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a b s t r a c t

This article deals with input-to-state stability (ISS) of continuous-time switched nonlinear systems. Given
a family of systems with exogenous inputs such that not all systems in the family are ISS, we characterize
a new and general class of switching signals under which the resulting switched system is ISS. Our
stabilizing switching signals allow the number of switches to grow faster than an affine function of the
length of a time interval, unlike in the case of average dwell time switching. We also recast a subclass
of average dwell time switching signals in our setting and establish analogs of two representative prior
results.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A switched system comprises of two components—a family of
systems and a switching signal. The switching signal selects an
active subsystem at every instant of time, i.e., the system from
the family that is currently being followed (Liberzon, 2003, Sec-
tion 1.1.2). Stability of switched systems is broadly classified
into two categories—stability under arbitrary switching (Liberzon,
2003, Chapter 2) and stability under constrained switching (Liber-
zon, 2003, Chapter 3). In the former category, conditions on the
family of systems are identified such that the resulting switched
system is stable under all admissible switching signals; in the lat-
ter category, given a family of systems, conditions on the switch-
ing signals are identified such that the resulting switched system
is stable. In this article our focus is on stability of switched systems
with exogenous inputs under constrained switching.

Prior study in the direction of stability under constrained
switching primarily utilizes the concept of slow switching vis-a-vis
(average) dwell time switching. Exponential stability of a switched
linear system under dwell time switching was studied in Morse
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(1996). In Xie, Wen, and Li (2001) the authors showed that a
switched nonlinear system is ISS under dwell time switching if all
subsystems are ISS. A class of state-dependent switching signals
obeying dwell time property under which a switched nonlinear
system is integral input-to-state stable (iISS) was proposed in De
Persis, De Santis,Morse (2003). The dwell time requirement for sta-
bilitywas relaxed to average dwell time switching to switched linear
systems with inputs and switched nonlinear systems without in-
puts in Hespanha andMorse (1999). ISS of switched nonlinear sys-
tems under average dwell time was studied in Vu, Chatterjee, and
Liberzon (2007). It was shown that if the individual subsystems are
ISS and their ISS-Lyapunov functions satisfy suitable conditions,
then the switched system has the ISS, exponentially-weighted ISS,
and exponentially-weighted iISS properties under switching sig-
nals obeying sufficiently large average dwell time. Given a family
of systems such that not all systems in the family are ISS, it was
shown in the recentwork (Yang& Liberzon, 2014) that it is possible
to construct a class of hybrid Lyapunov functions to guarantee ISS
of the switched system provided that the switching signal neither
switches too frequently nor activates the non-ISS subsystems for
too long. In Müller and Liberzon (2012) input/output-to-state sta-
bility (IOSS) of switched nonlinear systems with families in which
not all subsystems are IOSS, was studied. It was shown that the
switched system is IOSS under a class of switching signals obeying
average dwell time property and constrained point-wise activation
of unstable subsystems.

Given a family of systems, possibly containing non-ISS dy-
namics, in this article we study ISS of switched systems under
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switching signals that transcend beyond the average dwell time
regime in the sense that the number of switches on every inter-
val of time can grow faster than an affine function of the length
of the interval. Our characterization of stabilizing switching sig-
nals involves pointwise constraints on the duration of activation
of the ISS and non-ISS systems, and the number of occurrences of
the admissible switches, certain pointwise properties of the quan-
tities defining the above constraints, and a summability condition.
In particular, our contributions are:

◦ We allow non-ISS systems in the family and identify a class of
switching signals under which the resulting switched system is
ISS.

◦ Our class of stabilizing switching signals encompasses the
average dwell time regime in the sense that on every interval
of time the number of switches is allowed to grow faster than
an affine function of the length of the interval. Earlier in Kundu
and Chatterjee (2015) we proposed a class of switching signals
beyond the average dwell time regime for global asymptotic
stability (GAS) of continuous-time switched nonlinear systems.

◦ Although this is not the first instance when non-ISS subsystems
are considered (see e.g., Müller & Liberzon, 2012 and Yang
& Liberzon, 2014), to the best of our knowledge, this is the
first instance when non-ISS subsystems are considered and the
proposed class of stabilizing switching signals goes beyond the
average dwell time condition.

◦ We recast a subclass of average dwell time switching signals in
our setting and establish analogs of an ISS version of Müller and
Liberzon (2012, Theorem 2), and Vu et al. (2007, Theorem 3.1)
as two corollaries of our main result.

The remainder of this article is organized as follows: In Section 2
we formulate the problem under consideration and catalog certain
properties of the family of systems and the switching signal. Our
main results appear in Section 3, and we provide a numerical
example illustrating our main result in Section 4. In Section 5 we
recast prior results in our setting. The proofs of our main results
are presented in a consolidated manner in Section 7.
Notations: Let R denote the set of real numbers, ∥·∥ denote the
Euclidean norm, and for any interval I ⊂ [0,+∞[ we denote
by ∥·∥I the essential supremum norm of a map from I into some
Euclidean space. For measurable sets A ⊂ R we let |A| denote the
Lebesgue measure of A.

2. Preliminaries

We consider the switched system

ẋ(t) = fσ(t)

x(t), v(t)


, x(0) = x0 (given), t ≥ 0 (1)

generated by

◦ a family of continuous-time systems with exogenous inputs

ẋ(t) = fi

x(t), v(t)


, x(0) = x0 (given), i ∈ P , t ≥ 0,

(2)

where x(t) ∈ Rd is the vector of states and v(t) ∈ Rm is the
vector of inputs at time t , P = {1, 2, . . . ,N} is a finite index
set, and

◦ a piecewise constant function σ : [0,+∞[−→ P that selects,
at each time t , the index of the active system from the family (2);
this function σ is called a switching signal. By convention, σ is
assumed to be continuous from right and having limits from the
left everywhere, and we call such switching signals admissible.
We let S denote the set of all such admissible switching signals.

We assume that for each i ∈ P , fi is locally Lipschitz, and fi(0, 0) =

0. Let the exogenous inputs t → v(t) be Lebesgue measurable and
essentially bounded; therefore, a solution to the switched system
(1) exists in the Carathéodory sense (Filippov, 1988, Chapter 2)
for some non-trivial time interval containing 0. Given a family of
systems (2), our focus is on identifying a class of switching signals
σ ∈ S under which the switched system (1) is ISS. Recall that

Definition 1 (Vu et al., 2007, Section 2). The switched system (1)
is input-to-state stable (ISS) for a given σ if there exist class K∞

functions α, χ and a class KL function β such that for all inputs v
and initial states x0, we have2

α(∥x(t)∥) ≤ β(∥x0∥ , t)+ χ(∥v∥[0,t]) for all t ≥ 0. (3)

If one can find α, β and χ such that (3) holds over a class S′ of σ ,
then we say that (1) is uniformly ISS over S′.

Note that when the input is set to 0, i.e., v ≡ 0, then (3) reduces
to GAS of (1). We next catalog certain properties of the family of
systems (2) and the switching signal σ . These properties will be
required for our analysis towards deriving the class of stabilizing
switching signals.

2.1. Properties of the family of systems

LetPS andPU ⊂ P denote the sets of indices of ISS and non-ISS
systems in the family (2), respectively, P = PS ⊔ PU . Let E(P ) be
the set of all ordered pairs (i, j) such that it is admissible to switch
from system i to system j, i, j ∈ P .

Assumption 1. There exist class K∞ functions α, α, γ , continu-
ously differentiable functions Vi : Rd

→ [0,+∞[, i ∈ P , and
constants λi ∈ R with λi > 0 for i ∈ PS and λi < 0 for i ∈ PU ,
such that for all ξ ∈ Rd and η ∈ Rm, we have

α(∥ξ∥) ≤ Vi(ξ) ≤ α(∥ξ∥), (4)
∂Vi

∂ξ
(ξ), fi(ξ , η)


≤ −λiVi(ξ)+ γ (∥η∥). (5)

Remark 1. Conditions (4) and (5) are equivalent to an ISS version
of Müller and Liberzon (2012, (7) and (18)). The functions Vi’s
are called the ISS-Lyapunov-like functions, see Angeli and Sontag
(1999), Krichman, Sontag, and Wang (2001) and Sontag and
Wang (1995) for detailed discussion regarding the existence of
such functions and their properties. In particular, condition (5) is
equivalent to the ISS property for ISS subsystems (Sontag &Wang,
1995) and the unboundedness observability property for the non-
ISS subsystems (Krichman et al., 2001).

Assumption 2. For each pair (i, j) ∈ E(P ) there existµij > 0 such
that the ISS-Lyapunov-like functions are related as follows:

Vj(ξ) ≤ µijVi(ξ) for all ξ ∈ Rd. (6)

Remark 2. The assumption of linearly comparable Lyapunov-like
functions, i.e., there exists µ ≥ 1 such that

Vj(ξ) ≤ µVi(ξ) for all ξ ∈ Rd and i, j ∈ P (7)

is standard in the theory of stability under average dwell time
switching (Liberzon, 2003, Theorem 3.2); (6) affords sharper
estimates compared to (7).

2 K := {φ : [0,+∞[→ [0,+∞[
φ is continuous, strictly increasing , φ(0) =

0}, KL := {φ : [0,+∞[
2
→ [0,+∞[

φ(·, s) ∈ K for each s and φ(r, ·) ↘

0 as s ↗ +∞ for each r}, K∞ := {φ ∈ K
φ(r) → +∞ as r → +∞}.
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2.2. Properties of the switching signal

Fix t > 0. For a switching signal σ we let Nσ (0, t) denote the
number of switches on the interval ]0, t], and 0 =: τ0 < τ1 <
· · · < τNσ (0,t) denote the corresponding switching instants before
(and including) t . We denote the i-th holding time of σ by

Si+1 := τi+1 − τi, i = 0, 1, . . . . (8)

On an interval ]s, t] ⊂ [0,+∞[ of time, let

Tj(s, t) :=

]s, t] ∩

 +∞
i=0

σ(τi)=j

]τi, τi+1]

 (9)

denote the duration of activation of a system j ∈ P . Clearly,
j∈P Tj(s, t) = t − s for all 0 ≤ s < t < +∞. For a pair

(m, n) ∈ E(P ) let

Nmn(s, t) := #{m → n}ts (10)

be the number of switches from system m to system n on the
interval ]s, t] ⊂ [0,+∞[ of time.We have the immediate identity:
Nσ (0, t) =


(m,n)∈E(P ) Nmn(0, t), t > 0.

In the sequel we require the following class of functions:

Definition 2. A functionϱ : [0,+∞[
2
→ [0,+∞[ belongs to class

F K∞ if ϱ is continuous, and for every fixed first argument, ϱ is in
class K∞ in the second argument.

Assumption 3. There exist class F K∞ functions ρS
j , j ∈ PS , ρU

k ,

k ∈ PU , ρmn, (m, n) ∈ E(P ), and positive constants T
S
j , j ∈ PS ,

T
U
k , k ∈ PU , Nmn, (m, n) ∈ E(P ), such that on every interval

]s, t] ⊂ [0,+∞[ of time, the functions Tj(s, t), j ∈ PS , Tk(s, t),
k ∈ PU , and Nmn(s, t), (m, n) ∈ E(P ), defined in (9) and (10),
respectively, satisfy the following inequalities:

Tj(s, t) ≥ −T
S
j + ρS

j (s, t − s), (11)

Tk(s, t) ≤ T
U
k + ρU

k (s, t − s), (12)

Nmn(s, t) ≤ Nmn + ρmn(s, t − s). (13)

Remark 3. On every interval ]s, t] ⊂ [0,+∞[ of time, conditions
(11) and (12) constrain the duration of activation of a system j ∈

PS and k ∈ PU , respectively, and condition (13) constrains the
number of occurrences of an admissible switch (m, n) ∈ E(P ).
Each bound is provided in terms of a class F K∞ function (from
ρS
j , j ∈ PS , ρU

k , k ∈ PU , ρmn, (m, n) ∈ E(P )) and a positive

offset (from T
S
j , j ∈ PS , T

U
k , k ∈ PU , Nmn, (m, n) ∈ E(P )). We

consider point-wise lower bounds on the duration of activation of
ISS subsystems, and upper bounds on the duration of activation of
non-ISS subsystems and the number of occurrences of admissible
switches on every interval ]s, t] ⊂ [0,+∞[ of time. In the
analysis towards identifying switching signals for ISS of switched
systems, such bounds are standard assumptions. For example, in
Müller and Liberzon (2012) and Vu et al. (2007) the number of
switches on every interval of time is allowed to grow at most as
an affine function of the length of the interval. In the presence of
non-ISS subsystems, the duration of activation of such systems is
also constrained on every interval of time in Müller and Liberzon
(2012). We use the class F K∞ functions ρS

j (s, t − s), j ∈ PS ,
ρU
k (s, t − s), k ∈ PU , and ρmn(s, t − s), (m, n) ∈ E(P ) with two

arguments—the initial value of the interval s ∈ [0,+∞[ and the
length of the interval (t−s), with the objective to allow the number
of switches on any interval of time to grow faster than the case of
average dwell time switching as we shall see momentarily.
3. Main results

We are now in a position to present our main results.

Theorem 1. Consider the family of systems (2). Let PS,PU ⊂ P and
E(P ) be as described in Section 2.1. Suppose that Assumptions 1 and
2 hold. Let there exist constants c1 and c2, and a class F K∞ function
ρ : [0,+∞[

2
→ [0,+∞[ satisfying ρ(0, 0) = 0 such that the

following conditions hold:

−


j∈PS

λj ρS
j (r, s)+


k∈PU

|λk| ρ
U
k (r, s)

+


(m,n)∈E(P )

(lnµmn)ρmn(r, s) ≤ c1 − ρ(r, s) (14)

for every interval ]r, r + s] ⊂ [0,+∞[ of time, and

lim
t→+∞

Nσ (0,t)
i=0

exp

−ρ(τi, t − τi)


≤ c2. (15)

Here λj, j ∈ PS , λk, k ∈ PU , andµmn, (m, n) ∈ E(P ) are as in (5) and
(6), respectively, and class F K∞ functions ρS

j , j ∈ PS , ρU
k , k ∈ PU ,

ρmn, (m, n) ∈ E(P ) are as in Assumption 3. Then the switched
system (1) is uniformly input-to-state stable (ISS) for every σ ∈ S
satisfying (11), (12), and (13) for every interval ]r, r + s] ⊂ [0,+∞[

of time.

See Section 7 for a detailed proof of the above theorem.

Remark 4. The condition (14) provides a point-wise upper bound
on the difference between the weighted class F K∞ functions
(r, s) →


k∈PU

|λk| ρ
U
k (r, s) +


(m,n)∈E(P )(lnµmn)ρmn(r, s), and

(r, s) →


j∈PS

λj ρS
j (r, s) in terms of a constant c1 and another

class F K∞ function ρ satisfying ρ(0, 0) = 0, where the class
F K∞ functions ρS

j , j ∈ PS , ρU
k , k ∈ PU , and ρmn, (m, n) ∈ E(P )

constrain the duration of activation of ISS subsystems and non-
ISS subsystems, and the number of occurrences of the admissible
switches, respectively on every interval ]r, r + s] ⊂ [0,+∞[ of
time.

Remark 5. The condition (15) deals with summability of a series
with non-negative terms involving the class F K∞ function ρ
satisfying ρ(0, 0) = 0, the number of switches Nσ (0, t) before
(and including) t > 0, and the corresponding switching instants
0 =: τ0 < τ1 < · · · < τNσ (0,t).

Remark 6. The constants c1 and c2 on the right-hand sides of (14)
and (15) ensure uniform ISS of the switched system (1) over all
switching signals σ satisfying (11)–(15).

Remark 7. If v ≡ 0, condition (14) guarantees GAS of switched
system (1). Earlier in Kundu and Chatterjee (2015) we proposed
a class of switching signals that transcends beyond the average
dwell time regime and ensures GAS of continuous-time switched
systems. On the one hand, the stability condition in Kundu and
Chatterjee (2015, Theorem 5) solely involved certain asymptotic
properties of the switching signals: the asymptotic frequency of
switching, the asymptotic fraction of activation of the constituent
systems, and the asymptotic densities of the admissible transitions
among them. As a natural deficiency, the members of the above
class of switching signals do not accommodate uniform transient
behavior. On the other hand, Theorem 1 involves pointwise con-
straints on the duration of activation of ISS and non-ISS systems,
and the occurrence of admissible transitions, but guarantees uni-
form ISS. As regard to synthesis, it is computationally more chal-
lenging to design a switching signal that satisfies conditions (14),
(15) as certain conditions need to be verified on every interval of
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time than verifying asymptotic conditions proposed in Kundu and
Chatterjee (2015, Theorem 5).

Remark 8. Our class of stabilizing switching signals goes beyond
the average dwell time regime in the sense that on every interval
of time the number of switches is allowed to grow faster than
an affine function of the length of the interval. We elaborate
on this feature with the aid of the following example: Fix t >
0. Let us study how close to t can the τi’s be placed under
condition (13). We have Nσ (0, t) ≤ N0 + ⌊ρN(0, t)⌋, where
N0 :=


(m,n)∈E(P ) Nmn and ρN(0, t) :=


(m,n)∈E(P ) ρmn(0, t).

Consequently,
Nσ (0,t)

i=0 exp

−ρ(τi, t − τi)


is at most equal toN0+⌊ρN(0,t)⌋

i=0 exp

−ρ(τi, t − τi)


. However small a time interval

may be, at most N0 switches are allowed. So these many switches
canbeplaced arbitrarily close to t . For the rest of the ⌊ρN(0, t)⌋ = n
(say) switches that can be placed on ]0, t], we have that on the
interval ]τn, t] at most N0 +1 switches are allowed, on the interval
]τn−1, t] at most N0 + 2 switches are allowed, and so on. Joint
validity of the above conditions leads to τn = t − inf{r > 0 |

ρN(r, s) > 1 with s = t − r}, τn−1 = t − inf{r > 0 |

ρN(r, s) > 2 with s = t − r}, . . . , τ1 = t − inf{r > 0 |

ρN(r, s) > n with s = t − r}, i.e., τn = t − ρ−1
N (·, t − ·)(1),

τn−1 = t − ρ−1
N (·, t − ·)(2), . . . , τ1 = t − ρ−1

N (·, t − ·)(n).
Now let us study the above phenomenon under average dwell

time switching. Recall that (Liberzon, 2003, p. 58) a switching
signal σ has average dwell time τa if there exist two positive
numbers N0 and τa such that Nσ (s, t) ≤ N0 +

t−s
τa

for all 0 ≤

s < t . Let the N0 switches be placed arbitrarily close to t as already
explained. As regard to the remaining ⌊

t
τa

⌋ switches, we have that
on every interval of length t − (t − nτa), at most N0 + n switches
are allowed, on every interval of length (t − (n−1)τa)− (t −nτa),
at most N0 + 1 switches are allowed, and so on. Consequently, we
have τn = t − τa, τn−1 = t − 2τa, . . . , τ1 = t − nτa.

As is evident from the above discussion, our class of switching
signals allows number of switches on every interval of time to grow
faster than an affine function of the length of the interval.

We next consider two simple cases where both the functions ρ
and ρN are such that for all r1, r2 ≥ 0 and all s > 0, ρ(r1, s) =

ρ(r2, s) and ρN(r1, s) = ρN(r2, s), and discuss boundedness of the
quantity

Nσ (0,t)
i=0 exp


−ρ(τi, t − τi)


with t .

Lemma 1. Let ρ(r, s) = k1s + k2 for some k1, k2 > 0, s ≥ 0 and
let ρN be such that the switches be equispaced in time, i.e., they satisfy
τn = t − ρ−1

N (·, t − ·)(1), τn−1 = t − 2ρ−1
N (·, t − ·)(1), . . . , τ1 =

t−nρ−1
N (·, t−·)(1). Then limt→+∞

Nσ (0,t)
i=0 exp


−ρ(τi, t−τi)


<

+∞.

Lemma 2. Let ρ(r, s) = k1s3/2 + k2 for some k1, k2 > 0, s ≥ 0, and
let ρN be such that the switches be equispaced in time as explained
in Lemma 1. Then limt→+∞

Nσ (0,t)
i=0 exp


−ρ(τi, t − τi)


< +∞.

The proofs of Lemmas 1 and 2 are presented in Section 7.

4. Numerical example

A. The family of systems:We consider a family withP = {1, 2, 3, 4}
with

f1(x, v) =


−x1 + sin(x1 − x2)

−x2 + 0.8 sin(x2 − x1)+ 0.5v


,

f2(x, v) =


x2

−x1 − x2 + v


,

f3(x, v) =


x1 + sin(x1 − x2)

x2 + sin(x2 − x1)+ 0.5v


,

Fig. 1. An execution of σ described in section 4B.

f4(x, v) =


x2

−x2 + v


.

Clearly, PS = {1, 2} and PU = {3, 4}. Let E(P ) = {(1, 2),
(1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2)}.We
choose V1(x) = 0.5(x21 + 1.25x22), V2(x) = x21 + x1x2 + x22,
V3(x) = 0.5(x21 + x22), V4(x) = x21 + x22, and obtain the following
estimates: λ1 = 1.75, λ2 = 0.5, λ3 = −2.1667, λ4 = −0.6378,
µ12 = 6, µ13 = 1, µ14 = 2, µ21 = 4, µ23 = 1, µ24 = 2, µ31 =

1.25, µ32 = 6, µ41 = 1, µ42 = 2.
B. The switching signal: Let a switching signal σ satisfy (11)–(13)
with T

S
j = 0.0010, j ∈ PS , T

U
k = 0.0100, k ∈ PU , Nmn = 1,

(m, n) ∈ E(P ), and ρS
1(r, s) = 0.0350 s3/2 + 0.2690s, ρS

2(r, s) =

0.0350s3/2 + 0.1345s, ρU
3 (r, s) = 0.0100s, ρU

4 (r, s) = 0.0500s,
ρmn(r, s) = 0.0100s3/2 + 0.0435s, (m, n) ∈ E(P ).
C. The verification: We verify that for the family of systems and
the switching signal described above, (14) holds with ρ(r, s) =

k1s3/2 + k2, where k1 = 0.0061 and c1 − k2 = 0. Selecting the
switching instants as demonstrated in Fig. 1, we observe that (15)
holds with c2 = 124.1898.

Fig. 1 illustrates an execution of a switching signal σ described
in Section 4B till t = 25 units of time. In Fig. 2 we study the process
(∥x(t)∥)t≥0 under (i) five different initial conditions x0 (selected
uniformly at random from the interval [−1000, 1000]2) and input
v (selected uniformly at random from the interval [−10, 10]), and
(ii) the switching signal σ demonstrated in Fig. 1.3 We observe
that the bounds on ∥x(t)∥ in the simulation are much smaller than
those obtained from the analysis in the proof of Theorem 1.

The classKL function β is visible from Fig. 2. To study the class
K∞ function χ , we fix T = 1000 units of time, x0 = [−100, 100],
and simulate x(t) with (i) input v selected uniformly at random
from the interval [−k, k], where k ranges from 1 to 100, and (ii) the
switching signal σ demonstrated in Fig. 1. In Fig. 3 we plot ∥x(T )∥
versus k.

Remark 9. Consider an ISS version of Müller and Liberzon (2012,
Theorem 2). For the family of systems under consideration, we
have λS = 0.5, λU = 2.1667, µ = 6, ρ ∈]0, 0.1875[. We fix

3 By selecting the input v uniformly at random from an interval [−a, a], we
mean that at every Euler step we plug in the random variable as indicated, which
corresponds to a ‘sample and hold’ continuous-time process with uniform random
variables at the jump times.



274 A. Kundu et al. / Automatica 64 (2016) 270–277
Fig. 2. Plot for (∥x(t)∥)t≥0 .

ρ = 0.1874 and τa = 2.3.4 Fix N0 =


(m,n)∈E(P ) Nmn. By definition
of average dwell time switching, Nσ (s, t) ≤ 10 + ⌊0.4348(t − s)⌋
for every interval ]s, t] ⊂ [0,+∞[ of time. In contrast, we have
Nσ (s, t) ≤ 10+


(m,n)∈E(P )⌊0.0100(t − s)3/2 + 0.0435(t − s)⌋ for

every interval ]s, t] ⊂ [0,+∞[ of time.

Remark 10. The design of a switching signal σ satisfying the
proposed conditions involves selecting the constants T

S
j , j ∈ PS ,

T
U
k , k ∈ PU , Nmn, (m, n) ∈ E(P ), and the class F K∞ functions
ρS
j , j ∈ PS , ρU

k , k ∈ PU , ρmn, (m, n) ∈ E(P ) such that there
exist constants c1, c2 and a class F K∞ function ρ with ρ(0, 0) =

0 satisfying (14) and (15). For a fixed t , validation of condition
(15) involves the number of switches Nσ (0, t) and the switching
instants τ0, τ1, . . . , τNσ (0,t). The quantity Nσ (0, t) can be obtained
from the already chosen Nmn and ρmn, (m, n) ∈ E(P ) as explained
in Remark 8. In Lemmas 1 and 2 we have discussed two structures
of the class F K∞ function ρ and the switching instants for which
(15) is satisfied. A next natural question in the context of Theorem1
is: given a family of systems (2), how do we algorithmically
detect/design a switching signalσ that satisfies (11)–(13) such that
(14) and (15) hold? This feature is currently under investigation.

5. Discussion

In this section we recast a subclass of average dwell time
switching signals in our setting and establish analogs of the prior
results: an ISS version of Müller and Liberzon (2012, Theorem 2),
and Vu et al. (2007, Theorem 3.1), with the aid of our main result.
Our first result of this section is:

Proposition 1. Consider the family of systems (2). Suppose that As-
sumption 1 holds with

λj = λS for all j ∈ PS and |λk| = λU for all
k ∈ PU , and Assumption 2 holdswithµmn = µ for all (m, n) ∈ E(P ).

Let ρ and τa be constants satisfying ρ ∈


0, λS

λS+λU


and

τa ∈


lnµ

λS · (1 − ρ)− λU · ρ
,+∞


. (16)

4 We call the scalar ρ inMüller and Liberzon (2012, Theorem 2) as ρ here to avoid
notational overlap. The choice of ρ and τa is motivated by the objective tomaximize
1
τa

in the given setting.
Fig. 3. Plot for ∥x(T )∥ against kwith T = 1000 units of time and input v ∈ [−k, k].

Let the class F K∞ functions ρS
j , j ∈ PS , ρU

k , k ∈ PU , ρmn, (m, n) ∈

E(P ) described in Assumption 3, be such that for all r1, r2 ≥ 0 and all
s > 0

ρS
j (r1, s) = ρS

j (r2, s), (17)

ρU
k (r1, s) = ρU

k (r2, s), (18)
and ρmn(r1, s) = ρmn(r2, s). (19)

Moreover, let for every interval ]r, r + s] ⊂ [0,+∞[ of time
j∈PS

ρS
j (r, s)+


k∈PU

ρU
k (r, s) ≥ s, (20)

k∈PU

ρU
k (r, s) ≤ ρ · s, (21)

and


(m,n)∈E(P )

ρmn(r, s) ≤
s
τa
. (22)

Then the switched system (1) is ISS for every switching signal σ ∈ S
satisfying (11), (12), and (13) for every interval ]r, r + s] ⊂ [0,+∞[

of time.

Remark 11. Given a family of systems inwhich not all subsystems
are input/output-to-state stable (IOSS), in Müller and Liberzon
(2012, Theorem 2) the authors identified a class of switching
signals obeying the average dwell time property under which the
resulting switched system is IOSS. Our Proposition 1 is an analog of
an ISS version of Müller and Liberzon (2012, Theorem 2) obtained
as a corollary of our main result Theorem 1.

Remark 12. Since under average dwell time switching, the bounds
on every interval ]r, r + s] ⊂ [0,+∞[ of time are independent
of the initial point r ∈ [0,+∞[ of the interval, the assumption
that the class F K∞ functions ρS

j , j ∈ PS , ρU
k , k ∈ PU , ρmn,

(m, n) ∈ E(P ) satisfy (17)–(19) is natural.

Remark 13. The bound on ρ ensures that 0 < ρ < 1.
Consequently, the activation of unstable systems on every interval
of time is restricted. A switching signal σ that satisfies (13)
on every interval ]r, r + s] ⊂ [0,+∞[ of time such that
hypothesis (22) holds with ρmn(r, s), (m, n) ∈ E(P ) satisfying
(19), implies that the switching signal satisfies the average dwell
time property (Liberzon, 2003, p. 58). We have Nσ (s, t) =

(m,n)∈E(P ) Nmn(s, t) ≤


(m,n)∈E(P ) Nmn +


(m,n)∈E(P ) ρmn(s, t −

s). Pick N0 such that


(m,n)∈E(P ) Nmn ≤ N0. By hypothesis (22), we
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have


(m,n)∈E(P ) ρmn(s, t − s) ≤
t−s
τa

. Consequently, Nσ (s, t) ≤

N0 +
t−s
τa

for positive constants N0 and τa.

A special case of Müller and Liberzon (2012, Theorem 2) where all
subsystems are ISS was treated in Vu et al. (2007, Theorem 3.1).
A subclass of average dwell time switching signals was proposed
under which the resulting switched system is ISS. We recast an
analog of Vu et al. (2007, Theorem 3.1) as a corollary of our main
result:

Proposition 2. Consider the family of systems (2). Let PU = ∅.
Suppose that Assumption 1 holds with

λj = λ0 for all j ∈ PS
and Assumption 2 holds with µmn = µ for all (m, n) ∈ E(P ). Let
τa be a constant satisfying

τa ∈


lnµ
λ0

,+∞


. (23)

Let the class F K∞ functions ρS
j , j ∈ PS and ρmn, (m, n) ∈ E(P )

described in Assumption 3 be such that for all r1, r2 ≥ 0 and all s > 0

ρS
j (r1, s) = ρS

j (r2, s), (24)

and ρmn(r1, s) = ρmn(r2, s). (25)

Moreover, let for every interval ]r, r + s] ⊂ [0,+∞[ of time
j∈PS

ρS
j (r, s) ≥ s, (26)

and


(m,n)∈E(P )

ρmn(r, s) ≤
s
τa
. (27)

Then the switched system (1) is ISS for every switching signal σ ∈ S
that for every interval ]r, r + s] ⊂ [0,+∞[ of time, satisfies (11) and
(13).

Remark 14. Since PU = ∅, condition (12) is automatically
satisfied. A switching signal that satisfies (13) such that (27) holds
implies that the switching signal satisfies the average dwell time
property as explained in Remark 13.

6. Concluding remarks

In this article we presented a class of switching signals under
which a continuous-time switched system is uniformly ISS. We
utilized multiple ISS-Lyapunov-like functions for our analysis and
our characterization of stabilizing switching signals allowed the
number of switches on any interval of time to grow faster than
an affine function of the length of the interval unlike in the
case of average dwell time switching. We also discussed two
representative prior results: an ISS version of Müller and Liberzon
(2012, Theorem 2), and Vu et al. (2007, Theorem 2) in our setting.
Our results extend readily to the discrete-time setting. This matter
has been reported in Kundu, Mishra, and Chatterjee (in press).

7. Proofs

Proof of Theorem 1. Fix t > 0. Let 0 =: τ0 < τ1 < · · · < τNσ (0,t)
be the switching instants before (and including) t . In view of (5),

Vσ(t)(x(t)) ≤ exp

−λσ(τNσ (0,t))(t − τNσ (0,t))


Vσ(t)(x(τNσ (0,t)))

+ γ

∥v∥[0,t]

  t

τNσ (0,t)

exp

−λσ(τNσ (0,t))(t − s)


ds.

Applying (6) and iterating the above, we obtain the estimate

Vσ(t)(x(t)) ≤ ψ1(t)Vσ(0)(x0)+ γ (∥v∥[0,t])ψ2(t), (28)
where

ψ1(t) := exp

−

Nσ (0,t)
i=0

τNσ (0,t)+1 :=t

λσ(τi)Si+1 +

Nσ (0,t)−1
i=0

lnµσ(τi)σ (τi+1)

 ,

ψ2(t) :=

Nσ (0,t)
i=0

τNσ (0,t)+1 :=t

exp

−

Nσ (0,t)
k=i+1

τNσ (0,t)+1 :=t

λσ(τk)Sk+1

+

Nσ (0,t)−1
k=i+1

lnµσ(τk)σ (τk+1)

 ×
1

λσ(τi)


1 − exp


−λσ(τi)Si+1

 .

Here Si+1 is as defined in (8).
In view of (4) we rewrite the estimate (28) as

α(∥x(t)∥) ≤ ψ1(t)α(∥x0∥)+ γ

∥v∥[0,t]


ψ2(t).

By Definition 1, for ISS of (1), we need to show the following: (i)
α(∗)ψ1(·) can be bounded above by a class KL function, and (ii)
ψ2(·) is bounded by a constant, say ψ2.

Observe that

ψ1(t) = exp

−


j∈PS

λj
]0, t] ∩

 +∞
i=0

σ(τi)=j

]τi, τi+1]


+


k∈PU

|λk|

]0, t] ∩

 +∞
i=0

σ(τi)=k

]τi, τi+1]


+


(m,n)∈E(P )

(lnµmn)#{m → n}
τNσ (0,t)−1
0


= exp


−


j∈PS

λj Tj(0, t)+


k∈PU

|λk| Tk(0, t)

+


(m,n)∈E(P )

(lnµmn)Nmn(0, τNσ (0,t)−1)


. (29)

Similarly,

ψ2(t) =


j∈PS

1λj 
i:σ(τi)=j

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t


exp


−


p∈PS

λp Tp(τi+1, t)

+


q∈PU

λq Tq(τi+1, t)+


(m,n)∈E(P )

(lnµmn)Nmn(τi+1, τNσ (0,t)−1)



×


1 − exp


−

λj Si+1


+


k∈PU

1
|λk|


i:σ(τi)=k

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t


exp


−


p∈PS

λp Tp(τi+1, t)

+


q∈PU

λq Tq(τi+1, t)+


(m,n)∈E(P )

(lnµmn)Nmn(τi+1, τNσ (0,t)−1)



×


1 − exp


|λk| Si+1


≤


j∈PS

1λj 
i:σ(τi)=j

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t


exp


−


p∈PS

λp Tp(τi+1, t)

+


q∈PU

λq Tq(τi+1, t)+


(m,n)∈E(P )

(lnµmn)Nmn(τi+1, t)

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+


k∈PU

1
|λk|


i:σ(τi)=k

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t


exp


−


p∈PS

λp Tp(τi, t)

+


q∈PU

λq Tq(τi, t)+


(m,n)∈E(P )

(lnµmn)Nmn(τi, t)

. (30)

We first verify (ii). By hypotheses (11)–(13), we have that the right-
hand side of (30) is at most equal to
j∈PS

1λj 
i:σ(τi)=j

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t

exp


p∈PS

λp TSp − ρS
p(τi+1, t − τi+1)



+


q∈PU

λq TUq + ρU
q (τi+1, t − τi+1)


+


(m,n)∈E(P )

(lnµmn)

Nmn + ρmn(τi+1, t − τi+1)


+


k∈PU

1
|λk|


i:σ(τi)=k

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t

exp


p∈PS

λp TSp − ρS
p(τi, t − τi)



+


q∈PU

λq TUq + ρU
q (τi, t − τi)


+


(m,n)∈E(P )

(lnµmn)

Nmn + ρmn(τi, t − τi)


.

From (14), the above expression is bounded above by
j∈PS

1λj 
i:σ(τi)=j

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t

exp

c + c1 − ρ(τi+1, t − τi+1)



+


k∈PU

1
|λk|


i:σ(τi)=k

i=0,...,Nσ (0,t)
τNσ (0,t)+1 :=t

exp

c + c1 − ρ(τi, t − τi)



for some c satisfying


j∈PS
T
S
j +


k∈PU

T
U
k +


(m,n)∈E(P ) Nmn ≤

c. In view of (15) and the fact that P is finite, both the
terms


j∈PS

1
|λj|

Nσ (0,t)
i=0 exp


c + c1 − ρ(τi+1, t − τi+1)


, and

k∈PU
1

|λk|

Nσ (0,t)
i=0 exp


c + c1 − ρ(τi, t − τi)


are bounded.

Consequently, (ii) holds.
It remains to verify (i). Towards this end, we already see that

α ∈ K∞ from Assumption 1. Therefore, it remains to show that
ψ1(·) is bounded above by a function in class L to complete the
proof of (i).5By hypotheses (11), (12), and (13), we have ψ1(t) is
bounded above by

exp


j∈PS

λj (TSj − ρS
j (0, t))+


k∈PU

|λk| (T
U
k + ρU

k (0, t))

+


(m,n)∈E(P )

(lnµmn)(Nmn + ρmn(0, t))

.

By (14) the above quantity is at most exp

c + c1 − ρ(0, t)


, which

decreases as t increases, and tends to 0 as t → +∞.
To summarize, α(∥x(t)∥) ≤ β(∥x0∥ , t) + χ(∥v∥[0,t]) for all

t ≥ 0 holds with α(r) := r , β(r, s) = α(r) exp

c + c1 − ρ(0, s)



5 L :=

γ : [0,+∞[−→ [0,+∞[

γ is continuous and γ (s) ↘ 0 as s ↗ +∞

.

and χ(r) := γ (r)ψ2, where

ψ2 =


j∈PS

1λj supt
Nσ (0,t)
i=0

exp

c + c1 − ρ(τi+1, t − τi+1)


+


k∈PU

1
|λk|

sup
t

Nσ (0,t)
i=0

exp

c + c1 − ρ(τi, t − τi)


.

This completes our proof for ISS. For uniformity over σ , we
note that the functions β and χ do not depend on the specific
switching signal σ satisfying (11)–(13) under our assumptions.
This completes our proof of Theorem 1. �

Proof of Lemma 1. We express ρ−1
N (·, t − ·)(1) by ρ−1

N (1) for
notational simplicity. We have

Nσ (0,t)
i=0

exp

−ρ(τi, t − τi)


≤

N0+⌊ρN(0,t)⌋
i=0

exp

−ρ(τi, t − τi)


≤ exp(−k2)

N0+⌊ρN(0,t)⌋
i=0

exp

−k1 · (t − τi)


= exp(−k2)


1 + N0 + exp(−nk1ρ−1

N (1))+ exp(−(n − 1)k1ρ−1
N (1))

+ · · · + exp(−2k1ρ−1
N (1))+ exp(−k1ρ−1

N (1))


≤ exp(−k2)

1 + N0 +

1

exp(−k1ρ−1
N (1))− 1


. �

Proof of Lemma 2. We have

Nσ (0,t)
i=0

exp

−ρ(τi, t − τi)


≤

N0+⌊ρN (0,t)⌋
i=0

exp

−ρ(τi, t − τi)


≤ exp(−k2)


(N0 + 1)+ exp


−k1(ρ−1

N (1))3/2n3/2
+ · · ·

+ exp

−k1(ρ−1

N (1))3/223/2
+ exp


−k1(ρ−1

N (1))3/2

.

We apply the integral test (Kaczor & Nowak, 2000, Section 3.3); we
define a new variable y2 := x3, and compute


+∞

0 exp

−k1(ρ−1

N

(1))3/2

dx =

2
3


+∞

0 y−1/3 exp

−k1(ρ−1

N (1))3/2y

dy =

2
3k1(ρ

−1
N (1))3/2

Γ


2
3


, which is finite, showing thereby that

Nσ (0,t)
i=0 exp


−ρ(τi,

t − τi)

is bounded. �

Proof of Proposition 1. By the hypotheses
λj = λS for all j ∈ PS ,

|λk| = λU for all k ∈ PU , µmn = µ for all (m, n) ∈ E(P ), and
(20)–(22), we obtain the following upper bound on left-hand side
of (14):

− λS · (1 − ρ) · (t − s)+ λU · ρ · (t − s)+ (lnµ) ·
t − s
τa

. (31)

By (16), we have 1
τa

≤
λS ·(1−ρ)−λU ·ρ

lnµ − ε for some ε > 0. The above
estimate results in (31) to be bounded above by−(lnµ) ·ε · (t − s),
which is equivalent to c1 − ρ(s, t − s)with c1 = 0 and ρ linear in
the second argument.

Claim: The series
Nσ (0,t)

i=0 exp

−ε ·(lnµ) ·(t−τi)


for some ε > 0,

is bounded with respect to t under average dwell time switching.
Let ε′

= ε · (lnµ). We consider the situation identified in
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Remark 8.

N0+


t
τa


i=0

exp

−ε′

· (t − τi+1)


≤ exp(−ε′t)+ exp


−ε′


t
τa


− 1


τa


+ · · · + exp


−2ε′τa


+ exp


−ε′τa


+ N0

≤ 1 + N0 + exp(−ε′τa)
1 − (exp(−ε′τa))


t
τa +1


1 − exp(−ε′τa)

≤ 1 + N0 +
1

exp(ε′τa)− 1
.

This proves our claim and the assertion of Proposition 1 follows at
once. �

Proof of Proposition 2 (Sketch). Observe that under the hypoth-
esis PU = ∅, for every interval ]s, t] ⊂ [0,+∞[ of time,
the left-hand side of (14) becomes −


j∈PS

λj ρS
j (s, t − s) +

(m,n)∈E(P )(lnµmn)ρmn(s, t − s). The rest of the proof for Propo-
sition 2 follows under the same set of arguments as in the proof of
Proposition 1. �
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