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Robust observers and Pecora-Carroll synchronization with
limited information

Boris Andrievsky

Abstract— We study synchronization of nonlinear systems
with robustness to disturbances that arise when measurements
sent from the master system to the slave system are affected by
quantization and time sampling. Viewing the synchronization
problem as an observer design problem, we invoke a recently
developed theory of nonlinear observers robust to output
measurement disturbances and formulate a sufficient condition
for robust synchronization. The approach is illustrated by a
detailed analysis of the Pecora-Carroll synchronization scheme
for the Lorenz system, for which an explicit bound on the
synchronization error depending on the quantizer range and
sampling period is derived.

I. INTRODUCTION

The synchronization problem has attracted tremendous
attention from several scientific communities after the pub-
lication of the seminal paper by Pecora & Carroll [1] over a
quarter of century ago. In mid-2017 the paper [1] had more
than 6000 citations (on Web of Science). Quite a number
of monographs, special issues of journals, and surveys on
synchronization have been published, see [2]-[11] and the
references therein. The history of the ideas introduced in [1]
can be found in the recent survey [12].

In most of the aforementioned works the authors study
only idealized, disturbance-free versions of the synchroniza-
tion problem. However, taking into account disturbances
is important both for theoretical study and for practical
implementation of the proposed methods. In particular, the
issue of robustness to disturbances arises when the slave
system has to rely on imprecise measurements of the master
system’s behavior. This can be due, for example, to time
sampling and signal quantization. Robust synchronization in
the presence of such effects is the subject of this paper.

The problem of synchronization under communication
constraints and bounded disturbances has been considered
in [13]-[15] for passifiable systems. These papers treated
control systems in Lurie form satisfying a hyper-minimum-
phase assumption on the linear part. The synchronization
error was characterized in terms of the transmission rate
and upper bounds on the disturbances. Among recent papers
devoted to controlled synchronization of nonlinear systems
under disturbances one can also mention [16], where an
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adaptive H°° solution is sought, and [17], where sliding
mode control is proposed. However, very few rigorous quan-
titative results on robustness of the Pecora-Carroll scheme
under bounded disturbances seem to be available. (As dis-
cussed in [18], most known synchronization schemes are
quite sensitive to even small random noise.) Perhaps the
closest existing work is [19] which establishes robustness
to uncertainties satisfying inequality constraints and relies,
like we do here, on Lyapunov-based observer design.

In this paper we study synchronization under information
constraints which manifest themselves as errors corrupting
the output measurements. The robust synchronization prob-
lem is formulated as that of obtaining a bounded (nonlinear)
gain from this output measurement error to the synchro-
nization error. Our approach is to cast the synchronization
problem as an observer design problem and invoke recent
results from [20] on nonlinear observers robust to output
measurement disturbances in an input-to-state stability (ISS)
sense [21]. This allows us to move beyond the passification
method of [13]-[15] and potentially treat a more general
class of systems. While the general idea of relating (robust)
synchronization to observer design is not new (see, e.g.,
[19], [22]), it appears that this link has not been previously
explored with robustness defined in an ISS sense; the new
results on ISS observer design from [20] now make this
possible, as we demonstrate here.

As an illustration, we study the Pecora-Carroll synchro-
nization scheme for the Lorenz system with time sampling
and quantization. We are able to work out explicit bounds
on the ISS gain and the synchronization error for this exam-
ple. Providing such precise quantitative characterizations of
robustness is the main contribution of this work.

II. ROBUST SYNCHRONIZATION AND QDES OBSERVERS
We consider the well-known Pecora-Carroll synchroniza-
tion scheme [1]. The master system (also known as the
leader or drive system) has the form
&= F(r,y)
y=Glz,y)
where y represents the measured variables and x the rest

of the state variables. The slave system (also known as the
follower or response system) nominally has the form

i =F(&y)

(D

2)

As discussed, e.g., in [23], (2) can be viewed as the limiting
case of the system

i=F,9), §=G@&9-kG-y) O
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which is a copy of (1) under the action of high-gain feedback
control. Indeed, for large £ > 0 this controlled system can
be viewed as a singularly perturbed system, and its reduced
system as k — oo is precisely (2). We choose not to include
y-dynamics and work with (2) rather than (3) because the
y-variables are directly measured.

In this paper we are interested in the situation where
the output measurements received by the slave system are
corrupted by additive disturbances. Such disturbances arise
from information constraints; specifically, they can be caused
by quantization effects, time sampling, time delays, or com-
binations thereof. As a result, the slave system becomes

&= F(&,y+d) 4)

The y dynamics are still not necessary, since y + d can serve
as a static estimate of y.

To define the synchronization objective, let us introduce
the synchronization error

e:=I—x )

In the absence of disturbances, when the slave system (2) is
used, it is desired that e(¢) — 0 as t — oo. In the presence of
disturbances, when the slave system (4) is used, this objective
is no longer realistic. It is more reasonable to require that the
interconnection of (1) and (4) have an ISS property from d
to e; we refer to this as robust synchronization. Particularly
suitable in the present context is a weaker variant of ISS
considered in [20], called quasi-ISS. To define it, we need
the following notation. A function a: R>¢9 — R>g is of
class K if « is continuous, strictly increasing, and a/(0) = 0.
If « is also unbounded, it is of class K.,. A function S :
R>o XR>¢ — Rxg is of class KL if B(-, 1) is of class K for
each fixed ¢ > 0 and [(r,t) is decreasing to zero as t — oo
for each fixed r > 0. We will denote by || - ||; the essential
supremum norm of a signal on a time interval I; when no
interval is specified, [0, c0) is the default.

The quasi-ISS property from d to e says that for each
K > 0, there should exist a class KL function Sx and
a class K function yx such that all solutions of (1), (4)
satisfy

le()] < Br(le(0); 8) + vx ([ldll0.41) (6)

whenever ||z][jp,q < K and ||y[[jo,qy < K. The function vx
is called a quasi-ISS gain function; when it is linear, i.e.,
vk (1) = cr for some constant ¢ > 0, we refer to ¢ simply
as a quasi-ISS gain. When the state of the system (1) is
known to be globally bounded, quasi-ISS becomes standard
ISS (this will be the case for the Lorenz system considered
below). We view (6) as encoding the robust synchronization
objective of interest in this paper. It means, in particular, that
if the disturbance d is bounded or asymptotically vanishing,
then so is the synchronization error e.

The slave system (4) can be regarded as a reduced-
order observer for the master system (1). (If y-dynamics
were included, as in (3), it would be a full-order observer.)
Observers achieving the above quasi-ISS property (6) were
studied in [20] under the name of quasi-Disturbance-to-Error

Stable (¢DES) observers. A set of Lyapunov-based sufficient
conditions for the qDES property was developed in [20]. It
is then clear that in the present set-up, the results of [20] can
be directly used to study robust synchronization.

In particular, adopting Corollary 3 of [20] to the mas-
ter/plant (1) and slave/observer (4), with the synchronization
error defined by (5), we arrive at the following (the proof is
omitted due to space constraints).

Proposition 1 Suppose there exists a C* function V =V (e)
and class Ko functions aq, o, as,a4 such that for all
values of e, x,y we have:

u(lel) < V(e) < asllel), |9 ()] < aulel),
ov

0 @ (Fle+a,y) = Fla,y)) < —as(le), ()
and the “asymptotic ratio” condition

lim sup @4(€) =0 8)

£—o0 043(5)

holds. Then (4) is a gDES observer for (1), i.e., property (6)
holds under the specified conditions.

We now demonstrate this approach on a detailed example.

III. LORENZ SYSTEM
Consider the following Lorenz system [24]:

.’bl =0y — 01

L.EQ = —T9 — X1T3 + 91‘1

. €))
&3 = —Px3 + 2122

y=a

where x1(t), x2(t), x3(t) are the state variables, 3, o, 0 are
constant parameters. It is known that for certain parameter
values (e.g. for § = 8/3, 0 = 10 and 6 = 97), system (9)
exhibits chaotic behavior [24], [25]. This system fits into the
form (1) with « = (29, z3).

A. Boundedness of solutions

We claim that all solutions of the Lorenz system (9) are
bounded and eventually enter the ball

{z eR®: 2% + 23+ (v3 — 0 —0)* < p?} (10)

whose radius p = p(3, 0, 0) is specified below. Such results
are well known; see, e.g., [2], [26] and the references therein.
Consider the candidate Lyapunov function
1
V(zy, 20, 23) = 3 (:C% + a2+ (23 —0 — 9)2)

Its derivative along solutions of (9) is

o+ 6\2 (o +6)?
)
which is negative outside an ellipsoid contained in the ball
of radius (0 +6)/1+ Bmax{1, 1} centered at (0,0, (o +
6)/2). This ball is in turn contained in the ball of radius

pi= %(0 +0)(1++/1+ Bmax{1,1/o}) (11

V:—ox%—mg—ﬁ(xg—
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centered at (0,0, 0+6), which serves as an invariant attractor
proving the claim.

The actual upper bound on solutions of course depends
on initial conditions. Namely, the solutions will remain in
the smallest ball centered at (0,0,0 + @) which contains
the initial state and whose radius is at least p. For future
reference, we formally define this ball as

Q:={zcR®:2? +a5+ (x3—0—0)><D*} (12
where
D := max{p, [(1(0), 22(0),23(0) —o = 0)[}  (13)

and p is defined in (11).

B. Time-sampling error

Suppose that the output is sampled at the times ¢ := k7T,
k=20,1,..., where T" > 0 is the sampling period, so that
the actual measured output received by the slave system is
given by

xl(t) + d(t) = xl(tk), te [tk7tk+1)

where d(t) := x1(t;) — x1(t) is the disturbance that repre-
sents the time-sampling error. The above boundedness claim
allows us to obtain an upper bound on this time-sampling
error. For t € [ty, tx1) we have

.Z‘l(t) = .Z‘l(tk-) + j?l (8)(t — tk)

for some s € [ty, t]. Using the first differential equation in (9)
and the fact that t — ¢, < T, we have

21 () — 21 (tr)] < ola(s) — 21(s)[T

We know that z(t) belongs to the ball © defined in (12),
with radius D defined in (13), for all £ > 0. The maximum
of |25 — 21| over this ball is easily seen to be v/2D. We can
thus write

|21 (t) — 21 (ty)| < oV2DT

and this gives a bound on the norm of the disturbance that
arises from time sampling:

ld(t)| < oV2DT

The bound (14) will be used below for evaluation of the
synchronization error.

(14)

C. Binary digital quantization error

1) Data transmission procedure: Consider transmission
of the signal over the digital communication channel, where
both time-sampling and level quantization are present. Let
us consider the binary coder with memory, cf. [27]-[29].

Let signal y(t) be transmitted over the digital communi-
cation channel at sampling instants ¢, = k7T, where T" > 0
is a constant sampling period, £k = 0,1,... are integers. At
each k, the deviation signal 0[k] between transmitted signal
y(tx) and a certain centroid c[k] (defined below in the text)
is calculated as §[k] := y(t) — c[k]. Signal §[k] is subjected
to the following binary quantization scheme:

3[k] := M sign(3[k]) (15)

where sign(-) is signum function, M > 0 may be referred
to as a quantizer range. Then the quantizer output §[k] €
{—M, M} is transmitted over the communication channel
to the decoder. The sequence of centroids c[k] is recursively
defined by the following algorithm:

clk +1] = c[k] + 6[k], ¢[0] = 0. (16)

Equations (15), (16) describe the coder algorithm.
A similar algorithm is implemented by the decoder: the
decoder output (k] is defined as

ylk] == ¢[k] + o[K], (17)

where the centroid ¢[k] is found in the decoder in accordance
with (16):

elk + 1] = e[k] + 0[k], ¢[0] = 0. (18)
(Thus the centroid sequence ¢[k| is the same as c[k], and
in what follows we make no distinction between the two.)
Note that the considered coding scheme corresponds to the
channel data rate of R = T~! bits per second. In between

transmission times we define

y(t) == ylkl,

2) Data transmission error: Let us evaluate an upper
bound of data transmission error d(t¢) given that the growth
rate of y(¢) is uniformly bounded. A bound for §(t) was
already found in Section III-B and it is

te [tk,tk_»,_l).

L, = ov2D. (19)

To analyze the coder—decoder accuracy, let us derive an upper
bound A on the transmission error d(t) := y(t) — y(t),
defined as A = sup |d(¢)].

From the coding-decoding scheme (15)—(18) it is clear that
for each time interval ¢ € [tg,tx4+1), the transmission error
may be represented as d(t) = y(t) — y[k] = y(t) — c[k + 1].
Due to the above bound on the rate of y(t), over each time
interval ¢ € [y, tr+1) the magnitude of d(t) is bounded by
ly(te) — clk +1]| + L,T.

To evaluate |y(tx) — c[k + 1]|, assume that for a certain &
it is valid that

ly(tr) — clk]| < 2M. (20)

Then, after renovation of ¢ by means of (16), the magnitude
of y(tx) — c[k + 1] does not exceed M. Therefore, during
the interval ¢t € [ty,tr41) the following inequality

ld(t)| < M + L,T (21)
holds. If M is chosen satisfying the condition
M > L,T, (22)

then at instant ¢y, inequality (20) will be fulfilled with
k + 1 instead of k and, using the induction argument, the
same relation (20) will be valid for all subsequent steps.
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Representing M in the form M = oL,T for some o > 1
one obtains the following relation for the upper bound of
transmission error:

A=(1+a)L,T. (23)

Inequality (22) imposes restrictions on sampling period
T and quantizer range M for a given growth rate L,
of y(t). If (22) is fulfilled, then magnitude |d(¢)| of data
transmission error d(¢) does not exceed A. Otherwise the
data transmission scheme based on (15)—(17) may fail.

Remark 1 The assumption has been made that (20) is valid
for some (finite) k. This condition may be violated at the
beginning of the process. But in view of boundedness and
continuity of y(t), it may be easily proven that for any M >
0 procedure (16) ensures that such a k exists. Alternatively,
for speeding up convergence of c[k] to the vicinity of y(y),
a zooming strategy may be employed (see [30], [31]).

Remark 2 Violation of (22) may eventually lead to loss
of tracking by c[k] of the values of y(¢;) at some instant.
After several steps, tracking may be restored (based on the
aforementioned arguments), and time intervals when (20) is
fulfilled or violated may alternate. Nevertheless, we consider
this situation as data transmission failure.

D. gDES observer
Consider the reduced-order observer:
%2 = —T9 — gi‘3 +9y
T3 = —fBi3 + Yo
where we use the shorthand notation
y=y+d

for the output signal received by the observer, to reflect
the fact that the observer acts on sampled and quantized
measurements of the system; here d is the transmission
error as defined earlier. This observer is consistent with the
form (4) for the slave system, and without disturbance it
reduces to the classical Pecora-Carroll scheme. If desired, it
can be completed by the static estimate 21 = ¥ for .
Define the state estimation error vector

€2 To — o
‘- (63) - (13"3 - 903)
The error dynamics are
ég = (=9 — Jiis + 07) — (—xo — 2123 + O21)
é3 = (—B23 + y22) — (— B3 + T122)
which we can rewrite as
éy = (—y — Y3 + 0)) — (—w2 — Y3 + 00
+ (S — yas + 0y) — (Swg — a3 + 021)
3 = (—Pi3 + y22) — (—Br3 + yr2)
+ (=Bx3 + yr2) — (=Bx3 + 7172)

(24)

Consider the candidate Lyapunov function

1
Ve, e3) = 5(65 +€e3)

Its derivative along the error dynamics can be written as the
sum of two terms. The first term is obtained by considering
only the terms in the first and second parentheses on the
right-hand sides of (24), and it is

e2(—22 — yi3) — ea(—x2 — Yr3)

+ 63(—5@3 + gfg) — 63(—ﬁ$3 + ﬂxz)

= —¢3 — eaffeg — [} + eafes = —¢5 — fes
< —min{1, B} |ef?

This is precisely the inequality (7) for the specific example
at hand.

The second term in V comes from considering the remain-
ing terms on the right-hand side of (24), and it is

62(73}%3 + 0@) — 62(7.%11‘3 + 9581) + 63:[7502 — €3T1T2
= exw3(w1 — §) + €20(y — x1) + e3x2(y — 1)
= (62(9 —x3) + egxg)d < Clel|d|

(")

is finite because x(t) evolves in the compact set ) defined
in (12) by the analysis of Section III-A. In fact, since 2 is
the ball of radius D centered at (0,0,0 + ), it is easy to

see that 9
T2

Since |e|/|e|? — 0 as |e| — oo, the observer is gDES by
Corollary 3 of [20]. This corresponds to the asymptotic ratio
condition (8) with a4 linear and a3 quadratic. Therefore, the
ISS property from the measurement disturbance d to the state
estimation error e is guaranteed (because we know that the
state of the plant remains bounded). In fact, from the above
calculation of V it is easy to see that C'/ min{1, 3} is an
upper bound on the ISS gain.

This means, in particular, that

C (1+a)ov2DTC
< it A NS T i1,

where to arrive at the last inequality we used (19) and (23).
Recall that in the case of time-sampling only (Section III-
B) we can set &« = 0, while in the presence of binary
quantization (Section III-C) we have e > 1 and the quantizer
range must be chosen as M = «aL,T. We see that the
achievable synchronization error is inversely proportional to
the information transmission rate R = T~ 1.

where

C :=sup
>0

(25)

C = sup
zeQ

lim sup |e(t)] (26)

t—o00

E. Simulations

1) Simulation parameters: The classic parameter values
of Lorenz system (9) are taken for the simulations: 8 = 8/3,
6@ = 97, 0 = 10. For the chosen parameters, relation (11)
yields p = 156. For simplicity we assume that the initial
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Fig. 2. Time histories of y(t), 7(t), d(t) for T =2-1073 s.
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Fig. 3. Time histories of z2(t), Z2(t), e2(t) = x2(t) — &2(t) for T =
2.1073 s.

state vector x(0) belongs to the ball of radius p specified
by (10) and (11). Projections onto the (1, z2)-plane of this
ball and the phase plot of the Lorenz system, starting from
21(0) =2, 22(0) = 4, 23(0) = 2, are depicted in Fig. 1.

Expression (19) gives L, = oV/2p ~ 2210.

2) Data transmission error: Simulation results for a =
1.01 and various T are depicted in Figs. 2-6.

Based on (22), for T = 2 - 1073 s the value of M was
taken as M = 4.42. In this case (23) gives A = 8.88.
Simulation run during 100s gives the “measured” values
Lym = 850 and Agy = 4.79. The corresponding time
histories are depicted in Figs. 2, 3.

For the case of T = 5-1072 s the corresponding time

_40 L ) L L L
0

100

50

~100 I I I I

0 02 04, 06 08 1
Fig. 5. Time histories of z2(t), Z2(t), e2(t) = x2(t) — &2(¢t) for T =
5-1073 s.
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Fig. 6. Transmission error bounds vs data bit-rate R (bit/s). A — theoretical
bound, Ay, — simulation result.

histories are depicted in Figs. 4, 5. For T =5-1072 s, (23)
gives A = 11.2. The signal transmission bound found by the
simulation is as Ay, = 14.3.

Dependencies of A, Ay, on data bitrate R €
[10%,103] bit/s are shown in Fig. 6.

It is worth mentioning that the coder range M in the
aforementioned simulation has been found based on the
theoretical bound L, = Jﬁp as L, = 2210. An actual
bound L,, obtained by intensive simulations, is about 850.
Application of this value to M = oL,T (for the same «)
makes it possible to significantly reduce data transmission
error A and reduces difference between theoretical and
computational evaluation of A(R), which is seen on Fig. 7.

3) Synchronization error: To find an upper bound of the
estimation error |e(t)| theoretically, let us use relation (25).
Under the aforementioned assumption that x(0) belongs to
the ball (10), (11) of radius p, we have that x(¢) remains in
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Fig. 7. Transmission error bounds vs data bit-rate R (bit/s) for L, = 850.
A — theoretical bound, Agj,, — simulation result.

this ball for all ¢, and it follows that C' = p + o.
Therefore, by (26) we obtain

lim sup [e(t)] < —217__

00 min{1, 8}

where p and A are given by (11) and (23), respectively. For

given parameter values, one obtains that lim sup,_, . |e(t)] <
166A.

Computer experiments demonstrate that in practice the ro-
bust synchronization scheme works significantly better than
the theory predicts. This difference between the theoretical
and simulation-based evaluation may be explained by a
“random” character of the data transmission error, which is
not taken into account in the worst-case theoretical analysis.

A, 27)

IV. CONCLUSIONS

A recently introduced framework of qDES nonlinear ob-
servers was applied to characterize robustness of the Pecora-
Carroll synchronization scheme to errors arising from time
sampling and quantization of the measurements sent from the
master to the slave system. For the Lorenz system example,
a specific expression on the synchronization error in terms of
the information transmission rate and system parameters was
derived. Future studies will be directed at closing the gap
between the derived theoretical results and the better ones
observed in simulations, as well as at applying the approach
to other system classes and other synchronization schemes.
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