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On topological entropy of interconnected nonlinear systems

Daniel Liberzon

Abstract— We study topological entropy of a nonlinear
system represented as an interconnection of smaller subsystems.
Under suitable assumptions on the Jacobian matrices charac-
terizing the interconnection, we obtain an explicit upper bound
on the entropy of the overall system, and show that it can be
related to upper bounds on the entropies of the subsystems. We
also analyze in detail the special case of a cascade connection
of two subsystems, establishing an upper bound on the entropy
which is more tightly linked to individual entropy bounds for
the subsystems.

I. INTRODUCTION

The object of study in this letter is entropy—
more specifically, topological entropy—of nonlinear
continuous-time systems. Entropy concepts are clas-
sical and fundamental in dynamical system theory,
as well documented, e.g., in [8], [10]. In the recent
systems and control literature, suitable entropy notions
have been introduced and studied in the context of
controlled invariance [6], [17], stabilization [5], state
estimation [13], [15], [19], and model detection [13].
The interest in entropy among control engineers stems
at least in part from the fact that entropy characterizes
data rates necessary for digital implementations of
control and estimation algorithms, as discussed in the
above references.

Another paradigm of paramount importance in sys-
tem theory is that of representing a large system as
an interconnection of smaller and simpler subsystems,
and arguing about the behavior of the overall system on
the basis of analyzing its individual components. Small-
gain theorems for establishing stability of both linear
and nonlinear systems (see [7], [9]) can be mentioned
as standard examples of this line of reasoning.

Recently there has been some work on applying en-
tropy concepts in the context of interconnected systems
(in discrete time): [11] studies invariance entropy of a
network of control systems and relates it to entropies of
the subsystems and to associated control data rates; [22]
explores invariance feedback entropy for a network of
uncertain systems; [16] analyzes observability rates of
a networked system and relates them to the topological
entropy of the entire system and to certain auxiliary
quantities (storage functions and supply rates) defined
for the linearizations of the subsystems. However, much
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still remains to be understood about the basic question
considered here, namely: given an interconnection of
deterministic nonlinear systems, under what conditions
can we derive an explicit bound on its topological
entropy and relate it to bounds on the entropies of the
subsystems?

The entropy estimates that we derive involve upper
bounds on the matrix measures and induced norms of
the Jacobian matrices arising from the interconnection.
(We note that entropy bounds of this form are very
different from those obtained in [16].) For the case of
a general interconnection, we establish an upper bound
on the entropy that involves the largest eigenvalue of
the interconnection matrix obtained from these Jaco-
bians, multiplied by the system dimension. We then
consider the special case of a cascade connection of
two subsystems, and discover a rather simple upper
bound on the entropy which involves, this time more
transparently, upper bounds on the entropies of the two
subsystems in terms of their Jacobians as well as their
dimensions.

Section II introduces the class of systems under
consideration and develops the necessary background,
including basic definitions and facts on topological
entropy and a bound on the separation between tra-
jectories of the system which plays a key role in
proving our results. The main results—an upper bound
for the entropy of a general interconnection, followed
by a more specific bound for the case of a cascade
connection—are stated and proved in Section III. Sec-
tion IV concludes this letter.

II. PRELIMINARIES

Consider a system © = f(x), z € R™ written as a
collection of interconnected subsystems

xZ:fZ('r177xk)7 Z:177k (1)

with dim(x;) = n; and ny + - - - + nx = n. We assume
that the initial state 2(0) belongs to a known compact
and convex set K C R™. We denote by | - | the oo-
norm in R? (ie., |z := maxj<;<q|zi|); here d can
be either the total system dimension n or the number
of subsystems k or one of the subsystem dimensions
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ng, i =1,...,k. We write || - || for the corresponding
induced matrix co-norm on R%*? (or, occasionally, on
C9*d). The matrix measure p : R¥>4 — R (with
respect to the infinity norm) is defined by u(A) :=
lim\ o w (see, e.g., [23]). We assume that f is
C' and let .J denote the Jacobian matrix with blocks

Jij(z) = 0 (@),

T axj

1<ij<k. @)

We assume that the following holds for some known
numbers a;;, 1 <1i,j < k.

Assumption 1 p(J;;(x)) < a;; for all x and all 4, and
|Jij(z)|| < a;; for all x and all @ # j.

We note that one consequence of Assumption 1 (and
the fact that f is C!) is that all solutions starting in K
exist globally in time, as can be seen from Lemma 2
below (see also the discussion in [13]).

Remark 1 Although we assumed the bounds in As-
sumption 1 to hold globally over R" for simplicity, it
is clearly sufficient for all our purposes if they hold
over the set of all states reachable from the initial set
K at some time ¢ > 0. Moreover, if it so happens that
all solutions of (1) starting from K remain in a compact
set, then such finite bounds automatically exist; this will
be the case in Example 1 below.

A. Entropy background

The notion of topological entropy that we use here is
standard; see, e.g., [10], [19] for discrete-time versions
and [13] for a continuous-time version which is slightly
more general in that it also incorporates an exponential
decay rate (which we set to O here for simplicity). Let
us write &£(x,t) for the solution of our system (1) from
initial state z(0) = = € K evaluated at time ¢ > 0. For
a given time horizon T > 0 and precision € > 0, we
say that a finite set of points S = {z1,...,2n} C K is
(T, e, K)-spanning if for every initial state x € K there
exists some point x; € S such that the corresponding
solutions satisfy

[€(x,t) — &(wi, t)] <€

Letting s(T,e, K) denote the minimal cardinality of
such a (7', e, K)-spanning set, we define the entropy as

Vte0,7]. (3)

1
h(f, K) := lim lim sup T log s(T, ¢, K)

N0 Too

where log denotes the natural logarithm.

Foreachi € {1,...,k} we can consider the i-th sub-
system in (1) disconnected from the other subsystems,
ie.,

i; = fi(0,...,0,2;,0,...,0). “4)

Its entropy, which we label as h(f;, K), satisfies the
following upper bound which is essentially well-known
(ct. [3], [5], [13D).

Lemma 1 Under Assumption 1 we have h(f;, K) <

nia:g, where a;g := max{a;;, 0}.

Note that, as a special case, we could always ignore
the interconnection structure and just take £ = 1 (and
hence ny = n, x1 = =z, fi = f), in which case
Lemma 1 simply gives the upper bound on A(f, K)
in terms of the bound on the matrix measure of the
overall Jacobian.

B. Separation between trajectories

The following separation bound was derived in [2],
building on earlier work such as [3] and [21]. We
briefly sketch the main idea of the proof below for
completeness.

Lemma 2 Let z(0),2(0) € K be two arbitrary initial
states. Let x(-) = &(x(0),-) and z(-) = £(2(0),)

be the corresponding solutions of (1), with
individual ~ subsystem components x1(-),...,Tx(+)
and z1(-),...,zx(+), respectively. Let A be the matrix

with elements a;; from Assumption 1. Then for all
t > 0 we have

|21(0) — 21(0)]
< e : (5)
|21(0) — 2(0)]

[z1(t) — 21(2)]

|k (t) — 2k (1)]
where the inequality holds element-wise.

Proof: (sketch) For A € [0, 1], recalling that K is
a convex set, let (A, t) be the shorthand for £(Az(0) +
(1—=X)z(0),t), the solution of (1) at time ¢ from initial
condition Az(0) + (1 — A)z(0), so that

0
Note that {(1,¢) = z(t) and £(0,t) = z(¢) are the solu-
tions from initial conditions 2:(0) and z(0), respectively.
We also denote by &;(\, t),i =1, ..., k the components
corresponding to the individual subsystems. We have
1 aé-

x(t) — z(t) = £(1,t) — £(0,t) = ; a()\,t)d/\. @)
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The time evolution of g—f\()\, t) is given by!

0 0¢ 0 0 0
g = a0 G gl 1)
= D) ).

By our Assumption 1 and the proof of Proposition 1
in [2], the solution of this LTV system satisfies the
bound

%w)\ 9 (), 0)]

<eAt :
B A )] |15 (A, 0)]

where the inequality holds element-wise. Using (7) and
the fact that £(\,0) = Az(0) + (1 — A\)z(0), we arrive
at (5). O

III. MAIN RESULTS

Our goal is to relate the entropy of the interconnected
system (1) to the entropies of its individual subsystems.
To this end, since the latter are characterized via
Lemma 1, we want to express (actually, upper-bound)
the entropy of (1) in terms of the elements of the matrix
A, particularly the diagonal ones. The general result
stated as Theorem 1 below is loosely in this spirit (see
also Remark 2), and afterwards Proposition 1 achieves
this goal more precisely for a special case.

As before, let A be the matrix with elements a;; from
Assumption 1. Since it is a Metzler matrix (a;; > 0 for
i # j), its eigenvalue with the largest real part is real
(see, e.g., [4, Theorem 10.2]); we denote this eigenvalue
by Amax(4).

Theorem 1 The entropy of the interconnected sys-
tem (1) satisfies

hf, K) < nfhax(A) (8)
A) := max{Apax(4),0}.

where A\, (

Remark 2 It is worth noting that due to the Met-
zler property of A, the eigenvector corresponding to
Amax(A) can be selected to have non-negative compo-
nents (see, e.g., [4, Theorem 10.2]). If, in addition, we
can choose all components of this eigenvector to be
strictly positive—which can be done if A is irreducible
(see again [4])—then it follows that A\pax(A) > a;; for
all i. Consequently we have n\/, (A) > Zle niaz,
which in view of Lemma 1 implies that the right-hand

ISee, e.g., [12, Section 4.2.4] for a more rigorous argument that
can be used to arrive at the same conclusion.

side of (8) is at least as large as the sum of the entropy
bounds of the disconnected individual subsystems (4).

Proof: To prove the theorem, we build a grid
which we show serves as a spanning set, and then
count its cardinality to upper-bound the entropy. Let
R denote the radius (with respect to the infinity norm)
of the initial set K, i.e., R > 0 is the smallest number
such that K is contained in the hypercube [—R, R|".
The value of R affects the grid construction but does
not appear in the resulting entropy bound.

Let
A=P AP 9)

where A is a matrix in (complex) Jordan normal form.
Let

c:= ||PH|||P]. (10)

We need the following easy fact (see, e.g., [20, Chap-
ter 4]).

Lemma 3 For every § > 0 there exists a time Ts > 0
such that ||eM]| < ePmax(A+ for ql t > Ty

We omit the proof of this lemma but note that it fol-
lows by observing, first, that ||e}|| = max;<;< [leM|
where A1, ..., A, are the Jordan blocks of A, and then
applying [20, Lemma 4.1].

Continuing with the proof of the theorem, fix an
arbitrary 0 > 0, and use Lemma 3 to define

Ms := max ||eM]. (11)

te[0,Ts]
For e >0 and T > 0, let
€
0:= . 12
c max{M(;, e(A,tax(A)M)T} (12)
Consider the grid of points in R given by {k6 : k € Z}.
Using this grid on each scalar component of x, build a
product grid on R™ and denote by G the set of all points
in this grid that belong to the hypercube [—R, R]".
By Lemma 3 and by definition of Ms, we have
M| < max{Mjs, ePmax(D+IY for all ¢ > 0. It
follows that

max [ < max { Mj, P (A)+0)T }.
t€[0,T
Combining this with (9) and (10), applying Lemma 2,
and recalling that | - | is the co-norm, we can easily
conclude that G is a (7, ¢)-spanning set.
The cardinality of the grid G is

#G = (2|R/0) +1)"
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which gives
log(#G) < nlog(2R/6 + 1) = nlog ((2R + 6)/9)

and hence
llo (#G) < lnlo (1/0) + lnlo (2R+0)
T g =T g T g .

Since 6 converges to 0 as T — oo, upon taking the
limsup as T' — oo only the first term will remain:

1 1
lim sup T log(#G) < limsup Tnlog(l/@).

T—o00 T—o0

Recall that, by definition of 6,

1 cmax{Msy, e()\rtax(A)Jr&)T}

0 €
and thus

1 1
T log(1/6) = T log (max{M(;, e(’\iﬂax(“‘)*‘s)T})

+ %log(c/s).

It is now convenient to note that for T° >
(log Ms)/ (M. (A) + 6) we have

max

max {Mé‘, e(Aj‘}aX(A)—i_é)T} — e(Axtax(A)'i_(S)T
This yields

lim sup %nlog(l/ﬁ) =n(A\5(A) +0)
T—o0

which is an upper bound on the entropy. Since § >

0 was arbitrary, we have established the claimed

bound (8). O

Remark 3 If the matrix A is already in Jordan normal
form, it is not hard to see that we could define a
different grid spacing 6; on each invariant subspace
corresponding to a Jordan block A; of dimension n;
with eigenvalue \; by using A; instead of A (and
taking ¢ = 1) in (11) and (12), which would result
in an improved entropy bound of the form A(f, K) <
Zle nl)\z+ For a general A, it is not immediately clear
how to explore its Jordan normal form to refine the
grid construction in the above proof, because a linear
coordinate transformation on R* that brings A to Jordan
form need not correspond to a change of coordinates in
R™ for the original system (1). In Section III-A below
we examine a case when A has a special structure
which indeed enables us to construct a more efficient
(non-square) grid, leading to a tighter entropy bound.

Example 1 To illustrate the entropy bound from The-
orem 1, we consider the well-known Lorenz system

(which models atmospheric convection and exhibits
chaotic behavior for certain parameter values [14]):

T1 = 0T9 — 0X1

T9 = —wo — x173 + 011 (13)

i3 = —frg + 2122
where 3, o, 6 are positive parameters. This system fits
into the form (1) with k = 3 and n; = no = ng = 1.
For the initial set K, let us take the ball of radius
ro > 0 around the origin (with respect to the Euclidean
norm). Note that each scalar subsystem disconnected
from the others as in (4) is exponentially stable and
has zero entropy. It is well known that all solutions
of (13) are bounded; more specifically, it follows from
the calculations given, e.g., in [1] that all solutions
starting in K remain in the ball of radius
0

7 := max {0—1—9—1—7“0, 0_2‘_ (1—!—\/1 + Bmax{1, %})}
centered at (0,0, 0 + #). The Jacobian matrix (2) is

- o 0
J = 0 — 3 -1 —I1
x2 x —f

and hence we can take the matrix A, whose elements
are the bounds from Assumption 1 but with respect to
the r-ball around (0, 0, o + ) rather than the entire R"”
(see also Remark 1), to be

-0 o 0
co+r -1 r

r r —p
Following [14], we select the values 5 = 8/3, 0 = 10
and 6 = 28. Then we can numerically obtain that for
0 < 7ro < 17.382 we have r ~ 55.382, Apax(4) ~
62.048, and Theorem 1 yields A(f, K) < 186.15.
We stress that the purpose of this example is just to
demonstrate a simple application of Theorem 1, not to
conduct a detailed and accurate analysis of the entropy
of the Lorenz system (the reader interested in the latter
can consult, e.g., [18]).

A=

A. Cascade connection

We now consider the special case of the cascade
system

Ty = fi(z)
&y = fo(w1,x2)

where dim(z1) = n; and dim(z2) = ng as before.
Here the matrix A is block-triangular:

A= <‘“1 0 ) .
asz1 a2

(14)

(15)
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This additional structure allows us to explicitly relate
the entropy of the cascade system to entropy bounds
for the individual subsystems (provided by Lemma 1).
In the next result, h(f, K) stands for the entropy of
the system (14) as defined in Section II-A for the
system (1) of which (14) is a special case.

Proposition 1 The entropy of the cascade system (14)
satisfies
h(f,K) < nimax{af},al} + naa3,  (16)

with aj; as defined in Lemma 1.

Proof: The bound (5) from Lemma 2 on the
separation between two system trajectories specializes,
in this case, to

|21 (t) — 21(8)] < e (0) = 21(0)] (A7)
and?
|w2(t) — 22(8)] < ™2 ]25(0) — 22(0)]
— L (et e (0) — 2, (0)]. (18)

a1l — a2
(This can be verified by computing the exponential of
the matrix (15), or by directly solving the correspond-
ing linear system.)
As before, let R > 0 be the smallest number such
that the initial set /K is contained in the hypercube
[-R,R]"™. For ¢ >0 and T > 0, let®

1 |a11 — aga] }

01 := emin {
e‘lﬁT’ 2a21€max{aﬁ,a;’2}T

Consider the grid of points in R given by {k0; : k €
Z}. Using this grid on each scalar component of x1,
build a product grid on R™ and denote it by G1(6;).

Similarly, let -

2¢a3:T
Using the grid {kf2 : k € Z} on each scalar component
of x9, build a product grid on R™ and denote it by
G4(62). Finally, construct the product grid on R™ from
G1(01) and G2(62), and call G the set of all points in
this grid that belong to the hypercube [—R, R]".

The fact that G is (7, ¢)-spanning follows directly
from (17) and (18). Indeed, by construction, for every

0y :=

2We do not consider separately the case a1; = agz, as it can be
recovered from (18) in the limit as a11 — a22 via L’Hopital’s rule
and, with minor modifications to the construction below, leads to
the same result.

SFor the case as1 =
min{r, oo} = r for r € R.

0 we follow the convention that

initial state (z;(0),22(0)) € K we can pick an initial
condition (21(0), 22(0)) € G such that the correspond-
ing trajectories satisfy, for all t € [0, 7],

€
|x1(t) — 21(t)| < ea“th <e

et
and
|[z2(t) — 22(t)] < 6“”tm
* allazlcm (et = et 2a2€1’eanlli>;“?j§z+z}T
R

Next, the cardinality of the grid G is

#G = H |R/6;] +1)™

which gives
2

log(#G) < Z n;log(2R/6; + 1)
i=1

2
= " n;log (2R + 6:)/6;)

=1

and hence

1 =1
T log(#G) < Z T log(1/6;)

i=1

2
1
+ Z T log(2R + 6;).
=1
Since #; converges to O (or remains constant) as 7' —
00, © = 1,2, upon taking the limsup as 7' — oo only
the first summation will remain:

lim sup — log(#G) < hmsupz —mn;log(1/6;).

T—o0 T—oo
i=1

For the first term in the summation, we have

1 anT 2a2lemax{a;r1:a2+2}T
— = max{ , }
01 € la11 — ag|

and thus

1 1
T log(1/601) = max {aﬂ -7 loge,

1
max{afl, a2+2} —7 log(2as1/|ai1 — agg\)}.

We obtain

1
lim sup T log(1/61) = ny max{aj;, aj,}.
T—o0
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For the second term in the summation, we have 1/60y =
2e%T /€, hence similarly to how the first term in the
maximum above was handled, we have

lim sup lng log(1/69) = naady.
T—o00 T

This proves the bound (16). O
To compare Theorem 1 with Proposition 1, we can

consider the case when ny = ng = 1 and A is as

in (15) with ay; > a2 > 0. Then Theorem 1 gives

the bound 2a;; while Proposition 1 gives the smaller

bound a11 + asgs.

Remark 4 Sontag [21] derives an upper bound on the
matrix measure of the Jacobian of the overall cascade
system in terms of the a;;’s from Assumption 1. This
can then also be used to easily obtain an upper bound
on the entropy via, e.g., [13, Proposition 2]. However,
the resulting entropy bound appears to be slightly more
conservative than the one derived above.

IV. CONCLUSIONS

This letter was a preliminary investigation of topo-
logical entropy for interconnected nonlinear determinis-
tic continuous-time systems. Two upper bounds for the
entropy were derived, one for a general interconnection
and another, more explicit one for the special case of a
cascade connection. These bounds were shown to relate
to entropy bounds for the individual subsystems com-
prising the interconnection. Many avenues for future
work remain, such as using more general grids to obtain
tighter entropy estimates and relaxing the assumptions
on the Jacobian matrices. Obtaining entropy bounds
for switched systems is another interesting direction of
ongoing work, and some of the results on this topic
recently reported in [24] treat switched linear systems
in triangular form based on ideas similar to the ones
explored here.

Acknowledgment. The author thanks Sayan Mitra,
Necmiye Ozay and Guosong Yang for stimulating dis-
cussions and pointers to the literature, and the anony-
mous reviewers for their helpful comments.

REFERENCES

[1] B. Andrievsky, A. L. Fradkov, and D. Liberzon. Robustness
of Pecora-Carroll synchronization under communication con-
straints. Systems Control Lett., 111:27-33, 2018.

[2] M. Arcak and J. Maidens. Simulation-based reachability anal-
ysis for nonlinear systems using componentwise contraction
properties. In M. Lohstroh, P. Derler, and M. Sirjani, editors,
Principles of Modeling, volume 10760 of Lecture Notes in
Computer Science, pages 61-76. Springer, 2018.

(3]

(4]
(5]
(6]
(71
(8]
(9]

(10]

(1]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

3453

V. A. Boichenko and G. A. Leonov. Lyapunov’s direct method
in estimates of topological entropy. J. Math. Sci., 91:3370-
3379, 1998.

E. Bullo. Lectures on Network Systems. Kindle Direct
Publishing, 2020. http://motion.me.ucsb.edu/book-Ins.

F. Colonius. Minimal bit rates and entropy for exponential
stabilization. SIAM J. Control Optim., 50:2988-3010, 2012.
F. Colonius and C. Kawan. Invariance entropy for control
systems. SIAM J. Control Optim., 48:1701-1721, 2009.

C. Desoer and M. Vidyasagar. Feedback Systems: Input-
Output Properties. Academic Press, New York, 1975.

T. Downarowicz. Entropy in Dynamical Systems. Cambridge
University Press, 2011.

Z.-P. Jiang, A. R. Teel, and L. Praly. Small-gain theorem for
ISS systems and applications. Math. Control Signals Systems,
7:95-120, 1994.

A. Katok and B. Hasselblatt. Introduction to the Modern
Theory of Dynamical Systems. Cambridge University Press,
1995.

C. Kawan and J.-C. Delvenne. Network entropy and data
rates required for networked control. [EEE Trans. Control
Netw. Syst., 3:57-66, 2016.

D. Liberzon. Calculus of Variations and Optimal Control
Theory: A Concise Introduction. Princeton University Press,
2012.

D. Liberzon and S. Mitra. Entropy and minimal bit rates for
state estimation and model detection. IEEE Trans. Automat.
Control, 63:3330-3344, 2018.

E. N. Lorenz. Deterministic nonperiodic flow. J. Atmospheric
Sciences, 20:130-141, 1963.

A. S. Matveev and A. Yu. Pogromsky. Observation of
nonlinear systems via finite capacity channels: Constructive
data rate limits. Automatica, 70:217-229, 2016.

A. S. Matveev, A. V. Proskurnikov, A. Yu. Pogromsky, and
E. Fridman. Comprehending complexity: data-rate constraints
in large-scale networks. [EEE Trans. Automat. Control,
64:4252-4259, 2019.

G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran.
Topological feedback entropy and nonlinear stabilization.
IEEE Trans. Automat. Control, 49:1585-1597, 2004.

A. Yu. Pogromsky and A. S. Matveev. Estimation of topolog-
ical entropy via the direct Lyapunov method. Nonlinearity,
24:1937-1959, 2011.

A. V. Savkin. Analysis and synthesis of networked control
systems: Topological entropy, observability, robustness and
optimal control. Automatica, 42:51-62, 2006.

A. J. Schmidt. Topological entropy bounds for switched linear
systems with Lie structure. MS Thesis, Univ. of Illinois at
Urbana-Champaign, 2016. https://arxiv.org/abs/1610.02701.
E. D. Sontag. Contractive systems with inputs. In J. Willems,
S. Hara, Y. Ohta, and H. Fujioka, editors, Perspectives in
Mathematical System Theory, Control, and Signal Processing,
pages 217-228. Springer, 2010.

M. S. Tomar and M. Zamani. Compositional quantification of
invariance feedback entropy for networks of uncertain control
systems. IEEE Control Syst. Lett., 4:827-832, 2020.

M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall,
New Jersey, 2nd edition, 1993.

G. Yang, A. J. Schmidt, D. Liberzon, and J. P. Hespanha.
Topological entropy of switched linear systems: general ma-
trices and matrices with commutation relations. Math. Control
Signals Systems, pages 411-453, 2020.



