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Abstract— We prove a novel Lyapunov-based small-gain
theorem for interconnections of n hybrid systems, which are not
necessarily input-to-state stable. This result unifies and extends
several small-gain theorems for hybrid and impulsive systems,
proposed in the last few years. Also we show how the average
dwell-time (ADT) clocks and reverse ADT clocks can be used to
modify the Lyapunov functions for subsystems and to enlarge
the applicability of derived small-gain theorems.
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I. INTRODUCTION

The study of interconnected systems plays a significant
role in the development of stability theory of dynamic sys-
tems, as it allows one to investigate the stability of complex
systems by analyzing its less complicated components. In
this context, the small-gain theorems have proved to be
important tools in the analysis of feedback interconnections
of multiple systems, which appear frequently in the control
literature. A comprehensive overview of classical small-gain
theorems involving input-output gains of linear systems can
be found in [1]. This technique was then generalized to
nonlinear feedback systems in [2], [3] within the input-output
context. The next peak level in stability analysis of intercon-
nected dynamic systems has been reached within the input-
to-state stability (ISS) framework proposed by Sontag [4],
which unified internal and external stability notions. In [5],
[6] nonlinear small-gain theorems for interconnections of two
ISS systems were established, which were then generalized
to arbitrary interconnections of n dynamic systems in [7], [8].
A variety of nonlinear small-gain theorems were summarized
in [9].

Theory described above has been developed for systems
of ordinary differential equations. But often in the modeling
of real phenomena one has to consider systems which exhibit
both continuous and discrete behavior. A general framework
for modeling of such phenomena is the hybrid systems theory
[10], [11]. In our analysis we have adopted the modeling
framework proposed by Goebel et al. [11], which is natural
from the viewpoint of Lyapunov stability theory [12].

During last years a great effort has been devoted to de-
velopment of small-gain theorems for interconnected hybrid
systems. Trajectory-based small-gain theorems for intercon-
nections of two hybrid systems were derived in [13], [14],
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[15], while Lyapunov-based formulations were proposed in
[16], [17], [18]. Some of these results were extended to
interconnections of n hybrid ISS systems in [15].

More challenging is a study of hybrid systems for which
either continuous or discrete dynamics is not ISS. In this
case input-to-state stability cannot be achieved unless the
restrictions on the density of jumps of the state called
dwell-time conditions are added. For interconnected hybrid
systems, whose subsystems are of this kind, the small-gain
theorems from [15], [18] cannot be used directly. In [18] it
was shown, that it is possible to modify “bad” subsystems by
adding of clock variables and to construct an ISS Lyapunov
function for the modified subsystem so that it decreases after
jumps and along the trajectory. The advantage of this method
is that it can be applied even if instabilities of subsystems are
of a different type (i.e. in some subsystems the continuous
dynamics is ISS, and in some other ones the discrete dynam-
ics is ISS). However, the Lyapunov gains of the modified
systems increase exponentially with a chatter bound, which
restricts the applicability of this method since enlarged gains
may no longer satisfy the small-gain condition.

Another type of small-gain theorems has been proposed
in [19], [20], [21], where ISS of interconnected impulsive
systems with unstable discrete or continuous dynamics was
investigated. The small-gain theorems developed therein pro-
vide a construction of an ISS Lyapunov function if the
instabilities of subsystems are of the same type, that is if
either continuous dynamics of all subsystems or discrete
dynamics of all subsystems is ISS. The resulting ISS Lya-
punov function can be then used to prove ISS of the overall
system under suitable dwell-time conditions. In contrast
to the previous method this method doesn’t require the
modification of subsystems, Lyapunov gains for subsystems
are preserved and do not depend on a dwell-time condition
(and on a chatter bound) which is used. However, this method
has been developed only for impulsive systems and cannot
be used for systems whose subsystems have instabilities of
different type.

In this paper we unify the above two methods. In Section II
we introduce the notation, main definitions and prove the
Lyapunov sufficient condition for ISS of hybrid systems.
Next we prove a general small-gain theorem for hybrid
systems, leading to the construction of an ISS Lyapunov
function for an interconnection of n hybrid systems, pro-
vided instabilities of its subsystems are of the same type,
which generalizes the Lyapunov small-gain theorems from
[17], [18], [15], [19], [21]. In the same section we derive
several consequences of this general result, in particular, the
small-gain theorem for interconnections of hybrid systems
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possessing exponential ISS Lyapunov functions with linear
Lyapunov gains. In Section IV we propose a version of the
method of modification of Lyapunov functions for subsys-
tems from [18] which is less restrictive than the original
method from [18] because a lesser number of systems has
to be modified. It relies on the small-gain theorem from
Section III. Next in Section V we combine the results of
this work into the unified method for analysis of ISS of
interconnected hybrid systems and conclude the paper.

II. FRAMEWORK FOR HYBRID SYSTEMS

Let R+ := [0,∞), N := {0, 1, 2, . . .}. For a vector x ∈
Rn, |x| is used to denote its Euclidean norm. For a set A ⊂
Rn, define its (Euclidean) distance to a vector x as |x|A :=
infy∈A |x−y|. For n vectors x1, x2, . . . , xn, their concatena-
tion is denoted by (x1, x2, . . . , xn) := (x>1 , x

>
2 , . . . , x

>
n )>.

We use id to denote the identity function.
Following [12], a hybrid system with input is modeled as

ẋ ∈ f(x, u), (x, u) ∈ C,
x+ ∈ g(x, u), (x, u) ∈ D,

(1)

where x ∈ X ⊂ RN , u ∈ RM , C and D are closed subsets
of RN × RM and f : C ⇒ RN and g : D ⇒ X are set-
valued maps. The hybrid system (1) is fully defined by its
data H := (f, g, C,D). The dynamics of (1) is continuous
if (x, u) ∈ C\D and discrete if (x, u) ∈ D\C. For (x, u) ∈
D ∩ C, it can be either continuous or discrete.

A set E ⊂ R+ × N is a compact hybrid time domain if
E =

⋃J
j=0([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ · · · ≤ tJ+1. A set E ⊂ R+ × N is a hybrid
time domain if for all (T, J) ∈ E, E∩([0, T ]×{0, 1, . . . , J})
is a compact hybrid time domain.

A hybrid signal is a function defined on a hybrid time
domain. A hybrid signal u : domu→ RM is called a hybrid
input if u(·, j) is Lebesgue measurable and locally essentially
bounded for each j. A hybrid signal x : domx → X is
called a hybrid arc if x(·, j) is locally absolutely continuous
for each j. A hybrid arc x : domx→ X and a hybrid input
u : domu→ Rm form a solution pair (x, u) to (1) if:
• domx = domu;
• for all j ∈ N and almost all t ∈ R+ such that

(t, j) ∈ domx, (x(t, j), u(t, j)) ∈ C and ẋ(t, j) ∈
f(x(t, j), u(t, j));1

• for all (t, j) ∈ domx such that (t, j + 1) ∈ domx,
(x(t, j), u(t, j)) ∈ D and x(t, j + 1) ∈ g(x(t, j), u(t, j)).

A solution pair (x, u) is complete if domx is unbounded.
The essential supremum norm of a hybrid signal u up to

hybrid time (t, j) ∈ domu is defined as

‖u‖(t,j) := max

{
ess sup

(s,l)∈domu,
s≤t,l≤j

|u(s, l)|, sup
(s,l)∈Φ(u),
s≤t,l≤j

|u(s, l)|
}
,

where Φ(u) := {(s, l) ∈ domu : (s, l + 1) ∈ domu}.

1Here x(t, j) represents the state of the hybrid system at time t and after
j jumps.

A function γ : R+ → R+ is positive definite if γ(x) =
0⇔ x = 0. We say that γ ∈ P if it is continuous and positive
definite. γ is of class K (denoted by γ ∈ K) if γ ∈ P and is
strictly increasing. γ is of class K∞ (denoted by γ ∈ K∞)
if γ ∈ K and limx→∞ γ(x) =∞. γ : R+ → R+ is of class
L (denoted by γ ∈ L) if it is continuous, strictly decreasing
and limt→∞ γ(t) = 0. A function β : R+×R+ → R+ is of
class KL (denoted by β ∈ KL) if β(·, t) ∈ K for all t ∈ R+

and β(r, ·) ∈ L for all r ∈ (0,∞).
Definition 1: Following [18], a set of solution pairs S of

(1) is pre-input-to-state stable (pre-ISS) w.r.t. A ⊂ X if there
exist β ∈ KL, γ ∈ K∞ such that for all (x, u) ∈ S,

|x(t, j)|A ≤ max
{
β(|x(0, 0)|A, t+ j), γ(‖u‖(t,j))

}
(2)

for all (t, j) ∈ domx. If S contains all solution pairs (x, u)
of (1), then we call (1) pre-ISS w.r.t. A. If all solution pairs
are in addition complete, then (1) is called ISS w.r.t. A.

Remark 1: In [12], the input-to-state stability of hybrid
systems is defined in terms of class KLL functions and
without requiring all solution pairs to be complete, which is
equivalent to our definition of the pre-ISS property of hybrid
systems; cf. [22, Lemma 6.1].

In this work, our principal technique for investigation of
the ISS of (1) is an ISS Lyapunov function.

Definition 2: A Lipschitz continuous function V : X →
R+ is called an ISS Lyapunov function for (1) w.r.t. A ⊂ X
if ∃ ψ1, ψ2 ∈ K∞ such that

ψ1(|x|A) ≤ V (x) ≤ ψ2(|x|A) ∀ x ∈ X (3)

holds and ∃ χ ∈ K∞, α ∈ P and continuous function ϕ :
R+ → R with ϕ(0) = 0 such that V (x) ≥ χ(|u|) implies{

V̇ (x; y) ≤ −ϕ(V (x)) ∀ y ∈ f(x, u), (x, u) ∈ C,
V (y) ≤ α(V (x)) ∀ y ∈ g(x, u), (x, u) ∈ D,

(4)

where V̇ (x; y) is the Dini derivative of V at x in the direction
y, namely

V̇ (x; y) = lim
h→+0

V (x+ hy)− V (x)

h
. (5)

In addition, if for all r ∈ R+, ϕ(r) = cr and α(r) = e−dr
for some c, d ∈ R, then V is called an exponential ISS
Lyapunov function for (1) w.r.t. A with rate coefficients c, d.

The following lemma gives an alternative description of
the ISS Lyapunov function for a hybrid system, which is use-
ful for the formulation of small-gain theorems in Section III.

Lemma 2: A Lipschitz continuous function V : X → R+

is an ISS Lyapunov function for (1) w.r.t. A if and only if
∃ ψ1, ψ2 ∈ K∞ such that (3) holds and ∃ χ̄ ∈ K∞, α ∈ P
and continuous function ϕ : R+ → R with ϕ(0) = 0 such
that for all (x, u) ∈ C and all y ∈ f(x, u),

V (x) ≥ χ̄(|u|) ⇒ V̇ (x; y) ≤ −ϕ(V (x)), (6)

and for all (x, u) ∈ D and all y ∈ g(x, u),

V (y) ≤ max{α(V (x)), χ̄(|u|)}. (7)
Proof: The proof goes along the lines of the proof [19,

Proposition 1] and is omitted.
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Similar restatement can also be provided for the exponen-
tial ISS Lyapunov function. Note that the gain functions χ
in Definition 2 and χ̄ in Lemma 2 are different in general.

In the definition of an ISS Lyapunov function, we do not
assume that ϕ ∈ P and α < id. If both of these conditions
are satisfied, then the existence of an ISS Lyapunov function
implies that (1) is pre-ISS, see [12, Proposition 2.7] (note
that ISS in [12] means pre-ISS in this work; cf. Remark 1).
If neither of them is valid, then we are not able to conclude
anything about the ISS property of (1). However, if one of
these conditions is satisfied2, then we can still establish the
ISS property for some subset of the solution pairs of (1)
under additional restrictions on the density of jumps.

Proposition 1: Let V be an exponential ISS Lyapunov
function for (1) w.r.t. A ⊂ X with rate coefficients c, d ∈ R
with d 6= 0. For arbitrary µ ≥ 1 and η, λ > 0, let S[η, λ, µ]
denote the set of solution pairs (x, u) satisfying

−(d− η)(j − i)− (c− λ)(t− s) ≤ µ
∀ (t, j),(s, i) ∈ domx.

(8)

Then S[η, λ, µ] is pre-ISS w.r.t. A.
Proof: Let χ ∈ K∞ be as in Definition 2. Con-

sider an arbitrary solution pair (x, u) ∈ S[η, λ, µ]. For all
(t1, j1), (t0, j0) ∈ domx such that t1 ≥ t0, j1 ≥ j0, if

V (x(s, i)) ≥ χ(‖u‖(s,i))
∀ (s, i) ∈ domx ∩ ([t0, t1]× {j0, . . . , j1}),

(9)

by (8) and (4) we have

V (x(t1, j1)) ≤ e−d(j1−j0)−c(t1−t0)V (x(t0, j0))

≤ e−η(j1−j0)−λ(t1−t0)+µV (x(t0, j0)).
(10)

For an arbitrary (t, j) ∈ domx, if (9) holds with (t1, j1) =
(t, j) and (t0, j0) = (0, 0), then (10) implies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), (11)

where β(r, l) := ψ−1
1 (e−lmin{η,λ}+µψ2(r)) is of class

KL. On the other hand, for any (t, j) ∈ domx de-
fine (t′, j′) := arg maxdom x∩([0,t]×{0,...,j}){s + i :

V (x(s, i)) ≤ χ(‖u‖(s,i))}, then (10) implies V (x(t, j)) ≤
e−η(j−j′)−λ(t−t′)+µe|d|V (x(t′, j′)) ≤ eµ+|d|χ(‖u‖(t′,j′)),
which further implies

|x(t, j)|A ≤ γ(‖u‖(t,j)), (12)

where γ(r) := ψ−1
1 (eµ+|d|ψ2(r)) is of class K∞.

Combining (11) and (12) shows that (2) is satisfied for all
(x, u) ∈ S[η, λ, µ] and all (t, j) ∈ domx.

Remark 3: Notice that (8) cannot be satisfied if c and d
are both negative. It is easily to verify that for c > 0, the
claim of Proposition 1 holds with η = 0; analogously, for
d > 0, it holds with λ = 0.

Remark 4: For d < 0, condition (8) can be transformed to
the average dwell-time condition [24] via division by −(d−
η); analogously, for c < 0, it can be transformed to the

2That is, either the continuous or the discrete dynamics taken alone is
ISS, but not both; see [4] and [23] for the definition of ISS for continuous
and discrete dynamics, respectively.

reverse average dwell-time condition [25] via division by
−(c− λ).

With an exponential ISS Lyapunov function, we can find
the pre-ISS set of solution pairs of (1) via Proposition 1. In
the following section we investigate the construction of an
exponential ISS Lyapunov function for an interconnection of
hybrid systems.

III. INTERCONNECTIONS AND SMALL-GAIN THEOREMS

Consider an interconnection of n hybrid subsystems with
states xi ∈ Xi ⊂ RNi , i = 1, . . . , n, and a common
external input u ∈ U ⊂ RM . Let x := (x1, . . . , xn), the
interconnection can be modeled as

Σ :
ẋi ∈ fi(x, u), (x, u) ∈ C,
x+
i ∈ gi(x, u), (x, u) ∈ D,

i = 1, . . . , n (13)

with fi : C ⇒ RNi , gi : D ⇒ Xi, C := C1×· · ·×Cn×Cu
and D := D1 × · · · × Dn × Du, where Ci, Di ⊂ Xi, i =
1, . . . , n and Cu, Du ⊂ U .

For the i-th subsystem of (13) (denoted by Σi), the states
xj of Σj , j 6= i are treated as (internal) inputs. Note that the
sets C and D coincide for all subsystems as well as for the
interconnection. This justifies the view of the system (13) as
an interconnection of n hybrid subsystems.

We define N :=
∑n
i=1Ni and X := X1 × · · · ×Xn. The

interconnection (13) can be viewed as a single hybrid system
(1) if we define functions f : C ⇒ RN by f := f1× . . .×fn
and g : D ⇒ X by g := g1 × . . .× gn.

In the following, we specialize the definition of an ISS
Lyapunov function for Σi according to Lemma 2.

Definition 3: A Lipschitz continuous function Vi : Xi →
R+ is an ISS Lyapunov function for Σi w.r.t. Ai ⊂ Xi, if the
following three properties hold:
1) There exist ψi1, ψi2 ∈ K∞ such that

ψi1(|xi|Ai) ≤ Vi(xi) ≤ ψi2(|xi|Ai) ∀ xi ∈ Xi. (14)

2) There exist χij , χi ∈ K, j = 1, . . . , n and a continuous
function ϕi : R+ → R with ϕi(0) = 0 such that χii ≡ 0,
and for all (x, u) ∈ C and all yi ∈ fi(x, u),

Vi(xi) ≥ max

{
n

max
j=1

χij(Vj(xj)), χi(|u|)
}

(15)

implies
V̇i(xi; yi) ≤ −ϕi (Vi(xi)). (16)

3) There exists αi ∈ P such that for the gains χij , χi defined
above, for all (x, u) ∈ D and all yi ∈ gi(x, u), we have

Vi(yi) ≤ max

{
αi(Vi(xi)),

n
max
j=1

χij(Vj(xj)), χi(|u|)
}
.

(17)
In addition, if ϕi(r) = cir and αi(r) = e−dir for all r ∈ R+

for some ci, di ∈ R, then Vi is an exponential ISS Lyapunov
function for Σi w.r.t. Ai with rate coefficients ci, di.

As we will see, the question, whether the interconnection
(13) is ISS, depends on the properties of the gain operator
Γ : Rn+ → Rn+ defined for s = (s1, . . . , sn) ∈ Rn+ by

Γ(s) :=

(
n

max
j=1

χ1j(sj), . . . ,
n

max
j=1

χnj(sj)

)
. (18)
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To construct an ISS Lyapunov function for the intercon-
nection (13), we adopt the notion of Ω-path [8].

Definition 4: Given a gain operator Γ : Rn+ → Rn+, a
function σ = (σ1, . . . , σn) : R+ → Rn+, where σi ∈ K∞,
i = 1, . . . , n is called an Ω-path (w.r.t. Γ), if the following
properties hold:
1) For all i ∈ {1, . . . , n}, the function σ−1

i is locally
Lipschitz continuous on (0,∞);

2) For every compact set P ⊂ (0,∞), there are finite
constants 0 < K1 < K2 such that for all i ∈ {1, . . . , n}
and all points of differentiability of σ−1

i , we have

0 < K1 ≤ (σ−1
i )′(r) ≤ K2 ∀ r ∈ P ;

3) It holds that

Γ(σ(r)) < σ(r) ∀ r > 0. (19)
We say that Γ satisfies the small-gain condition if

Γ(s) 6≥ s ∀ s ∈ Rn+\{0}. (20)

As reported in [26, Proposition 2.7 and Remark 2.8], we
are able to construct an Ω-path σ w.r.t. Γ provided (20) is
satisfied. Furthermore, σ can be made smooth via standard
mollification arguments; cf. [27, Appendix B.2]. The follow-
ing theorem shows that, if Γ satisfies the small-gain condition
(20), an ISS Lyapunov function for the interconnection (13)
can be constructed from the ISS Lyapunov functions for the
subsystems and the corresponding Ω-path.

Theorem 2: Consider the interconnection (13). Let Vi be
an ISS Lyapunov function for the subsystem Σi w.r.t. Ai ⊂
Xi with corresponding gains χij , χi ∈ K. If the gain operator
Γ defined by (18) satisfies the small-gain condition (20), the
function V : X → R+ defined as

V (x) :=
n

max
i=1

σ−1
i (Vi(xi)), (21)

where σ = (σ1, . . . , σn) is a smooth Ω-path w.r.t. Γ, is an
ISS Lyapunov function for (13) w.r.t. A := A1 × · · · × An.

Proof: For all i ∈ {1, . . . , n}, let ψi1, ψi2 ∈ K∞, ϕi :
R+ → R and αi ∈ P be given in (14), (16) and (17). We
will show that V defined by (21) satisfies the conditions of
Lemma 2. First we will show that (3) holds for ψ1, ψ2 on
R+ defined as

ψ1(r) :=
n

min
i=1

σ−1
i (ψi1(r/

√
n)),

ψ2(r) :=
n

max
i=1

σ−1
i (ψi2(r)).

Since σi, ψi1, ψi2 ∈ K∞ for all i, we know that ψ1, ψ2 ∈
K∞. Then (3) is satisfied according to (14). In particular,

ψ1(|x|A) =
n

min
i=1

σ−1
i (ψi1(|x|A/

√
n))

≤
n

min
i=1

σ−1
i

(
ψi1

(
n

max
j=1
|xj |Aj

))
≤ n

max
j=1

σ−1
j (ψj1(|xj |Aj

))

≤ n
max
j=1

σ−1
j (Vj(xj)) = V (x).

Now we will prove that (6) holds for χ, ϕ on R+ defined as

χ(r) :=
n

max
i=1

σ−1
i (χi(r)). (22)

ϕ(r) :=
n

min
i=1

(σ−1
i )′(σi(r))ϕi(σi(r)). (23)

Since for all i, σi ∈ K∞ is smooth, χi ∈ K, ϕi is continuous
and ϕi(0) = 0, we know that χ ∈ K∞, ϕ is continuous and
ϕ(0) = 0. For each i, define a set Mi as

Mi :=
{
x ∈ X : σ−1

i (Vi(xi)) > σ−1
j (Vj(xj)) ∀ j : j 6= i

}
From the continuity of all Vi and σ−1

i , it follows that all
Mi are open, X = ∪ni=1M i and Mi ∩Mj = ∅ for all i, j
such that i 6= j. Thus for all (x, u) ∈ C, there are two
possibilities:
1) There exists a unique i ∈ {1, . . . , n} such that x ∈ Mi.

Then V (x) = σ−1
i (Vi(xi)) and

V (x) > σ−1
j (Vj(xj)) ∀ j : j 6= i.

Assume V (x) ≥ χ(|u|), the definition of χ implies that

σ−1
i (Vi(xi)) ≥ σ−1

i (χi(|u|)),

and thus Vi(xi) ≥ χi(|u|). Furthermore, (19) implies that

Vi(xi) = σi(V (x))

≥ n
max
j=1

χij(σj(V (x)))

>
n

max
j=1

χij(σj(σ
−1
j (Vj(xj))))

=
n

max
j=1

χij(Vj(xj)).

Thus (15), and therefore (16), is satisfied. Since x ∈Mi,
by the definition of Dini derivative, (16) implies that,

V̇ (x; y) =
dσ−1

i (Vi(xi))

dt

= (σ−1
i )′(Vi(xi))

dVi(xi)

dt
≤ −(σ−1

i )′(Vi(xi))ϕi(Vi(xi))

= −(σ−1
i )′(σi(V (x)))ϕi(σi(V (x)))

≤ −ϕ(V (x))

for all y ∈ f(x, u).
2) Let x ∈ ∩i∈I(x)∂Mi for an index set I(x) ⊂ {1, . . . , n}

with |I(x)| ≥ 2. Then we know that, according to the
standard arguments (see, e.g., [28, proof of Theorem 4]),

V̇ (x; y) = max
i∈I(x)

dσ−1
i (Vi(xi))

dt

≤ max
i∈I(x)

−(σ−1
i )′(σi(V (x)))ϕi(σi(V (x)))

≤ −ϕ(V (x))

for all y ∈ f(x, u).
Consequently, equation (6) in Lemma 2 is satisfied. Now we
proceed to prove that (7) holds for α on R+ defined as

α(r) :=
n

max
i=1

{
σ−1
i (αi(σi(r))),

n
max
j=1

σ−1
i (χij(σj(r)))

}
.

(24)
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For all (x, u) ∈ D and all y ∈ g(x, u), there exists i ∈
{1, . . . , n} such that

V (y) = σ−1
i (Vi(yi)).

Since σi ∈ K∞, (17) implies that

V (y) ≤ max
{
σ−1
i (αi(Vi(xi))),

n
max
j=1

σ−1
i (χij(Vj(xj))), σ

−1
i (χi(|u|))

}
.

Moreover, the definition of V implies that

σj(V (x)) ≥ Vj(xj) ∀ j ∈ {1, . . . , n}.

Thus, from the definition of α, we know that

α(V (x)) ≥ max

{
σ−1
i (αi(Vi(xi))),

n
max
j=1

σ−1
i (χij(Vj(xj)))

}
.

Furthermore, the definition of χ implies that

σ−1
i (χi(|u|)) ≤ χ(|u|).

Hence
V (y) ≤ max{α(V (x)), χ(|u|)},

for all (x, u) ∈ D and all y ∈ g(x, u), that is, equation (7)
in Lemma 2 is satisfied. Therefore, by Lemma 2 we know
that V is an ISS Lyapunov function for the interconnection
(13) w.r.t. A.

Theorem 2 is a powerful tool in the study of the ISS prop-
erty of interconnections of hybrid systems. In the remaining
part of this section we will inspect some of its implications.

If all the subsystems of (13) are pre-ISS, Theorem 2
implies the following result, which generalizes [18, Theorem
III.1] and [15, Theorem 3.6].

Corollary 3: Consider the interconnection (13). Let Vi be
an ISS Lyapunov function for the subsystem Σi w.r.t. Ai ⊂
Xi with corresponding gains χij , χi ∈ K. Assume that, for
all i ∈ {1, . . . , n}, ϕi ∈ P and αi < id in (16) and (17). If
the gain operator Γ satisfies the small-gain condition (20),
then the interconnection (13) is pre-ISS w.r.t. A.

Proof: By Theorem 2, we know that V defined by (21)
is an ISS Lyapunov function for (13) w.r.t.A. Also, ϕ defined
by (23) satisfies ϕ ∈ P since σi ∈ K∞ and ϕi ∈ P for all
i ∈ {1, . . . , n}. Meanwhile, for all i, the facts αi < id and
σi ∈ K∞ imply that σ−1

i (αi(σi(r))) < r for all r ∈ R+.
Moreover, since σ is an Ω-path, (19) implies that for all
i, j ∈ {1, . . . , n}, σ−1

i (χij(σj(r))) < r for all r ∈ R+.
Hence α defined by (23) satisfies α < id. Consequently, V
is decreasing during the flows as well as at the jumps, and
thus (13) is pre-ISS w.r.t. A, according to [12, Proposition
2.7] and Remark 1.

Since the assumptions in the Corollary 3 are quite restric-
tive, we now investigate the case in which there may exist
some i so that either ϕi /∈ P or αi(r) > r for some r > 0
(cf. footnote 2). In this case, we are not able to show that
(13) is pre-ISS, but we can establish the pre-ISS property of
some set of solution pairs which neither jump too fast nor too
slowly using Proposition 1. However, in general Theorem 2
is not sufficient to provide the exponential ISS Lyapunov

function for the interconnection (13) needed in Proposition 1.
Next we will show that such an exponential ISS Lyapunov
function can be constructed if all Vi are exponential ISS
Lyapunov functions with linear internal gains χij . Denote
the spectral radius of a matrix A by ρ(A) and define the
gain matrix as ΓM := (χij)n×n.

Theorem 4: Consider the interconnection (13). Let Vi be
an exponential ISS Lyapunov function for the subsystem
Σi w.r.t. Ai ⊂ Xi with rate coefficients ci, di ∈ R and
corresponding gains χij , χi ∈ K such that di 6= 0 and χij is
linear. If ρ(ΓM ) < 1, the function V : X → R+ defined as

V (x) :=
n

max
i=1

1
si
Vi(xi), (25)

where s = (s1, . . . , sn) ∈ Rn+ and σ : r ∈ R+ 7→ sr is an
Ω-path w.r.t. Γ, is an exponential ISS Lyapunov function for
(13) w.r.t. A with rate coefficients c, d ∈ R defined as

c :=
n

min
i=1

ci, d := min
i,j:j 6=i

{
di,− ln

(
sj
si
χij

)}
. (26)

Proof: Following [7, p. 110], the condition ρ(ΓM ) < 1
implies that the gain matrix ΓM satisfies the small-gain
condition (20), which further implies the existence of a linear
Ω-path; cf. [29, p. 78]. From the definition of an exponential
ISS Lyapunov function, we know that ϕi(r) = cir and
αi(r) = e−dir for all r ∈ R+. Moreover, by (23) and (24)
we can compute that for all r ∈ R+,

ϕ(r) =
n

min
i=1

cir, α(r) = max

{
n

max
i=1

e−di ,
n

max
i,j=1

sj
si
χij

}
r.

With c, d ∈ R defined by (26), Theorem 2 implies that V is
an exponential ISS Lyapunov function for (13) w.r.t. A with
rate coefficients c, d.
The following remark shows that the formula of d can be
simplified in some important particular cases.

Remark 5: If the gain matrix ΓM is irreducible, then 1 >
ρ(ΓM ) > 0 is an eigenvalue of ΓM , and the corresponding
eigenvector s satisfies s ∈ Rn+; cf. [30, Theorem 2.1.3, p. 27].
Since (Γ(s))i ≤ (ΓMs)i < si for all i, we know that s is an
Ω-path w.r.t. Γ. Hence maxj

sj
si
χij ≤

∑
j
sj
si
χij = ρ(ΓM )

for all i, and thus d ≥ mini{di,− ln(ρ(ΓM ))}.
With an exponential ISS Lyapunov function V with either

c > 0 or d > 0, Proposition 1 can be used to prove ISS of the
interconnection (13) for the set of solution pairs satisfying
certain average dwell-time condition. However, if both c < 0
and d < 0, Proposition 1 is not applicable. In the following
section we will provide a method of modifying ISS Lyapunov
functions for the subsystems to handle this situation.

IV. MODIFICATIONS OF ISS LYAPUNOV FUNCTIONS FOR
SUBSYSTEMS

Consider the interconnection (13). For all i ∈ {1, . . . , n},
let Vi be an exponential ISS Lyapunov function for the
subsystem Σi w.r.t. Ai ⊂ Xi with rate coefficients ci, di and
linear internal gains. As mentioned in the previous section,
if there exist j, k ∈ {1, . . . , n} such that cj < 0 and dk < 0,
then (26) implies that c < 0 and d < 0 in Theorem 4 and
Proposition 1 is not applicable. In the following we will
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construct new exponential ISS Lyapunov functions for the
subsystems with rate coefficients c̃i, d̃i such that either c̃i > 0
for all i (continuous dynamics are ISS) or d̃i > 0 for all i
(discrete dynamics are ISS). To achieve this we first restrict
the frequency of jumps and then modify the ISS Lyapunov
functions for the corresponding subsystems.

A. Making discrete dynamics ISS

In this subsection, we will construct exponential ISS
Lyapunov functions with rate coefficients d̃i > 0 for all i.

Define Id := {i ∈ {1, . . . , n} : di < 0}. Pick any solution
pair (x, u) of (13) and let (t, j), (s, k) ∈ domx. For any
i ∈ Id, we restrict the frequency of jumps of the subsystem
Σi by the average dwell-time (ADT) condition:

j − k ≤ δi(t− s) +N i
0, (27)

where δi, N i
0 > 0.

It is shown (cf. [31, Appendix]) that a hybrid time domain
satisfies (27) if and only if it is the domain of some solution
pair to the following hybrid system of the clock τi:

τ̇i ∈ [0, δi], τi ∈ [0, N i
0],

τ+
i = τi − 1, τi ∈ [1, N i

0].
(28)

Define zi := xi, Zi := Xi for i /∈ Id and zi := (xi, τi),
Zi := Xi × [0, N i

0] for i ∈ Id. Let z := (z1, . . . , zn), a
modified interconnection Σ̃ can be modeled as

Σ̃ :
żi ∈ f̃i(z, u), (z, u) ∈ C̃,
z+
i ∈ g̃i(z, u), (z, u) ∈ D̃,

i = 1, . . . , n, (29)

where f̃i(z, u) := fi(x, u), g̃i(z, u) := gi(x, u) for i /∈ Id;

f̃i(z, u) :=

[
fi(x, u)
[0, δi]

]
, g̃i(z, u) :=

[
gi(x, u)
{τi − 1}

]
for i ∈ Id, C̃ := C̃1 × · · · × C̃n × Cu and D̃ := D̃1 ×
· · · × D̃n × Du, where C̃i = Ci, D̃i = Di for i /∈ Id and
C̃i = Ci × [0, N i

0], D̃i = Di × [1, N i
0] for i ∈ Id. Let

f̃ := f̃1 × · · · × f̃n, g̃ := g̃1 × · · · × g̃n, the interconnection
with clock (29) is fully defined by its data H̃ := (f̃ , g̃, C̃, D̃).

To study the ISS property of Σ̃, consider the following
ISS Lyapunov function candidate for the subsystem Σ̃i:

Wi(zi) :=

{
Vi(xi), i /∈ Id,
eLiτiVi(xi), i ∈ Id

(30)

for some constant Li > 0.
Let Ãi := Ai for i /∈ Id and Ãi := Ai×[0, N i

0] for i ∈ Id,
we will prove the following proposition:

Proposition 5: Function Wi is an exponential ISS Lya-
punov function for the subsystem Σ̃i w.r.t. Ãi. In particular:
1) There exist ψ̃i1, ψ̃i2 ∈ K∞ such that

ψ̃i1(|zi|Ãi
) ≤Wi(zi) ≤ ψ̃i2(|zi|Ãi

) ∀ zi ∈ Zi. (31)

2) For all (z, u) ∈ C̃ and all yi ∈ f̃i(z, u),

Wi(zi) ≥ max

{
n

max
j=1

χ̃ijWj(zj), χ̃i|u|
}

(32)

implies that

Ẇi(zi; yi) ≤ −c̃iWi(zi), (33)

where c̃i = ci for i /∈ Id; c̃i = ci − Liδi for i ∈ Id and
the new gains χ̃i and χ̃ij , j = 1, . . . , n are defined as

χ̃i := χi, χ̃ij := χij , i /∈ Id,

χ̃i := eLiN
i
0χi, χ̃ij := eLiN

i
0χij , i ∈ Id.

(34)

3) For all (z, u) ∈ D̃ and all yi ∈ g̃i(z, u),

Wi(yi) ≤ max

{
e−d̃iWi(zi),

n
max
j=1

χ̃ijWj(zj), χ̃i|u|
}
,

(35)
where d̃i = di for i /∈ Id and d̃i = di + Li for i ∈ Id.

Proof: For i /∈ Id the claim is obvious. Thus, let i ∈ Id.
For all zi = (xi, τi) ∈ Zi, (14) and (30) implies that

Wi(zi) ≥ Vi(xi) ≥ ψi1(|xi|Ai
),

Wi(zi) ≤ eLiN
i
0Vi(xi) ≤ eLiN

i
0ψi2(|xi|Ai).

(36)

Thus (31) holds for ψ̃i1 := ψi1 and ψ̃i2 := eLiN
i
0ψi2.

Because of (36), we know that (32) implies (15), which in
turn implies (16). From (16) and the dynamics of the clock
(28), we know that, for all (z, u) ∈ C̃ and all yi = (y1

i , y
2
i ) ∈

f̃i(z, u),

Ẇi(zi; yi) = eLiτi V̇i(xi; y
1
i ) + Lie

LiτiVi(xi)y
2
i

≤ −(ci − Liδi)Wi(zi).

For all (z, u) ∈ D̃ and all yi = (y1
i , y

2
i ) ∈ g̃i(z, u), (17)

and (30) implies that

Wi(yi) = eLi(τi−1)Vi(y
1
i )

≤ eLi(τi−1) max

{
e−diVi(xi),

n
max
j=1

χijVj(xj), χi|u|
}

≤ eLi(τi−1) max
{
e−di−LiτiWi(zi),

n
max
j=1

χijWj(zj), χi|u|
}

≤ max
{
e−di−LiWi(zi),

n
max
j=1

eLiN
i
0χijWj(xj), e

LiN
i
0χi|u|

}
≤ max

{
e−d̃iWi(zi),

n
max
j=1

χ̃ijWj(xj), χ̃i|u|
}
.

Thus Wi is an exponential ISS Lyapunov function for the
subsystem Σ̃i w.r.t. Ãi with rate coefficients c̃i, d̃i.

Remark 6: Proposition 5 shows that we can make d̃i > 0
by choosing large enough Li, at the cost of decreasing c̃i and
increasing the internal gains χ̃ij (which is worse). According
to (34), an increase of the chatter bound N i

0 leads to the
increase of the gains χ̃ij , and thus for large enough N i

0,
gain operator Γ̃ will fail to satisfy the small-gain condition
(20) (unless the interconnection is not a cascade).

To see the consequences of this fact clearer, let us consider
for simplicity an interconnection of 2 systems, possessing ex-
ponential ISS Lyapunov functions V1, V2 with linear internal
gains. Let also c1 > 0, d1 < 0, c2 < 0 and d2 > 0. Then
Theorem 2 is not applicable, and we perform the scheme
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developed in this section. After adding clocks to the first
subsystem, the modified gain operator Γ̃ takes the form

Γ̃ =

[
0 χ̃12

χ̃21 0

]
=

[
0 eL1N

1
0χ12

χ21 0

]
.

For n = 2 the small-gain condition (20) for Γ is equivalent
to χ12(χ21(r)) < r for all r > 0 [7, p.108]. Applying this
fact to Γ̃ gives that Γ̃ satisfies the small-gain condition iff

χ12χ21 < e−L1N
1
0 . (37)

For any given N1
0 and δ1, we have the freedom to select

any L1 > −d1. Thus we choose L1 = −d1 + ε for ε > 0
arbitrarily small, which implies that

χ12χ21 ≤ ed1N
1
0 < 1.

Moreover, for N1
0 = 1 the average dwell-time condition is

resolved to the fixed dwell-time condition [19, p. 1976], and
if N1

0 < 1, then the jumps are not allowed at all (this can be
seen directly from (27) by taking t− s small enough). Thus
if the original gains do not satisfy the condition

χ12χ21 ≤ ed1 ,

the construction developed in this section cannot be applied.
Above observations hint us that one should add clocks to

as small number of subsystems as possible, and it may be
better to make all c̃i > 0 (instead of all d̃i > 0 as we have
in this subsection).

B. Making continuous dynamics ISS

In this subsection, we will construct exponential ISS
Lyapunov functions with rate coefficients c̃i > 0 for all i.

Define Ic := {i ∈ {1, . . . , n} : ci < 0}. Pick any solution
pair (x, u) of (13) and let (t, j), (s, k) ∈ domx. For any
i ∈ Ic, we restrict the frequency of jumps of the subsystem
Σi by the reverse average dwell-time (RADT) condition:

t− s ≤ δi(j − k) +N i
0δi, (38)

where δi, N i
0 > 0.

It is shown (cf. [31, Appendix]) that a hybrid time domain
satisfies (38) if and only if it is the domain of some solution
pair to the following hybrid system of the clock τi:

τ̇i = 1, τi ∈ [0, N i
0δi],

τ+
i = max{0, τi − δi}, τi ∈ [0, N i

0δi].
(39)

Define zi := xi, Zi := Xi for i /∈ Ic and zi := (xi, τi),
Zi := Xi × [0, N i

0δi] for i ∈ Ic. Let z := (z1, . . . , zn),
a modified interconnection Σ̃ can be modeled as (29) with
f̃i(z, u) := fi(x, u), g̃i(z, u) := gi(x, u) for i /∈ Ic;

f̃i(z, u) :=

[
fi(x, u)
{1}

]
, g̃i(z, u) :=

[
gi(x, u)

max{0, τi − δi}

]
for i ∈ Ic, C̃ := C̃1 × · · · × C̃n × Cu and D̃ := D̃1 ×
· · · × D̃n × Du, where C̃i = Ci, D̃i = Di for i /∈ Ic and
C̃i = Ci × [0, N i

0δi], D̃i = Di × [0, N i
0δi] for i ∈ Ic.

To study the ISS property of Σ̃, consider the following
ISS Lyapunov function candidate for the subsystem Σ̃i:

Wi(zi) :=

{
Vi(xi), i /∈ Id,
e−LiτiVi(xi), i ∈ Id

(40)

for some constant Li > 0.
Let Ãi := Ai for i /∈ Ic and Ãi := Ai × [0, N i

0δi] for
i ∈ Ic, we will prove the following proposition:

Proposition 6: Function Wi is an exponential ISS Lya-
punov function for the subsystem Σ̃i w.r.t. Ãi. In particular:
1) There exist ψ̃i1, ψ̃i2 ∈ K∞ such that (31) holds.
2) For all (z, u) ∈ C̃ and all yi ∈ f̃i(z, u), (32) implies (33),

where c̃i = ci for i /∈ Ic; c̃i = ci −Li for i ∈ Id and the
new gains χ̃i and χ̃ij , j = 1, . . . , n are defined as

χ̃i := χi, χ̃ij := χij , i /∈ Ic,

χ̃i := χi, χ̃ij := eLjN
j
0δjχij , i ∈ Ic.

(41)

3) For all (z, u) ∈ D̃ and all yi ∈ g̃i(z, u), (35) holds with
d̃i = di for i /∈ Ic and d̃i = di − Liδi for i ∈ Id.

Proof: For i /∈ Ic the claim is obvious. Thus, let i ∈ Ic.
For all zi = (xi, τi) ∈ Zi, (14) and (40) implies that

Wi(zi) ≥ e−LiN
i
0δiVi(xi) ≥ e−LiN

i
0δiψi1(|xi|Ai

),

Wi(zi) ≤ Vi(xi) ≤ ψi2(|xi|Ai
).

(42)

Thus (31) holds for ψ̃i1 := e−LiN
i
0δiψi1 and ψ̃i2 := ψi2.

Because of (42), we know that (32) implies (15), which in
turn implies (16). From (16) and the dynamics of the clock
(39), we know that, for all (z, u) ∈ C̃ and all yi = (y1

i , y
2
i ) ∈

f̃i(z, u),

Ẇi(zi; yi) = e−Liτi V̇i(xi; y
1
i )− Lie−LiτiVi(xi)y

2
i

≤ −(ci − Li)Wi(zi).

For all (z, u) ∈ D̃ and all yi = (y1
i , y

2
i ) ∈ g̃i(z, u), (17)

and (40) implies that

Wi(yi) = e−Li max{0,τi−δi}Vi(y
1
i )

≤ e−Limax{0,τi−δi}max
{
e−diVi(xi),

n
max
j=1

χijVj(xj), χi|u|
}

≤ max

{
e−di−Li(τi−δi)Vi(xi),

n
max
j=1

χijVj(xj), χi|u|
}

≤ max

{
e−di+LiδiWi(zi),

n
max
j=1

eLjN
j
0δjχijWj(zj), χi|u|

}
≤ max

{
e−(di−Liδi)Wi(zi),

n
max
j=1

χ̃ijWj(xj), χ̃i|u|
}
.

Thus Wi is an exponential ISS Lyapunov function for the
subsystem Σ̃i w.r.t. Ãi with rate coefficients c̃i, d̃i.

V. DISCUSSION, CONCLUSION AND DIRECTIONS FOR A
FUTURE RESEARCH

In this paper we have proved several small-gain theorems
for interconnected hybrid systems, resulting in the construc-
tion of an ISS Lyapunov function for the interconnection.
These results unify various Lyapunov-based small-gain the-
orems for hybrid [18], [15], [17] and impulsive systems [19],
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[20], [21] and pave the way to the following general scheme
of analysis of ISS for interconnected hybrid systems:

1) For all i ∈ {1, . . . , n}, construct an exponential ISS
Lyapunov function Vi for Σi with linear internal gains
and rate coefficients ci, di.

2) Compute Id, Ic.
3) Modify Σi either for all i ∈ Id or for all i ∈ Ic.
4) Use Theorem 4 to construct an exponential ISS Lyapunov

function W for Σ̃ with rate coefficients c, d.
5) Obtain the conditions on ISS of Σ̃ via Proposition 1.
6) Obtain the conditions on ISS of the original system Σ.

As we know from Section IV, the modification of Lya-
punov functions (step 3) leads to the substantial increase of
internal gains. Therefore a considerable improvement of the
above scheme in compare to the method described in [18] lies
in the fact that only subsystems with the indices in Id or Ic
should be modified instead of all subsystems from Id∪Ic, as
it is in [18]. If either Id = ∅ or Ic = ∅, then subsystems do
not have to be modified at all. Moreover, the above method
is valid for arbitrary interconnections of n ≥ 2 systems.

In the above scheme it is assumed that all Vi are expo-
nential ISS Lyapunov functions with linear gains. However,
the modification method works without any changes for
exponential Lyapunov functions with nonlinear gains, and
Theorem 2 has been proved for arbitrary ISS Lyapunov
functions with nonlinear internal gains. Having generalized
Proposition 1 to the case of non-exponential Lyapunov func-
tions one can use the above scheme also for the Lyapunov
functions with nonlinear gains. Such a theorem has been
proved in [28] for impulsive systems and we believe, that it
can be generalized to the hybrid systems. This is one of the
possible directions for future research.

More challenging is the question whether one can get rid
of the modifications of Lyapunov functions at all. At the time
this question remains completely open.
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