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On Almost Lyapunov Functions for Non-vanishing Vector Fields

Shenyu Liu

Abstract— We study convergence properties of nonlinear
systems in the presence of ‘“almost Lyapunov” functions which
decrease along solutions in a given region not everywhere
but rather on the complement of a set of small volume. The
structure is quite general except that the system dynamics never
vanishes in a region that is away from the equilibrium. It is
shown that solutions starting inside the region will approach a
small set around the origin as long as the volume where the
Lyapunov function does not decrease fast enough is sufficiently
small. The main theorem of this paper is established by tracking
the change of Lyapunov function value when the solution passes
through the above mentioned volume and finding an upper
bound of the volume swept out by a neighborhood along the
solution before it can achieve an overall gain in its Lyapunov
function value. The result shows that the convergence rate is
traded off against the size of such small volume that the system
can have. In the end a non-trivial example where our theorem
is applicable is demonstrated.

I. INTRODUCTION

Consider a general system:
i = f(z),

Asymptotic stability of all solutions of (1) is typically shown
through Lyapunov’s direct method (see, e.g., [1]), which
results in finding a Lyapunov function V' whose derivative
along solutions satisfies
4
=37
Notice that (2) requires the inequality to hold for all z except
for the equilibrium and hence the challenge of this method
arises in constructing a proper Lyapunov function that meets
the condition. A less conservative approach will result in
finding “an almost Lyapunov function” such that

zeR? (1)

V() : flz) <0 Yz #£0 (2)

V(z) <0 VzeD\Q 3)

where D is the region of interest and 2 is an unknown
subset of D whose relative measure in D is bounded from
above. In addition, a strictly decreasing Lyapunov function
may also become an almost Lyapunov function defined in
(3) by perturbing the system dynamics (1) (see, e.g., [2]).
Hence it is reasonable to believe that convergence still holds
for the system while such €2 regions are small.

On the other hand, while it is usually not difficult to compute
the expression for V in practice, challenges remain for
analytically checking that it is negative definite on a certain
region. Instead of trying to establish the inequality in (2) by
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deterministic methods, techniques based on random sampling
[3] can be considered. This method only requires to verify
whether the inequality in (2) holds at a sequence of points x;
inside D randomly. The problem can be again converted into
finding an “almost Lyapunov function” with the property (3).
This paper serves as an extension to the earlier research of
[2], in which a perturbation argument is used in deriving the
results. It has been shown that if the measure of the set {2
where V is not decreasing fast enough is sufficiently small,
then all the solutions starting inside D with some small
distance away from the boundary will eventually converge to
a sublevel set of V' whose volume depends on the measure
of . Nevertheless, a non-trivial example with 1% being
strictly positive inside 2 could not be found, which left
an open question in [2]. An interesting observation shows
that by perturbing the system dynamics without changing the
existing bounds, an unstable equilibrium can be constructed
away from the origin. Hence it is reasonable to consider
a modified region D with the origin excluded and assume
that the vector field of (1) is not vanishing in D. With this
additional information on the system structure, this paper
employs a different approach that is based on geometry of
curves in Euclidean spaces and it yields a stronger result. By
continuity, the solution has to pass through a transient region
in © before V' becomes strictly positive. Hence the gain of V/
inside (2 can be compensated with the decay in the transient
region if the solution does not stay inside €2 for too long. It
turns out that for non-vanishing vector fields, such constraint
on the traveling time can be converted into a constraint on
the volume of €2 because the volume swept out by a tubular
neighborhood of certain radius along the trajectory needs to
be contained inside (2. As a result, V' can only decrease after
the solution passes through (2, let alone when it is in D\.
Therefore a convergence result can be achieved. A non-trivial
example is also constructed in this paper, which represents a
considerable improvement compared with the result in [2].
Section II contains the necessary definitions. Our main result
(Theorem 1) is stated in Section III. The sketch of proof
for the main theorem is given in Section IV while proofs
of some lemmas are omitted for space reasons. Section
V contains the non-trivial numerical example. Section VI
contains some discussion and suggested future work on this
topic and Section VII concludes the paper.

II. PRELIMINARIES

The system is given by (1), where the function f : R™ —
R™ is assumed to be locally Lipschitz. Consider a candidate
Lyapunov function V : R™ — [0,00) which is positive
definite and C' with locally Lipschitz gradient, which we
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denote by V.. In addition, consider the region

D=V~ (er,c0)), c2>e1>0 )

We need D to be compact and connected as in the comments
of [2]. The word “non-vanishing” means

fl&)#0 VYxeD (5)

It indeed requires the origin excluded from D. We now define
some bounds on f:

Lo := max |f(z)]

L, is a Lipschitz constant of f over D:

|f(x1) — f(x2)| < Li|wy — 2| Vai,22 € D

In addition to these bounds from [2], define a lower bound
for |f(x)| over D:

Ly = min |f(z)]
Notice that the vector field f is non-vanishing in D if and
only if L, > 0.
We also define some bounds on V:

M =
1= max [Vy(2))]

M5 is a Lipschitz constant of V,, over D:

[Va(z1) — Vo (22)| < Ma|zy — 22| Vai,29 € D

Recall that V(z) = V,(z)f(z) by (2). Fix a > 0 and for
any 1 € [0, 1], define the set

Q,:={reD:V(z) > -naV(z)}
which implies that

V(z) < —aV(z) Yoe D\ (6)
By this definition, 2, is the same as the notation D\G,,, and
) is same as the notation of 2 in [2]. Thus a plays the role
of a known general convergence rate parameter on D except
for some small “bad region” €2;. Notice that the solution
passing through €7 does not necessarily imply divergence;
it is only when V > 0 that such divergence may occur. The
time derivative of V is naturally bounded from above by
LoM;, but we can also assume that there is a tighter bound
on it in the region D:

b= gleag{V(x)} (7
In order for the theorem to be non-trivial, b needs to be
strictly positive.
At last, define the function vol to be the standard volume
function induced by the Euclidean metric on R™. For con-
venience, vol(£2;) will be used to represent the volume of a
single connected component of €21 throughout the paper.

III. MAIN RESULT

We are now ready to present our main result:

Theorem 1 Consider a system (1) with a locally Lipschitz
right-hand side f, and a candidate Lyapunov function V
which is positive definite and C' with locally Lipschitz
gradient. Let the region D be defined via (4) with some c1, co
and assume it is compact and connected. Let 2y C D be a
measurable set such that (6) holds and f is non-vanishing
in D as defined in (5). Then there exist € > 0,g > 0,h >0
and a decreasing function X : [0,€] — [0,a] such that for
every € € (0,¢€, if every connected component of Qy has
volume less than e, then for every initial condition xo € D
with V(xg) < ¢a — h — ge, the corresponding solution x(-)
of (1) has the following properties:

1) V(z(T)) < c¢1 + h for some T > 0,

2) V(z(t)) <ca—hforall 0 <t<T,

3) V(z(t)) <ci+h+geforallt >T

It is obvious that for the result to be meaningful, we should
have ¢ < ©2=91=2" The first statement suggests that the
solution will eventually enter the sublevel set of V =1([0, ¢; +
h]). The second statement tells that the solution is bounded
before it converges to that smaller set. The last statement
implies that once the solution arrives at this sublevel set, it
will be trapped inside a slightly inflated one forever. Later in
the proof of the theorem readers will see that the convergence
before time 7' is in fact exponential.

IV. PROOF OF THEOREM
A. Limited time in (),

A typical “bad region” {2; with a trajectory passing
through it will look like the one in Figure 1. If the solution
trajectory never enters {1y, then we are safe since V < 0 for
all time. If the trajectory enters {1, then it has to enter £,
for some 7 € (0,1) first. In this case we denote by ¢1,¢4 the
times when the solution enters and leaves (2, and by ¢, 3
the times when the solution enters and leaves (2. Let BY ()
be the closed ball whose center is at = in R™ with radius ~.
The first two lemmas on the next page show that there exists
a ball of certain radius that is sweeping through 2; along
the solution when the solution is inside €2,,:

Fig. 1.

A solution trajectory passing through €2,
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Lemma 1 For any x1,25 € D,
V(z1) — V(zo)| <z — a9 (8)
where o := My L, + MyLg

Lemma 2 For any x € (,, Bf;n () N D C Qy, where

(- nany
T a4+ naM,

and o defined in Lemma 1.

The idea behind the proof of main theorem is that if there
is a net increase of V' due to the solution lying in €,, it
has to travel some amount of time inside. Hence the total
swept volume of BZ}n (x) along the trajectory provides a
lower bound for the volume of 2;. In other words, if the
size of €21 is below this bound, the solution will not have
sufficient time staying inside §2,), which leads to the decrease
of V.
Let £! be the path length from time s to ¢. It is easy to see
that

Lyt —s) < LL < Lo(t—s) )

Fix n € (0,1), denote ¢ = t4 — t1, which can be infinite if
x never leaves (), (then ¢4 = 00). Also define

Sps)y ={r €eR" 1w € Bffn (z(1)),

(x—x(7)) L f(z(r),s <7<t} (10)

which is the swept volume of radius 7y, due to the solu-
tion trajectory from time s to t. The second orthogonality
condition in definition (10) specifies that the swept area is
generated by the normal plane (the cross-section area of
B;Ln*l(x(T))) along the solution. This additional condition
only excludes the starting and ending “dome” regions which
are less significant, but it makes our later expression for
volume neater. In addition we say the solution tube is non-
self-overlapping from time s to ¢ if for all z € S, (5 ),

x € BY (x(t;)) and (z — x(t;)) L f(x(t:))

for both ¢t = 1,2,t1,t5 € [S,t) =t =1ty. (11)

It simply means that all the points in the swept volume are
swept only once by such B;’n_l(a:(t)) cross-section area at a
unique time in [s, ¢). Under the non-self-overlapping condi-
tion, the volume of S, (;, +,) can be precisely computed:

Lemma 3 if the solution tube is non-self-overlapping for a
time span of t, then

VOI(Sy (t,44)) = VOI(BL 1)Ly (12)

Basically this lemma says that the swept volume is exactly
the cross-section area times the trajectory length. A general
expression for the volume of (n — 1)-dimensional ball of
radius 7y, is:

ple=D/2

vol(B”fl) =—"
r(E)

Tn

where I is the standard gamma function [4]. The proof of
this lemma is a direct conclusion from [4], [5]. It is worth
noticing that the formula in [5] yields a signed volume with
multiplicity; nevertheless, the non-self-overlapping condition
we have ensures that there are no multiple counts of the in-
tegrated volume and the result is indeed the absolute volume
that we want as a lower bound. More on non-self-overlapping
condition will be discussed in the next subsection.

From Lemma 2, S, , ) € 1. Notice that S, ;, 1)
depends on t. Hence with inequalities (9), Lemma 3 suggests
that

Corollary 1 ifthe solution is non-self-overlapping for a time
span of t, then
vol(Q) > vol(BL 1) Lt =: p(t) (13)

Notice that p here is a positive, linear and increasing func-
tion, which means we can invert it to get an upper bound of
t by the volume of ;.

B. On non-self-overlapping condition

Here is a sufficient condition for non-self-overlapping:

Lemma 4 A solution x(t) tube is non-self-overlapping from
time s to t when swept with ball B;L” if

Ty < 22, (14)

and

5)

Basically the first condition (14) means that the sweeping
ball radius should be bounded from above (by the radius of
curvature of solution trajectory). It ensures that the swept
volume does not “squeeze” too much so that part of the
volume is repeated. In addition, (15) suggests that the longest
path length of an arbitrary shaped solution trajectory (with
bounded curvature) to be non-self-overlapping is exactly that
of an arc of radius L,/ L, all the way up to having a distance
of 27, between z(0) and z(t).

Proof of Lemma 4: The proof involves two classical results
from differential geometry [6]:

Lemma 5 (Fenchel’s Theorem) The total curvature of any
closed space curve is at least 2w, and equality holds if and
only if the curve is a (convex) planar curve.

Lemma 6 (Schur’s Comparison Theorem) Suppose C(s)
is a plane curve with curvature r(s) which makes a convex
curve when closed by the chord connecting its endpoints, and
C*(s) is a curve of the same length with curvature k*(s).
Let d be the distance between the endpoints of C and d* be
the distance between the endpoints of C*. If k*(s) < k(s)
then d* > d.

It is worth mentioning that the total curvature in Fenchel’s
Theorem is defined to be the integral of curvature along
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the curve where curvature is well defined, plus the sum of
tangent angles on the curve where curvature is not defined.
Recall that for a space curve, curvature is defined to be
the norm of time derivative of its tangent vector when
parametrized by arc length and hence is only well defined for
points on the curve with second order derivative. Although
our vector field f(z) is only Lipschitz, it is differentiable
almost everywhere according to Rademacher’s theorem and
hence we can still compute its total curvature. While %(;)
exists, it is bounded by the Lipschitz constant L; and using
the curvature formula for parameterized curve z(t) in R”
from [7], the curvature k(z) can be found to be bounded
from above by . For the states where f(x) is not smooth,
as f(x) is contlnuous tangent angle at x is 0. Bounded
curvature is an important feature for non-vanishing vector
fields since it prevents the system from some non-converging
behavior which will not generate new sweeping volume, such
as looping around inside a small region.

Next consider a circular arc from y; € R” to yo € R”

with curvature £* and central angle 20, 0 < [0, 3]. This
=0

arc is convex and has length of 2 9 and |y1 — y2| =

2LLl° sin §. According to Schur’s Comparlson Theorem, since
the curvature of the solution traJectory is never larger than

oif L = 09 then |z(t) — z(0)] > QLL sind. On
the other hand, suppose there is a multiple counted point
zin Sy (0,r) Which violates the condition (11). Without loss
of generality, we can always assume such self-overlapping
initiates at time ¢ and hence z has to be on the boundary of

Sn,0,);

|2 = 2(0)] = |z — z(t)] = 7,

(z=2(0)) L f(x(0)), (z—=x(t)) L f(x(t))

Notice that the total curvature along the solution from x(0)
to x(t) is no larger than 26. By Fenchel’s Theorem applied
along the closed curve consisting of this solution and the
two vectors zx(0) and z(t)z, the interior angle ¢ between

z2(0) and zz(t) has to be no larger than 26. Therefore using
the condition (14), it can be computed that |z(t) — z(0)] <

2L

7, sin 6, which leads to a contradiction on the chord length

. L,m
and hence non-self-overlapping for path length up to Z=.

t Lym 2L, _ win—17Liym
For £y € |32~ 72 (7 —sin”™ (1)
circular arc from y; to yo of same length and curvature of

. Observe that in this case |y1 — y2| > 27,. Once again

), still consider the

by Schur’s Comparison Theorem, solution of this length £}
has to have |z(t) — z(0)] > |y1 — y2| > 27, and hence
self-overlapping will not occur. [ ]

So far we have achieved the self-overlapping condition as
a constraint on the path length. According to Lemma 3, it is
concluded that the largest size of arbitrary S, (;, +,) which
is non-self-overlapping is bounded:

_ 4
vol(Sy (4, ,t4)) = Vol(B,’Y’n 1)@1

2L Ly,
< vol(nyl;l)L;l0 <7r - Sin_l(gy])>

=0

t3 "t

Fig. 2. V vs. t on the trajectory passing through €,

Hence if we have

2L L
vol(21) < VOI(B;l;l)L;IO (ﬂ' — sin_l(z’yn)) (16)
Lg

then the condition (15) is automatically satisfied.

C. Change of V when passing through €,

As discussed in subsection A, under non-self-overlapping
conditions an upper bound for ¢ can be derived. Hence
corresponding to the trajectory in Figure 1, V as a function
of time is shown in Figure 2. Recall that ¢1,%4 are the times
when the solution enters and leaves €2, and t5,¢3 are the
time when the solution enters and leaves ). It is easy to
see that the sum of algebraic area under the curve of 1% gives
the net change of V' on the path through €, and it is defined
as follows:

tq .
AV =V (ty) = V(t1) = / Vadt
ty
It follows from (8) that aLy is a Lipschitz bound of V as
a function of time. Therefore finding largest value of AV
becomes
tq .
Vadt
t1
subject to V < b, V(1) < —nacy, V(ts) < —nacy,
V(t:) = V(t;)] < aLolti — t;] Vti,t; € [tr, t4]

In fact the curve plotted in Figure 2 maximizes AV for t4 —
t1 =t and this fact is summarized as follows:

maximize

Lemma 7
AV < ¢(t)
1t2alg —tnacy if taLy < 2(b+nacy) .
= _ 2 R
bf — S i faLy > 2(b + nac) 17

Notice the function ¢ is continuous. Lemma 7 also leads us
to the following conclusion:

Corollary 2 AV <0 if

nacy > b (18)
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and
_ (b+mnacy)?

t< = 19
OzLob ( )

Now suppose vol(§2; ) is known or bounded from above. Pick
some 7) € (0, 1) such that the non-self-overlapping conditions
are met: that is, both equations (14) and (16) are satisfied.
Then we can invert the p function defined in (13) to achieve
an upper bound for #. Further check if the two conditions
(18), (19) in Corollary 2 are satisfied. If all of them are true,
AV will be negative.

On the other hand, combining (13) with (19) gives a direct
bound on vol(£2;) which yields negative AV

Lo(b -+ nac)?
OéLob
This is another bound on vol(€);) in addition to (16). Hence,

by picking proper n € (0,1) and vol(£2;) being sufficiently
small, the following conclusion can be achieved:

vol(£21) < Vol(BfY‘n_l)

Lemma 8 AV < 0 if the following conditions are satisfied
for some n € (0,1):

D T < LO/LL

2) nacy > b,
3) vol(§) < €
where s
2 2L, (m—sin™ (=1
€= VOl(B:;’{l) min {LO(ZZ;ZZCI) 7 70( - ( Lo )> }

Now assume that vol(€2;) < e for some € € (0,€]. In this
case V' will decrease each time it passes through €2,,, let alone
when it is outside of 2,,. It turns out that the overall solution
is also bounded and converges to a smaller set. To show this,
consider a solution z(t) from time 0 up to ¢. Define

0:£O§£1<tvl§"'<£n71§£n:t

so that z(t) € €, for all ¢ € [£i1,t:], i =1,2,--- ,n and
z(t) € D\Q, for all t € (;,%;), i = 1,2,---,n— L. If
2(0) ¢ D, set t; = 0 and if 2(¢) ¢ D, set {,,_; = t. Now
if n =1, that is, solution from time 0 to ¢ completely stays
inside a connected component of §2,,, we must have t < ¢
and

7

be

VD) =V <6 < bpmHe) = e
L0 Tn

=: ge
where g is the positive constant coefficient and this bound is
proportional to e.

Otherwise, we consider the change of V' along the solution
by parts. Notice that we have V(fl) < —nacy, hence to find
the maximum gain of V up to time #; is the same as the
following maximization problem:

fl X
maximize / Vdt
0
subject to 1 <1,V < b, V(fl) < —nacy,
|V(ti) — V(tj)l < OZL0|1fZ‘ — tj| Vti,tj € [0,7?1]

Notice that this problem is exactly the same as finding
maximum AV across €; as we did for Lemma 7, but
without the constraint on initial V(O). The result is found
to be bounded from above by Fge. Similarly for finding
V(t)—V (f,_1), same problem formulation but with opposite
boundary condition and the bound is also found to be
bounded from above by % ge.

We now want to find an exponential type bound on the ratio
from V (f;_1) to V(£;), i =2,3,--- ,n — 1. Define

o(t)
t
where ¢ is defined in (17). It can be shown that

V(E) < V(Eiq)e ker (OF

k(t) == —

Denote A(€) := kop~t(e) which is non-negative, continuous
and decreasing on [0, €]. Notice that A\(0) = k o p~1(0) is
indeed defined via L'Hopital’s rule:

kop 1(0) := 51_13%)1 kop ') = Z—;na < na

This result indeed suggests that the solution converges slower
inside €, than outside. Hence

V(infl) SV(fnil)e—Y]a(in,l —tn_1)
SV(tvn72)e—)\(e)(fn71 ~Fn—2)—na(Fn—1—tn_1)

SV(fl)e_)‘(E)({"_l_El)
Therefore combining the 3 parts together,
V(t) < V(tvnfl) + ge

< V(fy)e M=t 4 %ge

1 7 2 1
< (V(O) + 596)6_)‘(6)(tn—1_t1) + 596

< V(o)efk(é)(fn—rfl) + ge (20)

Define h := Mi~y,. When V(2(0)) < c2 —h — 2ge, we have
V(z(t)) < cg — h. Further assume at this time V' (z(t)) >
c1+h. Lety € B, (x(t)). By Lemma 1 in [2],

V(y) < V(x(t) + Mily — 2(t)] < c2,
Viy) 2 V(x(t)) = Mily — z(t)] = &1

which means y € D. Hence the entire B, (x(t)) lies inside
D and our volume sweeping formula (12) is indeed valid.
Hence (20) is true for all z(0) € D, V(0) < ¢a —h — ge up
to time ¢ such that V(¢) > ¢; + h. As this is an exponential
type of bound on V, we have proven the first and second
statement in the main theorem.

When ¢t = T such that eventually V(¢) < ¢; + h, some
bounds are no longer valid on the subsequent solution and
the solution may have a chance to return to the boundary
V~Y(c1 + h). However, the solution afterwards can be again
treated as a new solution starting from z(0) € D with
V(0) < ¢ —h—ge and by the same analysis above we know
that it can have an overshoot of ge at most. This proves the
last statement in the main theorem.
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Fig. 3. Local behavior of the example system

V. A NON-TRIVIAL EXAMPLE

The system (1) is explicitly defined as follows:
Ty —A(x) K > ( 1 >
. = 21
()= S)(2) e

A(z) = 1.01 min {lm_x 1} ~0.01,
p

with

z. = (0.8,007, p=2,p=0.01
Consider the standard Lyapunov function
V=lof® = o+ a3

Notice that everywhere else the system is linear except for
a small ball (which is our €2,) of radius p at .. When z is
very close to z., A(z) becomes negative and hence system
(21) will have eigenvalues with positive real parts hence 14
becomes positive. Hence for this system Qo # @ and the
theorem result is nontrivial.

Choose d; = 0.7,ds = 1,¢; = d2,cy = d3. It then can be
calculated on the set D = {z : d; < |z| < dy} that Ly =
dy x /max{\(z)2} + p2 = V/5,Ly = dipp = 1.4, M, =
2dy = 2, My = 2,b = —2min{\(z)} x 0.8% = 0.0128. L;
is derived numerically to be 90.78. Pick a = 2 = Q; = {x :
|z —(0.8,0)T| < p} = vol(2;) = 7p? ~ 3.14 x 10~%. Also
note that this €2y is completely inside D.

Pick 1 = 0.6. Checking the conditions in Lemma 8, it can
be calculated that v, ~ 0.0021 < 0.0154 = %—‘;, nac; =
0.588 > b, € ~ 3.86 x 107* > vol(€2;), and h =~ 0.0042,
ge ~ 6.9x10~*. Hence all the conditions are verified and the
system will converge to the set of {x : V(x) < ¢1+h+ge} ~
By.7044(0) if starts at z(0) with V/(0) < ca—h—ge = 0.9951.
Since the Lyapunov function is chosen to be quadratic, this
convergence is in fact exponentially fast by our theorem.

As seen in Figure 3, the spiral vector fields are distorted
at the region of B,(x.). A solution z(¢) passing through
this region will be deviated from getting closer to the origin.

Nevertheless, convergence is preserved as the effect of such
“bad region” is not strong.

VI. DISCUSSION

The explicit example in the previous section represents
a nontrivial system with a subdomain where V > 0 and
yet where convergence of solutions can be established by
application of the main theorem. Thus, the example gives an
affirmative answer to the question asked in [2]. By contrast,
the main theorem in [2], when applied to the above example,
does not give a conclusive result. This indicates that the
additional assumption of non-vanishing required in this paper
(which results in the positive bound L) is indeed crucial to
establish the convergence result.
Recall that the significance of our main theorem appears
when there are multiple disconnected “bad regions” with the
volume of each of them bounded above. For example, by
modifying the vector field of above example such that there
are other symmetric €2; regions distributed along radius of
0.8 away from the origin, our main theorem is still applicable
and will lead to the same conclusion.
In addition, once 7 is chosen, a sweeping ball of constant
radius is employed for the analysis. We can make -, time-
varying based on the level set of 2, that x is in. Since it is
known that the radius of the sweeping ball becomes larger
when V' becomes positive, the bound for vol(£2;) will be
larger and this modification should yield a better result.

VII. CONCLUSIONS

We presented a result (Theorem 1) which establishes
convergence of system trajectories from a given set to a
smaller set, based on an “almost Lyapunov” function which
is known to decrease along solutions on the complement of
a set of small enough volume. The result is established by
tracking the change of Lyapunov function value when the
solution passes through the above-mentioned small volume
and finding an upper bound on the volume swept out by
a neighborhood along the solution before it can achieve
an overall gain in its Lyapunov function value. With some
knowledge of the structure of the system dynamics, it is
shown that convergence will still hold even if there is some
temporary gain in Lyapunov function value. Future work can
be done on finding a tighter bound on the allowed “bad
region” volume, such as exploiting a time-varying sweeping
radius or imposing more structure on the system.
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