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Abstract— We establish exponential stability for a class
of linear systems with slow and fast time variation and
switching. We use the averaging method to approximate
the original system by the average system which only
exhibits slow time variation and switching. We then apply
a stability criterion recently developed for such systems
to prove stability of the average system and, consequently,
of the original system.

Index Terms— Switched systems, time-varying systems,
stability of linear systems.

I. Introduction

For systems with time-varying parameters, there are
well-known sufficient conditions for stability that ask
the system to be stable for each frozen value of the
parameters and the variation to be sufficiently slow
(typically by placing some type of upper bound on
the time derivative of the parameters). Such results
are by now standard, especially for linear time-varying
systems, and appear in textbooks; see, e.g., [4, Sec-
tion 3.4], [5, Section 9.6] and the references therein.
For switched systems, which are characterized by

instantaneous switching instead of continuous variation,
there exist stability criteria which parallel the ones
mentioned above for time-varying systems and which
are also well known. They are formulated in terms
of stability of each individual mode of the switched
system and a slow-switching condition, typically in
terms of sufficiently large (average) dwell time; see,
e.g., [6] for an introduction to this class of systems and
representative basic results.
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The recent work [2], [3] made apparently the first
attempt to unify these two sets of results. For systems
combining continuous variation and switching, these
papers utilized the concept of total variation. This is the
quantity obtained, loosely speaking, by integrating the
norm of the derivative of the time-varying parameter
vector (or matrix) and adding, at each switching instant,
the norm of the jump. For linear systems, it was shown
in [3] that exponential stability is preserved if the total
variation is suitably small. It was also demonstrated that
this approach allows one to recover known results for
systems with only continuous variation and only switch-
ing, with the results in the latter category actually going
beyond the basic ones appearing in [6, Section 3.2]. An
extension to nonlinear systems was presented in [2]. See
also [7] for an interesting recent extension to switched
linear systems with unstable modes (and disturbances).
For systems with fast time variation, a well-known

analysis method is based on averaging. In its classical
formulation (see, e.g., [5, Section 10.4], [8]), it deals
with periodic or nearly periodic fast-varying signals by
defining the average system which is by construction
time-invariant, and proving via perturbation arguments
that the behavior of the original system is close to
that of the average system. The averaging method has
also been applied to other system classes, including
switched systems [11].
While in the above references the average system is

time-invariant1, the paper [1] (see also [9]) studied the
case when both slow and fast variation are present in
the system, leading to a slowly time-varying average
system (with the fast variation “averaged out"). The
idea behind the main result of [1] is that perturbation
analysis can still be used to show that the behaviors of
the original system and the average system are close,
and if the remaining variation in the average system is
sufficiently slow then known results (mentioned earlier)

1The paper [10] did consider averaging constructions for hybrid
systems in which the average system is also hybrid (with the same
jumps as the original system).
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can be used to establish stability of the average system
and, consequently, of the original system.
In the setting of [1], the slow variation present both

in the original and in the average system is continuous
(and almost everywhere differentiable). In view of
the recent results developed in [3] and [2], it seems
natural to ask whether we may now be able to relax
this assumption. In other words, can we now develop
stability criteria for systems in which both continuous
time variation and switching are present, and these can
be both slow and fast?
The purpose of this paper is to give a positive answer

to the above question for a special class of linear sys-
tems with slow and fast time variation and switching.
The average system exhibits slow time variation and
switching, and we tap into the results from [3] to
show that it is exponentially stable under a suitable
upper bound on its total variation. We then carry out
perturbation analysis, in the spirit of [5] and [1], to
establish that the original system is exponentially stable
as well, provided that its fast-variation component is
sufficiently fast.

II. Set-up and statement of the main result

A. The system and its average

We consider the system

¤𝑥 =
(
𝐴(𝑡) + 𝐵(𝑡/𝜀)

)
𝑥. (1)

Here 𝑥 ∈ R𝑛, 𝐴(·) and 𝐵(·) are piecewise continuous
functions from [0,∞) to R𝑛×𝑛, 𝐵(·) is periodic with
a known period 𝑇 > 0, and 𝜀 > 0. For small 𝜀, we
think of 𝐴(𝑡) as describing “slow" time-variation and
switching in the system (this will be made precise by
the assumptions below), and of 𝐵(𝑡/𝜀) as describing
“fast" variation and switching.
Without loss of generality, we assume that 𝐵(·) has

zero average, i.e.,

1
𝑇

∫ 𝑇

0
𝐵(𝑠)𝑑𝑠 = 0.

(We can always achieve this by redefining 𝐴(·) and 𝐵(·)
to absorb the average of 𝐵(·) into 𝐴(·), if needed.) Then
the average system corresponding to (1) is given by

¤𝑥 = 𝐴(𝑡)𝑥. (2)

We note that, by introducing a correspondence between
vectors and matrices as done in [2, Section V], we
can show that this definition of the average system is
a special case of the more general definition of the

average for nonlinear systems considered in [1], which
in turn is consistent with the standard definition in [5,
Section 10.4] after a time rescaling. (In the approach
of [1] both the state and the slowly time-varying input
are “frozen" when defining the average.)

B. Assumptions on average system

We impose assumptions on the slow variation 𝐴(·) to
ensure that Theorem 3 from [3] applies to the average
system (2). These are as follows.

Assumption 1: 𝐴(·) is uniformly bounded: for some
𝐿 > 0, we have

‖𝐴(𝑡)‖ ≤ 𝐿 ∀ 𝑡 ≥ 0 (3)

(here ‖ · ‖ is the induced matrix norm corresponding to
the Euclidean norm in R𝑛).

Assumption 2: The matrices 𝐴(𝑡) are uniformly Hur-
witz, in the sense that for some 𝜅 > 0 the real parts of
their eigenvalues satisfy

Re𝜆𝑖 (𝐴(𝑡)) ≤ −𝜅 ∀ 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

Assumptions 1 and 2 together imply that for each
𝜆 ∈ (0, 𝜅) there exists a 𝑐 > 0 such that

‖𝑒𝐴(𝑡)𝑠 ‖ ≤ 𝑐𝑒−𝜆𝑠 ∀ 𝑡 ≥ 0, 𝑠 ≥ 0 (4)

(see [5, Section 9.6, proof of Lemma 9.9]).
We adopt the same regularity assumptions as in [3,

Assumption 2] to ensure that the results from [3] apply:
Assumption 3: 𝐴(·) has finitely many discontinuities

on any bounded interval, is càdlàg2, is 𝐶1 between
discontinuities, and ¤𝐴(·) and ‖ ¤𝐴(·)‖ are Riemann inte-
grable between discontinuities.
Next, we consider the total variation of 𝐴(·) as

defined in [3]. On an arbitrary time interval [𝑎, 𝑏], this
is given by∫ 𝑏

𝑎

‖𝑑𝐴‖ :=
𝑚∑︁
𝑖=0

∫ 𝑑𝑖+1

𝑑𝑖

‖ ¤𝐴(𝑡)‖𝑑𝑡+
𝑚∑︁
𝑖=1

‖𝐴(𝑑𝑖) −𝐴(𝑑−𝑖 )‖

(5)
where 𝑑1, . . . , 𝑑𝑚 are discontinuities of 𝐴(·) with 𝑎 =:
𝑑0 < 𝑑1 < · · · < 𝑑𝑚 < 𝑑𝑚+1 := 𝑏, and 𝐴(𝑑−

𝑖
)

denotes the left limit of 𝐴(·) at 𝑑𝑖 (the right limit
equals 𝐴(𝑑𝑖) by Assumption 3). We refer the reader
to [3] for a more intrinsic but equivalent definition of
the total variation and for further discussion. Our fourth

2Continuous from the right, has limits from the left; this assump-
tion is made for notational convenience.
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and final assumption here places an upper bound on the
total variation.

Assumption 4: The total variation satisfies the bound∫ 𝑡2

𝑡1

‖𝑑𝐴‖ ≤ 𝜇(𝑡2 − 𝑡1) + 𝛼 ∀ 𝑡2 ≥ 𝑡1 ≥ 0 (6)

with some 𝛼 > 0 and

0 < 𝜇 <
𝛽1

2𝛽32
(7)

where

𝛽1 :=
1
2𝐿

, 𝛽2 :=
𝑐2

2𝜆
and 𝐿, 𝑐, 𝜆 come from (3) and (4).

C. Main result

The main result of this paper states that under the
above assumptions and for sufficiently small 𝜀, the sys-
tem (1) is globally exponentially stable (in the classical
sense, with respect to the equilibrium at the origin).

Theorem 1 Let Assumptions 1–4 hold. Then there ex-
ists an 𝜀∗ > 0 such that the system (1) is globally
exponentially stable for all 𝜀 ∈ (0, 𝜀∗).

The proof of this result is developed in the next
section.

III. Proof of Theorem 1

The proof proceeds by, first, invoking the results
from [3] to establish exponential stability of the average
system (2); next, expressing the original system (1) as
a perturbation of the average system; and, finally, using
perturbation analysis to verify exponential stability of
the original system.

A. Stability of average system

Theorem 3 from [3] establishes that, under Assump-
tions 1–4, the system (2) is exponentially stable. We
reproduce the main steps of the proof of this result
here, as they will be needed to extend the stability
analysis to (1). For each 𝑡 ≥ 0 we let 𝑃(𝑡) be the unique
symmetric positive definite solution to the Lyapunov
equation

𝑃(𝑡)𝐴(𝑡) + 𝐴𝑇 (𝑡)𝑃(𝑡) = −𝐼 (8)

and consider the candidate Lyapunov function

𝑉 (𝑡, 𝑥) := 𝑥𝑇 𝑃(𝑡)𝑥 (9)

whose derivative along solutions of (2) is given, in view
of (8), by

¤𝑉 = −|𝑥 |2 + 𝑥𝑇 ¤𝑃(𝑡)𝑥. (10)

Here and below, by ¤𝑉 we mean the quantity 𝑑
𝑑𝑡
𝑉 (𝑡, 𝑥(𝑡))

which is only defined away from discontinuities of 𝐴(·),
where ¤𝐴(𝑡) exists (by Assumption 3) and consequently
¤𝑃(𝑡) exists as well. (The last claim easily follows from
the well-known formula 𝑃(𝑡) =

∫ ∞
0 𝑒𝐴

𝑇 (𝑡)𝑠𝑒𝐴(𝑡)𝑠𝑑𝑠.)
By Lemma 9.9 from [5] we have

𝛽1 ≤ ‖𝑃(𝑡)‖ ≤ 𝛽2 ∀ 𝑡 ≥ 0 (11)

hence

𝛽1 |𝑥 |2 ≤ 𝑉 (𝑡, 𝑥) ≤ 𝛽2 |𝑥 |2 ∀ 𝑥 ∈ R𝑛, ∀ 𝑡 ≥ 0. (12)

Next, following the proof of Lemma 9.9 in [5] or
Theorem 3.4.11 in [4], we can show that

‖ ¤𝑃(𝑡)‖ ≤ 2𝛽22‖ ¤𝐴(𝑡)‖. (13)

Plugging this bound into (10), we have
¤𝑉 ≤ −|𝑥 |2 + 2𝛽22‖ ¤𝐴(𝑡)‖ |𝑥 |

2.

Using the bounds (12), we obtain
¤𝑉 ≤ −𝛽−12 𝑉 + 2𝛽22𝛽

−1
1 ‖ ¤𝐴(𝑡)‖𝑉

= −
(
𝛽−12 − 2𝛽22𝛽

−1
1 ‖ ¤𝐴(𝑡)‖

)
𝑉.

Applying the standard comparison principle, we con-
clude that

𝑉 (𝑡−2 ) ≤ 𝑒
−

𝑡−2∫
𝑡1

(𝛽−1
2 −2𝛽22𝛽

−1
1 ‖ ¤𝐴(𝑠) ‖)𝑑𝑠

𝑉 (𝑡1) (14)

for every interval [𝑡1, 𝑡2) containing no discontinuities
of 𝐴(·); here 𝑉 (𝑡) is a shorthand for 𝑉 (𝑡, 𝑥(𝑡)).
Now, let us consider a time instant 𝑡 at which 𝐴(·) is

discontinuous: 𝐴(𝑡) ≠ 𝐴(𝑡−). In [3] a relationship was
derived between the jump in 𝑃(·) and the jump in 𝐴(·)
at 𝑡, which is essentially a discrete counterpart of (13).
Namely, Proposition 1 and Lemma 3 in [3] establish
that

‖𝑃(𝑡) − 𝑃(𝑡−)‖ ≤ 2𝛽22‖𝐴(𝑡) − 𝐴(𝑡−)‖

and that, consequently,

𝑉 (𝑡) −𝑉 (𝑡−) = 𝑥𝑇 (𝑡−) (𝑃(𝑡) − 𝑃(𝑡−))𝑥(𝑡−)
≤ ‖𝑃(𝑡) − 𝑃(𝑡−)‖ |𝑥(𝑡−) |2

≤ 2𝛽22𝛽
−1
1 ‖𝐴(𝑡) − 𝐴(𝑡−)‖𝑉 (𝑡−)

which, applying the fact that 𝑧 + 1 ≤ 𝑒𝑧 with 𝑧 =

2𝛽22𝛽
−1
1 ‖𝐴(𝑡) − 𝐴(𝑡−)‖, results in

𝑉 (𝑡) ≤ 𝑒2𝛽
2
2𝛽

−1
1 ‖𝐴(𝑡)−𝐴(𝑡−) ‖𝑉 (𝑡−). (15)
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We can now iteratively combine the two bounds (14)
and (15), as done in the proof of Theorem 3 in [3], to
show that for every interval [𝑡1, 𝑡2], possibly containing
discontinuities of 𝐴(·), we have

𝑉 (𝑡2) ≤ 𝑒
−𝛽−1
2 (𝑡2−𝑡1)+2𝛽22𝛽

−1
1

𝑡2∫
𝑡1

‖𝑑𝐴‖
𝑉 (𝑡1).

Finally, using the total variation bound (6), we arrive
at

𝑉 (𝑡2) ≤ 𝑒2𝛽
2
2𝛽

−1
1 𝛼𝑒 (2𝛽

2
2𝛽

−1
1 𝜇−𝛽−1

2 ) (𝑡2−𝑡1)𝑉 (𝑡1) (16)

which establishes exponential stability of (2) because
2𝛽22𝛽

−1
1 𝜇 − 𝛽−12 < 0 thanks to (7). For convenience, we

define

𝛾 := 𝑒2𝛽
2
2𝛽

−1
1 𝛼, 𝛿 := 𝛽−12 − 2𝛽22𝛽

−1
1 𝜇 > 0 (17)

in terms of which the estimate (16) takes the form

𝑉 (𝑡2) ≤ 𝛾𝑒−𝛿 (𝑡2−𝑡1)𝑉 (𝑡1).

B. Approximation by average system

To approximate the original system (1) by the average
system (2), we consider for (1) the change of variables

𝑥 = 𝑦 + 𝜀

∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠 · 𝑦. (18)

We can check that this change of variables is consistent
with the one considered for the more general nonlinear
case in [1] and, modulo time rescaling, in [5, Sec-
tion 10.4], when specialized to the linear system (1).
The time derivative of the left-hand side of (18) is ¤𝑥
which, in view of (1) and (18), equals

𝐴(𝑡)𝑦 + 𝐴(𝑡) 𝜀
∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠 · 𝑦

+ 𝐵(𝑡/𝜀)𝑦 + 𝐵(𝑡/𝜀) 𝜀
∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠 · 𝑦.

On the other hand, differentiating the right-hand side
of (18) with respect to time gives

¤𝑦 + 𝜀

∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠 · ¤𝑦 + 𝐵(𝑡/𝜀)𝑦.

Equating the two expressions and canceling and col-
lecting terms, we obtain(

𝐼 + 𝜀

∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠

)
¤𝑦

= 𝐴(𝑡)𝑦 + 𝜀
(
𝐴(𝑡) + 𝐵(𝑡/𝜀)

) ∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠 · 𝑦.

Since 𝐵(·) is periodic and has zero average,
∫ 𝜏

0 𝐵(𝑠)𝑑𝑠
is bounded uniformly over 𝜏. Thus, for 𝜀 sufficiently
small, the matrix 𝐼 + 𝜀

∫ 𝑡/𝜀
0 𝐵(𝑠)𝑑𝑠 is invertible and we

can write

¤𝑦 =

(
𝐼 + 𝜀

∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠

)−1
×
(
𝐴(𝑡)𝑦 + 𝜀

(
𝐴(𝑡) + 𝐵(𝑡/𝜀)

) ∫ 𝑡/𝜀

0
𝐵(𝑠)𝑑𝑠 · 𝑦

)
.

Moreover, from the expansion (𝐼 + 𝜀Λ)−1 = 𝐼 − 𝜀Λ +
𝜀2Λ2−· · · = 𝐼+𝑂 (𝜀) we see that

(
𝐼+𝜀

∫ 𝑡/𝜀
0 𝐵(𝑠)𝑑𝑠

)−1
=

𝐼 +𝑂 (𝜀). This yields the equation of the form

¤𝑦 = 𝐴(𝑡)𝑦 + 𝜀𝐶 (𝑡, 𝜀)𝑦 (19)

where 𝐶 (·, ·) is piecewise continuous in 𝑡 for fixed 𝜀

and bounded in 𝑡 uniformly over 𝜀, provided 𝜀 is small
enough. We see that the 𝑦-dynamics take the form of
the average system dynamics with an additional pertur-
bation term represented by a “vanishing perturbation"
in the sense of [5, Section 9.1].

C. Stability of original system by perturbation analysis

We are now ready to prove Theorem 1. We know
from our earlier analysis in Section III-A that away from
discontinuities of 𝐴(·), the derivative of the Lyapunov
function 𝑉 (𝑡, 𝑦) = 𝑦𝑇 𝑃(𝑡)𝑦 along solutions of the
system ¤𝑦 = 𝐴(𝑡)𝑦 satisfies

¤𝑉 = −|𝑦 |2 + 𝑦𝑇 ¤𝑃(𝑡)𝑦
≤ −|𝑦 |2 + 2𝛽22‖ ¤𝐴(𝑡)‖ |𝑦 |

2

≤ −
(
𝛽−12 − 2𝛽22𝛽

−1
1 ‖ ¤𝐴(𝑡)‖

)
𝑉.

In (19) we also have the second term on the right-
hand side, whose effect on ¤𝑉 can be upper-bounded as
follows:���𝜕𝑉

𝜕𝑦
𝜀𝐶 (𝑡, 𝜀)𝑦

��� ≤ 2‖𝑃(𝑡)‖𝜀‖𝐶 (𝑡, 𝜀)‖ |𝑦 |2

≤ 2𝛽2𝜀‖𝐶 (𝑡, 𝜀)‖ |𝑦 |2

≤ 2𝛽2𝛽−11 𝜀‖𝐶 (𝑡, 𝜀)‖𝑉

where we used (11) and (12). Let 𝜀∗ > 0 and 𝜈 > 0 be
such that the derivation of (19) is valid and ‖𝐶 (𝑡, 𝜀)‖ ≤
𝜈 for all 𝑡 ≥ 0 and all 𝜀 ∈ (0, 𝜀∗). Then for such values
of 𝜀 the derivative of 𝑉 along solutions of (19) satisfies

¤𝑉 ≤ −(𝛽−12 − 2𝛽2𝛽−11 𝜀𝜈 − 2𝛽22𝛽
−1
1 ‖ ¤𝐴(𝑡)‖)𝑉. (20)

On the other hand, if 𝑡 is a discontinuity of 𝐴(·), it
is clear from (18) that 𝑦 is continuous at 𝑡 (because so
is 𝑥). Thus the formula (15) is still valid for 𝑉 (𝑡) =
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𝑉 (𝑡, 𝑦(𝑡)). Combining this with (20) and applying the
comparison principle and iterating as we did earlier for
the average system, we obtain

𝑉 (𝑡2) ≤ 𝑒
−(𝛽−1

2 −2𝛽2𝛽−1
1 𝜀𝜈) (𝑡2−𝑡1)+2𝛽22𝛽

−1
1

𝑡2∫
𝑡1

‖𝑑𝐴‖
𝑉 (𝑡1).

From this, the total variation bound (6) and the notation
introduced in (17) bring us to

𝑉 (𝑡2) ≤ 𝛾𝑒−(𝛿−2𝛽2𝛽
−1
1 𝜀𝜈) (𝑡2−𝑡1)𝑉 (𝑡1).

We now see that exponential stability is indeed pre-
served for 𝜀 ∈ (0, 𝜀∗) after we reduce 𝜀∗ if necessary
so that 𝛿 − 2𝛽2𝛽−11 𝜀∗𝜈 > 0. In the 𝑥-coordinates, the
same conclusion then holds for the original system (1)
by (18), and the proof is complete.

IV. Conclusions

We studied stability of a class of linear systems with
slow and fast time variation and switching. This was
accomplished by combining the averaging method as
used in [1] with the recent result from [3] on stability of
linear systems with slow time variation and switching.
Although the class of systems (1) considered in

this paper is rather special, our methodology can be
extended to more general linear systems as well as to
some nonlinear systems. These results will be reported
in forthcoming publications.

References
[1] Y. U. Choi, H. Shim, and J. H. Seo. On a stability property of
nonlinear systems with periodic inputs having slowly varying
average. In Proc. 16th IFAC World Congress, pages 1189–
1192, 2005.

[2] X. Gao, D. Liberzon, and T. Başar. On stability of nonlinear
slowly time-varying and switched systems. In Proc. 57th IEEE
Conf. on Decision and Control, pages 6458–6463, 2018.

[3] X. Gao, D. Liberzon, J. Liu, and T. Başar. Unified stability
criteria for slowly time-varying and switched linear systems.
Automatica, 96:110–120, 2018.

[4] P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentice
Hall, New Jersey, 1996.

[5] H. K. Khalil. Nonlinear Systems. Prentice Hall, New Jersey,
3rd edition, 2002.

[6] D. Liberzon. Switching in Systems and Control. Birkhäuser,
Boston, 2003.

[7] S. Liu. Unified stability criteria for perturbed LTV sys-
tems with unstable instantaneous dynamics. Automatica,
144:110499, 2022.

[8] J. Sanders and F. Verhulst. Averaging Methods in Nonlinear
Dynamical Systems. Springer-Verlag, 1985.

[9] H. Shim and N. H. Jo. Further extensions on a stability
property with slowly varying inputs. Dynamics of Continuous,
Discrete and Impulsive Systems, Series B, 17:979–1000, 2010.

[10] A. R. Teel and D. Nešić. Averaging theory for a class of hybrid
systems. Dynamics of Continuous, Discrete and Impulsive
Systems A: Mathematical Analysis, 17:829–851, 2010.

[11] W. Wang and D. Nesic. Input-to-state stability and averaging
of linear fast switching systems. IEEE Trans. Automat.
Control, 55:1274–1279, 2010.

678


