 2004.

9

[BBC+93] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wooters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters, (70):1895–
1899, 1993.

[BCS01] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for
quantum programming, 2001.

[GH05] Simon Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2):191–225, 2005.

[GN04] Simon J. Gay and Rajagopal Nagarajan. Communicating Quantum
Processes. quant-ph/0409052, 2004.

[GN05] Simon J. Gay and Rajagopal Nagarajan. Communicating quantum pro-
cesses. In POPL ’05: Proceedings of the 32nd ACM Symposium on
Principles of Programming Languages, pages 145–157, 2005.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Lin-
earity and the pi-calculus. In POPL ’96: Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 358–371, New York, NY, USA, 1996. ACM Press.

[Lal05] Marie Lalire. A Probabilistic Branching Bisimulation for Quantum Pro-
cesses. quant-ph/0508116, 2005.

[LJ04] Marie Lalire and Philipe Jorrand. A process-algebraic approach to con-
current and distributed quantum computation: operational semantics.
quant-ph/0407005, 2004.

[Mln06] Hynek Mlnař́ık. LanQ operational semantics. 2006. Available online
from http://www.fi.muni.cz/~xmlnarik/lanq/opsemantics.pdf.

[Öme00] B. Ömer. Quantum programming in QCL. Master’s thesis, TU Vienna,
2000.

[Öme03] B. Ömer. Structured Quantum Programming. PhD thesis, TU Vienna,
2003.

[Sel04] Peter Selinger. Towards a quantum programming language. Mathemat-
ical. Structures in Comp. Sci., 14(4):527–586, 2004.

[SV05] Peter Selinger and Benôıt Valiron. A Lambda Calculus for Quantum
Computation with Classical Control. Lecture Notes in Computer Sci-
ence, 3461 / 2005:354–368, 2005.

[vT03a] André van Tonder. A Lambda Calculus for Quantum Computation.
quant-ph/0307150, 2003.

[vT03b] André van Tonder. Quantum computation, categorical semantics and
linear logic. quant-ph/0312174, 2003.

[Zul01] Paolo Zuliani. Quantum Programming. PhD thesis, University of Ox-
ford, 2001.

10

http://www.fi.muni.cz/~xmlnarik/lanq/opsemantics.pdf

	Introduction
	Informal introduction
	Syntax
	Process management
	Forking
	Communication

	Types
	Abstract syntax
	Expressions
	Statements

	Conclusion and future work
	Syntax
	Code
	Block structure
	Program flow
	Conditionals and loops
	Communication
	Types

