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1. Introduction

The study of interconnections plays a significant role in the
system theory, as it allows one to establish stability for a complex
system based on properties of its less complex components. In
this context, small-gain theorems prove to be useful and general
in analyzing feedback interconnections, which are ubiquitous in
the control literature. An overview of classical small-gain theo-
rems involving input-output gains of linear systems can be found
in Desoer and Vidyasagar (2009). In Hill (1991) and Mareels and
Hill (1992), the small-gain technique was extended to nonlinear
feedback systems within the input-output context. The next peak
in the stability analysis of interconnections was reached based on
the input-to-state stability (ISS) framework proposed in Sontag
(1989), which unified the notions of internal and external stability.
Nonlinear small-gain theorems for general feedback interconnec-
tions of two ISS systems were introduced in Jiang, Mareels, and
Wang (1996) and Jiang, Teel, and Praly (1994). Their generalization
to networks composed of n > 2 ISS systems were reported
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in Dashkovskiy, Riiffer, and Wirth (2007, 2010), with several
variations summarized in Dashkovskiy, Efimov, and Sontag (2011).

The results described above have been developed for continu-
ous-time systems (i.e., ordinary differential equations). In the
discrete-time context, small-gain theorems for general feedback
interconnections of two ISS systems were established in Jiang and
Wang (2001) and Laila and Ne$i¢ (2003), and their generalization to
networks composed of n > 2 ISS systems can be found in Liu, Jiang,
and Hill (2012). However, in modeling real-world phenomena one
often has to consider interactions between continuous and discrete
dynamics. A general framework for modeling such behaviors is the
hybrid systems theory (Goebel, Sanfelice, & Teel, 2012; Haddad,
Chellaboina, & Nersesov, 2006). In this work, we adopt the hybrid
system model in Goebel et al. (2012), which proves to be natural
and general from the viewpoint of Lyapunov stability theory (Cai,
Teel, & Goebel, 2007, 2008). The notions of input-to-state stability
and ISS Lyapunov functions were extended for this class of hybrid
systems in Cai and Teel (2009).

Due to their interactive nature, many hybrid systems can be
inherently modeled as feedback interconnections (Liberzon, NeSi¢,
& Teel, 2014 Section V). During recent years, great efforts have
been devoted to the development of small-gain theorems for in-
terconnected hybrid systems. Trajectory-based small-gain theo-
rems for interconnections of two hybrid systems were reported
in Dashkovskiy and Kosmykov (2013), Karafyllis and Jiang (2007)
and Nesi¢ and Liberzon (2005), while Lyapunov-based formula-
tions were proposed in Liberzon and Nesi¢ (2006), Liberzon et
al. (2014) and Nesic¢ and Teel (2008). Some of these results were
extended to networks composed of n > 2 ISS hybrid systems
in Dashkovskiy and Kosmykov (2013).
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A more challenging problem is the study of hybrid systems in
which either the continuous or the discrete dynamics is desta-
bilizing (non-ISS). In this case, input-to-state stability is usu-
ally achieved under restrictions on the frequency of discrete
events, such as dwell-time (Morse, 1996), average dwell-time
(ADT) (Hespanha & Morse, 1999) and reverse average dwell-time
(RADT) (Hespanha, Liberzon, & Teel, 2008). For interconnections
of such hybrid subsystems, the small-gain theorems established
in Dashkovskiy and Kosmykov (2013) and Liberzon et al. (2014)
cannot be applied directly. The results of Liberzon et al. (2014)
show that one can modify the non-ISS dynamics in subsystems by
first adding auxiliary clocks and then constructing ISS Lyapunov
functions for the augmented subsystems that decrease both during
flow and at jumps. One advantage of this method is that it can
be applied even if the non-ISS dynamics are of different types
(i.e., if in some subsystems the continuous dynamics are non-
ISS, and in some other ones the discrete dynamics are non-ISS).
However, such modifications will lead to enlarged Lyapunov gains
of subsystems, and hence make the small-gain condition more
restrictive.

Another type of small-gain theorems was proposed in
Dashkovskiy, Kosmykov, Mironchenko, and Naujok (2012) and
Dashkovskiy and Mironchenko (2013b) for interconnected impul-
sive systems with continuous or discrete non-ISS dynamics. The
first step in this method is to construct a candidate exponential
ISS Lyapunov function for the interconnection. Provided that the
non-ISS dynamics of subsystems are of the same type (i.e., when
either the continuous dynamics of all subsystems or the discrete
dynamics of all subsystems are ISS), the candidate exponential ISS
Lyapunov function can be used to establish input-to-state stability
of the interconnection under suitable ADT/RADT conditions. Com-
pared with the previous method, this one does not require mod-
ifications of subsystems, and hence preserves the Lyapunov gains
and validity of small-gain conditions. However, this method has
been developed only for impulsive systems and requires candidate
exponential ISS Lyapunov functions for subsystems. Moreover, it
cannot be applied to interconnections of subsystems with different
types of non-ISS dynamics.

In this paper, we unify the two methods above. In Section 2, we
introduce the modeling framework and main definitions, followed
by a Lyapunov-based sufficient condition for ISS of hybrid systems
with continuous or discrete non-ISS dynamics. In Section 3, we
establish a general small-gain theorem for an interconnection of
n > 2 hybrid subsystems by constructing a candidate ISS Lyapunov
function for the interconnection, which generalizes the Lyapunov-
based small-gain theorems from Dashkovskiy and Kosmykov
(2013), Dashkovskiy et al. (2012), Dashkovskiy and Mironchenko
(2013b), Liberzon et al. (2014) and NeSic¢ and Teel (2008). We also
derive several implications of the general result, in particular, a
small-gain theorem for interconnections of subsystems with the
same type of non-ISS dynamics and also candidate exponential
ISS Lyapunov functions with linear Lyapunov gains. In Section 4,
we propose a version of the approach of modifying ISS Lyapunov
functions for subsystems from Liberzon et al. (2014), in which
fewer subsystems are affected (and hence fewer Lyapunov gains
are enlarged). In Section 5, we summarize the results of this work
as a unified method for establishing ISS of interconnections of
hybrid subsystems and conclude the paper with an outlook on
future research.

A preliminary and shortened version of the paper has been
presented at the 21st International Symposium on Mathematical
Theory of Networks and Systems (Mironchenko, Yang, & Liberzon,
2014).

2. Framework for hybrid systems

Let R, := [0,00)and N := {0, 1,2, ...}. For a vector x € RN,
denote by |x| its Euclidean norm, and by x| , = infycalx — y|
its Euclidean distance to a set A C RY. For n vectors X1, ..., X,
denote by (x1,...,X;) = (X],...,x])" their concatenation. For
two vectors x,y € R", we say that x > y and x > y if the
corresponding inequality holds in all scalar components, and that
x # yifthereis at least one scalar componentiin whichx; < y;. For
aset A, denote by A and int A its closure and interior, respectively.

Denote by id the identity function. A function« : R, — R, isof
class PD if it is continuous and positive-definite (i.e., a(r) = 0 &
r = 0); itis of class K if « € PD and is strictly increasing; it is of
class K if ¢ € K and is unbounded. A function y : Ry — R, isof
class £ if it is continuous, strictly decreasing and lim;_, o,y (t) = 0.
Afunction 8 : Ry x Ry — Ry isofclass KL if 8(-, t) € K for each
fixed t and B(r, -) € £ for each fixed r > 0.

Motivated by Cai and Teel (2009), a hybrid system is modeled
as the combination of a continuous flow and discrete jumps

X € F(x, u), (x,u) e,

(x,u) € D, M

xt e G(x, u),
wherex € X ¢ RVisthestate,u € ¥ ¢ RMistheinput,C C X xU
is the flow set, D C X x U is the jump set, F : ¢ = RN is the flow
map (here by = we mean that F is a set-valued function, which
maps each element of C to a subset of RV), and G : D = X is
the jump map. (In this model, the dynamics of (1) is continuous
inC \ D and discrete in D \ C. In C N D, it can be either continuous
or discrete.) The hybrid system (1) is fully characterized by its data
H = (F,G,C,D, X, U).

Solutions of (1) are defined on hybrid time domains. A set
E C Ry x Nis called a compact hybrid time domain if E =
UJI‘:o([tﬁ tir1], j) for some finite sequence of times 0 =ty < t; <

- < tj41.Itis a hybrid time domainif EN([0, T] x {0, 1, ...,]})isa
compact hybrid time domain for each (T, J) € E. On a hybrid time
domain, there is a natural ordering of points, that is, (s, k) < (t, j)
ifs+k<t+jand(s, k) < (t,j)ifs+k<t+].

Functions defined on hybrid time domains are called hybrid
signals. A hybrid signal x : domx — X (defined on the hybrid
time domain domx) is a hybrid arc if x(-, j) is locally absolutely
continuous for each j. A hybrid signal u domu — U isa
hybrid input if u(-, j) is Lebesgue measurable and locally essentially
bounded for each j. A hybrid arc x : domx — X and a hybrid input
u : domu — U form a solution pair (x, u) of (1) if

e domx = domu and (x(0, 0), u(0, 0)) € ¢ U D, where x(t, j)
denotes the state of the hybrid system at hybrid time (t, j),
that is, at time t and after j jumps;

e foreachj e N,itholds that(x(t, j), u(t, j)) € Cforallt € int];
and x(t,j) € F(x(t,j), u(t,j)) for almost all t € I;, where
I .= {t : (t,j) € domx};

e for each (t,j) € domx such that (t,j 4+ 1) € domx, it holds
that (x(t, j), u(t,j)) € Dand x(t,j + 1) € G(x(t, j), u(t, j)).

With proper assumptions on the data #, one can establish local
existence of solutions, which are not necessarily unique (see, e.g.
Goebel et al., 2012 Proposition 2.10). A solution pair (x, u) is max-
imal if it cannot be extended, and complete if dom x is unbounded.
In this paper, we only consider maximal solution pairs.

Following Cai and Teel (2009), the essential supremum norm
of a hybrid signal u up to a hybrid time (t, j) is defined by

llullejy = max{ esssup |u(s, k)|, sup [u(s, k)|},

(s,k)edomu, (s,k)ej(u),

(s 0=(t.)) (5. K)=(E0)
where J(x) := {(s, k) € domu : (s, k + 1) € domu} is the set of
jump times. In particular, the set of measure 0 of hybrid times that
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are ignored in computing the essential supremum norm cannot
contain any jump time.

For a locally Lipschitz function V : R" — R, its Dini derivative
at x € R" in the direction y € R" is given by
V(e y) = Fm X W) = V)

h\O h

where lim denotes the limit superior.

In this paper, we study input-to-state stability (ISS) properties
of the hybrid system (1) using ISS Lyapunov functions. Let A C X
be a compact set.

Definition 1. Following Liberzon et al. (2014), we say that a set of
solution pairs S of (1) is pre-input-to-state stable (pre-ISS) w.r.t. A if
there exist 8 € K£ and y € K such that for all (x, u) € S,

Ix(t, /)l 4 = max{B(|x(0, 0)| 4. t +J). y(llulle;)} (2)

for all (t, j) € domx. If S contains all solution pairs of (1), then we
say that (1) is pre-ISS w.r.t. A. In addition, if all solution pairs are
complete then we say that (1) is ISSw.r.t. A.

Remark 1. If (2) holds with y = 0, then the set S is globally
pre-asymptotically stable (pre-GAS), which implies that all complete
solution pairs in S converge to .A. In addition, if all solution pairs in
S are complete then it is globally asymptotically stable (GAS) (Liber-
zon et al., 2014).

Remark 2. In Cai and Teel (2009), ISS of hybrid systems is defined
in terms of class K££ functions and without requiring all solution
pairs to be complete, which is equivalent to our definition of pre-
ISS with KL functions (Cai et al., 2007, Lemma 6.1).

Definition 2. For the hybrid system (1), a functionV : X — R,
is a candidate ISS Lyapunov function w.r.t. A if it is locally Lipschitz
outside .4,' and

1. there exist functions ¥, ¥, € K4 such that

Vi(Ix[4) = V(%) < ¥2(1X]4)

2. there exist a gain function x € K and a continuous function
¢ : Ry — R with ¢(0) = 0 such that for all (x, u) € C with
X €A,

VxeXx; (3)

V(x) > x(Jul) = V(x;y) < —o(V(x)),Vy € F(x,u);  (4)

3. there is a function @ € K such that for all (x, u) € D?

V(x) = x(lul) = V(y) = a(V(x)), ¥y € G(x, u). (3)

In addition, if there exist two constants ¢, d € R so that
p(ry=cr, oafr)= e I (6)

in (4) and (5), then V is a candidate exponential ISS Lyapunov
function w.r.t. A with rate coefficients c, d.

The next lemma gives an alternative characterization of the can-
didate ISS Lyapunov function, which will be useful in formulating
the small-gain theorems in Section 3.

1 The Lipschitz condition here is used to ensure the existence of the Dini deriva-
tivein (4), and it can be relaxed to that the function V is locally Lipschitz on an open
set containing all x ¢ A such that (x, u) € ¢ for some u € u.

2 There is no loss of generality in requiring « € K instead of @ € PD, as a class
P D function can always be majorized by a class K one. Meanwhile, « € K is needed
in establishing the small-gain theorems below, as explained in footnote 4.

Lemma 1. For the hybrid system (1), a functionV : X — Ry is
a candidate ISS Lyapunov function w.r.t. A if and only if it is locally
Lipschitz outside A, and

1. there exist functions 1, Y2 € Koo such that (3) holds;

2. there exist a gain function x € K and a continuous function
¢ : Ry — R with ¢(0) = 0 such that for all (x, u) € C with
X & A

Vx) > x(Jul) = V(xy) < —(V(x), ¥y € F(x,u);  (7)

3. there s a function « € K such that for all (x, u) € D,
V(y) < max{a(V(x), x(lul)} Vy € G(x, u). (8)

Proof. The proofis along the lines of the proof of Dashkovskiy and
Mironchenko (2013b, Proposition 1) for ISS Lyapunov functions for
impulsive systems, and is omitted here. O

Exponential ISS Lyapunov functions can be characterized in a
similar way. Note that the functions x in Definition 2 and yx in
Lemma 1 are different in general.

The notion of candidate ISS Lyapunov function is defined to
characterize the effect of destabilizing (non-ISS) dynamics in a
hybrid system. In Definition 2, it is not required that ¢ € PD or
o < id on (0, 0c0), that is, V does not necessarily decrease along
solutions of the hybrid system (1). If both of these conditions hold,
then V becomes an ISS Lyapunov function, and similar analysis to
the proof of Cai and Teel (2009, Proposition 2.7) can be used to
show that (1) is pre-ISS (note that ISS in Cai and Teel, 2009 means
pre-ISS in this paper; see Remark 2). Moreover, if only one of them
holds; we are still able to establish ISS for the sets of solution
pairs satisfying suitable conditions on the density of jumps (i.e., the
number of jumps per unit interval of continuous time).

Proposition 1. Let V be a candidate exponential ISS Lyapunov
function w.r.t. A for the hybrid system (1) with rate coefficients c, d.
For arbitrary constants n, A, u > 0, denote by S[n, X, u] the set of
solution pairs (x, u) so that

—d=ni—-k—-(c=a)t=s)<pn 9)
forall (s, k) < (t, j)in the hybrid time domain dom x. Then S[n, A, u]
is pre-ISS w.r.t. A.

Proof. The proof is along the lines of the proof of Hespanha et
al. (2008, Theorem 1) for ISS of impulsive systems. Consider an
arbitrary solution pair (x, u) € S[n, A, u]. Let the function x be
asin (4)and (5). For all (tg, jo) < (t1,j1) in domx, if

V(x(s, k) = x(Iulls.p) (10)

for all (s, k) € domx such that (to,jo) =< (s,k) < (t1,j1), then
(4)-(6) imply that

V(x(t1, j1)) < e~ d0r=o—cti=0)y (x(to, jo )
< e_”(“_jO)_ml_t0)+“V(x(t0,j0)),

where the last inequality follows from (9). Now consider an arbi-
trary (t, j) € domx. If (10) holds for all (s, k) < (t, j) in dom x, then
(11), together with (3), implies that

(11)

x(t, ))l.a < B(1x(0, 0)| 4, t +J) (12)
with the function 8 € KL defined by
Br 1) =y (7 MM My (1)), (13)

3 Namely, either the continuous or the discrete dynamics taken alone is ISS;
see Sontag (1989) and Jiang and Wang (2001) for the definitions of ISS for con-
tinuous and discrete dynamics, respectively.
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Otherwise, let

(t,j)= argmax {s+k:V(x(s, k) < x(Iulls)}-
R

Then (10) holds for all (s, k) € domx such that (t',j') < (s, k) <
(t,); thus (11) implies that

V(x(t, j)) < e T max (1, eV (x(t, )
< e max{1, e_d}x(IIUII([/J"))
< e max{1, e x(llulle),

where the term max{1, e~} is needed if (¢, j’ + 1) € domx with
Vx(t',j) < xUlulle ) and V(x(¢', j + 1)) > x(llulle j+1)), and
the second inequality is due to n, A > 0. Hence from (3), it follows
that

Ix(t, D4 < y(llulle,)) (14)
with the function y € K defined by

y(r) =y ' (e" max{1, e~} x(r)).

Combining (12) and (14), we obtain that (2) holds for all (x, u) €
S[n, A, n]and all (t,j) € domx. O

Remark 3. We observe that, if both ¢, d < 0, then the inequality
(9) cannot hold for any complete solution pair, since there is always
a large enough ¢ or j such that nj + At > u. However, it may still
hold for solution pairs defined on bounded hybrid time domains.
Moreover, if c > 0 > d, then the claim of Proposition 1 also
holds for n = 0. The proof remain unchanged except that the last
inequality in (11) now becomes

e~ di1=o)=cti=)y (x( ¢y, jo))
< e M1y (x(t, jo))

< e(/\z/c—l)(n—to)—)\z(ﬁ—to)/C+MV(X(tO’]‘O))

< e*dU —jo)/c—22(ty—to)/c+(1+A/C) V(x(to, jo)),

where the first inequality follows from (9) with n = 0, and the last
one comes from the estimate

W2 /e=Mt1=to) _ oh/elA—0)t1—to) < olA/c)dli1—o)+1)
and the definition (13) becomes
Br, 1) == w;l(e—lmin{—kd/c,AZ/C}+(1+A/C)M1/,2(1.)).

Analogously, if d > 0 > c, then the claim of Proposition 1 also
holds for A = 0.

Remark 4. If c > 0 > d, then we can divide both sides of (9)
by —(d — n) > 0 to transform it to an average dwell-time (ADT)
condition (Hespanha & Morse, 1999). Analogously, ifd > 0 > c,
then we can divide both sides of (9) by —(c — A) > 0 to transform
it to the reverse average dwell-time (RADT) condition (Hespanha
et al., 2008).

Given a candidate exponential ISS Lyapunov function with rate
coefficients c > 0 and/or d > 0, we can determine pre-ISS sets
of solution pairs via Proposition 1. In the following section, we
investigate the formulation of such functions for interconnections
of hybrid systems.

3. Interconnections and small-gain theorems

We are interested in the case where the hybrid system (1) is

decomposed as
xi € Fi(x,u), i=1,...,n, x,u) e,
i € Fi(x, u) (x,u) (15)

xTeGxu), i=1,....n, (x,u) € D,

where x := (X1, ...,%,) € X C RN withx; € &; C RV is the state,
u € U C RM is the common (external) input, € := Cy X - - - X G X Cy
with ¢; C &;and ¢, C U/ is the flow set, D := D1 X --- X D, X Dy
with D; C &;and D, C U is the jump set, F := (Fy,...,F,)
with F; : ¢ = RN is the flow map, and G = (G, ..., G,) with
Gi : D = A;is the jump map. The dynamics of x; is called the ith
subsystem of (15) and is denoted by X;. The interconnection (15)
is denoted by X. For each X, the states of other subsystems are
treated as (internal) inputs.

Many systems with hybrid behaviors can be naturally trans-
formed into the form of (15). As demonstrated in Liberzon et al.
(2014, Section V), a networked control system can be treated as an
interconnection of continuous states and hybrid errors due to the
network protocol, and a quantized control system can be modeled
as an interconnection of continuous states and a discrete quantizer.
Moreover, the “natural decomposition” of a hybrid system (1) as
an interconnection of its continuous and discrete parts is often of
interest as well.

Remark 5. In (15), all the subsystems, as well as the intercon-
nection, share the same flow set ¢ and the same jump set D,
which justifies the view of (15) as an interconnection of n hybrid
subsystems.

Remark 6. Based on Lemma 1 and standard considerations clarify-
ing the influence of particular subsystems (see, e.g. Mironchenko,
2012, Lemma 2.4.1), one can show that a function V; : &; — R,
is a candidate ISS Lyapunov function w.r.t. a set A4; C A; for the
subsystem X; iff V; is locally Lipschitz outside .4;, and

1. there exist Vi1, Y¥i» € Ko such that

Vin(Ixil o) < Vilxi) < Yialxil o) Vi € A3 (16)
2. there exist internal gains x; € K forj # iand x; = 0, an

external gain x; € K, and a continuous function ¢; : R — R

with ¢;(0) = 0 such that for all (x, u) € C with x; € A;,

n

Vitx) = max{max (V). x(ub) (17)

implies that

Vilxi: i) < —@i(Vi(x:))

3. there is a function ¢; € K such that for all (x, u) € D,

Vy; € Fi(x, u); (18)

Vity) < max{e(Vi(x). max (V). x| Y € Gilxw)
(19)

In addition, V; is a candidate exponential ISS Lyapunov function
w.r.t. A; with rate coefficients ¢;, d; iff
di, (20)

pi(r)=qr, ajr)=e”

Suppose that for each subsystem X}, a candidate ISS Lyapunov
function V; is given (for discussions regarding the existence of
candidate exponential ISS Lyapunov functions for hybrid systems,
see Cai and Teel, 2009, Section 2, Cai et al., 2007, Theorem 8.1,
and Yang, Liberzon, and Mironchenko, 2016, Remark 3). The ques-
tion of whether the interconnection (15) is pre-ISS depends on
properties of the gain operator I" : R} — R/, defined by

n n
F(rr o) = (max ). ... max () @1
To construct a candidate ISS Lyapunov function for the intercon-

nection (15), we adopt the notion of £2-path (Dashkovskiy et al.,
2010).
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Definition 3. Given a function I" : R, — R, a function o :=
(01,...,0n)Witho; € Koo, i = 1, ..., nis called an §2-path w.r.t.
rif
1. all ai’] are locally Lipschitz on (0, c0);
2. for each compact set P C (0, o0), there exist finite constants
K> > Ky > 0 such that for all i,

0<Ki<(o7") <k

for all points of differentiability of oi_l inP;
3. the function I' is a contraction on o (-), that is,

I'o(r)<o(r) Vr>0. (22)
Remark 7. In this paper, we consider primarily §2-paths w.r.t. the
gain operator I" defined by (21), due to the terms maxj’?z] xii(Vi(x;))
in (17) and (19) when formulating candidate ISS Lyapunov func-
tions for subsystems (which will be clear from the statement
and proof of Theorem 2). However, there are other equivalent
formulations of candidate ISS Lyapunov functions for subsystems,
which will naturally lead to gain operators in different forms (see,
e.g., Dashkovskiy et al., 2007, 2010). In particular, if (17) and (19)
were formulated using Z}'Zl xii(Vj(x;)) instead of maxj’?:1 Xii(Vi(x;)),
we would arrive at the alternative gain operator I : R}, — Rf
defined by

I(ry,...,m)= (Z X1, - - anj(rj)>.
=1 =1

Compared with (21), we see that I'(v) < I'(v) forall v # 0;
thus every £2-path w.r.t. I" is an £2-path w.r.t. I". This alternative
construction will be useful in establishing Theorem 4 for the case
of linear internal gains below.

We say that a function I" : R, — R satisfies the small-gain
condition if

rv)2v YveR]\({0}, (23)
or equivalently,
I'v)>v < v=0.

As reported in Karafyllis and Jiang (2011, Proposition 2.7 and
Remark 2.8) (see also Dashkovskiy et al., 2010, Theorem 5.2), if (23)
holds for the gain operator I" defined by (21), then there exists an
§2-path o w.r.t. I'. Furthermore, o can be made smooth on (0, oo)
via standard mollification arguments (Griine, 2002, Appendix B.2).
In this case, we construct a candidate ISS Lyapunov function for the
interconnection (15) based on those for the subsystems and the
corresponding £2-path.

Theorem 2. Consider the interconnection (15). Suppose that each
subsystem X; admits a candidate ISS Lyapunov function V; w.r.t.
a set A; with the internal gains y; as in (17), and the small-gain
condition (23) holds for the gain operator I' defined by (21). Let
o = (o1, ...,04)be an $2-path w.r.t. I" which is smooth on (0, co).
Then the function V : X — R defined by

V(x) = mié]x o (Vi(xi)) (24)

is a candidate ISS Lyapunov function w.r.t. the set A := A; X -+ - X A,
for (15).

Proof. Aseach 0; € K is smooth on (0, co) and each V; is locally
Lipschitz outside .4;, it follows that each ai’] oV;islocally Lipschitz
outside A;. Hence the function V defined by (24) is locally Lipschitz
outside A. In the following, we prove that it satisfies the conditions
of Lemma 1, by combining and extending the arguments in the

proofs of Dashkovskiy et al. (2010, Theorem 5.3) and Liberzon et
al. (2014, Theorem IIL.1).
First, consider the functions v, ¥, defined by

Ya(r) = mino (Wl VA), 1 e R,
Yalr) == max o (Yialr)).

reRy

with V1, ¥4 as in (16). Since oj, ¥i1, Yo € Koo, We have that
Y1, Y2 € Koo. Thus (16) implies (3). In particular,

n
. -1 n
¥1(lxl4) < mino; (1//:'1(1}1}1’( |Xj|Aj))

< maxo” (Yin(1x1] ) < maxo; (V) = V().

Second, consider the gain function x defined by
_ n _
x(r) = maxo; (xi(r), r € Ry (25)

with y; as in (17), and the function ¢ defined by

n

o(r) = r}li]n(o,-’])’(m(r)) pi(oi(r)), T €Ry (26)
with ¢; asin (18). As all o; € Ko are smooth on (0, o0), x; € K, and
@; are continuous with ¢;(0) = 0, it follows that ¥ € K and ¢ is
continuous with ¢(0) = 0. Consider thesets M; C X, i=1,...,n
defined by

M; = {x € X of1(\/i(xi)) > mixzrj”(\/j(xj))}.

J#F1
The fact that all V; and ai_l are continuous implies that all M; are
openin X, M; N M; = @ forallj # i,and X = [ Ji_, M;, where Af;
is the closure of M; in X. Thus for each (x, u) € c withx & A, there
are two possibilities:

(1) Thereisauniquei € {1,...,n}s.t.x € M;. Then
V(x) = o, ' (Vi(x), (27)
and x; ¢ A; due tox ¢ A. Hence
Vi) = 0i(V(x)) = max xy(oi(V(x)) = max xi(V06)),  (28)

and the second

where the first inequality follows from (22),
[u]), then V(x) >

2
one follows from (24). Also, if V(x) > x

max’_, o, (x;(|ul)) due to (25); thus

2
(

V() = (V) = o (max o~ (1)

> oi(o; ' (xilluD)) = xillul). (29)

Hence (17), and therefore (18), holds. Given an arbitrary
y = V1,...,¥n) € F(x,u), as M; is open, it follows that
X + hy € M; for all small enough h > 0; thus V(x + hy) =
oi_l(V,-(xi + hy;)). Hence

—V(x+ hy) — V(x)

V(X§ V)= ’lll\l“l‘(l) h
l'ialf](v,'(x,' + hy;)) — O’iil(vi(xi))
= l1m
hNO h

= (Uiil)/(vi(xi))@ Vilxi + h3;1i) — Vi(x:)

= (o7 'Y (Vi(x))Vilxi; y1)
< —(o;7 Y (V%)) piloi( V(X))
—p(V(x)),

IA
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where the first inequality follows from (18) and (27), and the
last one follows from (26).

(2) There is a subset I(x) < {1,...,n} of indices with the
cardinality |I(x)] > 2 such that x € ﬂie,(x)8/\/li, where
dM; denotes the boundary of M; in X and satisfies that
OM; = M; \ M; as M; is open in x.Then (27) and x; & A;
hold for all i € I(x). Following similar arguments to those
in the previous case, if V(x) > x(|u|), then (28) and (29),
and therefore (18), hold for all i € I(x). Given an arbitrary
y=W1,...,¥Yn) € F(x, u), as all M; are open, it follows that
X+ hy € (MicpdMi) N (NieiyMi) for all small enough
h > 0; thus V(x + hy) = max,-e,(x)a,.’l(vi(x,- + hy;)). Hence

. —V(x+ hy) — V(x)
Vxy) = L@)T

— Tma (max o '(Vilxi + hyi)) — V(X)>

N0 h \iel(x)
— Tim max o '(Vi(xi + hys)) — o7 ' (Vi(x))
T RNO iel(x) h
_ mame,-_l(Vi(Xi + hy)) — o7 (Vi(x:))
T iel(x) kO h

= max(a; Y (Vi(x:)Vi(xi; yi)
iel(x)

< max —(o; 1) (al(V(x))) gi(0i( V(%))

iel(x)

< —p(V(x)),

where the fourth equality follows partially from the con-
tinuity of all V; and Gi_] (cf. the proof of Dashkovskiy and
Mironchenko, 2013a, Theorem 4); the first inequality follows
from (18) and (27) for i € I(x), and the last one follows
from (26).

Hence (7) holds for each (x, u) € C.
Last, consider the function « : Ry — R, defined by

n _ —
a(r) i= max{ o (e(ai(r)). o7 Cxslos(r))] (30)
with o and xj; asin (19). As all 07 € Koo, xi € K forj # i, xii = 0,
and ¢; € K, it follows that @ € K. Consider an arbitrary (x, u) € D.
From (24) and (30), it follows that*

V() = max{ o (e (Vi) o7 GV |-

Also, (25) implies that x(|u]) = max?zlai‘l(x,-(|u|)). Combining
the previous two equations with (19), we obtain that for all y =
1, ..., ¥n) € Glx, u),

V(y) = max_, o, (Vi(y)) < max{a(V(x)), x(ul)}.

Hence (8) holds for each (x, u) € D.
Therefore, from Lemma 1, it follows that V is a candidate ISS
Lyapunov function w.r.t. A for (15). O

Theorem 2 is a powerful tool in establishing ISS of interconnec-
tions of hybrid subsystems. In the following, we inspect some of its
implications.

If each subsystem of (15) admits an ISS Lyapunov function, then
Theorem 2 implies the following result, which generalizes (Liber-
zon et al., 2014, Theorem III.1) and (Dashkovskiy & Kosmykov,
2013, Theorem 3.6).

4 Note that, if «; is of class D but not increasing, then it is possible that
oi(V(x)) > Vi(x;) but «(0i(V(x))) < «a;(Vi(x;)) for some i; thus the inequality
following this footnote may not hold. A similar issue arises in the proof of Liberzon
etal. (2014, Theorem II.1) where it was overlooked, but could be fixed by majorizing
the class 7D functions A1, A, with class K ones.

Corollary 3. Consider the interconnection (15). Suppose that each
subsystem X; admits an ISS Lyapunov function V; w.r.t. a set A;
(ie, i € PDand o; < id on (0, co) in (18) and (19), respectively)
with the internal gains x;; asin (17), and the small-gain condition (23)
holds for the gain operator I' defined by (21). Then (15) is pre-ISS
w.r.t. A

Proof. Following Theorem 2, the function V defined by (24) is
a candidate ISS Lyapunov function w.r.t. A for (15). First, as all
0; € Koo are smooth on (0, co)and ¢; € PD, the function ¢ defined
by (26)is of class PD. Second, (22) implies that all ai’l oxjoo; < id
on (0, 00), and as all 0; € Ky and «; < id on (0, co), it follows
that all ai‘l o ;o o; < id on (0, 0o); thus the function « defined
by (30) satisfies that « < id on (0, co). Therefore, V is an ISS
Lyapunov function, and (15) is pre-ISS w.r.t. A following similar
analysis to the proof of Cai and Teel (2009, Proposition 2.7); see
also Remark 2. O

As the assumptions in Corollary 3 are quite restrictive, we now
investigate the case where, for some subsystems X, either ¢; ¢
PD or ai(r) > r for some r > 0 (cf. footnote 3). In this case, we
cannot use Corollary 3 to prove pre-ISS for the interconnection (15)
directly, but rather invoke Proposition 1 to establish pre-ISS for
the set of solution pairs that jump neither too fast nor too slowly.
However, in general, Theorem 2 cannot provide the candidate
exponential ISS Lyapunov function needed in Proposition 1. In the
next theorem, we construct such a function under the assump-
tion that each subsystem X; admits a candidate exponential ISS
Lyapunov function V;, and the internal gains y; in (17) and (19)
are all linear. With a slight abuse of notation, we let all y; > 0
be scalars, and replace the terms x;;(Vj(x;)) in (17) and (19) with
xijVj(x;). Consider the gain matrix

Iy = (XU)?]:l e R™", (3])

Denote by p(I7},) its spectral radius (i.e., the largest absolute value
of its eigenvalues). Due to Dashkovskiy et al. (2007, p. 110), if

po(Iy) <1, (32)

then the small-gain condition (23) holds for the function r
R% — R defined by I'(v) := Iyv, which is the alternative
gain operator in Remark 7. Consequently, there exists a linear £2-
pathw.r.t. I (Dashkovskiy, Riiffer, & Wirth, 2006, p. 78); for more
results on §2-paths, the reader may consult Riiffer (2010).

Theorem 4. Consider the interconnection (15). Suppose that each
subsystem X; admits a candidate exponential ISS Lyapunov function
Vi w.rt. a set A; with rate coefficients c;, di. Assume also that the
internal gains y; in (17) and (19) are all linear, and (32) holds for
the gain matrix Iy defined by (31). Let o : 1 +> (S1I,...,SqT)
with scalars sq, . .., S, be a linear $2-path w.r.t. the alternative gain
operator I". Then V : X — R, defined by

V() = miax S Vi(x) (33)

i=1 S§;

is a candidate exponential ISS Lyapunov function w.r.t. A = A; X
-+« X Ay for (15) with rate coefficients

Y (.
ol -0} o0

n
¢ :=minc¢;, d:= min
i=1 ijij

Proof. In view of Remark 7, ¢ is also an §2-path w.r.t. the gain
operator defined by (21) (with all x;(r;) replaced by x;r;). Follow-
ing Theorem 2, the function V defined by (33) is a candidate ISS
Lyapunov function w.r.t. A for (15). Substituting (20) into (26) and
(30), we obtain

d.

n n _ Si
o(r)=mingr, or)= max{e i ]X,-j}r.
i=1 ij=1 Si
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Hence V is a candidate exponential ISS Lyapunov function with the
rate coefficients c, d defined by (34). O

Remark 8. For the more general case with the internal gains y;; be-
ing power functions instead of linear ones, a candidate exponential
ISS Lyapunov function for (15) can be constructed in a similar way;
cf. Dashkovskiy and Mironchenko (2013b, Theorem 9).

The following remark provides a simpler bound for the rate
coefficient d in some important cases.

Remark 9. If the gain matrix ') defined by (31) is irreducible,
then p(I)y) is the Perron-Frobenius eigenvalue of I}, and the
corresponding eigenvectors = (s, ..., Sy) satisfiess > 0 (Perron-
Frobenius theorem Berman & Plemmons, 1994, Theorem 2.1.3).

Hence, if (32) holds, then I'ys = p(Iy)s < §;thuso : r +— srisa
linear £2-path as in Theorem 4. Moreover, for alli € {1, ..., n}, it
holds that

n Sj 1 .
max —x; < — ) sixij = p(Im);
=1 5; Si pa

thus the rate coefficient d defined by (34) satisfies that d >
min{min_,d;, —In(p(I'u))}.

Having applied Theorem 4, we can establish pre-ISS for the
set of solution pairs that jump neither too fast nor too slowly via
Proposition 1. However, if there are subsystems Xy, X for which
the rate coefficients c,,d; < O, then c,d defined by (34) are
negative as well, and Proposition 1 cannot be applied to complete
solution pairs (see Remark 3). In the following section, we handle
such cases via the approach of modifying ISS Lyapunov functions
for subsystems using ADT and RADT clocks from Liberzon et al.
(2014).

4. Modifying ISS Lyapunov functions for subsystems

Suppose that each subsystem X; admits a candidate exponen-
tial ISS Lyapunov function with rate coefficients c;, d;, and there are
Xy, Xy such that ¢, dj < 0 < ¢, di. Our goal is to construct new
candidate exponential ISS Lyapunov functions with rate coeffi-
cients ¢;, d; so that eitherall ¢; > 0(i.e., all continuous dynamics are
ISS) or all d; > 0 (i.e., all discrete dynamics are ISS). To accomplish
this, we first derive suitable conditions on the density of jumps,
then augment the corresponding subsystems with auxiliary clocks
to incorporate such conditions, and finally modify the correspond-
ing candidate exponential ISS Lyapunov functions.

4.1. Making discrete dynamics ISS

In the following, we construct candidate exponential ISS Lya-
punov functions so that all rate coefficients d; > 0.

We say that a solution pair (x, u) of (15) admits an average
dwell-time (ADT) (Hespanha & Morse, 1999) § > 0 if there is an
integer Ny > 1 so that all (s, k) < (t,j) in dom x satisfy’

j—k <8(t—s)+ No. (35)

Following Liberzonetal. (2014, SectionV.A), a hybrid time domain
satisfies (35) iff it is the domain of an ADT clock t given by

T €10, 4], 7 € [0, No],

+ T € [1,N0].

36
T =1—1, (36)

Sf (35) holds with Ny = 1, then the ADT condition becomes the dwell-time
condition (Morse, 1996); if it holds with Ny < 1, then jumps are not allowed at all,
which can be seen directly from (35) by taking t — s small enough.

Remark 10. This notion of ADT clock for hybrid systems first
appeared in Cai et al. (2008, Appendix), where it was defined by
{t € ns(t) fort € C := [0, No]

(37)

T =1-1 fort € D :=[1, No]

with ns(t) == !([So, 8] ?3?5 SI\%NO)

(see also Mitra, Liberzon, and Lynch, 2008 for a related earlier con-
struction). The ADT clocks defined by (36) and (37) are equivalent
in the following sense. First, as t € [0, 8], an ADT clock defined
by (37) always satisfies (36). Second, given an ADT clock defined
by (36) that increases on [0, Ng) with a speed ¢ < §, there always
exists an ADT clock defined by (37) that increases on [0, Ng) with
T = § but stays longer at Ny so that their hybrid time domains are
the same.

Denote by I; := {i : di < 0} the index set of subsystems with
non-ISS discrete dynamics. Let z; := x; € X =: Zifori & Iy
and z; = (x;, 1;) € &; x [0, Ng;] =: Z; with an integer Nyp; > 1
fori € I,. Consider the augmented interconnection ¥ with state

z:=(z1,...,2y) € 21 X -+ X Z, = Z and input u € ¢/ modeled
by

zeF(z,u), i=1,...,n, z,u)eC,

i z~( ) (z,u) g (38)
7z €Gz,u), i=1,...,n, (z,u) e D,

where ¢ = ¢ x --- x G x C, with ¢; :== ¢ fori ¢ I; and

éj = C; x [0, Noi] fori € Id,ﬁ = ﬁ] Xooee X ?n X Dy With@i =7D;
fori ¢ Iy and D; := D; x [1, Ngj] for i € I, F := (Fi, ..., F) with
Fi(z,u) := Fi(x,u) fori ¢ Iy and Fy(z, u) := Fy(x, u) x [0, &] for
i€lyand G :=(Gy,..., G;) with Gi(z, u) == Gi(x, u) fori ¢ I and
Gi(z, u) := Gj(x, u) x {z; — 1} for i € I. Then (38) is a hybrid system
with the data # := (F, G, C, D, 2, U). The dynamics of z; is called
the ith augmented subsystem of (38) and is denoted by ;.

In the following proposition, we apply the modification tech-
nique from Liberzon et al. (2014, Proposition IV.1) to construct a
candidate exponential ISS Lyapunov function for each augmented
subsystem X; based on the candidate exponential ISS Lyapunov
function for the subsystem X; of the original interconnection (15)
and the ADT clock ;.

Proposition 5. Consider a subsystem X of the original interconnec-
tion (15). Suppose that it admits a candidate exponential ISS Lyapunov
function V; w.r.t. a set A; with rate coefficients c;, d;. For a scalar
L; > 0, the function W; : Z; — R defined by

_ JVvitx) il
Wi(zi) = {eLiTiVi(xl-) ifiel

is a candidate exponential ISS Lyapunov function w.r.t.

. ifidla
" ] Ai x [0, Noil ifiely

for the subsystem X of (38) with rate coefficients
éi = (i, ai = di lfl ¢ Id; (39)
Ci=¢—Lé, di:=di+ L; ifiely.

More specifically,
1. there exist functions 1/~/,'1, &iz € Ko such that
Vin(lzil 4,) < Wi@) < Ynllzil z) Yz € 2 (40)
2. there exist internal gains x; € K, j # i defined by
- i(r ifiely;
Xij(r) — {Xu( ) if i &1y

etiNoi yi(r) ifiely
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with x;; as in (17) and x; = 0O, and an external gain x; € K
such that for all (z, u) € C withz; € A,

Wi(z) = max{max 7,(Wj(z). %(lu))} (42)
implies that

Wizi; i) < —&Wi(z) Vi € F(z, u); (43)

3. forall (z,u) € D,
Wiy < max{e " Wi(z). max %y (Wi(z)). %(luD)] Vi € Gilz. ).
(44)

Proof. Ifi ¢ I;, then the claim follows directly from the assumption
that V; is a candidate exponential ISS Lyapunov function with rate
coefficients c;, d;. Therefore, we only consider the case i € I; in the
following proof. As V; is locally Lipschitz outside .4; and the map
1; > elifi is smooth, W; is also locally Lipschitz outside 4;.

First, consider the functions 1},-1, 17!{2 € K defined by

Yin(r) = yun(r),  Pi(r) = eNoiyp(r)

with i1, ¥ as in (16). Then (40) follows from (16).
Second, consider the function x; € K defined by

Xi(r) = eliNoii(r) (45)

with x; as in (17). For each (z, u) € € with z; ¢ A, if (42) holds,
then

Vi) = e Wi(z:) > M miax iy (W(z)
=
n n
= max xitWi(z)) > max xi(Vi(x)),

and Vi(x;) = e HMiWi(z;) > e 1Mo 3y(|u|) = xi(|ul). Hence (17), and
therefore (18), holds. For all y; € Fi(z, u), lety; = (yi1, yiz) be such
that y;; € Fi(x, u) and y;; € [0, §;]. Following (18), (20), and (39),

Wilzi; yi) = € Vi(xi; yin) + Lie""Vi(x:) yia
< —Gie"Vi(x;) + Liie"Vi(xi) = —GWi(z).

Finally, consider an arbitrary (z, u) € D.Forally; f;i(z, u), let
¥i = (¥i1, Yiz) be such that y;; € Gi(x, u) and yj, = t; — 1. From (39),
it follows that
e IWi(z) = el (x)) = e divi(x,),
and from (41) and (45), it follows that ¥;(W;(z)) = et™oi x;;(W;(z)))
> W2 y(Vi(x))) for all jand 7i(lul) = e"Moixi(|ul) > €42 xi([u]),
respectively. Substituting the previous equations into (19)
gives (44).

Therefore, W; is a candidate exponential ISS Lyapunov function
w.r.t. A; for the augmented subsystem X; of (38) with the rate
coefficients ¢;, d; defined by (39). O

Proposition 5 shows that it is possible to make all d; > 0 by
choosing large enough scalars L;, i € Iy, at the cost of decreasing
the convergence rates of continuous dynamics (as ¢; = ¢; — L;6;
n (39) above), and increasing the internal gains (as x;(r) =
eliNoi y,:(r) in (41) above). Consequently, for large enough integers
Ng;, it is possible that the small-gain condition (23) holds for the
gain operator I" defined by (21), but not for I" : R, — R, defined
by’

n - n ~
riry,...,m)= (I}Lalx X, -y rﬁx an(rj))~

6 However, if all the original internal gains yx;; are linear, and the gain matrix Iy
defined by (31)is a triangular matrix (i.e., if (15) is a cascade interconnection), then
(23) always holds for I', as all the cyclic gains equal zero.

To see the consequence of this fact clearer, consider for simplicity
an interconnection of two subsystems X', X, and their candidate
exponential ISS Lyapunov functions V4, V, with rate coefficients
c1,d; > 0 > dq, c; and linear internal gains xi2, x21 > 0. After
we augment X; with an ADT clock §; € [0, No1], the matrix Ty is
given by

o= |: 0 )~(12i| _ [ 0 €L1N°1X12:|
M=z = ,
X21 0 X21 0

and p(I) < 1holdsiff x12x21 < e~1No1. In order to make the rate
coefficient d; = d; +L; > 0, we need to choose a scalar L; > —d;.
Also, the integer Ng; > 1. Hence we cannot apply Theorem 4 to
the augmented interconnection unless the original internal gains
X12, X21 Satisty x12x01 < e < 1.

The observation above hints that it may be better to make all
¢; > 0(instead of making all d; > 0 as in this subsection). See Yang
et al. (2016) for a case-by-case study comparing the two schemes.

4.2. Making continuous dynamics ISS

In the following, we construct candidate exponential ISS Lya-
punov functions so that all rate coefficients ¢; > 0.

We say that a solution pair (x, u) of (15) admits a reverse
average dwell-time (RADT) (Hespanha et al., 2008) §* > 0 if there
is aninteger Ny > 1so thatall (s, k) < (t, j) in dom x satisfy

t —s<8G—k)+ Ngs*. (46)

Following Cai et al. (2008, Appendix) and Liberzon et al. (2014,
Section IV.B), a hybrid time domain satisfies (46) iff it is the domain
of an RADT clock t defined by
=1,

7 = max{0, v — §*},

T € [0, N}5*],
T € [0, Ni8*].

Denote by I. := {i : ¢; < 0} the index set of subsystems with
non-ISS continuous dynamics. Let z; := x; € &; = Z;fori & I
and z; == (x;, ;) € & x [0, N§;6¥] = Z; with an integer No; > 1
fori € I.. Consider the augmented interconnection ¥ with state
z:=(z1,...,2y) € Z;1 X --- X Z;, = Z and input u € &4 modeled
by (38), where € := Cy x -+ x €y x C, with C; = ¢; fori ¢ I, and
Ci = Cix[0,Ng871fori € Ie, D := Dy x - - - x Dy x Dy With D; = D;
fori ¢ I and D; = D; x [0, N58f1fori € I, F := (Fy,...,F)
with I:"i(z, u) == F(x,u) fori ¢ I. and fi(z, u) == Fi(x, u) x {1} for
i€l,and G := (Gy, ..., Gy) with Gi(z, u) := Gi(x, u) fori ¢ I. and
Gi(z,u) := Gi(x,u) x {max{0, t; — §/}} fori € I.. Then (38)is a
hybrid system with the data # := (F, G, ¢, D, 2, U). The dynamics
of z; is called the ith augmented subsystem of (38) and is denoted
by X

In the following proposition, we apply the modification tech-
nique from Liberzon et al. (2014, Proposition 1V.4) to construct a
candidate exponential ISS Lyapunov functions for each augmented
subsystem X; based on the candidate exponential ISS Lyapunov
function for the subsystem X; of the original interconnection (15)
and the RADT clock ;.

Proposition 6. Consider a subsystem X of the original interconnec-
tion (15). Suppose that it admits a candidate exponential ISS Lyapunov
function V; w.r.t. a set A; with rate coefficients c;, d;. For a scalar
L; > 0, the function W; : Z; — R defined by

_ JVix:) ifigl;
Wizi) = {e—Lfff Vi)  ifiel
is a candidate exponential ISS Lyapunov function w.r.t.

FRE! il
"] A x [0, Nyi6; ] ifiel

(47)
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for the augmented subsystem X; of (38) with rate coefficients

Gi=c, di=d ifi ¢ I;
~ 48
{Ei =+ L, di = di—L,‘(Si* ifiel. (48)
More specifically,
1. there exist functions 1},-1, 1},-2 € Ko S0 that (40) holds;
2. there exist internal gains x; € K, j # i defined by’
- Xii(r) forj &I
i(r) = 49
() {XU(e BNy forj el (49)

with y; as in (17) and x; = 0, and an external gain x; € K
such that for all (z, u) € C withz; ¢ A;, (42) implies (43);
3. forall(z, u) € D, (44) holds.

Proof. Ifi ¢ I, then the claim follows directly from the assumption
that V; is a candidate exponential ISS Lyapunov function with rate
coefficients c;, d;. Therefore, we only consider the casei € I, in the
following proof. As V; is locally Lipschitz outside .4; and the map
7; > e hi% is smooth, W; is locally Lipschitz outside A;.

First, consider the functions v, ¥ € Ko defined by

Pin(r) = e Y (r),  Pin(r) = Yi(r)

with i1, ¥ as in (16). Then (40) follows from (16).
Second, consider the function x; € K defined by

xi(r) = xi(r) (50)

with x; as in (17). For each (z, u) € € with z; ¢ A, if (42) holds,
then

Vix) = 1 Wi(z) = Wilzi) > max 7(W(2))

> max £(V05),

and Vi(x;) = eiWi(z)) = Wi(z;) > Xi(lul) > xi(|ul). Hence (17),
and therefore (18), holds. For all y; € Fi(z, u), let y; = (i1, yiz) be
such that y;; € Fi(x, u) and y;; = 1. Following (18), (20), and (48),
Wizi; yi) = e HVi(xis yin) — Lie Vi) yia

—cie”HVi(x;) — Lie TVi(x;) = —GWi(z:).

Finally, consider an arbitrary (z,u) € D.Forall y; € 6,~(z, u), let

¥i = (¥i1, ¥i2) be such that yi; € Gi(x, u) and y;, = max{0, 7; — &7}.
From (48), it follows that

e iWi(z;) = e~ WL Lty (x) > e~ diyy(xy),

A

and from (49) and (50), it follows that %;(Wj(z)) = x;i(e"0% W(z)))
> e y(Vi(x;) for all j, and Fi([ul) = xi(lul) = e xi([u]),
respectively. Substituting the previous equations into (19)
gives (44).

Therefore, W; is a candidate exponential ISS Lyapunov function
w.r.t. A; for the augmented subsystem X; of (38) with the rate
coefficients ¢, d; defined by (48). O

4.3. Example

We demonstrate the approach of modifying ISS Lyapunov func-
tions in a case where we cannot apply Theorem 2 and Proposition
1 to establish stability directly.

Consider an interconnection of two hybrid subsystems with the
state x = (x1, X2) modeled by

Xy = —3x3 + 0.1/]x4],

+
X; = exy,

: 2
X1 =X +X2,

xf=ex,

xec,
xXenD,

7 Note that in (41), the forms of the internal gains X; depend on whetheri € Iy,
while in (49), the forms of ¥; depend on whetherj € I..

where ¢ = D = R?. It can be represented in the form of the general
interconnection (15) without the external input u by lettingn = 2,
Fi(x) = x1 + %3, F,(x) = —3% + 0.1/[x1], Gi(x) = e~ 'x;, and
Gy(x) = exp. AsC = D = R?, the system may flow or jump at
any point in R?, and all solutions are complete. Hence the notions
of pre-ISS and ISS coincide, and so do the notions of pre-GAS and
GAS. The x;-subsystem X'; has stabilizing discrete dynamics but
non-ISS continuous dynamics, while the x,-subsystem X, has ISS
continuous dynamics but destabilizing discrete dynamics. Thus we
cannot apply Theorem 2 and Proposition 1 to establish pre-GAS of
the interconnection directly.

Consider the functions Vq, V; : R — R, defined by

Vilx1) = [x1l,  Va(x2) = |xa,
and the functions xi3, x21 : R+ — R, defined by
x12(r) == rz/a, x21(r \[/b

with some scalars a, b > 0. From
(a4 1Vi(x1),
(0.1b = 3)V,(xy),

Vix1) = x12(Va(x2)) = Vi(x1) <
Va(%2) = x21(Vi(x1)) = Va(xp) <
and®

Vilx?) < e 'Wilx1),  Va(xd) < eVa(xp)

for all x = (x1, %) € R?, it follows that V; and V; are candidate
exponential ISS Lyapunov functions w.r.t. {0} for the subsystems
Y1 and X, with the internal gains x1, and x»1, respectively. Since
the discrete dynamics of the X, is destabilizing, we invoke the
modification scheme from Section 4.1. Consider a solution x
domx — R? admitting an ADT 8, > 0, that is, there exists an
integer No; > 1 such thatall (s, k) < (t, j) in dom x satisfy

j—k < 8(t —s)+ Npa. (51)

The corresponding ADT clock t; is defined by

7 € [0, 821, 73 € [0, No2],
=11, 7, € [1, Npz].

Letz; := xyand z, := (X3, 12). Following Proposition 5, the function
W5 : R x [0, Noz] — R, defined by

Wa(22) = €22V,(xp)

is a candidate exponential ISS Lyapunov function w.r.t. Ay = {0} x
[0, Ng;] for the augmented subsystem X, with the internal gain
%21 € K defined by

X21(r) = e2N2 o (1) = €202 /1 /b,
More specifically, for all (z1, z,) € R? x [0, Noy], if
Wa(z2) = ¥21(Vi(z1))
then
Wa(22: 2) = €272V5(xy) + €272 Vo (%)
< (0.1b — 3)e22V,(xp) + L26,€22V;(x5)
= (0.1b — 3 + L,8,)Wa(22)
forally, € {—3x; + 0.14/]x1[} x [0, 8]. Furthermore,
Wilexa, 7 — 1) = €227 UMY, (x)) < e 2 Wy (25)

(see also footnote 8). To make the discrete dynamics of X, ISS, we
set

L2 > 1. (52)

8 Note that the discrete dynamics of both subsystems are autonomous, and hence
we can ignore the terms corresponding to internal gains xi2, x21 in (8). Similar
simplifications will be made when we apply Proposition 5 and Theorem 2.
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Following (21), the gain operator I : R — R? after modification
is defined by

I(r1, 1) = (x12(r2), Xa1(r));

thus the small-gain condition (23) holds for I iff x12(%21(r)) < r
forallr > 0, or equivalently,

In(ab?)
L . 53
2 < 2Noz (53)
Let a scalar s > O be such that e2M2/b < 1/s < ./a. Then
o = (01,07) with o1(r) = r, oy(r) = VT is an £2-path

w.r.t. the gain operator I". Following Theorem 2, the function W :
R? x [0, Noz] — R, defined by

W(z) == max{o, '(Vi(z1)), o5 '(Wa(22))}
= max({Vi(z1), $*Wa(z2)*}

is a candidate Lyapunov function w.r.t. 4 = {(0,0)} x [0, No;]
for the augmented interconnection with state z = (z1,z) €
R? x [0, No2] =: Z. More specifically, forall z € 2,

W(z;y) < —cW(z)

forally € {—x; +x3} x {—3x2 + 0.1/[x1[} x [0, 8,] with
c:=min{—(a+ 1), 2(3—0.1b — L[,65)} < O,

where the inequality follows from a > 0. Furthermore,
W(e %1, exa, o — 1) < e W(2)

withd := min{1, 2(L, — 1)} > 0, which follows from (52). Thus W
is a candidate exponential Lyapunov function for the augmented
interconnection with rate coefficients c, d. Consider the set of
solutions x : domx — R? admitting the ADT &, and also an RADT
§* > 0, that is, in addition to (51), there also exists an integer
Nj > 1suchthatall (s, I) < (t, j) in dom x satisfy

t—s<8(G—k)+8N;. (54)

Following Proposition 1 and Remark 4, this set of solutions is GAS
provided that

d min{1, 2(L, — 1)}
0<8" < —=

—c  max{a+ 1, 2(0.1b — 3 + L[,5,)}
and (53) hold. For example, ifa = 1,b = 5, and L, = 1.5, then the
set of solutions satisfying the ADT condition (51) with §; = 2.25

and Ng; = 1, and also the RADT condition (54) with §* = 0.45 and
Ny = 1is GAS.

5. Conclusion and future research

We have proved several small-gain theorems for intercon-
nections of hybrid subsystems which yield candidate ISS Lya-
punov functions for the interconnections. These results unify
several Lyapunov-based small-gain theorems for hybrid sys-
tems (Dashkovskiy & Kosmykov, 2013; Liberzon et al., 2014; Nesi¢
& Teel, 2008) and impulsive systems (Dashkovskiy et al., 2012;
Dashkovskiy & Mironchenko, 2013b), and pave the way to the
following general scheme for establishing ISS of interconnections
of hybrid subsystems:

1. Construct a candidate exponential ISS Lyapunov function V;
for each subsystem X; with rate coefficients c;, d; and linear
internal gains.

2. Compute the index sets Iy, I, of non-ISS dynamics.

3. Modify the candidate exponential ISS Lyapunov functions
V; either for all i € I via Proposition 5 or for alli € I via
Proposition 6.

4. Invoke Theorem 4 to construct a candidate exponential ISS
Lyapunov function W for the augmented interconnection ¥
with rate coefficients c, d. ~

5. Derive the conditions for ISS of X via Proposition 1.

6. Summarize the conditions for ISS of the original intercon-
nection X from those in Steps 3 and 5.

As we observed in Section 4, the modification of candidate ISS
Lyapunov functions in Step 3 leads to enlarged internal gains.
Therefore, a considerable improvement of this scheme above lies
in the fact that only the candidate ISS Lyapunov functions with
indices from I, or those with indices from I. would be modified, in-
stead of all those with indices from I;UI. as it was done in Liberzon
et al. (2014). If either I; = ¥ or I. = ¢, then no subsystem needs to
be modified at all. Moreover, this scheme also applies to arbitrary
interconnections composed of n > 2 subsystems.

In the scheme above, it is assumed that all V; are candidate
exponential ISS Lyapunov functions with linear internal gains.
However, the modification also works for candidate exponential
Lyapunov functions with nonlinear internal gains, and Theorem 2
was proved for arbitrary candidate ISS Lyapunov functions with
nonlinear internal gains. If Proposition 1 were extended to the case
of non-exponential ISS Lyapunov functions, one could apply the
scheme above for V; with nonlinear internal gains as well. Such
theorems have been proved in Dashkovskiy and Mironchenko
(2013b, Theorems 1 and 3) for impulsive systems, and we believe
that they can be generalized to hybrid systems as well. This is one
of the possible directions for future research.

The more challenging questions are whether one can establish
ISS of an interconnection in the presence of destabilizing dynamics
in subsystems without enlarging the internal gains, or without
modifying ISS Lyapunov functions at all. At the time these ques-
tions remain open.
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