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1. Introduction

The study of interconnections plays a significant role in the
system theory, as it allows one to establish stability for a complex
system based on properties of its less complex components. In
this context, small-gain theorems prove to be useful and general
in analyzing feedback interconnections, which are ubiquitous in
the control literature. An overview of classical small-gain theo-
rems involving input–output gains of linear systems can be found
in Desoer and Vidyasagar (2009). In Hill (1991) and Mareels and
Hill (1992), the small-gain technique was extended to nonlinear
feedback systems within the input–output context. The next peak
in the stability analysis of interconnections was reached based on
the input-to-state stability (ISS) framework proposed in Sontag
(1989), which unified the notions of internal and external stability.
Nonlinear small-gain theorems for general feedback interconnec-
tions of two ISS systems were introduced in Jiang, Mareels, and
Wang (1996) and Jiang, Teel, and Praly (1994). Their generalization
to networks composed of n ≥ 2 ISS systems were reported
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in Dashkovskiy, Rüffer, and Wirth (2007, 2010), with several
variations summarized in Dashkovskiy, Efimov, and Sontag (2011).

The results described above have been developed for continu-
ous-time systems (i.e., ordinary differential equations). In the
discrete-time context, small-gain theorems for general feedback
interconnections of two ISS systems were established in Jiang and
Wang (2001) and Laila andNešić (2003), and their generalization to
networks composed of n ≥ 2 ISS systems can be found in Liu, Jiang,
and Hill (2012). However, in modeling real-world phenomena one
often has to consider interactions between continuous and discrete
dynamics. A general framework for modeling such behaviors is the
hybrid systems theory (Goebel, Sanfelice, & Teel, 2012; Haddad,
Chellaboina, & Nersesov, 2006). In this work, we adopt the hybrid
system model in Goebel et al. (2012), which proves to be natural
and general from the viewpoint of Lyapunov stability theory (Cai,
Teel, & Goebel, 2007, 2008). The notions of input-to-state stability
and ISS Lyapunov functions were extended for this class of hybrid
systems in Cai and Teel (2009).

Due to their interactive nature, many hybrid systems can be
inherentlymodeled as feedback interconnections (Liberzon, Nešić,
& Teel, 2014 Section V). During recent years, great efforts have
been devoted to the development of small-gain theorems for in-
terconnected hybrid systems. Trajectory-based small-gain theo-
rems for interconnections of two hybrid systems were reported
in Dashkovskiy and Kosmykov (2013), Karafyllis and Jiang (2007)
and Nešić and Liberzon (2005), while Lyapunov-based formula-
tions were proposed in Liberzon and Nešić (2006), Liberzon et
al. (2014) and Nešić and Teel (2008). Some of these results were
extended to networks composed of n ≥ 2 ISS hybrid systems
in Dashkovskiy and Kosmykov (2013).
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A more challenging problem is the study of hybrid systems in
which either the continuous or the discrete dynamics is desta-
bilizing (non-ISS). In this case, input-to-state stability is usu-
ally achieved under restrictions on the frequency of discrete
events, such as dwell-time (Morse, 1996), average dwell-time
(ADT) (Hespanha & Morse, 1999) and reverse average dwell-time
(RADT) (Hespanha, Liberzon, & Teel, 2008). For interconnections
of such hybrid subsystems, the small-gain theorems established
in Dashkovskiy and Kosmykov (2013) and Liberzon et al. (2014)
cannot be applied directly. The results of Liberzon et al. (2014)
show that one can modify the non-ISS dynamics in subsystems by
first adding auxiliary clocks and then constructing ISS Lyapunov
functions for the augmented subsystems that decrease both during
flow and at jumps. One advantage of this method is that it can
be applied even if the non-ISS dynamics are of different types
(i.e., if in some subsystems the continuous dynamics are non-
ISS, and in some other ones the discrete dynamics are non-ISS).
However, such modifications will lead to enlarged Lyapunov gains
of subsystems, and hence make the small-gain condition more
restrictive.

Another type of small-gain theorems was proposed in
Dashkovskiy, Kosmykov, Mironchenko, and Naujok (2012) and
Dashkovskiy and Mironchenko (2013b) for interconnected impul-
sive systems with continuous or discrete non-ISS dynamics. The
first step in this method is to construct a candidate exponential
ISS Lyapunov function for the interconnection. Provided that the
non-ISS dynamics of subsystems are of the same type (i.e., when
either the continuous dynamics of all subsystems or the discrete
dynamics of all subsystems are ISS), the candidate exponential ISS
Lyapunov function can be used to establish input-to-state stability
of the interconnection under suitable ADT/RADT conditions. Com-
pared with the previous method, this one does not require mod-
ifications of subsystems, and hence preserves the Lyapunov gains
and validity of small-gain conditions. However, this method has
been developed only for impulsive systems and requires candidate
exponential ISS Lyapunov functions for subsystems. Moreover, it
cannot be applied to interconnections of subsystemswith different
types of non-ISS dynamics.

In this paper, we unify the twomethods above. In Section 2, we
introduce the modeling framework andmain definitions, followed
by a Lyapunov-based sufficient condition for ISS of hybrid systems
with continuous or discrete non-ISS dynamics. In Section 3, we
establish a general small-gain theorem for an interconnection of
n ≥ 2 hybrid subsystems by constructing a candidate ISS Lyapunov
function for the interconnection, which generalizes the Lyapunov-
based small-gain theorems from Dashkovskiy and Kosmykov
(2013), Dashkovskiy et al. (2012), Dashkovskiy and Mironchenko
(2013b), Liberzon et al. (2014) and Nešić and Teel (2008). We also
derive several implications of the general result, in particular, a
small-gain theorem for interconnections of subsystems with the
same type of non-ISS dynamics and also candidate exponential
ISS Lyapunov functions with linear Lyapunov gains. In Section 4,
we propose a version of the approach of modifying ISS Lyapunov
functions for subsystems from Liberzon et al. (2014), in which
fewer subsystems are affected (and hence fewer Lyapunov gains
are enlarged). In Section 5, we summarize the results of this work
as a unified method for establishing ISS of interconnections of
hybrid subsystems and conclude the paper with an outlook on
future research.

A preliminary and shortened version of the paper has been
presented at the 21st International Symposium on Mathematical
Theory of Networks and Systems (Mironchenko, Yang, & Liberzon,
2014).

2. Framework for hybrid systems

Let R+ := [0,∞) and N := {0, 1, 2, . . .}. For a vector x ∈ RN ,
denote by |x| its Euclidean norm, and by |x|A := infy∈A|x − y|
its Euclidean distance to a set A ⊂ RN . For n vectors x1, . . . , xn,
denote by (x1, . . . , xn) := (x⊤

1 , . . . , x
⊤
n )

⊤ their concatenation. For
two vectors x, y ∈ Rn, we say that x ≥ y and x > y if the
corresponding inequality holds in all scalar components, and that
x ̸≥ y if there is at least one scalar component i inwhich xi < yi. For
a setA, denote byA and intA its closure and interior, respectively.

Denote by id the identity function. A functionα : R+ → R+ is of
class PD if it is continuous and positive-definite (i.e., α(r) = 0 ⇔

r = 0); it is of class K if α ∈ PD and is strictly increasing; it is of
classK∞ if α ∈ K and is unbounded. A function γ : R+ → R+ is of
class L if it is continuous, strictly decreasing and limt→∞γ (t) = 0.
A function β : R+ ×R+ → R+ is of class KL if β(·, t) ∈ K for each
fixed t and β(r, ·) ∈ L for each fixed r > 0.

Motivated by Cai and Teel (2009), a hybrid system is modeled
as the combination of a continuous flow and discrete jumps

ẋ ∈ F (x, u), (x, u) ∈ C,

x+
∈ G(x, u), (x, u) ∈ D,

(1)

where x ∈ X ⊂ RN is the state, u ∈ U ⊂ RM is the input, C ⊂ X ×U
is the flow set, D ⊂ X × U is the jump set, F : C ⇒ RN is the flow
map (here by ⇒ we mean that F is a set-valued function, which
maps each element of C to a subset of RN ), and G : D ⇒ X is
the jump map. (In this model, the dynamics of (1) is continuous
in C \ D and discrete in D \ C. In C ∩ D, it can be either continuous
or discrete.) The hybrid system (1) is fully characterized by its data
H := (F ,G, C,D,X ,U).

Solutions of (1) are defined on hybrid time domains. A set
E ⊂ R+ × N is called a compact hybrid time domain if E =⋃J

j=0([tj, tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤

· · · ≤ tJ+1. It is a hybrid time domain if E∩([0, T ]×{0, 1, . . . , J}) is a
compact hybrid time domain for each (T , J) ∈ E. On a hybrid time
domain, there is a natural ordering of points, that is, (s, k) ⪯ (t, j)
if s + k ≤ t + j, and (s, k) ≺ (t, j) if s + k < t + j.

Functions defined on hybrid time domains are called hybrid
signals. A hybrid signal x : dom x → X (defined on the hybrid
time domain dom x) is a hybrid arc if x(·, j) is locally absolutely
continuous for each j. A hybrid signal u : dom u → U is a
hybrid input if u(·, j) is Lebesguemeasurable and locally essentially
bounded for each j. A hybrid arc x : dom x → X and a hybrid input
u : dom u → U form a solution pair (x, u) of (1) if

• dom x = dom u and (x(0, 0), u(0, 0)) ∈ C ∪ D, where x(t, j)
denotes the state of the hybrid system at hybrid time (t, j),
that is, at time t and after j jumps;

• for each j ∈ N, it holds that (x(t, j), u(t, j)) ∈ C for all t ∈ int Ij
and ẋ(t, j) ∈ F (x(t, j), u(t, j)) for almost all t ∈ Ij, where
Ij := {t : (t, j) ∈ dom x};

• for each (t, j) ∈ dom x such that (t, j + 1) ∈ dom x, it holds
that (x(t, j), u(t, j)) ∈ D and x(t, j + 1) ∈ G(x(t, j), u(t, j)).

With proper assumptions on the data H, one can establish local
existence of solutions, which are not necessarily unique (see, e.g.
Goebel et al., 2012 Proposition 2.10). A solution pair (x, u) is max-
imal if it cannot be extended, and complete if dom x is unbounded.
In this paper, we only consider maximal solution pairs.

Following Cai and Teel (2009), the essential supremum norm
of a hybrid signal u up to a hybrid time (t, j) is defined by

∥u∥(t,j) := max
{
esssup
(s,k)∈dom u,
(s,k)⪯(t,j)

|u(s, k)|, sup
(s,k)∈J(u),
(s,k)⪯(t,j)

|u(s, k)|
}
,

where J(x) := {(s, k) ∈ dom u : (s, k + 1) ∈ dom u} is the set of
jump times. In particular, the set of measure 0 of hybrid times that
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are ignored in computing the essential supremum norm cannot
contain any jump time.

For a locally Lipschitz function V : Rn
→ R, its Dini derivative

at x ∈ Rn in the direction y ∈ Rn is given by

V̇ (x; y) := lim
h↘0

V (x + hy) − V (x)
h

,

where lim denotes the limit superior.
In this paper, we study input-to-state stability (ISS) properties

of the hybrid system (1) using ISS Lyapunov functions. Let A ⊂ X
be a compact set.

Definition 1. Following Liberzon et al. (2014), we say that a set of
solution pairs S of (1) is pre-input-to-state stable (pre-ISS) w.r.t.A if
there exist β ∈ KL and γ ∈ K such that for all (x, u) ∈ S ,

|x(t, j)|A ≤ max{β(|x(0, 0)|A, t + j), γ (∥u∥(t,j))} (2)

for all (t, j) ∈ dom x. If S contains all solution pairs of (1), then we
say that (1) is pre-ISS w.r.t. A. In addition, if all solution pairs are
complete then we say that (1) is ISS w.r.t. A.

Remark 1. If (2) holds with γ ≡ 0, then the set S is globally
pre-asymptotically stable (pre-GAS), which implies that all complete
solution pairs in S converge toA. In addition, if all solution pairs in
S are complete then it is globally asymptotically stable (GAS) (Liber-
zon et al., 2014).

Remark 2. In Cai and Teel (2009), ISS of hybrid systems is defined
in terms of class KLL functions and without requiring all solution
pairs to be complete, which is equivalent to our definition of pre-
ISS with KL functions (Cai et al., 2007, Lemma 6.1).

Definition 2. For the hybrid system (1), a function V : X → R+

is a candidate ISS Lyapunov function w.r.t. A if it is locally Lipschitz
outside A,1 and

1. there exist functions ψ1, ψ2 ∈ K∞ such that

ψ1(|x|A) ≤ V (x) ≤ ψ2(|x|A) ∀ x ∈ X ; (3)

2. there exist a gain function χ ∈ K and a continuous function
ϕ : R+ → R with ϕ(0) = 0 such that for all (x, u) ∈ C with
x ̸∈ A,

V (x) ≥ χ (|u|) H⇒ V̇ (x; y) ≤ −ϕ(V (x)),∀y ∈ F (x, u); (4)

3. there is a function α ∈ K such that for all (x, u) ∈ D,2

V (x) ≥ χ (|u|) H⇒ V (y) ≤ α(V (x)),∀y ∈ G(x, u). (5)

In addition, if there exist two constants c, d ∈ R so that

ϕ(r) ≡ cr, α(r) ≡ e−dr (6)

in (4) and (5), then V is a candidate exponential ISS Lyapunov
function w.r.t. A with rate coefficients c, d.

The next lemmagives an alternative characterization of the can-
didate ISS Lyapunov function, which will be useful in formulating
the small-gain theorems in Section 3.

1 The Lipschitz condition here is used to ensure the existence of the Dini deriva-
tive in (4), and it can be relaxed to that the function V is locally Lipschitz on an open
set containing all x ̸∈ A such that (x, u) ∈ C for some u ∈ U .
2 There is no loss of generality in requiring α ∈ K instead of α ∈ PD, as a class

PD function can always bemajorized by a classK one.Meanwhile,α ∈ K is needed
in establishing the small-gain theorems below, as explained in footnote 4.

Lemma 1. For the hybrid system (1), a function V : X → R+ is
a candidate ISS Lyapunov function w.r.t. A if and only if it is locally
Lipschitz outside A, and

1. there exist functions ψ1, ψ2 ∈ K∞ such that (3) holds;
2. there exist a gain function χ̄ ∈ K and a continuous function
ϕ : R+ → R with ϕ(0) = 0 such that for all (x, u) ∈ C with
x ̸∈ A,

V (x) ≥ χ̄ (|u|) H⇒ V̇ (x; y) ≤ −ϕ(V (x)),∀y ∈ F (x, u); (7)

3. there is a function α ∈ K such that for all (x, u) ∈ D,

V (y) ≤ max{α(V (x)), χ̄ (|u|)} ∀ y ∈ G(x, u). (8)

Proof. The proof is along the lines of the proof of Dashkovskiy and
Mironchenko (2013b, Proposition 1) for ISS Lyapunov functions for
impulsive systems, and is omitted here. □

Exponential ISS Lyapunov functions can be characterized in a
similar way. Note that the functions χ in Definition 2 and χ̄ in
Lemma 1 are different in general.

The notion of candidate ISS Lyapunov function is defined to
characterize the effect of destabilizing (non-ISS) dynamics in a
hybrid system. In Definition 2, it is not required that ϕ ∈ PD or
α < id on (0,∞), that is, V does not necessarily decrease along
solutions of the hybrid system (1). If both of these conditions hold,
then V becomes an ISS Lyapunov function, and similar analysis to
the proof of Cai and Teel (2009, Proposition 2.7) can be used to
show that (1) is pre-ISS (note that ISS in Cai and Teel, 2009 means
pre-ISS in this paper; see Remark 2). Moreover, if only one of them
holds,3 we are still able to establish ISS for the sets of solution
pairs satisfying suitable conditions on the density of jumps (i.e., the
number of jumps per unit interval of continuous time).

Proposition 1. Let V be a candidate exponential ISS Lyapunov
function w.r.t. A for the hybrid system (1) with rate coefficients c, d.
For arbitrary constants η, λ, µ > 0, denote by S[η, λ, µ] the set of
solution pairs (x, u) so that

− (d − η)(j − k) − (c − λ)(t − s) ≤ µ (9)

for all (s, k) ⪯ (t, j) in the hybrid time domain dom x. Then S[η, λ, µ]

is pre-ISS w.r.t. A.

Proof. The proof is along the lines of the proof of Hespanha et
al. (2008, Theorem 1) for ISS of impulsive systems. Consider an
arbitrary solution pair (x, u) ∈ S[η, λ, µ]. Let the function χ be
as in (4) and (5). For all (t0, j0) ⪯ (t1, j1) in dom x, if

V (x(s, k)) ≥ χ (∥u∥(s,k)) (10)

for all (s, k) ∈ dom x such that (t0, j0) ⪯ (s, k) ⪯ (t1, j1), then
(4)–(6) imply that

V (x(t1, j1)) ≤ e−d(j1−j0)−c(t1−t0)V (x(t0, j0))

≤ e−η(j1−j0)−λ(t1−t0)+µV (x(t0, j0)),
(11)

where the last inequality follows from (9). Now consider an arbi-
trary (t, j) ∈ dom x. If (10) holds for all (s, k) ⪯ (t, j) in dom x, then
(11), together with (3), implies that

|x(t, j)|A ≤ β(|x(0, 0)|A, t + j) (12)

with the function β ∈ KL defined by

β(r, l) := ψ−1
1

(
e−lmin{η, λ}+µψ2(r)

)
. (13)

3 Namely, either the continuous or the discrete dynamics taken alone is ISS;
see Sontag (1989) and Jiang and Wang (2001) for the definitions of ISS for con-
tinuous and discrete dynamics, respectively.
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Otherwise, let

(t ′, j′) = argmax
(s,k)∈dom x,
(s,k)⪯(t,j)

{s + k : V (x(s, k)) ≤ χ (∥u∥(s,k))}.

Then (10) holds for all (s, k) ∈ dom x such that (t ′, j′) ≺ (s, k) ⪯

(t, j); thus (11) implies that

V (x(t, j)) ≤ e−η(j−j′)−λ(t−t ′)+µmax{1, e−d
}V (x(t ′, j′))

≤ eµmax{1, e−d
}χ (∥u∥(t ′,j′))

≤ eµmax{1, e−d
}χ (∥u∥(t,j)),

where the term max{1, e−d
} is needed if (t ′, j′ + 1) ∈ dom x with

V (x(t ′, j′)) < χ (∥u∥(t ′,j′)) and V (x(t ′, j′ + 1)) > χ (∥u∥(t ′,j′+1)), and
the second inequality is due to η, λ > 0. Hence from (3), it follows
that

|x(t, j)|A ≤ γ (∥u∥(t,j)) (14)

with the function γ ∈ K defined by

γ (r) := ψ−1
1

(
eµmax{1, e−d

}χ (r)
)
.

Combining (12) and (14), we obtain that (2) holds for all (x, u) ∈

S[η, λ, µ] and all (t, j) ∈ dom x. □

Remark 3. We observe that, if both c, d < 0, then the inequality
(9) cannot hold for any complete solution pair, since there is always
a large enough t or j such that ηj + λt > µ. However, it may still
hold for solution pairs defined on bounded hybrid time domains.
Moreover, if c > 0 > d, then the claim of Proposition 1 also
holds for η = 0. The proof remain unchanged except that the last
inequality in (11) now becomes

e−d(j1−j0)−c(t1−t0)V (x(t0, j0))

≤ e−λ(t1−t0)+µV (x(t0, j0))

≤ e(λ
2/c−λ)(t1−t0)−λ2(t1−t0)/c+µV (x(t0, j0))

≤ eλd(j1−j0)/c−λ2(t1−t0)/c+(1+λ/c)µV (x(t0, j0)),

where the first inequality follows from (9) with η = 0, and the last
one comes from the estimate

e(λ
2/c−λ)(t1−t0) = e(λ/c)(λ−c)(t1−t0) ≤ e(λ/c)(d(j1−j0)+µ),

and the definition (13) becomes

β(r, l) := ψ−1
1

(
e−lmin{−λd/c, λ2/c}+(1+λ/c)µψ2(r)

)
.

Analogously, if d > 0 > c , then the claim of Proposition 1 also
holds for λ = 0.

Remark 4. If c > 0 ≥ d, then we can divide both sides of (9)
by −(d − η) > 0 to transform it to an average dwell-time (ADT)
condition (Hespanha & Morse, 1999). Analogously, if d > 0 ≥ c ,
then we can divide both sides of (9) by −(c − λ) > 0 to transform
it to the reverse average dwell-time (RADT) condition (Hespanha
et al., 2008).

Given a candidate exponential ISS Lyapunov function with rate
coefficients c > 0 and/or d > 0, we can determine pre-ISS sets
of solution pairs via Proposition 1. In the following section, we
investigate the formulation of such functions for interconnections
of hybrid systems.

3. Interconnections and small-gain theorems

We are interested in the case where the hybrid system (1) is
decomposed as

ẋi ∈ Fi(x, u), i = 1, . . . , n, (x, u) ∈ C,

x+

i ∈ Gi(x, u), i = 1, . . . , n, (x, u) ∈ D,
(15)

where x := (x1, . . . , xn) ∈ X ⊂ RN with xi ∈ Xi ⊂ RNi is the state,
u ∈ U ⊂ RM is the common (external) input, C := C1×· · ·×Cn×Cu
with Ci ⊂ Xi and Cu ⊂ U is the flow set, D := D1 × · · · × Dn × Du
with Di ⊂ Xi and Du ⊂ U is the jump set, F := (F1, . . . , Fn)
with Fi : C ⇒ RNi is the flow map, and G := (G1, . . . ,Gn) with
Gi : D ⇒ Xi is the jump map. The dynamics of xi is called the ith
subsystem of (15) and is denoted by Σi. The interconnection (15)
is denoted by Σ . For each Σi, the states of other subsystems are
treated as (internal) inputs.

Many systems with hybrid behaviors can be naturally trans-
formed into the form of (15). As demonstrated in Liberzon et al.
(2014, Section V), a networked control system can be treated as an
interconnection of continuous states and hybrid errors due to the
network protocol, and a quantized control system can be modeled
as an interconnection of continuous states and a discrete quantizer.
Moreover, the ‘‘natural decomposition’’ of a hybrid system (1) as
an interconnection of its continuous and discrete parts is often of
interest as well.

Remark 5. In (15), all the subsystems, as well as the intercon-
nection, share the same flow set C and the same jump set D,
which justifies the view of (15) as an interconnection of n hybrid
subsystems.

Remark 6. Based on Lemma 1 and standard considerations clarify-
ing the influence of particular subsystems (see, e.g. Mironchenko,
2012, Lemma 2.4.1), one can show that a function Vi : Xi → R+

is a candidate ISS Lyapunov function w.r.t. a set Ai ⊂ Xi for the
subsystemΣi iff Vi is locally Lipschitz outside Ai, and

1. there exist ψi1, ψi2 ∈ K∞ such that

ψi1(|xi|Ai
) ≤ Vi(xi) ≤ ψi2(|xi|Ai

) ∀ xi ∈ Xi; (16)

2. there exist internal gains χij ∈ K for j ̸= i and χii ≡ 0, an
external gain χi ∈ K, and a continuous function ϕi : R+ → R
with ϕi(0) = 0 such that for all (x, u) ∈ C with xi ̸∈ Ai,

Vi(xi) ≥ max
{ n
max
j=1

χij(Vj(xj)), χi(|u|)
}

(17)

implies that

V̇i(xi; yi) ≤ −ϕi(Vi(xi)) ∀ yi ∈ Fi(x, u); (18)

3. there is a function αi ∈ K such that for all (x, u) ∈ D,

Vi(yi) ≤ max
{
αi(Vi(xi)),

n
max
j=1

χij(Vj(xj)), χi(|u|)
}

∀ yi ∈ Gi(x, u).

(19)

In addition, Vi is a candidate exponential ISS Lyapunov function
w.r.t. Ai with rate coefficients ci, di iff

ϕi(r) ≡ cir, αi(r) ≡ e−di r. (20)

Suppose that for each subsystem Σi, a candidate ISS Lyapunov
function Vi is given (for discussions regarding the existence of
candidate exponential ISS Lyapunov functions for hybrid systems,
see Cai and Teel, 2009, Section 2, Cai et al., 2007, Theorem 8.1,
and Yang, Liberzon, andMironchenko, 2016, Remark 3). The ques-
tion of whether the interconnection (15) is pre-ISS depends on
properties of the gain operator Γ : Rn

+
→ Rn

+
defined by

Γ (r1, . . . , rn) :=

( n
max
j=1

χ1j(rj), . . .,
n

max
j=1

χnj(rj)
)
. (21)

To construct a candidate ISS Lyapunov function for the intercon-
nection (15), we adopt the notion of Ω-path (Dashkovskiy et al.,
2010).
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Definition 3. Given a function Γ : Rn
+

→ Rn
+
, a function σ :=

(σ1, . . . , σn) with σi ∈ K∞, i = 1, . . . , n is called an Ω-path w.r.t.
Γ if

1. all σ−1
i are locally Lipschitz on (0,∞);

2. for each compact set P ⊂ (0,∞), there exist finite constants
K2 > K1 > 0 such that for all i,

0 < K1 ≤ (σ−1
i )′ ≤ K2

for all points of differentiability of σ−1
i in P;

3. the function Γ is a contraction on σ (·), that is,

Γ (σ (r)) < σ (r) ∀ r > 0. (22)

Remark 7. In this paper, we consider primarilyΩ-paths w.r.t. the
gain operator Γ defined by (21), due to the terms maxnj=1χij(Vj(xj))
in (17) and (19) when formulating candidate ISS Lyapunov func-
tions for subsystems (which will be clear from the statement
and proof of Theorem 2). However, there are other equivalent
formulations of candidate ISS Lyapunov functions for subsystems,
which will naturally lead to gain operators in different forms (see,
e.g., Dashkovskiy et al., 2007, 2010). In particular, if (17) and (19)
were formulated using

∑n
j=1χij(Vj(xj)) instead of maxnj=1χij(Vj(xj)),

we would arrive at the alternative gain operator Γ̄ : Rn
+

→ Rn
+

defined by

Γ̄ (r1, . . . , rn) :=

( n∑
j=1

χ1j(rj), . . . ,
n∑

j=1

χnj(rj)
)
.

Compared with (21), we see that Γ (v) ≤ Γ̄ (v) for all v ̸= 0;
thus every Ω-path w.r.t. Γ̄ is an Ω-path w.r.t. Γ . This alternative
construction will be useful in establishing Theorem 4 for the case
of linear internal gains below.

We say that a function Γ : Rn
+

→ Rn
+
satisfies the small-gain

condition if

Γ (v) ̸≥ v ∀ v ∈ Rn
+

\ {0}, (23)

or equivalently,

Γ (v) ≥ v ⇐⇒ v = 0.

As reported in Karafyllis and Jiang (2011, Proposition 2.7 and
Remark 2.8) (see also Dashkovskiy et al., 2010, Theorem5.2), if (23)
holds for the gain operator Γ defined by (21), then there exists an
Ω-path σ w.r.t. Γ . Furthermore, σ can be made smooth on (0,∞)
via standardmollification arguments (Grüne, 2002, Appendix B.2).
In this case, we construct a candidate ISS Lyapunov function for the
interconnection (15) based on those for the subsystems and the
correspondingΩ-path.

Theorem 2. Consider the interconnection (15). Suppose that each
subsystem Σi admits a candidate ISS Lyapunov function Vi w.r.t.
a set Ai with the internal gains χij as in (17), and the small-gain
condition (23) holds for the gain operator Γ defined by (21). Let
σ = (σ1, . . . , σn) be anΩ-path w.r.t. Γ which is smooth on (0,∞).
Then the function V : X → R+ defined by

V (x) :=
n

max
i=1

σ−1
i (Vi(xi)) (24)

is a candidate ISS Lyapunov function w.r.t. the set A := A1×· · ·×An
for (15).

Proof. As each σi ∈ K∞ is smooth on (0,∞) and each Vi is locally
Lipschitz outsideAi, it follows that each σ−1

i ◦Vi is locally Lipschitz
outsideAi. Hence the function V defined by (24) is locally Lipschitz
outsideA. In the following, we prove that it satisfies the conditions
of Lemma 1, by combining and extending the arguments in the

proofs of Dashkovskiy et al. (2010, Theorem 5.3) and Liberzon et
al. (2014, Theorem III.1).

First, consider the functions ψ1, ψ2 defined by

ψ1(r) :=
n

min
i=1

σ−1
i (ψi1(r/

√
n)), r ∈ R+,

ψ2(r) :=
n

max
i=1

σ−1
i (ψi2(r)), r ∈ R+

with ψi1, ψi2 as in (16). Since σi, ψi1, ψi2 ∈ K∞, we have that
ψ1, ψ2 ∈ K∞. Thus (16) implies (3). In particular,

ψ1(|x|A) ≤
n

min
i=1

σ−1
i

(
ψi1

( n
max
j=1

|xj|Aj

))
≤

n
max
j=1

σ−1
j (ψj1(|xj|Aj

)) ≤
n

max
j=1

σ−1
j (Vj(xj)) = V (x).

Second, consider the gain function χ̄ defined by

χ̄ (r) :=
n

max
i=1

σ−1
i (χi(r)), r ∈ R+ (25)

with χi as in (17), and the function ϕ defined by

ϕ(r) :=
n

min
i=1

(σ−1
i )′(σi(r))ϕi(σi(r)), r ∈ R+ (26)

with ϕi as in (18). As all σi ∈ K∞ are smooth on (0,∞), χi ∈ K, and
ϕi are continuous with ϕi(0) = 0, it follows that χ̄ ∈ K and ϕ is
continuouswith ϕ(0) = 0. Consider the setsMi ⊂ X , i = 1, . . . , n
defined by

Mi :=

{
x ∈ X : σ−1

i (Vi(xi)) > max
j̸=i

σ−1
j (Vj(xj))

}
.

The fact that all Vi and σ−1
i are continuous implies that all Mi are

open in X ,Mi ∩Mj = ∅ for all j ̸= i, and X =
⋃n

i=1Mi, whereMi
is the closure ofMi in X . Thus for each (x, u) ∈ C with x ̸∈ A, there
are two possibilities:

(1) There is a unique i ∈ {1, . . . , n} s.t. x ∈ Mi. Then

V (x) = σ−1
i (Vi(xi)), (27)

and xi ̸∈ Ai due to x ̸∈ A. Hence

Vi(xi) = σi(V (x)) ≥
n

max
j=1

χij(σj(V (x))) ≥
n

max
j=1

χij(Vj(xj)), (28)

where the first inequality follows from (22), and the second
one follows from (24). Also, if V (x) ≥ χ̄ (|u|), then V (x) ≥

maxnj=1σ
−1
j (χj(|u|)) due to (25); thus

Vi(xi) = σi(V (x)) ≥ σi

( n
max
j=1

σ−1
j (χj(|u|))

)
≥ σi(σ−1

i (χi(|u|))) = χi(|u|). (29)

Hence (17), and therefore (18), holds. Given an arbitrary
y = (y1, . . . , yn) ∈ F (x, u), as Mi is open, it follows that
x + hy ∈ Mi for all small enough h > 0; thus V (x + hy) =

σ−1
i (Vi(xi + hyi)). Hence

V̇ (x; y) = lim
h↘0

V (x + hy) − V (x)
h

= lim
h↘0

σ−1
i (Vi(xi + hyi)) − σ−1

i (Vi(xi))
h

= (σ−1
i )′(Vi(xi))lim

h↘0

Vi(xi + hyi) − Vi(xi)
h

= (σ−1
i )′(Vi(xi))V̇i(xi; yi)

≤ −(σ−1
i )′(σi(V (x)))ϕi(σi(V (x)))

≤ −ϕ(V (x)),
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where the first inequality follows from (18) and (27), and the
last one follows from (26).

(2) There is a subset I(x) ⊂ {1, . . . , n} of indices with the
cardinality |I(x)| ≥ 2 such that x ∈

⋂
i∈I(x)∂Mi, where

∂Mi denotes the boundary of Mi in X and satisfies that
∂Mi = Mi \ Mi as Mi is open in X . Then (27) and xi ̸∈ Ai
hold for all i ∈ I(x). Following similar arguments to those
in the previous case, if V (x) ≥ χ̄ (|u|), then (28) and (29),
and therefore (18), hold for all i ∈ I(x). Given an arbitrary
y = (y1, . . . , yn) ∈ F (x, u), as all Mi are open, it follows that
x + hy ∈

(⋂
i∈I(x)∂Mi

)
∩

(⋂
i∈I(x)Mi

)
for all small enough

h > 0; thus V (x + hy) = maxi∈I(x)σ−1
i (Vi(xi + hyi)). Hence

V̇ (x; y) = lim
h↘0

V (x + hy) − V (x)
h

= lim
h↘0

1
h

(
max
i∈I(x)

σ−1
i (Vi(xi + hyi)) − V (x)

)
= lim

h↘0
max
i∈I(x)

σ−1
i (Vi(xi + hyi)) − σ−1

i (Vi(xi))
h

= max
i∈I(x)

lim
h↘0

σ−1
i (Vi(xi + hyi)) − σ−1

i (Vi(xi))
h

= max
i∈I(x)

(σ−1
i )′(Vi(xi))V̇i(xi; yi)

≤ max
i∈I(x)

−(σ−1
i )′(σi(V (x)))ϕi(σi(V (x)))

≤ −ϕ(V (x)),

where the fourth equality follows partially from the con-
tinuity of all Vi and σ−1

i (cf. the proof of Dashkovskiy and
Mironchenko, 2013a, Theorem 4); the first inequality follows
from (18) and (27) for i ∈ I(x), and the last one follows
from (26).

Hence (7) holds for each (x, u) ∈ C.
Last, consider the function α : R+ → R+ defined by

α(r) :=
n

max
i,j=1

{
σ−1
i (αi(σi(r))), σ−1

i (χij(σj(r)))
}

(30)

with αi and χij as in (19). As all σi ∈ K∞, χij ∈ K for j ̸= i, χii ≡ 0,
and αi ∈ K, it follows that α ∈ K. Consider an arbitrary (x, u) ∈ D.
From (24) and (30), it follows that4

α(V (x)) ≥
n

max
i,j=1

{
σ−1
i (αi(Vi(xi))), σ−1

i (χij(Vj(xj)))
}
.

Also, (25) implies that χ̄ (|u|) = maxni=1σ
−1
i (χi(|u|)). Combining

the previous two equations with (19), we obtain that for all y =

(y1, . . . , yn) ∈ G(x, u),

V (y) = maxni=1 σ
−1
i (Vi(yi)) ≤ max{α(V (x)), χ̄ (|u|)}.

Hence (8) holds for each (x, u) ∈ D.
Therefore, from Lemma 1, it follows that V is a candidate ISS

Lyapunov function w.r.t. A for (15). □

Theorem 2 is a powerful tool in establishing ISS of interconnec-
tions of hybrid subsystems. In the following, we inspect some of its
implications.

If each subsystem of (15) admits an ISS Lyapunov function, then
Theorem 2 implies the following result, which generalizes (Liber-
zon et al., 2014, Theorem III.1) and (Dashkovskiy & Kosmykov,
2013, Theorem 3.6).

4 Note that, if αi is of class PD but not increasing, then it is possible that
σi(V (x)) > Vi(xi) but αi(σi(V (x))) < αi(Vi(xi)) for some i; thus the inequality
following this footnote may not hold. A similar issue arises in the proof of Liberzon
et al. (2014, Theorem III.1)where itwas overlooked, but could be fixedbymajorizing
the class PD functions λ1, λ2 with class K ones.

Corollary 3. Consider the interconnection (15). Suppose that each
subsystem Σi admits an ISS Lyapunov function Vi w.r.t. a set Ai
(i.e., ϕi ∈ PD and αi < id on (0,∞) in (18) and (19), respectively)
with the internal gainsχij as in (17), and the small-gain condition (23)
holds for the gain operator Γ defined by (21). Then (15) is pre-ISS
w.r.t. A.

Proof. Following Theorem 2, the function V defined by (24) is
a candidate ISS Lyapunov function w.r.t. A for (15). First, as all
σi ∈ K∞ are smooth on (0,∞) and ϕi ∈ PD, the function ϕ defined
by (26) is of classPD. Second, (22) implies that all σ−1

i ◦χij◦σj < id
on (0,∞), and as all σi ∈ K∞ and αi < id on (0,∞), it follows
that all σ−1

i ◦ αi ◦ σi < id on (0,∞); thus the function α defined
by (30) satisfies that α < id on (0,∞). Therefore, V is an ISS
Lyapunov function, and (15) is pre-ISS w.r.t. A following similar
analysis to the proof of Cai and Teel (2009, Proposition 2.7); see
also Remark 2. □

As the assumptions in Corollary 3 are quite restrictive, we now
investigate the case where, for some subsystems Σi, either ϕi ̸∈

PD or αi(r) ≥ r for some r > 0 (cf. footnote 3). In this case, we
cannot use Corollary 3 to prove pre-ISS for the interconnection (15)
directly, but rather invoke Proposition 1 to establish pre-ISS for
the set of solution pairs that jump neither too fast nor too slowly.
However, in general, Theorem 2 cannot provide the candidate
exponential ISS Lyapunov function needed in Proposition 1. In the
next theorem, we construct such a function under the assump-
tion that each subsystem Σi admits a candidate exponential ISS
Lyapunov function Vi, and the internal gains χij in (17) and (19)
are all linear. With a slight abuse of notation, we let all χij ≥ 0
be scalars, and replace the terms χij(Vj(xj)) in (17) and (19) with
χijVj(xj). Consider the gain matrix

ΓM := (χij)ni,j=1 ∈ Rn×n. (31)

Denote by ρ(ΓM ) its spectral radius (i.e., the largest absolute value
of its eigenvalues). Due to Dashkovskiy et al. (2007, p. 110), if

ρ(ΓM ) < 1, (32)

then the small-gain condition (23) holds for the function Γ̄ :

Rn
+

→ Rn
+

defined by Γ̄ (v) := ΓMv, which is the alternative
gain operator in Remark 7. Consequently, there exists a linear Ω-
path w.r.t. Γ̄ (Dashkovskiy, Rüffer, &Wirth, 2006, p. 78); for more
results onΩ-paths, the reader may consult Rüffer (2010).

Theorem 4. Consider the interconnection (15). Suppose that each
subsystem Σi admits a candidate exponential ISS Lyapunov function
Vi w.r.t. a set Ai with rate coefficients ci, di. Assume also that the
internal gains χij in (17) and (19) are all linear, and (32) holds for
the gain matrix ΓM defined by (31). Let σ : r ↦→ (s1r, . . . , snr)
with scalars s1, . . . , sn be a linear Ω-path w.r.t. the alternative gain
operator Γ̄ . Then V : X → R+ defined by

V (x) :=
n

max
i=1

1
si
Vi(xi) (33)

is a candidate exponential ISS Lyapunov function w.r.t. A = A1 ×

· · · × An for (15) with rate coefficients

c :=
n

min
i=1

ci, d := min
i,j:j̸=i

{
di, − ln

(
sj
si
χij

)}
. (34)

Proof. In view of Remark 7, σ is also an Ω-path w.r.t. the gain
operator defined by (21) (with all χij(rj) replaced by χijrj). Follow-
ing Theorem 2, the function V defined by (33) is a candidate ISS
Lyapunov function w.r.t.A for (15). Substituting (20) into (26) and
(30), we obtain

ϕ(r) ≡
n

min
i=1

cir, α(r) ≡
n

max
i,j=1

{
e−di ,

sj
si
χij

}
r.
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Hence V is a candidate exponential ISS Lyapunov functionwith the
rate coefficients c, d defined by (34). □

Remark 8. For themore general casewith the internal gainsχij be-
ing power functions instead of linear ones, a candidate exponential
ISS Lyapunov function for (15) can be constructed in a similar way;
cf. Dashkovskiy and Mironchenko (2013b, Theorem 9).

The following remark provides a simpler bound for the rate
coefficient d in some important cases.

Remark 9. If the gain matrix ΓM defined by (31) is irreducible,
then ρ(ΓM ) is the Perron–Frobenius eigenvalue of ΓM , and the
corresponding eigenvector s̄ = (s1, . . . , sn) satisfies s̄ > 0 (Perron–
Frobenius theorem Berman & Plemmons, 1994, Theorem 2.1.3).
Hence, if (32) holds, then ΓM s̄ = ρ(ΓM )s̄ < s̄; thus σ : r ↦→ s̄r is a
linear Ω-path as in Theorem 4. Moreover, for all i ∈ {1, . . . , n}, it
holds that

n
max
j=1

sj
si
χij ≤

1
si

n∑
j=1

sjχij = ρ(ΓM );

thus the rate coefficient d defined by (34) satisfies that d ≥

min{minn
i=1di, − ln(ρ(ΓM ))}.

Having applied Theorem 4, we can establish pre-ISS for the
set of solution pairs that jump neither too fast nor too slowly via
Proposition 1. However, if there are subsystems Σk,Σl for which
the rate coefficients ck, dl < 0, then c, d defined by (34) are
negative as well, and Proposition 1 cannot be applied to complete
solution pairs (see Remark 3). In the following section, we handle
such cases via the approach of modifying ISS Lyapunov functions
for subsystems using ADT and RADT clocks from Liberzon et al.
(2014).

4. Modifying ISS Lyapunov functions for subsystems

Suppose that each subsystem Σi admits a candidate exponen-
tial ISS Lyapunov functionwith rate coefficients ci, di, and there are
Σk,Σl such that ck, dl < 0 < cl, dk. Our goal is to construct new
candidate exponential ISS Lyapunov functions with rate coeffi-
cients c̃i, d̃i so that either all c̃i > 0 (i.e., all continuous dynamics are
ISS) or all d̃i > 0 (i.e., all discrete dynamics are ISS). To accomplish
this, we first derive suitable conditions on the density of jumps,
then augment the corresponding subsystems with auxiliary clocks
to incorporate such conditions, and finally modify the correspond-
ing candidate exponential ISS Lyapunov functions.

4.1. Making discrete dynamics ISS

In the following, we construct candidate exponential ISS Lya-
punov functions so that all rate coefficients d̃i > 0.

We say that a solution pair (x, u) of (15) admits an average
dwell-time (ADT) (Hespanha & Morse, 1999) δ > 0 if there is an
integer N0 ≥ 1 so that all (s, k) ⪯ (t, j) in dom x satisfy5

j − k ≤ δ(t − s) + N0. (35)

Following Liberzon et al. (2014, Section IV.A), a hybrid timedomain
satisfies (35) iff it is the domain of an ADT clock τ given by

τ̇ ∈ [0, δ], τ ∈ [0,N0],

τ+
= τ − 1, τi ∈ [1,N0].

(36)

5 If (35) holds with N0 = 1, then the ADT condition becomes the dwell-time
condition (Morse, 1996); if it holds with N0 < 1, then jumps are not allowed at all,
which can be seen directly from (35) by taking t − s small enough.

Remark 10. This notion of ADT clock for hybrid systems first
appeared in Cai et al. (2008, Appendix), where it was defined by{
τ̇ ∈ ηδ(τ ) for τ ∈ C := [0,N0]

τ+
= τ − 1 for τ ∈ D := [1,N0]

(37)

with ηδ(τ ) :=

{
δ for τ ∈ [0,N0)
[0, δ] for τ = N0

(see also Mitra, Liberzon, and Lynch, 2008 for a related earlier con-
struction). The ADT clocks defined by (36) and (37) are equivalent
in the following sense. First, as τ ∈ [0, δ], an ADT clock defined
by (37) always satisfies (36). Second, given an ADT clock defined
by (36) that increases on [0,N0) with a speed τ̇ < δ, there always
exists an ADT clock defined by (37) that increases on [0,N0) with
τ̇ = δ but stays longer at N0 so that their hybrid time domains are
the same.

Denote by Id := {i : di < 0} the index set of subsystems with
non-ISS discrete dynamics. Let zi := xi ∈ Xi =: Zi for i ̸∈ Id
and zi := (xi, τi) ∈ Xi × [0,N0i] =: Zi with an integer N0i ≥ 1
for i ∈ Id. Consider the augmented interconnection Σ̃ with state
z := (z1, . . . , zn) ∈ Z1 × · · · × Zn =: Z and input u ∈ U modeled
by

żi ∈ F̃i(z, u), i = 1, . . . , n, (z, u) ∈ C̃,

z+

i ∈ G̃i(z, u), i = 1, . . . , n, (z, u) ∈ D̃,
(38)

where C̃ := C̃1 × · · · × C̃n × Cu with C̃i := Ci for i ̸∈ Id and
C̃i := Ci ×[0,N0i] for i ∈ Id, D̃ := D̃1 ×· · ·× D̃n ×Du with D̃i := Di
for i ̸∈ Id and D̃i := Di × [1,N0i] for i ∈ Id, F̃ := (F̃1, . . . , F̃n) with
F̃i(z, u) := Fi(x, u) for i ̸∈ Id and F̃i(z, u) := Fi(x, u) × [0, δi] for
i ∈ Id, and G̃ := (G̃1, . . . , G̃n) with G̃i(z, u) := Gi(x, u) for i ̸∈ Id and
G̃i(z, u) := Gi(x, u)×{τi −1} for i ∈ Id. Then (38) is a hybrid system
with the data H̃ := (F̃ , G̃, C̃, D̃,Z,U). The dynamics of zi is called
the ith augmented subsystem of (38) and is denoted by Σ̃i.

In the following proposition, we apply the modification tech-
nique from Liberzon et al. (2014, Proposition IV.1) to construct a
candidate exponential ISS Lyapunov function for each augmented
subsystem Σ̃i based on the candidate exponential ISS Lyapunov
function for the subsystem Σi of the original interconnection (15)
and the ADT clock τi.

Proposition 5. Consider a subsystemΣi of the original interconnec-
tion (15). Suppose that it admits a candidate exponential ISS Lyapunov
function Vi w.r.t. a set Ai with rate coefficients ci, di. For a scalar
Li ≥ 0, the function Wi : Zi → R+ defined by

Wi(zi) :=

{
Vi(xi) if i ̸∈ Id;
eLiτiVi(xi) if i ∈ Id

is a candidate exponential ISS Lyapunov function w.r.t.

Ãi :=

{
Ai if i ̸∈ Id;
Ai × [0,N0i] if i ∈ Id

for the subsystem Σ̃i of (38) with rate coefficients{
c̃i := ci, d̃i := di if i ̸∈ Id;
c̃i := ci − Liδi, d̃i := di + Li if i ∈ Id.

(39)

More specifically,

1. there exist functions ψ̃i1, ψ̃i2 ∈ K∞ such that

ψ̃i1(|zi|Ãi
) ≤ Wi(zi) ≤ ψ̃i2(|zi|Ãi

) ∀ zi ∈ Zi; (40)

2. there exist internal gains χ̃ij ∈ K, j ̸= i defined by

χ̃ij(r) :=

{
χij(r) if i ̸∈ Id;
eLiN0iχij(r) if i ∈ Id

(41)
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with χij as in (17) and χ̃ii ≡ 0, and an external gain χ̃i ∈ K
such that for all (z, u) ∈ C̃ with zi ̸∈ Ãi,

Wi(zi) ≥ max
{ n
max
j=1

χ̃ij(Wj(zj)), χ̃i(|u|)
}

(42)

implies that

Ẇi(zi; yi) ≤ −c̃iWi(zi) ∀ yi ∈ F̃i(z, u); (43)

3. for all (z, u) ∈ D̃,

Wi(yi) ≤ max
{
e−d̃iWi(zi),

n
max
j=1

χ̃ij(Wj(zj)), χ̃i(|u|)
}

∀ yi ∈ G̃i(z, u).

(44)

Proof. If i ̸∈ Id, then the claim follows directly from the assumption
that Vi is a candidate exponential ISS Lyapunov function with rate
coefficients ci, di. Therefore, we only consider the case i ∈ Id in the
following proof. As Vi is locally Lipschitz outside Ai and the map
τi ↦→ eLiτi is smooth, Wi is also locally Lipschitz outside Ãi.

First, consider the functions ψ̃i1, ψ̃i2 ∈ K∞ defined by

ψ̃i1(r) := ψi1(r), ψ̃i2(r) := eLiN0iψi2(r)

with ψi1, ψi2 as in (16). Then (40) follows from (16).
Second, consider the function χ̃i ∈ K defined by

χ̃i(r) := eLiN0iχi(r) (45)

with χi as in (17). For each (z, u) ∈ C̃ with zi ̸∈ Ãi, if (42) holds,
then

Vi(xi) = e−LiτiWi(zi) ≥ e−LiN0i
n

max
j=1

χ̃ij(Wj(zj))

=
n

max
j=1

χij(Wj(zj)) ≥
n

max
j=1

χij(Vj(xj)),

and Vi(xi) = e−LiτiWi(zi) ≥ e−LiN0i χ̃i(|u|) = χi(|u|). Hence (17), and
therefore (18), holds. For all yi ∈ F̃i(z, u), let yi = (yi1, yi2) be such
that yi1 ∈ Fi(x, u) and yi2 ∈ [0, δi]. Following (18), (20), and (39),

Ẇi(zi; yi) = eLiτi V̇i(xi; yi1) + LieLiτiVi(xi) yi2
≤ −cieLiτiVi(xi) + LiδieLiτiVi(xi) = −c̃iWi(zi).

Finally, consider an arbitrary (z, u) ∈ D̃. For all yi ∈ G̃i(z, u), let
yi = (yi1, yi2) be such that yi1 ∈ Gi(x, u) and yi2 = τi −1. From (39),
it follows that

e−d̃iWi(zi) = e−di−Li+LiτiVi(xi) = eLiyi2−diVi(xi),

and from (41) and (45), it follows that χ̃ij(Wj(zj)) = eLiN0iχij(Wj(zj))
≥ eLiyi2χij(Vj(xj)) for all j and χ̃i(|u|) = eLiN0iχi(|u|) ≥ eLiyi2χi(|u|),
respectively. Substituting the previous equations into (19)
gives (44).

Therefore,Wi is a candidate exponential ISS Lyapunov function
w.r.t. Ãi for the augmented subsystem Σ̃i of (38) with the rate
coefficients c̃i, d̃i defined by (39). □

Proposition 5 shows that it is possible to make all d̃i > 0 by
choosing large enough scalars Li, i ∈ Id, at the cost of decreasing
the convergence rates of continuous dynamics (as c̃i = ci − Liδi
in (39) above), and increasing the internal gains (as χ̃ij(r) =

eLiN0iχij(r) in (41) above). Consequently, for large enough integers
N0i, it is possible that the small-gain condition (23) holds for the
gain operator Γ defined by (21), but not for Γ̃ : Rn

+
→ Rn

+
defined

by6

Γ̃ (r1, . . . , rn) :=

( n
max
j=1

χ̃1j(rj), . . .,
n

max
j=1

χ̃nj(rj)
)
.

6 However, if all the original internal gains χij are linear, and the gain matrix ΓM
defined by (31) is a triangular matrix (i.e., if (15) is a cascade interconnection), then
(23) always holds for Γ̃ , as all the cyclic gains equal zero.

To see the consequence of this fact clearer, consider for simplicity
an interconnection of two subsystemsΣ1,Σ2, and their candidate
exponential ISS Lyapunov functions V1, V2 with rate coefficients
c1, d2 > 0 > d1, c2 and linear internal gains χ12, χ21 > 0. After
we augment Σ1 with an ADT clock δ1 ∈ [0,N01], the matrix Γ̃M is
given by

Γ̃M =

[
0 χ̃12
χ̃21 0

]
=

[
0 eL1N01χ12
χ21 0

]
,

and ρ(Γ̃M ) < 1 holds iffχ12χ21 < e−L1N01 . In order tomake the rate
coefficient d̃1 = d1 + L1 > 0, we need to choose a scalar L1 > −d1.
Also, the integer N01 ≥ 1. Hence we cannot apply Theorem 4 to
the augmented interconnection unless the original internal gains
χ12, χ21 satisfy χ12χ21 ≤ ed1 < 1.

The observation above hints that it may be better to make all
c̃i > 0 (instead ofmaking all d̃i > 0 as in this subsection). See Yang
et al. (2016) for a case-by-case study comparing the two schemes.

4.2. Making continuous dynamics ISS

In the following, we construct candidate exponential ISS Lya-
punov functions so that all rate coefficients c̃i > 0.

We say that a solution pair (x, u) of (15) admits a reverse
average dwell-time (RADT) (Hespanha et al., 2008) δ∗ > 0 if there
is an integer N∗

0 ≥ 1 so that all (s, k) ⪯ (t, j) in dom x satisfy

t − s ≤ δ∗(j − k) + N∗

0 δ
∗. (46)

Following Cai et al. (2008, Appendix) and Liberzon et al. (2014,
Section IV.B), a hybrid time domain satisfies (46) iff it is the domain
of an RADT clock τ defined by

τ̇ = 1, τ ∈ [0,N∗

0 δ
∗
],

τ+
= max{0, τ − δ∗

}, τ ∈ [0,N∗

0 δ
∗
].

Denote by Ic := {i : ci < 0} the index set of subsystems with
non-ISS continuous dynamics. Let zi := xi ∈ Xi =: Zi for i ̸∈ Ic
and zi := (xi, τi) ∈ Xi × [0,N∗

0iδ
∗

i ] =: Zi with an integer N0i ≥ 1
for i ∈ Ic . Consider the augmented interconnection Σ̃ with state
z := (z1, . . . , zn) ∈ Z1 × · · · × Zn =: Z and input u ∈ U modeled
by (38), where C̃ := C̃1 × · · · × C̃n × Cu with C̃i = Ci for i ̸∈ Ic and
C̃i = Ci ×[0,N∗

0iδ
∗

i ] for i ∈ Ic , D̃ := D̃1 ×· · ·× D̃n ×Du with D̃i = Di

for i ̸∈ Ic and D̃i = Di × [0,N∗

0iδ
∗

i ] for i ∈ Ic , F̃ := (F̃1, . . . , F̃n)
with F̃i(z, u) := Fi(x, u) for i ̸∈ Ic and F̃i(z, u) := Fi(x, u) × {1} for
i ∈ Ic , and G̃ := (G̃1, . . . , G̃n) with G̃i(z, u) := Gi(x, u) for i ̸∈ Ic and
G̃i(z, u) := Gi(x, u) × {max{0, τi − δ∗

i }} for i ∈ Ic . Then (38) is a
hybrid systemwith the data H̃ := (F̃ , G̃, C̃, D̃,Z,U). The dynamics
of zi is called the ith augmented subsystem of (38) and is denoted
by Σ̃i.

In the following proposition, we apply the modification tech-
nique from Liberzon et al. (2014, Proposition IV.4) to construct a
candidate exponential ISS Lyapunov functions for each augmented
subsystem Σ̃i based on the candidate exponential ISS Lyapunov
function for the subsystem Σi of the original interconnection (15)
and the RADT clock τi.

Proposition 6. Consider a subsystemΣi of the original interconnec-
tion (15). Suppose that it admits a candidate exponential ISS Lyapunov
function Vi w.r.t. a set Ai with rate coefficients ci, di. For a scalar
Li ≥ 0, the function Wi : Zi → R+ defined by

Wi(zi) :=

{
Vi(xi) if i ̸∈ Ic;
e−LiτiVi(xi) if i ∈ Ic

(47)

is a candidate exponential ISS Lyapunov function w.r.t.

Ãi :=

{
Ai if i ̸∈ Ic;
Ai × [0,N∗

0iδ
∗

i ] if i ∈ Ic
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for the augmented subsystem Σ̃i of (38) with rate coefficients{
c̃i := ci, d̃i := di if i ̸∈ Ic;
c̃i := ci + Li, d̃i := di − Liδ∗

i if i ∈ Ic .
(48)

More specifically,

1. there exist functions ψ̃i1, ψ̃i2 ∈ K∞ so that (40) holds;
2. there exist internal gains χ̃ij ∈ K, j ̸= i defined by7

χ̃ij(r) :=

{
χij(r) for j ̸∈ Ic;
χij(e

LjN∗
0jδ

∗
j r) for j ∈ Ic

(49)

with χij as in (17) and χ̃ii ≡ 0, and an external gain χ̃i ∈ K
such that for all (z, u) ∈ C̃ with zi ̸∈ Ãi, (42) implies (43);

3. for all (z, u) ∈ D̃, (44) holds.

Proof. If i ̸∈ Ic , then the claim follows directly from the assumption
that Vi is a candidate exponential ISS Lyapunov function with rate
coefficients ci, di. Therefore, we only consider the case i ∈ Ic in the
following proof. As Vi is locally Lipschitz outside Ai and the map
τi ↦→ e−Liτi is smooth,Wi is locally Lipschitz outside Ãi.

First, consider the functions ψ̃i1, ψ̃i2 ∈ K∞ defined by

ψ̃i1(r) := e−LiN∗
0iδ

∗
i ψi1(r), ψ̃i2(r) := ψi2(r)

with ψi1, ψi2 as in (16). Then (40) follows from (16).
Second, consider the function χ̃i ∈ K defined by

χ̃i(r) := χi(r) (50)

with χi as in (17). For each (z, u) ∈ C̃ with zi ̸∈ Ãi, if (42) holds,
then

Vi(xi) = eLiτiWi(zi) ≥ Wi(zi) ≥
n

max
j=1

χ̃ij(Wj(zj))

=
n

max
j=1

χij(e
LjN∗

0jδ
∗
j Wj(zj)) ≥

n
max
j=1

χij(Vj(xj)),

and Vi(xi) = eLiτiWi(zi) ≥ Wi(zi) ≥ χ̃i(|u|) ≥ χi(|u|). Hence (17),
and therefore (18), holds. For all yi ∈ F̃i(z, u), let yi = (yi1, yi2) be
such that yi1 ∈ Fi(x, u) and yi2 = 1. Following (18), (20), and (48),

Ẇi(zi; yi) = e−Liτi V̇i(xi; yi1) − Lie−LiτiVi(xi) yi2
≤ −cie−LiτiVi(xi) − Lie−LiτiVi(xi) = −c̃iWi(zi).

Finally, consider an arbitrary (z, u) ∈ D̃. For all yi ∈ G̃i(z, u), let
yi = (yi1, yi2) be such that yi1 ∈ Gi(x, u) and yi2 = max{0, τi − δ∗

i }.
From (48), it follows that

e−d̃iWi(zi) = e−di+Liδ∗i −LiτiVi(xi) ≥ e−Liyi2−diVi(xi),

and from (49) and (50), it follows that χ̃ij(Wj(zj)) = χij(e
LjN∗

0jδ
∗
j Wj(zj))

≥ e−Liyi2χij(Vj(xj)) for all j, and χ̃i(|u|) = χi(|u|) ≥ e−Liyi2χi(|u|),
respectively. Substituting the previous equations into (19)
gives (44).

Therefore,Wi is a candidate exponential ISS Lyapunov function
w.r.t. Ãi for the augmented subsystem Σ̃i of (38) with the rate
coefficients c̃i, d̃i defined by (48). □

4.3. Example

We demonstrate the approach of modifying ISS Lyapunov func-
tions in a case where we cannot apply Theorem 2 and Proposition
1 to establish stability directly.

Consider an interconnection of two hybrid subsystemswith the
state x = (x1, x2) modeled by

ẋ1 = x1 + x22, ẋ2 = −3x2 + 0.1
√

|x1|, x ∈ C,

x+

1 = e−1x1, x+

2 = ex2, x ∈ D,

7 Note that in (41), the forms of the internal gains χ̃ij depend on whether i ∈ Id ,
while in (49), the forms of χ̃ij depend on whether j ∈ Ic .

where C = D = R2. It can be represented in the formof the general
interconnection (15) without the external input u by letting n = 2,
F1(x) = x1 + x22, F2(x) = −3x2 + 0.1

√
|x1|, G1(x) = e−1x1, and

G2(x) = ex2. As C = D = R2, the system may flow or jump at
any point in R2, and all solutions are complete. Hence the notions
of pre-ISS and ISS coincide, and so do the notions of pre-GAS and
GAS. The x1-subsystem Σ1 has stabilizing discrete dynamics but
non-ISS continuous dynamics, while the x2-subsystem Σ2 has ISS
continuous dynamics but destabilizing discrete dynamics. Thuswe
cannot apply Theorem 2 and Proposition 1 to establish pre-GAS of
the interconnection directly.

Consider the functions V1, V2 : R → R+ defined by

V1(x1) := |x1|, V2(x2) := |x2|,

and the functions χ12, χ21 : R+ → R+ defined by

χ12(r) := r2/a, χ21(r) :=
√
r/b

with some scalars a, b > 0. From

V1(x1) ≥ χ12(V2(x2)) H⇒ V̇1(x1) ≤ (a + 1)V1(x1),

V2(x2) ≥ χ21(V1(x1)) H⇒ V̇2(x2) ≤ (0.1b − 3)V2(x2),

and8

V1(x+

1 ) ≤ e−1V1(x1), V2(x+

2 ) ≤ eV2(x2)

for all x = (x1, x2) ∈ R2, it follows that V1 and V2 are candidate
exponential ISS Lyapunov functions w.r.t. {0} for the subsystems
Σ1 andΣ2 with the internal gains χ12 and χ21, respectively. Since
the discrete dynamics of the Σ2 is destabilizing, we invoke the
modification scheme from Section 4.1. Consider a solution x :

dom x → R2 admitting an ADT δ2 > 0, that is, there exists an
integer N02 ≥ 1 such that all (s, k) ⪯ (t, j) in dom x satisfy

j − k ≤ δ2(t − s) + N02. (51)

The corresponding ADT clock τ2 is defined by

τ̇2 ∈ [0, δ2], τ2 ∈ [0,N02],

τ+

2 = τ2 − 1, τ2 ∈ [1,N02].

Let z1 := x1 and z2 := (x2, τ2). Following Proposition 5, the function
W2 : R × [0,N02] → R+ defined by

W2(z2) := eL2τ2V2(x2)

is a candidate exponential ISS Lyapunov functionw.r.t. Ã2 := {0}×
[0,N02] for the augmented subsystem Σ̃2 with the internal gain
χ̃21 ∈ K defined by

χ̃21(r) := eL2N02χ21(r) = eL2N02
√
r/b.

More specifically, for all (z1, z2) ∈ R2
× [0,N02], if

W2(z2) ≥ χ̃21(V1(z1))

then
Ẇ2(z2; y2) = eL2τ2 V̇2(x2) + L2eL2τ2V2(x2)τ̇2

≤ (0.1b − 3)eL2τ2V2(x2) + L2δ2eL2τ2V2(x2)
= (0.1b − 3 + L2δ2)W2(z2)

for all y2 ∈ {−3x2 + 0.1
√

|x1|} × [0, δ2]. Furthermore,

W2(ex2, τ2 − 1) = eL2(τ2−1)+1V2(x2) ≤ e1−L2W2(z2)

(see also footnote 8). To make the discrete dynamics of Σ̃2 ISS, we
set

L2 > 1. (52)

8 Note that the discrete dynamics of both subsystems are autonomous, and hence
we can ignore the terms corresponding to internal gains χ12, χ21 in (8). Similar
simplifications will be made when we apply Proposition 5 and Theorem 2.
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Following (21), the gain operator Γ̃ : R2
+

→ R2
+
after modification

is defined by

Γ̃ (r1, r2) = (χ12(r2), χ̃21(r1));

thus the small-gain condition (23) holds for Γ̃ iff χ12(χ̃21(r)) < r
for all r > 0, or equivalently,

L2 <
ln(ab2)
2N02

. (53)

Let a scalar s > 0 be such that eL2N02/b < 1/s <
√
a. Then

σ := (σ1, σ2) with σ1(r) := r, σ2(r) :=

√
r
s is an Ω-path

w.r.t. the gain operator Γ̃ . Following Theorem 2, the function W :

R2
× [0,N02] → R+ defined by

W (z) := max{σ−1
1 (V1(z1)), σ−1

2 (W2(z2))}

= max{V1(z1), s2W2(z2)2}

is a candidate Lyapunov function w.r.t. Ã := {(0, 0)} × [0,N02]

for the augmented interconnection with state z := (z1, z2) ∈

R2
× [0,N02] =: Z . More specifically, for all z ∈ Z ,

Ẇ (z; y) ≤ −cW (z)

for all y ∈ {−x1 + x22} × {−3x2 + 0.1
√

|x1|} × [0, δ2] with

c := min{−(a + 1), 2(3 − 0.1b − L2δ2)} < 0,

where the inequality follows from a > 0. Furthermore,

W (e−1x1, ex2, τ2 − 1) ≤ e−dW (z)

with d := min{1, 2(L2 −1)} > 0,which follows from (52). ThusW
is a candidate exponential Lyapunov function for the augmented
interconnection with rate coefficients c, d. Consider the set of
solutions x : dom x → R2 admitting the ADT δ2 and also an RADT
δ∗ > 0, that is, in addition to (51), there also exists an integer
N∗

0 ≥ 1 such that all (s, l) ⪯ (t, j) in dom x satisfy

t − s ≤ δ∗(j − k) + δ∗N∗

0 . (54)

Following Proposition 1 and Remark 4, this set of solutions is GAS
provided that

0 < δ∗ <
d

−c
=

min{1, 2(L2 − 1)}
max{a + 1, 2(0.1b − 3 + L2δ2)}

and (53) hold. For example, if a = 1, b = 5, and L2 = 1.5, then the
set of solutions satisfying the ADT condition (51) with δ2 = 2.25
and N02 = 1, and also the RADT condition (54) with δ∗

= 0.45 and
N∗

0 = 1 is GAS.

5. Conclusion and future research

We have proved several small-gain theorems for intercon-
nections of hybrid subsystems which yield candidate ISS Lya-
punov functions for the interconnections. These results unify
several Lyapunov-based small-gain theorems for hybrid sys-
tems (Dashkovskiy & Kosmykov, 2013; Liberzon et al., 2014; Nešić
& Teel, 2008) and impulsive systems (Dashkovskiy et al., 2012;
Dashkovskiy & Mironchenko, 2013b), and pave the way to the
following general scheme for establishing ISS of interconnections
of hybrid subsystems:

1. Construct a candidate exponential ISS Lyapunov function Vi
for each subsystemΣi with rate coefficients ci, di and linear
internal gains.

2. Compute the index sets Id, Ic of non-ISS dynamics.
3. Modify the candidate exponential ISS Lyapunov functions

Vi either for all i ∈ Id via Proposition 5 or for all i ∈ Ic via
Proposition 6.

4. Invoke Theorem 4 to construct a candidate exponential ISS
Lyapunov functionW for the augmented interconnection Σ̃
with rate coefficients c, d.

5. Derive the conditions for ISS of Σ̃ via Proposition 1.
6. Summarize the conditions for ISS of the original intercon-

nectionΣ from those in Steps 3 and 5.

As we observed in Section 4, the modification of candidate ISS
Lyapunov functions in Step 3 leads to enlarged internal gains.
Therefore, a considerable improvement of this scheme above lies
in the fact that only the candidate ISS Lyapunov functions with
indices from Id or those with indices from Ic would bemodified, in-
stead of all thosewith indices from Id∪Ic as it was done in Liberzon
et al. (2014). If either Id = ∅ or Ic = ∅, then no subsystem needs to
be modified at all. Moreover, this scheme also applies to arbitrary
interconnections composed of n ≥ 2 subsystems.

In the scheme above, it is assumed that all Vi are candidate
exponential ISS Lyapunov functions with linear internal gains.
However, the modification also works for candidate exponential
Lyapunov functions with nonlinear internal gains, and Theorem 2
was proved for arbitrary candidate ISS Lyapunov functions with
nonlinear internal gains. If Proposition 1were extended to the case
of non-exponential ISS Lyapunov functions, one could apply the
scheme above for Vi with nonlinear internal gains as well. Such
theorems have been proved in Dashkovskiy and Mironchenko
(2013b, Theorems 1 and 3) for impulsive systems, and we believe
that they can be generalized to hybrid systems as well. This is one
of the possible directions for future research.

The more challenging questions are whether one can establish
ISS of an interconnection in the presence of destabilizing dynamics
in subsystems without enlarging the internal gains, or without
modifying ISS Lyapunov functions at all. At the time these ques-
tions remain open.
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