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Abstract— This paper studies stability of interconnections of
hybrid dynamical systems, in the general scenario that the
continuous or discrete dynamics of subsystems may have desta-
bilizing effects. We analyze two existing methods of constructing
Lyapunov functions for the interconnection based on candidate
ISS Lyapunov functions for subsystems, small-gain conditions,
and auxiliary timers modeling restrictions on jump frequency in
terms of average dwell-time and reverse average dwell-time. We
compare their feasibility and limitations for different types of
subsystem dynamics, and examine a case that the combination
of them is needed to establish global asymptotic stability.

I. INTRODUCTION

In studying practical phenomena one usually finds it bene-
ficial to transform a complex system into an interconnection
of simpler ones and to establish stability based on properties
of the constituents via small-gain theorems. Classical input-
output small-gain theorems for linear systems were detailed
in [1] and were generalized to nonlinear feedback systems
in [2], [3]. The notion of input-to-state stability (ISS) [4]
is widely used in more recent works on interconnections,
as it naturally unifies the concepts of internal and external
stability. Small-gain theorems for interconnected ISS systems
were introduced in [5], and furthered in [6], [7] and the refer-
ences therein. Small-gain theorems are particularly useful in
constructing Lyapunov functions for interconnections based
on ISS Lyapunov functions for subsystems. Lyapunov-based
small-gain theorems for general feedback interconnections
were first reported in [8] for continuous-time systems and
then in [9] for discrete-time ones.

Hybrid systems are dynamical systems exhibiting both
continuous and discrete behaviors. This paper adopts the
modeling framework in [10], which proves to be general and
natural from the viewpoint of Lyapunov stability theory [11].
Trajectory-based small-gain theorems for interconnections of
hybrid systems were introduced in [12], [13], and Lyapunov-
based formulations were established in [14], [15].

In this work we study interconnections of hybrid subsys-
tems with either continuous or discrete non-ISS dynamics—a
more challenging case that the results above cannot be di-
rectly applied. In the presence of destabilizing dynamics, sta-
bility is often achieved by restricting the jump frequency in
terms of average dwell-time (ADT) [16] (for non-ISS jumps)
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and/or reverse ADT (RADT) [17] (for non-ISS flows). In
[15] it was shown that one can augment the subsystems by
introducing ADT/RADT auxiliary timers to construct ISS
Lyapunov functions that decrease along solutions both during
flows and at jumps. However, it was observed in [18] that
such modifications inevitably increase the feedback gains,
making the small-gain condition afterwards more restrictive.

A different type of Lyapunov-based small-gain theorems
was proposed in [19] for interconnected impulsive systems in
a similar setting. This result generated a Lyapunov function
by first constructing a candidate Lyapunov function (i.e.,
one that may increase during flows or at jumps) for the
interconnection based on candidate ISS Lyapunov functions
for subsystems and a small-gain condition, and then applying
the suitable ADT/RADT modification to the interconnection
instead of to the subsystems. While this method works under
the same small-gain condition for interconnections of only
ISS subsystems, it does not apply to the case when the non-
ISS dynamics in subsystems are of different types (i.e., non-
ISS flows in one while non-ISS jumps in the other).

In [18] we unified the two methods above (for interconnec-
tions of n≥2 hybrid systems) and established less restrictive
small-gain conditions by showing that it suffices to only
modify the subsystems with one type (either flow or jump)
of destabilizing dynamics. In this paper we provide a thor-
ough analysis of the Lyapunov function constructions above
for interconnections of two hybrid subsystems. Compared
with the previous results, explicit Lyapunov-based small-gain
conditions for establishing stability of the interconnection via
ADT/RADT modifications are derived. Moreover, our small-
gain conditions indicate that, unlike ADT modifications, the
RADT ones induce no substantial increase in the feedback
gains. Striving for as simple a setting as possible, we
distill the main features of the approaches in [15], [19] and
highlight their relative advantages.

This paper is structured as follows: In Section II we in-
troduce the hybrid system framework. A small-gain theorem
for the baseline case of only ISS subsystems is provided
in Section III. In Section IV we study different cases of
destabilizing dynamics in subsystems, and identify a scenario
that the combination of the two methods above is required.

II. HYBRID SYSTEM

Following [11], a hybrid system with state x ∈ X ⊂ Rn
and input u ∈ U ⊂ Rm is modeled by

ẋ ∈ F (x, u), (x, u) ∈ C,
x+ ∈ G(x, u), (x, u) ∈ D,

(1)
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where F : X × U ⇒ Rn, G : X × U ⇒ X are set-valued
mappings. Solutions of (1) are defined on a so-called hybrid
time domain E ⊂ R≥0×Z≥0, which is a union of a finite or
infinite sequence of intervals [tj , tj+1]×{j}, with the last one
(if existent) possibly of the form [tj , T ) × {j} with T ∈ R
or T = ∞. A hybrid input is a function u : domu → U
defined on a hybrid time domain such that u(·, j) is Lebesgue
measurable and locally essentially bounded on {t : (t, j) ∈
domu} for each fixed j. A solution x : domx → X of (1)
with a hybrid input u : domu→ U satisfies x(·, j) is locally
absolutely continuous on {t : (t, j) ∈ domx} for each fixed
j, domx = domu, (x(0, 0), u(0, 0)) ∈ C ∪ D, and1

1. (x(t, j), u(t, j)) ∈ C and ẋ(t, j) ∈ F (x(t, j), u(t, j)) for
all j and almost all t such that (t, j) ∈ domx;

2. (x(t, j), u(t, j)) ∈ D and x(t, j + 1) ∈ G(x(t, j), u(t, j))
for all (t, j) ∈ domx such that (t, j + 1) ∈ domx.

With proper assumptions on the data H = (C, F,D, G), one
can establish the local existence of solutions of (1), which are
not necessarily unique (see, e.g., [10, Prop. 2.10]). A solution
is maximal if it cannot be extended, and is complete if its
domain is unbounded.

The hybrid system (1) is input-to-state stable (ISS) w.r.t.
a set A ⊂ X if there exist β ∈ KL, γ ∈ K∞ such that every
solution x with a hybrid input u satisfies2

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + γ(‖u‖(t,j))

for all (t, j) ∈ domx, where | · |A denotes the Euclidean
distance to the set A, and ‖ · ‖(t,j) the essential supremum
Euclidean norm up to hybrid time (t, j), that is,

‖u‖(t,j) := max

{
ess sup

(s,l)∈domu,
s≤t, l≤j

|u(s, l)|, sup
(s,l)∈J(u),
s≤t, l≤j

|u(s, l)|
}
,

where J(u) := {(s, l) ∈ domu : (s, l + 1) ∈ domu}.3
The Clarke derivative [20] of a locally Lipschitz function

V : Rn → R at x in the direction v ∈ Rn is defined by

V ◦(x; v) := lim sup
s→0+,y→x

V (y + sv)− V (y)

s
.

Definition 1. A locally Lipschitz function V : X → R≥0
is a candidate ISS Lyapunov function w.r.t. A for the hybrid
system (1) with bounds ψ1, ψ2, a gain χ, and rates φ, α if
1. there exist ψ1, ψ2 ∈ K∞ such that

ψ1(|x|A) ≤ V (x) ≤ ψ2(|x|A) ∀x ∈ X ;

2. there exist a χ ∈ K∞ and a continuous φ : R≥0 → R
with φ(0) = 0 such that

V (x) ≥ χ(|u|)⇒ V ◦(x; v) ≤ −φ(V (x)) (2)

for all (x, u) ∈ C and v ∈ F (x, u); and

1Here x(t, j) represents the state of (1) at time t and after j jumps.
2A function γ : R≥0 → R≥0 is of class K if it is continuous, strictly

increasing and positive definite. It is of class K∞ if it is unbounded in
addition. A function β : R≥0×R≥0 → R≥0 is of class KL if β(·, t) ∈ K
for each fixed t, and β(r, ·) is strictly decreasing to 0 for each fixed r.

3Note that the set of hybrid jump times J(u) with measure 0 cannot be
ignored when computing the essential supremum norm.

3. there exists a continuous, positive definite α : R≥0 →
R≥0 such that

V (y) ≤ max{α(V (x)), χ(|u|)} (3)

for all (x, u) ∈ D and y ∈ G(x, u) (with the same χ).
It is an ISS Lyapunov function w.r.t. A if φ is positive definite
and α is a contraction on R>0, that is, if

φ(r) > 0, α(r) < r ∀ r > 0. (4)

For brevity, we omit the term “w.r.t. A” when A = {0}. The
candidate ISS Lyapunov function is defined for studying the
effects of destabilizing flows or jumps. When it is actually
decreasing along solutions of (1), the term “candidate” is
dropped (cf. [11, Def. 2.5 and Prop. 2.6]) and ISS is achieved.

Proposition 1 ([11, Prop. 2.7]). The hybrid system (1) is ISS
w.r.t. A if it admits an ISS Lyapunov function w.r.t. A.

Remark 1. In the absence of inputs, ISS is equivalent to the
notion of global pre-asymptotic stability (pre-GAS), that is,
there exist β ∈ KL such that all solutions satisfy

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) ∀ (t, j) ∈ domx. (5)

Pre-GAS corresponds to the standard notion of global asymp-
totic stability without requiring completeness of all maximal
solutions, that is, all solutions are stable, bounded, and all
complete solutions converge to the origin; cf. [10, Def. 3.6]
and [15, p. 1397]. In this case, candidate ISS Lyapunov func-
tions become candidate Lyapunov functions, and ISS Lya-
punov functions become Lyapunov functions, which ensure
pre-GAS of the hybrid system (1).

III. INTERCONNECTION

Consider a hybrid system with state x = (x1, x2) ∈ X
transformed into an interconnection of two subsystems with
states x1 ∈ X1 ⊂ Rn1 and x2 ∈ X2 ⊂ Rn2 modeled by

ẋi = fi(x1, x2), (x1, x2) ∈ C,
x+i = gi(x1, x2), (x1, x2) ∈ D,

i = 1, 2. (6)

For i = 1, 2, we let j := {1, 2}\{i} throughout this paper,.
Each xi-subsystem of (6) treats the state xj as an input.

Remark 2. The analysis and results in this and the following
sections also apply to the case of interconnections with
external inputs and/or set-valued maps, that is,

ẋ ∈ Fi(x, u), (x, u) ∈ C × U ,
x+i ∈ Gi(x, u), (x, u) ∈ D × U ,

i = 1, 2.

We omit the external inputs and consider only the special
case of single-valued maps here to better focus on investi-
gating effects and implications of the interconnection.

A. Small-gain condition

Assuming that each subsystem admits a candidate ISS
Lyapunov function, we investigate stability of the intercon-
nection (6) based on small-gain conditions.
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Assumption 1. Each xi-subsystem (with input xj) admits
a candidate ISS Lyapunov function Vi : Xi → R≥0 with
bounds ψ1i, ψ2i, a gain χi, and rates φi, αi.

We say that two gains γ1, γ2 ∈ K∞ satisfy the small-gain
condition if

γ1(γ2(r)) < r ∀ r > 0. (7)

Lemma 1 ([8, Lemma A.1]). Provided that the small-gain
condition (7) holds, there exists a ρ ∈ K∞ such that ρ ∈ C1
with ρ′ > 0 on R>0, and

γ−11 (r) > ρ(r) > γ2(r) ∀ r > 0. (8)

Based on Lemma 1, we are able to combine the candi-
date ISS Lyapunov functions for subsystems to construct a
candidate Lyapunov function for the interconnection (6).

Proposition 2 ([15, Th. III.1]). Consider the interconnection
(6). Suppose that Assumption 1 and (7) hold for

γi := χi ◦ ψ−11j , (i, j) = (1, 2), (2, 1). (9)

With ρ in (8), the function V : X → R≥0 defined by

V (x) := max{ρ(V1(x1)), V2(x2)} (10)

is a candidate Lyapunov function for (6) with bounds ψ1, ψ2

defined by ψ1(r) := min{ρ(ψ11(r/
√

2)), ψ12(r/
√

2)} and
ψ2(r) := max{ρ(ψ21(r)), ψ22(r)}, and rates φ, α defined
by φ(r) := min{ρ′(ρ−1(r))φ1(ρ−1(r)), φ2(r)} and α(r) :=
max{ρ(α1(ρ−1(r))), α2(r), ρ(χ12(r)), χ21(ρ−1(r))}.

If V is a Lyapunov function then we can conclude pre-
GAS of (6) via Proposition 1 and Remark 1. In the following
we establish pre-GAS for various cases of subsystems.

B. ISS subsystems

Consider the case that each subsystem admits an ISS
Lyapunov function.

Proposition 3. Consider the interconnection (6). Suppose
that Assumption 1 holds with V1, V2 being ISS Lyapunov
functions, and (7) with γ1, γ2 defined by (9). Then the
function V defined by (10) with ρ in (8) is a Lyapunov
function for (6), and hence (6) is pre-GAS.

If (4) doesn’t hold for one of φ1, φ2, α1, α2 then it doesn’t
for the corresponding φ, α in Proposition 2, either. Thus the
function V defined by (10) is not a Lyapunov function, and
we cannot conclude pre-GAS. In the following section, we
consider such cases and establish pre-GAS for particular sets
of solutions.

IV. MODIFYING ISS LYAPUNOV FUNCTIONS

In this section, we investigate stability of the interconnec-
tion (6) for the cases that the flows or the jumps in its sub-
systems have destabilizing effects, via suitable ADT/RADT
modifications. Candidate ISS Lyapunov functions with linear
rates are required for such modifications.

A. Candidate exponential ISS Lyapunov functions

Definition 2. A candidate ISS Lyapunov function w.r.t. A
for the hybrid system (1) with the rates φ, α in (2), (3)
satisfying φ(r) = cr and α(r) = e−dr for all r ≥ 0 with
some constants c, d ∈ R is called a candidate exponential
ISS Lyapunov function w.r.t. A with rate coefficients c, d. It
is an exponential ISS Lyapunov function w.r.t. A if c, d > 0.

Remark 3. Using arguments similar to the proof of [17,
Th. 2, (b) ⇒ (c)], one can show that the existence of an ISS
Lyapunov function is equivalent to that of an exponential one.
In general, even for continuous-time systems, the existence
of a candidate ISS Lyapunov function is not equivalent to
that of an exponential one. This can be seen readily from
the following simple example. The scalar system ẋ = x3

admits a candidate ISS Lyapunov function V (x) := x2 with
∇V (x)x3 = 2x4 = 2V (x)2. However, it is not forward
complete, and hence does not admit a candidate exponential
ISS Lyapunov function [21, Th. 2].

Assumption 2. Each xi-subsystem (with input xj) admits a
candidate exponential ISS Lyapunov function Vi : Xi → R≥0
with bounds ψ1i, ψ2i, a gain χi, and rate coefficients ci, di.

The next corollary follows directly from Propositions 2, 3.

Corollary 4. Consider the interconnection (6). Suppose that
Assumption 2 and (7) hold for γ1, γ2 defined by (9). With ρ
in (8), the function V defined by (10) is a candidate Lyapunov
function for (6) with rates φ, α defined by φ(r) := min{c2r,
c1ρ
′(ρ−1(r))ρ−1(r)}, α(r) := max{ρ(e−d1ρ−1(r)), e−d2r,

ρ(χ12(r)), χ21(ρ−1(r))}. If c1, c2, d1, d2 > 0 then it is a
Lyapunov function, and hence (6) is pre-GAS.

Suppose that each subsystem of (6) admits a candidate
exponential ISS Lyapunov function. If in one subsystem both
the flows and the jumps are destabilizing (i.e., ci, di ≤ 0 for
i = 1 or 2), we cannot establish stability by restricting the
jump frequency. In the following, we consider the other cases
when at least one of c1, c2, d1, d2 is non-positive.

B. Destabilizing flows: RADT modification

Consider the case that Assumption 2 holds with c1, c2 ≤
0 < d1, d2, that is, the flows in both subsystems have destabi-
lizing effects.4 Pre-GAS can be established for solutions that
jump fast enough, in the sense of reverse average dwell-time
[17]. We say a solution x of (1) admits a reverse average
dwell-time (RADT) τ∗a > 0 if

j − k ≥ (t− s)/τ∗a −N∗0 (11)

for all (s, k), (t, j) ∈ domx such that t + j ≥ s + k with
an integer N∗0 ≥ 1. (If N∗0 = 1 then τ∗a becomes a reverse
dwell-time: any two consecutive jumps are separated by at
most τ∗a .) Following [22], a solution x satisfies (11) if and

4The cases that only one of c1, c2 is non-positive can be handled by a
similar approach, see the discussion after Theorem 5.
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only if domx = dom τ for an RADT timer τ modeled by5

τ̇ = 1/τ∗a , τ ∈ [0, N∗0 ],

τ+ = max{0, τ − 1}, τ ∈ [0, N∗0 ].

Consider the augmented interconnection6

ẋi = fi(x), i = 1, 2, τ̇ = 1/τ∗a , (x, τ) ∈ C̄∗,
x+i = gi(x), i = 1, 2, τ+ = max{0, τ − 1}, (x, τ) ∈ D̄∗

(12)
with C̄∗ = C× [0, N∗0 ] and D̄∗ = D× [0, N∗0 ]. Following [18,
Prop. 6] (which extends [15, Prop. IV.4]), for each (xi, τ)-
subsystem of (12) (with input xj), the function Wi : Xi ×
[0, N∗0 ]→ R≥0 defined by

Wi(xi, τ) := e−LiτVi(xi) (13)

with Li > 0 is a candidate exponential ISS Lyapunov func-
tion w.r.t. Ai := {0}× [0, N∗0 ] with bounds e−LiN

∗
0 ψ1i, ψ2i,

gain χi, and rate coefficients c̄∗i , d̄
∗
i defined by

c̄∗i := ci + Li/τ
∗
a , d̄∗i := di − Li. (14)

Therefore, if the RADT τ∗a satisfies

−ciτ∗a < di (15)

then there exists an Li ∈ (−ciτ∗a , di) such that c̄∗i , d̄
∗
i > 0,

and hence that Wi is an exponential ISS Lyapunov function.
To establish pre-GAS of (12), we construct a Lyapunov

function for (12) via Corollary 4, which requires (7) with

γi(r) := χi(ψ
−1
1j (eLjN

∗
0 r)), (i, j) = (1, 2), (2, 1). (16)

Lemma 2. Suppose that there is an ε > 0 such that

(1+ε)χ1

(
ψ−112

(
(1+ε)χ2(ψ−111 (r))

))
< r ∀ r > 0, (17)

and that τ∗a and N∗0 satisfy (15) and

−ciN∗0 τ∗a < ln(1 + ε) (18)

for all i ∈ {1, 2}. Then there exist L1 ∈ (−c1τ∗a , d1), L2 ∈
(−c2τ∗a , d2) such that (7) holds for γ1, γ2 defined by (16).

From Corollary 4 and the analysis above it follows that:

Theorem 5. Consider the interconnection (6). Suppose that
Assumption 2 holds with c1, c2 ≤ 0 < d1, d2, and that
there is an ε > 0 such that (17) holds. For each RADT
τ∗a and integer N∗0 ≥ 1 satisfying (15) and (18) for all
i ∈ {1, 2}, there exist L1 ∈ (−c1τ∗a , d1) and L2 ∈
(−c2τ∗a , d2) such that (7) holds for γ1, γ2 defined by (16).
Then the function W : X × [0, N∗0 ] → R≥0 defined by
W (x, τ) := max{ρ(e−L1τV1(x1)), e−L2τV2(x2)} with ρ in
(8) is a Lyapunov function w.r.t. A := {0} × [0, N∗0 ] for
the augmented interconnection (12), and hence the pre-GAS
estimate (5) holds for all solutions satisfying (11).

For each c1, c2 ≤ 0 < d1, d2 and each ε > 0 satisfying
(17), there exists an RADT τ∗a small enough that (15) and

5There is a scaling difference between the RADT timers here and in [22].
6Compared to [15], [18], we use one timer for all subsystems, due to the

fact that the RADT is a property of the hybrid timer domain, which is the
same for both subsystems.

(18) hold for all i ∈ {1, 2}. Meanwhile, if ci > 0 then (15)
and (18) always hold; and if c1, c2 ≥ 0 then the conclusions
of Theorem 5 hold for arbitrary τ∗a > 0 and N∗0 ≥ 1.

The coefficient 1 + ε in (17) can be made arbitrarily close
to 1 with a sufficiently small ε. Consider the following small-
gain conditions:
(SG1) The inequality (7) holds for γ1, γ2 defined by (9).
(SG2) There is an ε > 0 such that (17) holds.
We say that (SG2) is generic in (SG1), in the sense that every
pair of gains χ1, χ2 satisfying (SG1) can be approximated by
a pair satisfying (SG2). Therefore, the RADT modification
induces no substantial increase in the feedback gains.

C. Destabilizing jumps: ADT modification

Consider the case that Assumption 2 holds with c1, c2 >
0 ≥ d1, d2, that is, the jumps in both subsystems have desta-
bilizing effects.7 Pre-GAS can be established for solutions
that jump slow enough, in the sense of average dwell-time
[16]. We say a solution x of (1) admits an average dwell-time
(ADT) τa > 0 if

j − k ≤ (t− s)/τa +N0 (19)

for all (s, k), (t, j) ∈ domx such that t+ j ≥ s+ k with an
integer N0 ≥ 1. (If N0 = 1 then τa becomes a dwell-time
[23]: any two jumps are separated by at least τa.) Following
[22] (cf. [24]), a solution x satisfies (19) if and only if
domx = dom τ for an ADT timer τ modeled by

τ̇ ∈ [0, 1/τa], τ ∈ [0, N0],

τ+ = τ − 1, τ ∈ [1, N0].

Consider the augmented interconnection

ẋi = fi(x), i = 1, 2, τ̇ ∈ [0, 1/τa], (x, τ) ∈ C̄,
x+i = gi(x), i = 1, 2, τ+ = τ − 1, (x, τ) ∈ D̄,

(20)

where C̄ = C × [0, N0] and D̄ = D× [1, N0]. Following [18,
Prop. 5] (which extends [15, Prop. IV.1]), for each (xi, τ)-
subsystem of (20) (with input xj), the function Wi : Xi ×
[0, N0]→ R≥0 defined by

Wi(xi, τ) := eLiτVi(xi) (21)

with Li > 0 is a candidate exponential ISS Lyapunov func-
tion w.r.t. Ai := {0} × [0, N0] with bounds ψ1i, e

LiN0ψ2i,
gain eLiN0χi, and rates coefficients c̄i, d̄i defined by

c̄i := ci − Li/τa, d̄i := di + Li. (22)

Therefore, if the ADT τa satisfies

ciτa > −di, (23)

then there exists an Li ∈ (−di, ciτa) such that c̄i, d̄i > 0,
and hence that Wi is an exponential ISS Lyapunov function.

To establish pre-GAS of (20), we construct a Lyapunov
function for (20) via Corollary 4, which requires (7) with

γi(r) := eLiN0χi(ψ
−1
1j (r)), (i, j) = (1, 2), (2, 1) (24)

7The cases that only one of d1, d2 is non-positive can be handled by a
similar approach, see the discussion after Theorem 6.

468



Lemma 3. Suppose that there is an ε > 0 such that

(1+ε)e−d1χ1

(
ψ−112

(
(1+ε)e−d1χ2(ψ−111 (r))

))
< r ∀ r > 0,

(25)
and that τa and N0 satisfy (23) and

−di(N0 − 1) < ln(1 + ε). (26)

for all i ∈ {1, 2}. Then there exist L1 ∈ (−d1, c1τa), L2 ∈
(−d2, c2τa) such that (7) holds for γ1, γ2 defined by (24).

From Corollary 4 and the analysis above it follows that:

Theorem 6. Consider the interconnection (6). Suppose that
Assumption 2 holds with c1, c2 > 0 ≥ d1, d2, and that
there is an ε > 0 such that (25) holds. For each ADT
τa and integer N0 ≥ 1 satisfying (23) and (26) for all
i ∈ {1, 2}, there exist L1 ∈ (−d1, c1τa) and L2 ∈
(−d2, c2τa) such that (7) holds for γ1, γ2 defined by (24).
Then the function W : X × [0, N0] → R≥0 defined by
W (x, τ) := max{ρ(eL1τV1(x1)), eL2τV2(x2)} with ρ in
(8) is a Lyapunov function w.r.t. A := {0} × [0, N0] for
the augmented interconnection (20), and hence the pre-GAS
estimate (5) holds for all solutions satisfying (19).

For each c1, c2 > 0 ≥ d1, d2 and each ε > 0 satisfying
(25), there exists an ADT τa large enough that (23) holds
for all i ∈ {1, 2}. (Unlike (18) which depends on τ∗a , (26)
is independent to τa.) Meanwhile, if di ≥ 0 then (23) and
(26) always hold; and if d1, d2 ≥ 0 then the conclusions of
Theorem 6 hold for arbitrary τa > 0 and N0 ≥ 1.

Compared with those in (17), the coefficients in (25)
satisfy (1+ε)e−d1 > e−d1 > 1 and (1+ε)e−d2 > e−d2 > 1.
Consider the following small-gain condition:
(SG3) There is an ε > 0 such that (25) holds.
Unlike (SG2) in Section IV-B, (SG3) is clearly not generic
in (SG1) in the same sense. Hence the ADT modification
leads to substantially larger feedback gains.

D. Destabilizing jumps: an alternate construction

Consider the case that Assumption 2 holds with c1, c2 >
0 ≥ d1, d2, and γ1, γ2 defined by (9) are linear, that is,

γ1(r) = ξ1r, γ2(r) = ξ2r ∀ r ≥ 0 (27)

with ξ1, ξ2 > 0. Then pre-GAS can be established under the
less restrictive small-gain condition (SG1) instead of (SG3),
by applying the ADT modification to (6) instead of its sub-
systems [19]. In this case (SG1) becomes ξ1ξ2 < 1, and
(8) holds for all ρ(r) := µr with µ ∈ (ξ2, 1/ξ1). Following
Corollary 4, the function V defined by (10) is a candidate
exponential Lyapunov function for (6) with rate coefficients
c := min{c1, c2} and d := min{d1, d2}. Then the ADT
modification yields the following result.

Proposition 7. Consider the interconnection (6). Suppose
that Assumption 2 holds with c1, c2 > 0 ≥ d1, d2, and γ1, γ2
defined by (9) satisfy (27) with ξ1ξ2 < 1. For each ADT
τa > −min{d1, d2}/min{c1, c2} and integer N0 ≥ 1, the
function W : X ×[0, N0]→ R≥0 defined by W (x, τ) := eLτ

max{µV1(x1), V2(x2)} with −min{d1, d2} < L < min{c1,

c2}τa and µ ∈ (ξ2, 1/ξ1) is a Lyapunov function for the
augmented interconnection (20), and hence the pre-GAS
estimate (5) holds for all solutions satisfying (19).

Remark 4. The lower bound on the ADT τa in Proposition 7
is clearly greater than or equal to that in Theorem 6, that is,

max{−d1,−d2}
min{c1, c2}

≥ max

{
−d1
c1

,
−d2
c2

}
.

However, if the assumptions in Proposition 7 hold with d1 +
d2 ≤ ln(ξ1ξ2) then there is no ε > 0 such that (25) holds,
and hence Theorem 6 cannot be applied.

E. Destabilizing flows and jumps

Consider the case that the jumps in one subsystem and the
flows in the other one have destabilizing effects. Without loss
of generality, suppose Assumption 2 holds with c1, d2 ≤ 0 <
c2, d1. Pre-GAS can be established for solutions that jump
neither too fast nor too slow, in the sense of combined ADT
τa and RADT τ∗a . Consider the augmented interconnection

ẋ1 = f1(x), τ̇1 = 1/τ∗a ,

ẋ2 = f2(x), τ̇2 ∈ [0, 1/τa],
(x, τ1, τ2) ∈ C̃,

x+1 = g1(x), τ+1 = max{0, τ1 − 1},
x+2 = g2(x), τ+2 = τ2 − 1,

(x, τ1, τ2) ∈ D̃,

(28)
where C̃ = C × [0, N∗0 ] × [0, N0] and D̃ = D × [0, N∗0 ] ×
[1, N0]. The function W1 defined by (13) with L1 > 0
is a candidate exponential ISS Lyapunov function for the
(x1, τ1)-subsystem of (28) (with input x2) with rate co-
efficients c̄∗1, d̄

∗
1 defined by (14); and an exponential ISS

Lyapunov function if −c1τ∗a < L1 < d1. Meanwhile, the
function W2 defined by (21) with L2 > 0 is a candi-
date exponential ISS Lyapunov function for the (x2, τ2)-
subsystem of (28) (with input x1) with rate coefficients c̄2, d̄2
defined by (22); and an exponential ISS Lyapunov function
if −d2 < L2 < c2τa. Suppose that there is an ε > 0 so that

(1 + ε)χ1

(
ψ−112

(
(1 + ε)e−d2χ2(ψ−111 (r))

))
< r ∀ r > 0,

(29)
and that τa, τ∗a and N∗0 , N0 satisfy (15), (18) for i = 1 and
(23), (26) for i = 2. Then there exist L1 ∈ (−c1τ∗a , d1),
L2 ∈ (−d2, c2τa) such that (7) holds for γ1, γ2 defined by

γ1(r) = χ1(ψ−112 (r)), γ2(r) = eL2N0χ2(ψ−111 (eL1N
∗
0 r)).

(30)
From Corollary 4 and the analysis above it follows that:

Theorem 8. Consider the interconnection (6). Suppose that
Assumption 2 holds with c1, d2 ≤ 0 < c2, d1, and that there
is an ε > 0 such that (29) holds. For each ADT τa, RADT τ∗a
and integers N∗0 , N0 ≥ 1 satisfying (15), (18) for i = 1 and
(23), (26) for i = 2, there exist L1 ∈ (−c1τ∗a , d1) and L2 ∈
(−d2, c2τa) such that (7) holds for γ1, γ2 defined by (30).
Then the function W : X × [0, N∗0 ]× [0, N0]→ R≥0 defined
by W (x, τ1, τ2) := max{ρ(e−L1τ1V1(x1)), eL2τ2V2(x2)}
with ρ in (8) is a Lyapunov function w.r.t. A := {0} ×
[0, N∗0 ] × [0, N0] for the augmented interconnection (28),
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and hence the pre-GAS estimate (5) holds for all solutions
satisfying (11) and (19).

Consider the small-gain condition in Theorem 8:
(SG4) There is an ε > 0 such that (29) holds.
Similarly to (SG3) in Section IV-C, (SG4) is clearly not
generic in (SG1) because of the substantially larger gain for
the (x2, τ2)-subsystem due to the ADT modification.

F. Destabilizing flows and jumps: an alternate construction
Consider the case that Assumption 2 holds with c1, d2 ≤

0 < c2, d1, and γ1, γ2 defined by (9) are linear, that is, (27)
holds with ξ1, ξ2 > 0. Then pre-GAS can be established
under the less restrictive small-gain condition (SG1) instead
of (SG4), by applying first the RADT modification to the
(x1, τ1)-subsystem in (28) (with input x2), and then the
ADT one to the (x1, x2, τ1)-interconnection. The function
W1 defined by (13) with L1 > 0 is a candidate exponential
ISS Lyapunov function for the (x1, τ1)-subsystem of (28)
(with input x2) with rate coefficients c̄∗1, d̄

∗
1 defined by (14).

To invoke Corollary 4 for the (x1, x2, τ1)-interconnection it
requires (7) with γ1 defined by (9) and γ2 by (16), that is,

L1 < − ln(ξ1ξ2)/N∗0 =: L̄. (31)

With µ ∈ (ξ2e
L1N

∗
0 , 1/ξ1), the function W̄ : X × [0, N∗0 ]→

R≥0 defined by W̄ (x, τ1) := max{µe−L1τ1V1(x1), V2(x2)}
is a candidate exponential Lyapunov function w.r.t. Ā :=
{0}×[0, N∗0 ] with rate coefficients c̄ := min{c1+L1/τ

∗
a , c2}

and d̄ := min{d1 − L1, d2}, where c̄ > 0 if

L1 > −c1τ∗a , (32)

and d̄ ≤ d2 ≤ 0 (hence, unlike in the case in Section IV-B,
L1 < d1 is not needed). Moreover, from Section IV-C we
see the ADT modification requires c̄τa > L2 > −d̄, that is,

τa min{c1 +L1/τ
∗
a , c2} > L2 > max{L1−d1,−d2}. (33)

Following the proof of Lemmas 2, 3, if τa, τ∗a and N∗0 satisfy

c2τa > −d2,
(c1 − L̄/τ∗a )τa > max{L̄− d1,−d2},
max{c2(τa − τ∗a ), (τ∗a/τa − 1)d2} > −c1τ∗a − d1,

(34)

then there exist L1, L2 > 0 such that (31)–(33) hold. The
ADT modification yields the following result:

Proposition 9. Consider the interconnection (6). Suppose
that Assumption 2 holds with c1, d2 ≤ 0 < c2, d1, and
that γ1, γ2 defined by (9) satisfy (27) with ξ1ξ2 < 1. For
each ADT τa, RADT τ∗a and integer N∗0 ≥ 1 satisfying
(34), there exists L1, L2 such that (31)–(33) hold. Then the
function W : X × [0, N∗0 ] × [0, N0] → R≥0 defined by
W (x, τ1, τ2) := eL2τ2 max{µe−L1τ1V1(x1), V2(x2)} with
µ ∈ (ξ2e

L1N
∗
0 , 1/ξ1) is a Lyapunov function for the aug-

mented interconnection (28), and hence the pre-GAS estimate
(5) holds for all solutions satisfying (11) and (19).

See [25, Sec. 4.3] for an example of this construction.
Remark 5. Similarly to Remark 4, if the assumptions in
Proposition 9 hold with d2 ≤ ln(ξ1ξ2) then there is no ε > 0
such that (29) holds, and hence Theorem 8 cannot be applied.
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