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Feedback Stabilization of Switched Linear
Systems With Unknown Disturbances

Under Data-Rate Constraints
Guosong Yang , Student Member, IEEE, and Daniel Liberzon , Fellow, IEEE

Abstract—We study the problem of stabilizing a switched
linear system with a completely unknown disturbance us-
ing sampled and quantized state feedback. The switching
is assumed to be slow enough in the sense of combined
dwell time and average dwell time, each individual mode is
assumed to be stabilizable, and the data rate is assumed
to be large enough but finite. By extending the approach of
reachable-set approximation and propagation from an ear-
lier result on the disturbance-free case, we develop a com-
munication and control strategy that achieves a variant of
input-to-state stability with exponential decay. An estimate
of the disturbance bound is introduced to counteract the
unknown disturbance, and a novel algorithm is designed to
adjust the estimate and recover the state when it escapes
the range of quantization.

Index Terms—Input-to-state stability (ISS), Lyapunov
methods, quantized feedback, switched systems.

I. INTRODUCTION

F EEDBACK control under data-rate constraints has been an
active research area for years, as surveyed in [1] and [2].

In many application-related scenarios, it is important to limit
the information flow in the feedback loop due to cost concerns,
physical restrictions, security considerations, etc. Besides these
practical motivations, the question of how much information is
needed to achieve a certain control objective is fundamental and
intriguing from the theoretical viewpoint. In this work, a finite
data transmission rate is achieved by generating the control input
based on sampled and quantized state measurements, which is
a standard modeling framework in the literature (see, e.g., [3],
[4], and [5, Ch. 5]).

This paper studies the problem of feedback stabilization under
data-rate constraints in the presence of external disturbances. In
this context, the authors of [3] and [4] assumed known bounds
on the disturbances and addressed asymptotic stabilization with
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minimum data rates, while the authors of [6] and [7] avoided
such assumptions by alternating between “zooming-out” and
“zooming-in” stages and achieved input-to-state stability (ISS)
[8]. See also [9] and [10] for related results in a stochastic
setting.

The study of switched and hybrid systems has attracted a lot
of attention lately (particularly relevant results are discussed in
[5], [11], and [12] and many references therein). In stability
and stabilization of switched systems, it is a standard technique
to impose suitable slow-switching conditions, especially in the
sense of dwell time [13] and average dwell-time (ADT) [14].
This approach also plays a crucial role in our analysis.

Toward switched systems with disturbances, Hespanha and
Morse [14] showed that ISS can be achieved under the same
ADT condition as the one for stability in the disturbance-free
case. Their result was made explicit only for the case of switched
linear systems, and many similar results for switched nonlinear
systems have been established since then (see, e.g., [15] for ISS
with a dwell time, [16] for ISS and integral-ISS with an ADT,
and [17] for input/output-to-state stability with an ADT).

Early works on control under data-rate constraints in the con-
text of switched systems were devoted to quantized control of
Markov jump linear systems [18]–[20]. However, the discrete
modes in the results above were always known to the controller,
which would remove a major difficulty in our problem setup,
making the control problem essentially the same as the one
in the case without switching. The problem of asymptotically
stabilizing a switched linear system (without disturbance) using
sampled and quantized state feedback was studied in [21], which
also serves as the basis for this work. In [21], the controller was
assumed to have a partial knowledge of the switching, that is,
the active mode was unknown except at sampling times, and
the switching was subject to mild slow-switching conditions
characterized by a dwell time and an ADT. Assuming that the
data rate was large enough but finite, asymptotic stability was
achieved by propagating overapproximations of reachable sets
of the state over sampling intervals. See [22] for a related result
using output feedback.

This work generalizes the main result of [21] in the pres-
ence of a completely unknown disturbance. By extending the
approach of reachable-set approximation and propagation from
[21], we develop a communication and control strategy that
achieves a variant of ISS with exponential decay. Due to the un-
known disturbance, the state may be driven outside the approx-
imation of reachable set at a sampling time after it has already
been inside an earlier one (i.e., the state escapes the range of
quantization). Consequently, the closed-loop system may alter-
nate multiple times between stabilizing and searching stages.
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An estimate of the disturbance bound is introduced in approxi-
mating reachable sets so that the state cannot escape unless the
disturbance is larger than the estimate. A novel algorithm is de-
signed to adjust the estimate and recover the state after escapes,
so that the total length of searching stages is finite and the system
eventually stays in a stabilizing stage, provided that the distur-
bance is globally essentially bounded (by an unknown value).

To the best of our knowledge, this work is the first result
that combines switching, disturbances, and data-rate constraints,
with the exception of its preliminary version [23] and our ear-
lier result [24] for the easier case of disturbances with known
bounds. This paper improves [23] by formulating continuous
gain functions in the main theorem, removing unnecessary con-
ditions, substantiating the results with complete proofs and clar-
ifying remarks, and providing a detailed simulation study.

This paper is organized as follows. Section II introduces the
system definition, the information structure, and the basic as-
sumptions. Our main result is stated in Section III. Section IV
explains the communication and control strategy, assuming
that suitable approximations of reachable sets are available.
Such approximations are constructed in Section V. Section VI
details the stability analysis with major steps summarized
as technical lemmas. The simulation study is provided in
Section VII. Section VIII concludes this paper with a summary
and an outlook on future research topics.

II. PROBLEM FORMULATION

A. System Definition

We are interested in stabilizing a switched linear control sys-
tem modeled by

ẋ = Aσx+Bσu+Dσd, x(0) = x0 (1)

where x ∈ Rnx is the state, u ∈ Rnu is the control, and d ∈ Rnd

is the external disturbance. The set {(Ap,Bp,Dp) : p ∈ P} de-
notes a collection of matrix triples defining the modes (subsys-
tems), where P is a finite index set. The function σ : R≥0 → P
is a right-continuous piecewise constant switching signal, which
specifies the active mode σ(t) at each time t. The solution x(·)
is absolutely continuous and satisfies the differential equation
(1) away from discontinuities of σ (in particular, there is no
state jump). An admissible disturbance d(·) is a Lebesgue mea-
surable and locally essentially bounded function. The switching
signal σ is fixed but unknown to the sensor and the controller a
priori. Discontinuities of σ are called switching times, or sim-
ply switches. The number of switches on a time interval (τ, t] is
denoted by Nσ (t, τ).

Our first basic assumption is that the switching is slow in the
sense of combined dwell time and ADT.

Assumption 1 (Switching): The switching signal σ admits
(1) a dwell-time τd > 0 such thatNσ (t, τ) ≤ 1 for all τ ≥ 0

and t ∈ (τ, τ + τd ];
(2) an ADT τa > τd such that

Nσ (t, τ) ≤ N0 +
t− τ

τa
∀ t > τ ≥ 0 (2)

with a constant N0 ≥ 1.
The notions of dwell time [13] and ADT [14] have become

standard in the literature on switched systems. In Assumption 1,
the dwell-time condition (item 1) can be written in the form of (2)
with τa = τd andN0 = 1; meanwhile, the ADT condition (item
2) would be implied by the dwell-time condition if τa ≤ τd .

Fig. 1. Information structure.

Switching signals satisfying Assumption 1 were referred to as
“hybrid dwell-time” signals in [25].

Our second basic assumption is that every individual mode is
stabilizable.

Assumption 2 (Stabilizability): For each p ∈ P , the pair
(Ap,Bp) is stabilizable, that is, there exists a state feedback
gain matrix Kp such that Ap +BpKp is Hurwitz.

In the following analysis, it is assumed that such a collection
of stabilizing gain matrices Kp, p ∈ P has been selected and
fixed. However, even in the disturbance-free case, and when
all individual modes are stabilized via state feedback (or sta-
ble without feedback), stability of the switched system is not
necessarily guaranteed (see, e.g., [5, p. 19]).

Throughout this work, ‖ · ‖ denotes the ∞-norm of
a vector, or the (induced) ∞-norm of a matrix, that
is, ‖v‖ := ‖v‖∞ := max1≤i≤n |vi | for v = (v1 , . . . , vn )	 ∈
Rn , and ‖M‖ := ‖M‖∞ = max1≤i≤n

∑n
j=1 |Mij | for M =

(Mij ) ∈ Rn×n . The left-sided limit of a piecewise absolutely
continuous function z approaching t is denoted by z(t−) :=
lims↗t z(s).

We let δd denote the essential supremum ∞-norm of the
disturbance d, that is,

δd := ‖d‖∞ := ess sup
s≥0

‖d(s)‖ ≤ ∞ (3)

and call it the disturbance bound. In the following analysis, it
is assumed that δd is finite (as the state bound (6) in our main
result below holds trivially when δd = ∞). However, its value
is unknown to the sensor and the controller.

B. Information Structure

The feedback loop consists of a sensor and a controller.
The sensor measures two sequences of data—quantized
measurements (samples) of the state x(tk ), and indices of the
active modes σ(tk )—and transmits them to the controller at
sampling times tk = kτs , where k is a nonnegative integer and
τs > 0 is the sampling period. Each sample is encoded by an
integer ik from 0 toNnx , whereN is an odd integer (so that the
equilibrium at the origin is preserved). The controller generates
the control input u(·) to the switched linear system (1) based on
the decoded data. As σ(tk ) ∈ P and ik ∈ {0, 1, . . . , Nnx }, the
data transmission rate between the encoder and the decoder is

R =
log2 |Nnx + 1| + log2 |P|

τs

bits per unit of time, where |P| is the cardinality of the index
set P (i.e., the number of modes). As illustrated in Fig. 1, this
information structure allows us to separate the sensing and the
control tasks in the following sense: the sensor does not have
access to the exact control objective, and the controller does not
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have access to the exact state. The communication and control
strategy is explained in detail in Section IV.

The sampling period τs is assumed to be no larger than the
dwell time τd in Assumption 1, that is,

τs ≤ τd (4)

so that there is at most one switch on each sampling interval
(tk , tk+1]. Due to the ADT τa > τd in Assumption 1, switches
actually occur less often than once per sampling period.

Our last basic assumption is a lower bound on the data rate.
Assumption 3 (Data rate): The sampling period τs satisfies

Λp := ‖eAp τs ‖ < N ∀ p ∈ P. (5)

The inequality in (5) can be interpreted as a lower bound
on the data rate R since it requires τs to be sufficiently small
with respect to N . This bound is the same as the one for the
disturbance-free case in [21, Assumption 3], and similar data-
rate bounds appeared in [3], [4], and [26] for stabilizing non-
switched linear systems; see [7, Sec. V] and [21, Sec. 2.2] for
more discussions on their relation.

III. MAIN RESULT

The control objective is to stabilize the system defined in
Section II-A under the data-rate constraint described in Section
II-B in a robust sense. More precisely, we intend to establish the
following ISS-like property.

Theorem 1 (Exponential decay): Consider the switched
linear control system (1). Suppose that Assumptions 1–3 and
inequality (4) hold. Then, there is a communication and con-
trol strategy that yields the following property: provided that
the ADT τa is large enough, there exist a constant λ > 0 and
gain functions g, h : R≥0 → R>0 such that for all initial states
x0 ∈ Rnx and disturbances d : R≥0 → Rnd , we have

‖x(t)‖ ≤ e−λtg(‖x0‖) + h(‖d‖∞) ∀ t ≥ 0. (6)

The communication and control strategy is described in
Section IV. The lower bound on τa is given by (49) in
Section VI-A3. The exponential decay rate λ is given by (64),
and the nonlinear gain functions g and h are given by (65), both
in Section VI-C3. From the proof, it will be clear that both g
and h can be made continuous and strictly increasing. However,
g(0) > 0 due to the sampling and quantization, h(0) > 0 due
to the unknown disturbance, and both g(s) and h(s) have su-
perlinear growth rates as s→ ∞, which is consistent with [27,
Cor. 2.3]. Consequently, the state bound (6) does not give the
standard ISS [8], but rather the input-to-state practical stability
[28] with exponential decay, that is,

‖x(t)‖ ≤ e−λtγx(‖x0‖) + γd(‖d‖∞) + C ∀ t ≥ 0

with the gain functions γx, γd ∈ K∞ defined by1

γx(s) := g(s) − g(0), γd(s) := h(s) − h(0) (7)

and the constant

C := g(0) + h(0) > 0. (8)

Remark 1: Along the lines of [29, Sec. VI], the state bound
(6) can be restated as ISS with respect to a set. More specifically,
(6) implies that the uniform asymptotic gain (UAG) property

1A function f : R≥0 → R≥0 is of class K∞ if it is continuous, positive
definite, strictly increasing, and unbounded.

[29] holds for the set A := {v ∈ Rnx : ‖v‖ ≤ h(0)}, that is,
for each pair of constants ε, δ > 0, there exists a time Tε,δ :=
max{ln(g(h(0) + δ)/ε)/λ, 0} such that if ‖x0‖A ≤ δ, then
‖x(t)‖A ≤ γd(‖d‖∞) + ε for all t ≥ Tε,δ with the gain func-
tion γd ∈ K∞ defined in (7), where ‖v‖A := infv ′∈A ‖v − v′‖
is the (Chebyshev) distance from a point v to the set A. In the
context of nonswitched systems, it has been shown that if UAG
holds for A, then the system is ISS with respect to the closure
of the reachable set from A with d ≡ 0 [29, Lemma VI.2].

The state bound (6) implies the following stability property.
Corollary 2 (Practical stability): In particular, the commu-

nication and control strategy in Theorem 1 yields the following
property: provided that the ADT τa is large enough, the system
(1) is practically stable, that is, for each ε > 0, there exists a
small enough δ > 0 such that for all initial states x0 ∈ Rnx and
disturbances d : R≥0 → Rnd , we have

‖x0‖, ‖d‖∞ ≤ δ ⇒ sup
t≥0

‖x(t)‖ ≤ ε+ C (9)

with the constant C defined by (8).
Corollary 2 shows that, if the initial state and the disturbance

are both small, then the solution is confined within a neigh-
borhood of the hypercube of radius C centered at the origin. In
Section VI-D, we will establish practical stability with a smaller
constant C through a more direct approach.

IV. COMMUNICATION AND CONTROL STRATEGY

In this section, we describe the communication and con-
trol strategy in detail, assuming that suitable approximations
of reachable sets of the state are available at all sampling times.
(Such approximations are derived in the next section.)

The initial state x0 is unknown. At t0 = 0, the sensor and
the controller are both provided with x∗0 = 0 and arbitrarily
selected initial estimates E0 > 0 and δ0 > 0 (for ‖x0‖ and the
disturbance bound δd defined in (3), respectively). Starting from
t0 = 0, at each sampling time tk , the sensor determines if the
state x(tk ) is inside the hypercube of radius Ek centered at x∗k
denoted by

Sk := {v ∈ Rnx : ‖v − x∗k‖ ≤ Ek}
or equivalently, if

‖x(tk ) − x∗k‖ ≤ Ek . (10)

The hypercube Sk is the approximation of the reachable set
at tk , which is also used as the range of quantization. If (10)
holds (i.e., if x(tk ) ∈ Sk ), we say that the state is visible, and
the system is in a stabilizing stage described in Section IV-A.
Otherwise, the state is lost, and the system is in a searching
stage described in Section IV-B.

To compensate for the unknown disturbance, we introduce
an estimate δk of the disturbance bound δd in calculating Ek+1 .
Note that if δk < δd , then it is possible that x(tk ) ∈ Sk but
x(tk+1) /∈ Sk+1 (unlike in the disturbance-free case, where
x(tk ) ∈ Sk implies that x(tl) ∈ Sl for all l ≥ k).

If the state is visible at tk , then the system is in a stabilizing
stage until the first sampling time tj > tk such that x(tj ) /∈ Sj ;
in this case, we say that the state escapes at tj . Likewise, if
the state is lost at tk , then the system is in a searching stage
until the first sampling time ti > tk such that x(ti) ∈ Si ; in
this case, we say that the state is recovered at ti . Due to the
unknown disturbance, the system may alternate multiple times
between stabilizing and searching stages. The rules for adjusting
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the estimate δk so that there are only a finite number of escapes
are explained in Section IV-C.

A. Stabilizing Stage

At each sampling time tk in a stabilizing stage, the encoder
divides the hypercube Sk into Nnx equal hypercubic boxes, N
per dimension, encodes each box by a unique integer index from
1 toNnx , and transmits the index ik of the box containing x(tk )
to the decoder, along with the active mode σ(tk ). The controller
learns that (10) holds upon receiving ik ∈ {1, . . . , Nnx }. The
decoder follows the same predefined indexing protocol as the
encoder, so that it is able to reconstruct the center ck of the
hypercubic box containing x(tk ) from ik . Simple calculation
shows that

‖x(tk ) − ck‖ ≤ 1
N
Ek, ‖ck − x∗k‖ ≤ N − 1

N
Ek . (11)

The controller then generates the control input u(t) = Kσ (tk )
x̂(t) for t ∈ [tk , tk+1), where Kσ (tk ) is the state feedback gain
matrix in Assumption 2, and x̂ is the state of the auxiliary system

˙̂x = Aσ (tk ) x̂+Bσ (tk ) u = (Aσ (tk ) +Bσ (tk )Kσ (tk )) x̂ (12)

with the boundary condition

x̂(tk ) = ck . (13)

In particular, the auxiliary state x̂ is reset to ck at each sampling
time tk in a stabilizing stage. Both the sensor and the controller
then use two functions F and G to calculate

x∗k+1 := F (σ(tk ), σ(tk+1), ck )

Ek+1 := G(σ(tk ), σ(tk+1), x∗k , Ek , δk ) (14)

for the next sampling time tk+1 without further communication.
The functions F and G are designed so that

‖x(tk+1) − x∗k+1‖ ≤ G(σ(tk ), σ(tk+1), x∗k , Ek , δd) (15)

and G is strictly increasing in the last argument, which is δk
in (14) and δd in (15). Hence, the state may escape at tk+1
only if δk < δd . (However, x(tk+1) ∈ Sk+1 does not imply that
δk ≥ δd .) The formulas for F andG are derived in Section V-A.

B. Searching Stage

At each sampling time tk in a searching stage, there is an
unknown D̂k such that

Ek < ‖x(tk ) − x∗k‖ ≤ D̂k . (16)

For example, if the state escapes at tj , then (15) implies that
D̂j = G(σ(tj−1), σ(tj ), x∗j−1 , Ej−1 , δd), while if it is lost at

t0 = 0, then D̂0 = ‖x0‖. The encoder sends ik = 0, the “over-
flow symbol,” to the decoder. Upon receiving ik = 0, the con-
troller learns the state is lost and sets the control input to be
u ≡ 0 on [tk , tk+1). Both the sensor and the controller then use
a function Ĝ to calculate

x∗k+1 := x∗k

Ek+1 := Ĝ(x∗k , (1 + εE )Ek , δk ) (17)

for the next sampling time tk+1 without further communication,
where εE > 0 is an arbitrary design parameter. The function Ĝ

is designed so that

‖x(tk+1) − x∗k+1‖ ≤ Ĝ(x∗k , D̂k , δd) (18)

and it is strictly increasing in the last two arguments. Note that
the second argument of Ĝ in (18) is D̂k , whereas the one in
(17) is (1 + εE )Ek . With the additional coefficient 1 + εE , it is
ensured that the growth rate of Ek dominates that of D̂k ; thus,
the state will be recovered in a finite time, as shown in Section
V-B following the derivation of Ĝ.

C. Adjusting the Estimate of the Disturbance Bound

When the state escapes at a sampling time tj , the sensor and
the controller learn that δj−1 < δd and adjust the estimate by
enlarging it to δj = (1 + εδ )δj−1 , where εδ > 0 is an arbitrary
design parameter. The estimate remains unchanged in all other
cases; in particular, it is adjusted once per searching stage.
Thus, it is ensured that there is a finite number of searching
stages in total, as the estimate becomes greater than or equal to
the disturbance bound δd after finitely many adjustments, and
the state cannot escape after that.

V. APPROXIMATION OF REACHABLE SETS

In this section, we derive the recursive formulas needed
to implement the communication and control strategy. In
Section V-A, we consider a stabilizing stage and formulate the
functions F and G in (14) so that (15) holds. In Section V-B,
we consider a searching stage, formulate the function Ĝ in (17)
so that (18) holds, and prove that the state will be recovered in
a finite time.

A. Stabilizing Stage

Suppose that the state is visible at a sampling time tk , that is,
(10) holds.

1) Sampling Interval With No Switch: When

σ(tk ) = p = σ(tk+1) (19)

for some p ∈ P , there is no switch on (tk , tk+1] due to (4).
Combining the switched linear system (1) and the auxiliary
system (12), we obtain that

ẋ = Apx+Bpu+Dpd

˙̂x = Apx̂+Bpu.

The error e := x− x̂ satisfies that

ė = Ape+Dpd, ‖e(tk )‖ = ‖x(tk ) − ck‖ ≤ 1
N
Ek

on [tk , tk+1), where the boundary condition follows from (11)
and (13). Hence

‖e(t−k+1)‖ =
∥
∥
∥
∥e

Ap τs e(tk ) +
∫ tk + 1

tk

eAp (tk + 1 −τ )Dpd(τ)dτ
∥
∥
∥
∥

≤ ‖eAp τs ‖‖e(tk )‖ +
(∫ τs

0
‖eAp sDp‖ds

)

δd

≤ Λp

N
Ek + Φp(τs)δd =: D̂k+1

with the constant Λp in (5) and the increasing function Φp :
[0, τs ] → R defined by

Φp(t) :=
∫ t

0
‖eAp sDp‖ds. (20)
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Therefore, we set

Ek+1 = G(p, p, x∗k , Ek , δk ) :=
Λp

N
Ek + Φp(τs)δk . (21)

As x is continuous, (15) holds with x∗k+1 set as the auxiliary
state x̂ approaching tk+1 , that is,

x∗k+1 = F (p, p, ck ) := x̂(t−k+1) = Spck (22)

with the matrix Sp := e(Ap +Bp Kp )τs .
2) Sampling Interval With a Switch: When

σ(tk ) = p �= q = σ(tk+1) (23)

for some p, q ∈ P , there is exactly one switch on (tk , tk+1] due
to (4). Let tk + t̄with t̄ ∈ (0, τs ] denote the unknown switching
time. Then

σ(t) =

{
p, t ∈ [tk , tk + t̄)

q, t ∈ [tk + t̄, tk+1].

Before the switch, mode p is active on [tk , tk + t̄). Following
essentially the calculations for the case with no switch, we see
that the error e = x− x̂ satisfies that

‖e(tk + t̄)‖ ≤ ‖eAp t̄‖
N

Ek + Φp(t̄)δd

with the function Φp defined by (20). As tk + t̄ is unknown,
we estimate x(tk + t̄) by comparing it with x̂(tk + t′) =
e(Ap +Bp Kp )t ′ck of the auxiliary system (12) at an arbitrarily se-
lected time tk + t′ ∈ [tk , tk+1] via the triangle inequality. First

‖x̂(tk + t̄) − x̂(tk + t′)‖
≤ ‖e(Ap +Bp Kp ) t̄ − e(Ap +Bp Kp )t ′ ‖‖ck‖

≤ ‖e(Ap +Bp Kp ) t̄ − e(Ap +Bp Kp )t ′ ‖
(

‖x∗k‖ +
N − 1
N

Ek

)

where the last inequality follows partially from (11). Then

‖x(tk + t̄) − x̂(tk + t′)‖
≤ ‖x̂(tk + t̄) − x̂(tk + t′)‖ + ‖e(tk + t̄)‖

≤ ‖e(Ap +Bp Kp ) t̄ − e(Ap +Bp Kp )t ′ ‖
(

‖x∗k‖ +
N − 1
N

Ek

)

+
‖eAp t̄‖
N

Ek + Φp(t̄)δd

=: D̂′
k+1(t

′, t̄, δd). (24)

After the switch, mode q is active on [tk + t̄, tk+1]. Combin-
ing the switched linear system (1) and the auxiliary system (12)
with u = Kpx̂, we obtain that

ż = Āpq z + D̄qd

for z := (x	, x̂	)	 ∈ R2nx with the matrices

Āpq :=

[
Aq BqKp

0nx×nx Ap +BpKp

]

, D̄q =
[

Dq

0nx×nd

]

.

Combining it with a second auxiliary system

˙̂z = Āpq ẑ, ẑ(tk + t′) = (x̂(tk + t′)	, x̂(tk + t′)	)	 (25)

we obtain that

ż = Āpq z + D̄qd

˙̂z = Āpq ẑ

with the boundary condition

‖z(tk + t̄) − ẑ(tk + t′)‖
= max{‖x(tk + t̄) − x̂(tk + t′)‖, ‖x̂(tk + t̄) − x̂(tk + t′)‖}
≤ D̂′

k+1(t
′, t̄, δd)

where the first inequality follows from the property that the
∞-norms of two vectors v, w and their concatenation satisfy

‖(v	, w	)	‖ = max{‖v‖, ‖w‖}. (26)

Hence

‖z(t−k+1) − ẑ(tk+1 − t̄+ t′)‖

=
∥
∥
∥
∥e

Āp q (τs−t̄)z(tk + t̄) +
∫ tk + 1

tk + t̄
eĀp q (tk + 1 −τ )D̄qd(τ)dτ

− eĀp q (τs−t̄) ẑ(tk + t′)
∥
∥
∥
∥

≤ ‖eĀp q (τs−t̄)‖‖z(tk + t̄) − ẑ(tk + t′)‖

+
(∫ τs−t̄

0
‖eĀp q sD̄q‖ds

)

δd

≤ ‖eĀp q (τs−t̄)‖D̂′
k+1(t

′, t̄, δd) + Φ̄pq (τs − t̄)δd

with the increasing function Φ̄pq : [0, τs ] → R defined by

Φ̄pq (t) :=
∫ t

0
‖eĀp q sD̄q‖ds.

Again, we estimate z(t−k+1) by comparing it with ẑ(tk + t′′) =
eĀp q (t ′′−t ′) ẑ(tk + t′) of the second auxiliary system (25) at an
arbitrarily selected time tk + t′′ ∈ [tk , tk+1] via the triangle in-
equality. First

‖ẑ(tk+1 − t̄+ t′) − ẑ(tk + t′′)‖
≤ ‖eĀp q (τs−t̄) − eĀp q (t ′′−t ′)‖‖ẑ(tk + t′)‖
≤ ‖eĀp q (τs−t̄) − eĀp q (t ′′−t ′)‖‖e(Ap +Bp Kp )t ′ ‖

×
(

‖x∗k‖ +
N − 1
N

Ek

)

where the last inequality follows partially from (11) and (26).
Then

‖z(t−k+1) − ẑ(tk + t′′)‖
≤ ‖z(t−k+1) − ẑ(tk+1 − t̄+ t′)‖

+ ‖ẑ(tk+1 − t̄+ t′) − ẑ(tk + t′′)‖
≤ ‖eĀp q (τs−t̄)‖D̂′

k+1(t
′, t̄, δd) + ‖eĀp q (τs−t̄) − eĀp q (t ′′−t ′)‖

× ‖e(Ap +Bp Kp )t ′ ‖
(

‖x∗k‖ +
N − 1
N

Ek

)

+ Φ̄pq (τs − t̄)δd

=: D̂′′
k+1(t

′, t′′, t̄, δd). (27)
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To remove the dependence on the unknown t̄, we take the supre-
mum over t̄ (with fixed t′ and t′′) and obtain that

‖z(t−k+1) − ẑ(tk + t′′)‖ ≤ sup
t̄∈(0,τs ]

D̂′′
k+1(t

′, t′′, t̄, δd) =: D̂k+1 .

Therefore, we setEk+1 by first replacing the disturbance bound
δd in D̂′′

k+1(t
′, t′′, t̄, δd) with the estimate δk and then taking the

maximum over t̄, that is,

Ek+1 = G(p, q, x∗k , Ek , δk ) := sup
t̄∈(0,τs ]

D̂′′
k+1(t

′, t′′, t̄, δk ).

(28)
(Clearly, the design parameters t′ and t′′ should be selected so
that Ek+1 is minimized. However, their optimal values can-
not be determined without imposing further constraints on the
matrices {Ap,Bp,Dp,Kp : p ∈ P}.) As x is continuous, (15)
holds with x∗k+1 set as the projection of the second auxiliary
state ẑ approaching tk + t′′ onto the x-component, that is,

x∗k+1 = F (p, q, ck ) := (Inx×nx 0nx×nx )ẑ(tk + t′′) = Hpqck
(29)

with the matrix

Hpq := (Inx×nx 0nx×nx )e
Āp q (t ′′−t ′)

(
Inx×nx
Inx×nx

)

e(Ap +Bp Kp )t ′ .

In the remainder of this subsection, we derive a simpler but
more conservative bound for Ek+1 , which is more useful for
computations. First, the norm of the difference of two matrix
exponentials can be simplified via the following lemma.2

Lemma 1: For all square matrices X and Y , we have

‖eX+Y − eX ‖ ≤ e‖X ‖+‖Y ‖‖Y ‖.
Proof: See Appendix A. �
Based on Lemma 1 and the property that

‖eM s‖ ≤ e‖M ‖|s| ∀M ∈ Rn×n ∀ s ∈ R

the definition (28) implies that

Ek+1 ≤ αpq‖x∗k‖ + βpqEk + γpq δk (30)

with the constants

αpq := e‖Āp q ‖τs e‖Ap +Bp Kp ‖max{τs , 2t ′}

× ‖Ap +BpKp‖max{τs − t′, t′}
+ e‖Āp q ‖max{τs , 2(t ′′−t ′), τs +2(t ′−t ′′)}‖Āpq‖
× max{t′′ − t′, τs + t′ − t′′}‖e(Ap +Bp Kp )t ′ ‖

βpq :=
N − 1
N

αpq +
1
N
e(‖Āp q ‖+‖Ap ‖)τs

γpq := e‖Āp q ‖τs Φp(τs) + Φ̄pq (τs). (31)

Remark 2: If we set t′′ = t′ = 0, then (30) becomes

Ek+1 ≤ α0
pq‖x∗k‖ + β0

pqEk + γpq δk

2Using Lemma 1 instead of the inequality that ‖M − I‖ ≤ ‖M ‖ + 1 for
all square matrices M as in [21, eq. (20)] ensures that αpq → 0 as τs → 0, a
property we will use in the comparison to [14] in Remark 4. However, for a
large enough τs , it is possible that the bound in Lemma 1 is worse.

with the constants

α0
pq := e‖Āp q ‖τs (e‖Ap +Bp Kp ‖τs ‖Ap +BpKp‖τs + ‖Āpq‖τs

β0
pq :=

N − 1
N

α0
pq +

1
N
e(‖Āp q ‖+‖Ap ‖)τs . (32)

Although this choice of t′ and t′′ considerably simplifies the
formula of the bound, it does not necessarily minimize Ek+1 .

B. Searching Stage

Suppose that the state is lost at a sampling time tk , that is,
(16) holds.

1) Reachable-Set Approximation: Let p = σ(tk ), and
consider an arbitrary t ∈ (tk , tk+1]. If σ(t) = p, then there is
no switch on (tk , t] due to (4); thus

‖x(t) − x∗k‖

=
∥
∥
∥
∥e

Ap (t−tk )x(tk ) +
∫ t

tk

eAp (t−τ )Dpd(τ)dτ − x∗k

∥
∥
∥
∥

≤ ‖eAp (t−tk ) − I‖‖x∗k‖ + ‖eAp (t−tk )‖‖x(tk ) − x∗k‖

+
(∫ t−tk

0
‖eAp sDp‖ds

)

δd

≤ Γ̄‖x∗k‖ + Λ̄D̂k + Φ̄δd

with the constants

Γ̄ := max
t∈[0,τs ], p∈P

‖eAp t − I‖

Λ̄ := max
t∈[0,τs ], p∈P

‖eAp t‖ ≥ 1

Φ̄ := max
t∈[0,τs ], p∈P

Φp(t) = max
p∈P

Φp(τs).

(33)

If σ(t) = q �= p, then there is exactly one switch on (tk , t] due
to (4); thus

‖x(t) − x∗k‖

=
∥
∥
∥
∥e

Aq (t−tk −t̄)x(tk + t̄) +
∫ t

tk + t̄
eAq (t−τ )Dqd(τ)dτ − x∗k

∥
∥
∥
∥

≤ ‖eAq (t−tk −t̄) − I‖‖x∗k‖ + ‖eAq (t−tk −t̄)‖‖x(tk + t̄) − x∗k‖

+
(∫ t−tk −t̄

0
‖eAq sDq‖ds

)

δd

≤ Γ̄‖x∗k‖ + Λ̄‖x(tk + t̄) − x∗k‖ + Φ̄δd

≤ Γ̄‖x∗k‖ + Λ̄(Γ̄‖x∗k‖ + Λ̄D̂k + Φ̄δd) + Φ̄δd

≤ (Λ̄ + 1)Γ̄‖x∗k‖ + Λ̄2D̂k + (Λ̄ + 1)Φ̄δd

where tk + t̄ denotes the unknown switching time. As Λ̄ ≥ 1,
the bound for the second case holds for both cases, that is,

‖x(t) − x∗k‖ ≤ ᾱ‖x∗k‖ + β̄D̂k + γ̄δd =: D̂k+1 (34)

for all t ∈ (tk , tk+1] with the constants

ᾱ := (Λ̄ + 1)Γ̄, β̄ := Λ̄2 , γ̄ := (Λ̄ + 1)Φ̄.
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From β̄ = Λ̄2 ≥ 1, it follows that D̂k+1 ≥ D̂k . In order to dom-
inate the growth rate of D̂k+1 , we set

Ek+1 = Ĝ(x∗k , (1 + εE )Ek , δk )

:= ᾱ‖x∗k‖ + (1 + εE )β̄Ek + γ̄δk (35)

with the arbitrary design parameter εE > 0.
2) Recovery in a Finite Time: Suppose that the state es-

capes at a sampling time tj (or it is lost at tj = t0 = 0) and
remains lost at tj+1 , . . . , tk−1 . Then, the disturbance estimate
satisfies that δk−1 = · · · = δj+1 = δj = (1 + εδ )δj−1 . From
the recursive formulas (34) and (35), it follows that

D̂k = β̄k−j D̂j +
β̄k−j − 1
β̄ − 1

(ᾱ‖x∗j‖ + γ̄δd)

Ek = β̂k−jEj +
β̂k−j − 1

β̂ − 1
(ᾱ‖x∗j‖ + γ̄δj ) (36)

with the constant3

β̂ := (1 + εE )β̄ > β̄.

Let cβ := (β̂ − 1)/(β̄ − 1), and consider the integer-valued
functions ηE , ηδ : R≥0 → Z≥0 defined by

ηE (s) :=

{
�log1+εE s�, s > 1

0, 0 ≤ s ≤ 1

ηδ (s) :=

{
�log1+εE (cβ s)�, s > 1

0, 0 ≤ s ≤ 1
(37)

where �·� : R → Z denotes the ceiling function, that is, �s� :=
min{m ∈ Z : m ≥ s}. Consider the integer

k′ := j + max{ηE (D̂j /Ej ), ηδ (δd/δj )}.
First, it holds that

β̂k
′−jEj ≥ β̄k

′−j (1 + εE )ηE (D̂ j /Ej )Ej ≥ β̄k
′−j D̂j .

Second, if δd ≤ δj , then

β̂k
′−j − 1

β̂ − 1
δj ≥ β̄k

′−j − 1
β̄ − 1

δd

due to β̂ > β̄ and k′ ≥ j; otherwise

β̂k
′−j − 1

β̂ − 1
δj >

β̄k
′−j − 1
β̄ − 1

β̄ − 1

β̂ − 1
(1 + εE )k

′−j δj

≥ β̄k
′−j − 1
β̄ − 1

β̄ − 1

β̂ − 1
(1 + εE )ηδ (δd /δj )δj ≥ β̄k

′−j − 1
β̄ − 1

δd.

Hence, Ek ′ ≥ D̂k ′ , that is, the state is recovered no later than
tk ′ . Denote by ti the sampling time of recovery. Then4

i− j ≤ max{ηE (D̂j /Ej ), ηδ (δd/δj )}. (38)

3From (33), it follows that β̄ = Λ̄2 ≥ 1, and Λ̄ = 1 only if all eigenvalues
of all Ap have nonpositive real parts. In the following analysis, we assume that
β̄ > 1 (so that the first formula in (36) is well defined), which can be achieved
by letting β̄ = max{Λ̄2 , 1 + ε} for an arbitrary ε > 0 if necessary. The special
case where β̄ = 1 can be treated using similar arguments and is omitted here
for brevity.

4The function ηδ is piecewise defined since if δd ≤ δj in (38)—which is pos-
sible as the escape only implies δd > δj−1 = δj /(1 + εδ )—then the second

However, δd being unknown implies that neither the sensor nor
the controller is able to predict how long it will take to recover
the state.

VI. STABILITY ANALYSIS

In this section, we show that the communication and control
strategy described in Section IV fulfills the claims of Theorem 1.
In Section VI-A, we formulate a Lyapunov-based bound with
exponential decay for stabilizing stages. Then, we derive its
exponential growth for searching stages in Section VI-B. In
Section VI-C, we calculate the maximum number of searching
stages and prove the ISS-like property in Theorem 1. A stronger
version of Corollary 2 is established in Section VI-D.

A. Stabilizing Stage

1) Sampling Interval With No Switch: Consider a sam-
pling interval (tk , tk+1] such that (19) holds, as in Section V-A1.
As Ap +BpKp is Hurwitz, for Sp in (22), there exist positive-
definite matrices Pp,Qp ∈ Rnx×nx such that

S	
p PpSp − Pp = −Qp < 0. (39)

Let λ(M) and λ(M) denote the largest and smallest eigenvalues
of a matrix M , respectively, and define

χp :=
2n2

x‖S	
p PpSp‖2

λ(Qp)
+ nx‖S	

p PpSp‖. (40)

Due to the inequality in (5), there exists a sufficiently small
constant φ1 > 0 such that (1 + φ1)Λ2

p ′ < N 2 for all p′ ∈ P .
Then, for each p′, there exists a sufficiently large constant ρp ′ >
0 such that

(N − 1)2

N 2

χp ′

ρp ′
+

(1 + φ1)Λ2
p ′

N 2 < 1. (41)

Consider a family of positive-definite functions Vp ′ : Rnx ×
R≥0 → R≥0 defined by

Vp ′(x,E) := x	Pp ′x+ ρp ′E
2 , p′ ∈ P. (42)

For the sampling interval (tk , tk+1] with no switch, the following
lemma provides a bound for Vσ (tk + 1 )(x∗k+1 , Ek+1) in terms of
Vσ (tk )(x∗k , Ek ) and the disturbance estimate δk .

Lemma 2: Consider a sampling interval (tk , tk+1] such that
(10) and (19) hold. Then

Vp(x∗k+1 , Ek+1) ≤ νVp(x∗k , Ek ) + νdδ
2
k (43)

term on the right-hand side of the second formula in (36) is larger than or equal
to that of the first formula for all k ≥ j . Similarly, the function ηE is piecewise
defined since if D̂0 = ‖x0‖ ≤ E0 in (57), then there is no searching stage at
the beginning.
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with the constants5

ν := max
p∈P

νp

νp := max
{

(N − 1)2

N 2

χp
ρp

+
(1 + φ1)Λ2

p

N 2 , 1 − λ(Qp)
2λ(Pp)

}

νd := max
p∈P

(

1 +
1
φ1

)

ρpΦp(τs)2 . (44)

Proof: See Appendix B. �
2) Sampling Interval With a Switch: Consider a sampling

interval (tk , tk+1] such that (23) holds, as in Section V-A2. Let
hpq be the largest singular value of Hpq in (29), that is,

hpq :=
√

λ(H	
pqHpq ).

Consider the functions Vp and Vq defined by (42). For the
sampling interval (tk , tk+1] with a switch, the following
lemma provides a bound for Vσ (tk + 1 )(x∗k+1 , Ek+1) in terms
of Vσ (tk )(x∗k , Ek ) and the disturbance estimate δk .

Lemma 3: Consider a sampling interval (tk , tk+1] such that
(10) and (23) hold. Then

Vq (x∗k+1 , Ek+1) ≤ μVp(x∗k , Ek ) + μdδ
2
k (45)

with the constants

μ := max
p,q∈P

μpq

μpq := max
{

2λ(Pq )h2
pq

λ(Pp)
+

(2 + φ2)α2
pq ρq

λ(Pp)

(N − 1)2

N 2

2nxλ(Pq )h2
pq

ρp
+

(2 + φ2)β2
pq ρq

ρp

}

μd := max
p,q∈P

(

1 +
2
φ2

)

ρqγ
2
pq (46)

where φ2 > 0 is an arbitrary design parameter.
Proof: See Appendix C. �
Remark 3: From the definitions of ν in (44) and the inequal-

ity (41), it follows that ν < 1. Meanwhile, if we set t′ = t′′ = 0
in (29), then hpq = 1 for all p, q ∈ P , and from the definition
of μ in (46), it follows that μ ≥ 1 > ν. While this may not hold
for general t′, t′′ ∈ [0, τs ], we are able to ensure

μ > ν (47)

by letting μ = 1 if all μpq < 1. Meanwhile, the relation between
μd and νd depends on the values of φ1 and φ2 . Since (45) holds
for all φ2 > 0, given an arbitrary φ1 , a sufficiently small φ2
(e.g., φ2 = φ1) can be selected so that

μd ≥ νd. (48)

(Alternatively, we can simply replace μd with max{μd, νd} if
necessary.) In the following analysis, we assume the inequalities
(47) and (48) hold. Consequently, the bound in (45) holds for all

5The denominator in the second term of the maximum in the definition of
νp in (44) is reduced to 1/nx of the corresponding term in [21, eq. (34)]. This
improvement is due to the more suitable inequalities (67) and (68) from linear
algebra. The first numerator in the first term of the maximum in the definition
of μpq in (46) is reduced to 1/nx of the corresponding term in [21, eq. (37)]
for the same reason.

sampling intervals in stabilizing stages, regardless of whether
there is a switch.

3) Combined Bound at Sampling Times: Combining the
bounds (43) and (45), we derive a condition on the ADT τa in (2)
that ensures a bound with exponential decay for Vσ (tk )(x∗k , Ek )
at sampling times tk in a stabilizing stage.

Lemma 4: Consider a sequence of consecutive sampling
times ti , . . . , tk−1 in a stabilizing stage. Suppose that the ADT
τa satisfies

τa >

(

1 +
lnμ

ln(1/ν)

)

τs. (49)

There exists a sufficiently small constant φ3 ∈ (0, 1) such that

Vσ (tk )(x∗k , Ek ) < ΘN0
(
θk−iVσ (ti )(x

∗
i , Ei) + Θdδ

2
i

)
(50)

with the constants N0 in (2) and

θ :=
(μ+ φ3(1 − ν)μd/νd)τs /τa

(ν + φ3(1 − ν))τs /τa −1 < 1

Θ :=
μ+ φ3(1 − ν)μd/νd
ν + φ3(1 − ν)

> 1

Θd :=
μ

φ3(1 − ν)
νd + μd. (51)

Proof: See Appendix D. �
Remark 4: In [14], the authors considered switched linear

systems with inputs (disturbances) and derived a lower bound
on the ADT that ensured a variant of ISS with exponential
decay.6 The lower bound (49) on the ADT τa in Lemma 4, in the
absence of sampling and quantization, is consistent with the one
in [14, Th. 2]. More specifically, the case without sampling and
quantization can be approximated by letting τs → 0 and N →
∞. Consequently,Sp → I + (Ap +BpKp)τs in (22),Hpq → I
in (29), and αpq , βpq → 0 in (31); thus

ν → 1 − min
p∈P

λ(Qp)
2λ(Pp)

, μ→ max
p,q∈P

2λ(Pq )
λ(Pp)

in (44) and (46) with large enough ρp for all p ∈ P . Moreover,
the first-order approximation in τs of the Lyapunov equation
(39) is given by

(
(Ap +BpKp)	Pp + Pp(Ap +BpKp)

)
τs = −Qp.

As the index set P is finite, from Assumption 2, it follows that
there exists a constant λ0 > 0 such that all Ap +BpKp + λ0I
are Hurwitz; thus, the (approximated) Lyapunov equation above
holds with Pp satisfying

(Ap +BpKp + λ0I)	Pp + Pp(Ap +BpKp + λ0I) = −I
and Qp = (2λ0Pp + I)τs . Then, (49) can be approximated by

τa >
ln(2μ∗)

minp∈P

(
λ(Pp)
2λ(Pp)

2λ0 +
1

2λ(Pp)

)

with μ∗ := maxp,q∈P, p �=q λ(Pq )/λ(Pp) which is in a similar
form as the lower bound

τa ≥ τ ∗a >
lnμ∗

2λ0

6More precisely, the result in [14] is stated in terms of “input-to-state eλt -
weighted, L∞-induced norm,” which ensures an exponential decay rate.



YANG AND LIBERZON: FEEDBACK STABILIZATION OF SWITCHED LINEAR SYSTEMS WITH UNKNOWN DISTURBANCES 2115

in [14] (see [5, p. 59, eq. (3.10)] for an explicit bound on τ ∗a ).
The additional terms result from the more complex Lyapunov
functions (42) we used due to the sampling and quantization. In
particular, the additional coefficients in the numerator and the
first term of the denominator are generated when completing the
squares. Meanwhile, we can made λ(Pp) arbitrarily large (and
thus the second term of the denominator arbitrarily small) by
selecting a sufficiently small λ0 .

B. Searching Stage

1) Recovery: Suppose that the state escapes at a sampling
time tj and is recovered at ti , as in Section V-B. Then, [tj , ti) is
a searching stage, while the sampling period [tj−1 , tj ) belongs
to a stabilizing stage. At tj , from (15) and (16), it follows that

Ej < ‖x(tj ) − x∗j‖ ≤ D̂j

with

D̂j = G(σ(tj−1), σ(tj ), x∗j−1 , Ej−1 , δd)

Ej = G(σ(tj−1), σ(tj ), x∗j−1 , Ej−1 , δj−1).

From formulas (21) and (28) of G, it follows that

D̂j /Ej < δd/δj−1 = (1 + εδ )δd/δj .

Let cε := max{1 + εδ , (β̂ − 1)/(β̄ − 1)} and define an
integer-valued function η : R≥0 → Z≥0 by

η(s) := max{ηE ((1 + εδ )s), ηδ (s)}

=

⎧
⎪⎨

⎪⎩

�log1+εE (cεs)�, s > 1

�log1+εE ((1 + εδ )s)�, (1 + εδ )−1 < s ≤ 1

0, 0 ≤ s ≤ (1 + εδ )−1 .
(52)

From (38), it follows that

i− j ≤ η(δd/δj ) (53)

which, combined with (36), implies that

Ei = β̂i−jEj +
β̂i−j − 1

β̂ − 1
(ᾱ‖x∗j‖ + γ̄δj )

< β̂i−j
(

ᾱ

β̂ − 1
‖x∗j‖ + Ej +

γ̄

β̂ − 1
δj

)

< β̂η (δd /δj )
(

ᾱ

β̂ − 1
‖x∗j‖ + Ej +

γ̄

β̂ − 1
δj

)

. (54)

For the searching stage [tj , ti), the following lemma pro-
vides a bound for Vσ (ti )(x

∗
i , Ei) at the recovery in terms of

Vσ (tj )(x∗j , Ej ) at the escape and δd, δj .
Lemma 5: Suppose that the state escapes at a sampling time

tj and is recovered at ti . Then

Vσ (ti )(x
∗
i , Ei) ≤ β̂2η (δd /δj )(ωVσ (tj )(x∗j , Ej ) + ωdδ

2
j

)
(55)

with

ω := max
p,q∈P

ωpq

ωpq := max
{

λ(Pq )
λ(Pp)

+
(2 + φ4)ᾱ2ρq

(β̂ − 1)2λ(Pp)
,

(2 + φ4)ρq
ρp

}

ωd := max
q∈P

(

1 +
2
φ4

)
γ̄2ρq

(β̂ − 1)2
(56)

where φ4 > 0 is an arbitrary design parameter.
Proof: See Appendix E. �
2) Initial Capture: The case where the state is lost at t0 = 0

and is recovered at ti0 for the first time can be analyzed in a
similar manner. From (38) with j = 0 and D̂0 = ‖x0‖, it follows
that

i0 ≤ ηE (‖x0‖/E0) + ηδ (δd/δ0) (57)

which, combined with (36) and x∗0 = 0, implies that

Ei0 < β̂ηE (‖x0 ‖/E0 )+ηδ (δd /δ0 )
(

E0 +
γ̄

β̂ − 1
δ0

)

.

For the searching stage [0, ti0 ), the following lemma provides
a bound for Vσ (ti 0 )(0, Ei0 ) at the first recovery in terms of
Vσ (0)(0, E0) = ρσ (0)E

2
0 at t = 0 and ‖x0‖, E0 , δd , δ0 .

Lemma 6: Suppose that the state is lost at t0 = 0 and is
recovered at ti0 . Then

Vσ (ti 0 )(0, Ei0 ) ≤ β̂2(ηE (‖x0 ‖/E0 )+ηδ (δd /δ0 ))

× (ω0Vσ (0)(0, E0) + ωdδ
2
0
)

(58)

with

ω0 := max
q∈P

(

1 +
φ4

2

)
ρq
ρσ (0)

≤ 1
2
ω

where φ4 is the design parameter in (56).
Proof: The proof is essentially the same as the one of

Lemma 5 and is omitted here. �

C. Exponential Decay

1) Number of Searching Stages: As explained in
Section IV-C, the closed-loop system alternates between a fi-
nite number of searching and stabilizing stages and eventu-
ally stays in a stabilizing stage. Let 0 = j0 ≤ i0 < j1 < i1 <
· · · < jNs

< iNs
be such that [tjm , tim ) denotes a searching

stage and [tim , tjm + 1 ) denotes a stabilizing stage for each
m ∈ {0, . . . , Ns}.7 As the estimate is enlarged by a factor of
1 + εδ every time the state escapes, it satisfies

δk = (1 + εδ )mδ0 ∀ k ∈ {jm , . . . , jm+1 − 1}.
Hence, Ns ≤ Nd(δd) with the integer-valued function Nd :
R≥0 → Z≥0 defined by

Nd(s) :=

{
�log1+εδ (s/δ0)�, s > δ0

0, 0 ≤ s ≤ δ0 .
(59)

7There is a searching stage at the beginning (i.e., i0 > 0) if and only if
‖x0‖ > E0 ; for the final stabilizing stage to be well defined, we let jN s +1 :=
∞ and tjN s + 1 := ∞.
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2) Global Bound at Sampling Times: Combining the
bound in Lemma 4 for stabilizing stages and the ones in
Lemmas 5 and 6 for searching stages, we establish a global
bound for Vσ (tk )(x∗k , Ek ) in stabilizing stages in terms of ρσ (0)
at t = 0 and ‖x0‖, E0 , δd , δ0 .

Lemma 7: Consider a sampling time tk such that (10) holds.
Then

Vσ (tk )(x∗k , Ek ) ≤ ΘN0 ΨNd (δd )ψ2Ld (δd )(θkψ2Lx (‖x0 ‖)

× (ω0ρσ (0)E
2
0 + ωdδ

2
0 ) + Cd(δd)δ2

0
)

with the functions Lx, Ld : R≥0 → Z≥0 and Cd : R≥0 → R>0
defined by8

Lx(s) := ηE (s/E0)

Ld(s) := ηδ (s/δ0) +
Nd (s)∑

l=1

η((1 + εδ )−ls/δ0)

Cd(s) := Θd + (Θd + ωd)
Nd (s)∑

l=1

ψld

and the constants

ψ := β̂θ−1/2 , Ψ := ωΘN0 , ψd := (1 + εδ )2/Ψ

where ηE and ηδ are defined by (37), η by (52), andNd by (59).
Proof: See Appendix F. �
Remark 5: The gain functions Nd,Lx, Ld, and Cd in

Lemma 7 are piecewise constant and satisfy that Lx(s) = 0 for
all 0 ≤ s ≤ E0 and thatNd(s) = Ld(s) = 0 for all 0 ≤ s ≤ δ0 .
A more conservative bound that depends continuously on ‖x0‖
and δd can be established by replacing them with continuous
strictly increasing gain functions. First, Nd(s) ≤ N̄d(s) for all
s ≥ 0 with N̄d ∈ K∞ defined by

N̄d(s) :=

{
1 + log1+εδ (s/δ0), s > δ0

s/δ0 , 0 ≤ s ≤ δ0 .

Second, Lx(s) ≤ L̄x(s) for all s ≥ 0 with L̄x ∈ K∞ defined by

L̄x(s) :=

{
1 + log1+εE (s/E0), s > E0

s/E0 , 0 ≤ s ≤ E0 .

Third, Ld(s) ≤ L̄d(s) for all s ≥ 0 with L̄d ∈ K∞ defined by

L̄d(s) := log1+εE (cβ s/δ0) + (N̄d(s) − 1) log1+εE (cεs/δ0)

+ log1+εE (s/δ0) + N̄d(s) + 1

− (N̄d(s)(N̄d(s) + 1)/2 − 1
)
log1+εE (1 + εδ )

for s > δ0 ; and

L̄d(s) := (2 + log1+εE cβ )s/δ0

for 0 ≤ s ≤ δ0 . Finally, Cd(s) ≤ C̄d(s) for all s ≥ 0 with the
continuous strictly increasing function C̄d : R≥0 → R>0 de-
fined by9

C̄d(s) := Θd +
1 − ψ

N̄d (s)
d

1 − ψd
ψd(Θd + ωd).

8The sum Lx (‖x0‖) + Ld (δd ) gives a bound for the total length of all
searching stages (in terms of sampling intervals).

9For C̄d to be well defined, the design parameter εδ should be selected so that
ψd �= 1. The special case where ψd = 1 can be treated via similar arguments
and is omitted here for brevity (cf., footnote 3).

3) Intersample Bound: First, consider an arbitrary t in a
stabilizing stage, that is, t ∈ [tk , tk+1] such that (10) holds.
Following similar arguments as in Section V-A2 with t′ = t′′ =
0, we estimate x(t) by comparing it with ck in (11), the center of
the hypercubic box containing x(tk ), via the triangle inequality.
If there is no switch on (tk , t], then (24) holds with t− tk in
place of t̄; thus

‖x(t) − ck‖ = ‖x(t) − x̂(tk )‖ ≤ D̂′
k+1(0, t− tk ).

Otherwise, there is exactly one switch on (tk , t] due to (4), and
(27) holds with t in place of t−k+1 (and t̄ ∈ (0, t− tk ] denoting
the unknown switching time); thus

‖x(t) − ck‖ ≤ ‖z(t) − ẑ(tk )‖ ≤ D̂′′
k+1(0, 0, t− tk )

where the first inequality follows from (26). Comparing the
corresponding coefficients in (24), (27), (31), and (32), we see
that in both cases

‖x(t) − ck‖ ≤ α0‖x∗k‖ + β0Ek + γδd

with

α0 := max
p,q∈P

α0
pq , β0 := max

p,q∈P
β0
pq , γ := max

p,q∈P
γpq . (60)

Applying the triangle inequality, we obtain

‖x(t)‖ ≤ ‖ck‖ + ‖x(t) − ck‖

≤ (α0 + 1)‖x∗k‖ +
(

β0 +
N − 1
N

)

Ek + γδd

where the second inequality follows from (11). Let

λPmin := min
p∈P

λ(Pp), λP := max
p∈P

λ(Pp)

ρmin := min
p∈P

ρp , ρ := max
p∈P

ρp (61)

and define

ξ :=
λPmin

ρmin

(β0 + 1 − 1/N)2

(α0 + 1)2

Ξ :=

√
(α0 + 1)2

λPmin
+

(β0 + 1 − 1/N)2

ρmin
.

From Young’s inequality with ξ, it follows that10

(

(α0 + 1)‖x∗k‖ +
(

β0 +
N − 1
N

)

Ek

)2

≤ (1 + ξ)(α0 + 1)2‖x∗k‖2 +
(

1 +
1
ξ

)(

β0 +
N − 1
N

)2

E2
k

= Ξ2(λPmin‖x∗k‖2 + ρminE
2
k )

≤ Ξ2Vσ (tk )(x∗k , Ek ).

Hence ‖x(t)‖ ≤ Ξ
√
Vσ (tk )(x∗k , Ek ) + γδd which, combined

with Lemma 7 and Remark 5, implies that

‖x(t)‖ ≤ ΞΘN0 /2ΨN̄d (δd )/2ψL̄d (δd )
(
θk/2ψL̄x (‖x0 ‖)

× (
√
ω0ρE0 +

√
ωdδ0) +

√
C̄d(δd)δ0

)
+ γδd

10For an ε > 0, Young’s inequality with ε states that ab ≤ εa2/2 + b2/(2ε)
for all a, b ∈ R. When ε = 1, the term “with ε” is omitted for brevity.
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where the last inequality follows partially from the property
√
a+ b ≤ √

a+
√
b ∀ a, b ≥ 0. (62)

Moreover, due to t ∈ [tk , tk+1] and θ < 1, it holds that

θk/2 ≤ θ−1/2θt/(2τs ) .

Second, consider an arbitrary t ∈ [tjm , tim ). From (34), it
follows that

‖x(t) − x∗jm ‖ ≤ D̂im ≤ Eim .

Following similar arguments as in the first case, we obtain

‖x(t)‖ ≤ ‖x∗jm ‖ + Eim

≤ (α0 + 1)‖x∗im ‖ +
(

β0 +
N − 1
N

)

Eim

≤ Ξ
√
Vσ (tim )(x∗im , Eim )

≤ ΞΘN0 /2ΨN̄d (δd )/2ψL̄d (δd )
(
θim /2ψL̄x (‖x0 ‖)

× (
√
ω0ρE0 +

√
ωdδ0) +

√
C̄d(δd)δ0

)
+ γδd

in which

θim /2 ≤ θt/(2τs ) < θ−1/2θt/(2τs ) .

Combining the results above, we obtain

‖x(t)‖ ≤ ΞΘN0 /2
√
θ

ΨN̄d (δd )/2ψL̄d (δd )
(
θt/(2τs )ψL̄x (‖x0 ‖)

× (
√
ω0ρE0 +

√
ωdδ0) +

√
C̄d(δd)δ0

)
+ γδd

(63)

for all t ≥ 0. From Young’s inequality with an arbitrary design
parameter φ > 0, it follows that

‖x(t)‖ ≤
(

1
2φ
ψ2L̄x (‖x0 ‖) +

φ

2
ΨN̄d (δd )ψ2L̄d (δd )

)
ΞΘN0 /2
√
θ

× θt/(2τs )(
√
ω0ρE0 +

√
ωdδ0)

+ ΞΘN0 /2ΨN̄d (δd )/2ψL̄d (δd )
√
C̄d(δd)δ0 + γδd

=
1
2φ

ΞΘN0 /2
√
θ

(
√
ω0ρE0 +

√
ωdδ0)ψ2L̄x (‖x0 ‖)θt/(2τs )

+
φ

2
ΞΘN0 /2
√
θ

(
√
ω0ρE0 +

√
ωdδ0)ΨN̄d (δd )ψ2L̄d (δd )

+ ΞΘN0 /2
√
C̄d(δd)δ0ΨN̄d (δd )/2ψL̄d (δd ) + γδd

for all t ≥ 0.
Remark 6: Here, Young’s inequality is applied to restate the

state bound (63) in the standard ISS form (6). However, be-
sides increasing the value of the state bound, it also has the
following consequence. If there is no disturbance and the sensor
and the controller know that, then δd = δ0 = 0; thus, (63) be-
comes ‖x(t)‖ ≤ ΞΘN0 /2

√
ω0ρ/θE0θ

t/(2τs )ψL̄x (‖x0 ‖) , that is,
it reduces to a similar form as the one for the disturbance-free
case [21, eq. (5)]. Meanwhile, (6) cannot be reduced to the

same form since h(δd) = φΞΘN0 /2
√
ω0ρ/θE0/2 > 0 even if

δd = δ0 = 0.
Hence, (6) holds with the exponential decay rate

λ := − ln θ
2τs

> 0 (64)

and the gain functions g, h : R≥0 → R>0 defined by

g(s) :=
1
2φ

ΞΘN0 /2
√
θ

(
√
ω0ρE0 +

√
ωdδ0)ψ2L̄x (s)

h(s) :=
φ

2
ΞΘN0 /2
√
θ

(
√
ω0ρE0 +

√
ωdδ0)ΨN̄d (s)ψ2L̄d (s)

+ ΞΘN0 /2
√
C̄d(s)δ0ΨN̄d (s)/2ψL̄d (s) + γs. (65)

D. Practical Stability

Following essentially the calculations from [21, Sec. 5.5] and
Sections V-A, VI-A3, and VI-C3, we establish a stronger version
of Corollary 2 with a smaller constant C.

Proposition 3 (Practical stability): Consider the switched
linear control system (1). Suppose that Assumptions 1–3 and
inequality (4) hold. Then, the communication and control strat-
egy in Theorem 1 yields the following property: provided that
the ADT τa satisfies (49), for each ε > 0, there exists a small
enough δ > 0 such that (9) holds for all initial states x0 ∈ Rnx

and disturbances d : R≥0 → Rnd with the constant

C = ΞΘN0 /2
√

Θdδ0 . (66)

Proof: See Appendix G. �
In particular, from

g(0) + h(0)

= ΞΘN0 /2
((

1
2φ

+
φ

2

)√
ω0ρE0 +

√
ωdδ0√

θ
+
√

Θdδ0

)

> ΞΘN0 /2
√

Θdδ0

it follows that the constant C in Proposition 3 is smaller than
the one in Corollary 2.

Proposition 3 also improves the practical stability result in
[23, Th. 1]. Moreover, from the proof, it will be clear that the
additional bound in [23, eq. (39)] on the ADT τa is not necessary
for establishing practical stability.

VII. SIMULATION STUDY

Our communication and control strategy is simulated with
the following data: P = {1, 2},

A1 :=
[

1 0
0 −1

]

, B1 =
[

1
0

]

, K1 = [−2 0 ]

A2 :=
[

0 1
−1 0

]

, B2 =
[

0
1

]

, K2 = [ 0 −1 ] .

and τs = 0.5, N = 5, τd = 1.05, τa = 7.55, and N0 = 5 so
that the basic Assumptions 1–3 hold. We set t′ = t′′ = 0 in
(28), εE = 0.8 in (17) and εδ = 1 in (59). The disturbance d
is kept 0 most of the time and turned on for two sampling in-
tervals with the constant value 10 when the state stays small
(more specifically, when ‖x‖ < 2 for ten consecutive sampling
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Fig. 2. Simulation example.

Fig. 3. With a constant estimate δk ≡ δ0 , the state x � 0 even if d ≡ 0.

Fig. 4. With a converging estimate δk → 0, the state x → 0 when
d → 0.

intervals). The initial estimate is δ0 = 2. Fig. 2 plots a typical
behavior of the first component x1 of the continuous state (in
orange solid line) and the corresponding component x̂1 of the
auxiliary state (in blue dash-dot line). Switching times are de-
noted by vertical gray dotted lines, and sampling times when the
disturbance is turned on by vertical yellow dashed lines; cap-
tures are marked by red circles, and escapes by green crosses.
Observe the searching stages at t = 0 (the state is lost due to
‖x0‖ > E0) and t = 20.5 and 31 (the state escapes due to the
disturbance), and the nonsmooth behavior of x when x̂ expe-
riences a jump. The value of τa is empirically selected to be
large enough to provide consistent convergence in simulations.
For this example, the theoretical lower bound (49) on the ADT
τa is approximately 28.13, which is rather conservative. How-
ever, our result is significantly less conservative than the one
in [21, Sec. 6] for the disturbance-free case, which generated
a theoretical bound of τa ≥ 85.5 while consistent convergence
was observed with τa = 7.55 as well. The improvement is due
to the more careful calculations in the stability analysis, such as
the ones explained by footnotes 2 and 5.

Fig. 3 exhibits the case where the unknown disturbance d is
transient or d ≡ 0, so that once the state is captured it will never
escape. Due to the nonzero initial estimate δ0 , the state x will
converge to the set A = {v ∈ Rnx : ‖v‖ ≤ h(0)} (visualized
by the shaded area) instead of the origin. Following essentially
the idea of “zooming-in” from [6], we are able to make the

state converge to the origin by halving the estimate δk every ten
sampling intervals, as shown in Fig. 4. We conjecture that, for
general disturbances, a similar modification to our communi-
cation and control strategy can be made to establish ISS with
respect to the origin.

VIII. CONCLUDING REMARKS

In this paper, we studied the feedback stabilization of a
switched linear system with a completely unknown disturbance
under data-rate constraints. A finite data transmission rate was
achieved via sampled and quantized state measurements. We ex-
tended the approach of reachable-set approximation and propa-
gation from [21] by introducing an estimate of the disturbance
bound to compensate for the disturbance. A communication and
control strategy was designed to achieve a variant of ISS with
exponential decay, based on a novel algorithm for adjusting the
estimate and recovering the state when it escapes the range of
quantization.

As discussed in Section VII, we intend to advance our result
via the “zooming-in” technique from [6] to establish ISS with
respect to the origin. However, reducing the estimate in stabi-
lizing stages can lead to an unbounded number of searching
stages, and further work is needed to establish convergence for
the communication and control strategy.

For a nonswitched linear control system, the minimum data
rate for feedback stabilization equals the topological entropy
[30] of the open-loop system [3], [4]. In the context of switched
systems, neither the topological entropy nor the minimum data
rate for feedback stabilization has been well established. (See
[31, Ch. 6] for some initial results on the topological entropy of
switched linear systems.) These two notions and their relation
could become intriguing topics for future research.

APPENDIX A
PROOF OF LEMMA 1

For all square matrices X and Y , we have

‖eX+Y − eX ‖

=
∥
∥
∥
∥

∞∑

m=0

1
m!

((X + Y )m −Xm )
∥
∥
∥
∥

=
∥
∥
∥
∥

∞∑

m=1

1
m!

m∑

i=1

(
m

i

)

Xm−iY i

∥
∥
∥
∥

=
∥
∥
∥
∥

∞∑

m=1

1
(m− 1)!

m−1∑

j=0

(
m− 1
j

)
Xm−1−j Y j+1

j + 1

∥
∥
∥
∥

≤
∞∑

m=1

1
(m− 1)!

m−1∑

j=0

(
m− 1
j

)

‖X‖m−1−j‖Y ‖j+1

= e‖X ‖+‖Y ‖‖Y ‖.

APPENDIX B
PROOF OF LEMMA 2

We first recall the following useful facts from linear algebra.
From the definition of ∞-norm, it follows that

‖v‖2 ≤ v	v, v	1 v2 ≤ n‖v1‖‖v2‖ (67)
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for all vectors v, v1 , v2 ∈ Rn . Also

λ(S) ≤ v	Sv
v	v

≤ λ(S) ∀ v ∈ Rn\{0} (68)

for all symmetric matrices S ∈ Rn×n (i.e., S	 = S).
At tk+1 , from (19), it follows that

Vp(x∗k+1 , Ek+1) = (x∗k+1)
	Ppx∗k+1 + ρpE

2
k+1

with x∗k+1 given by (22) and Ek+1 given by (21). First, (22)
can be rewritten as x∗k+1 = Spck = Sp(x∗k + Δk ) with Δk :=
ck − x∗k . Then

(x∗k+1)
	Ppx∗k+1

= (x∗k )
	S	

p PpSpx
∗
k + 2(x∗k )

	S	
p PpSpΔk + Δ	

k S
	
p PpSpΔk

≤ (x∗k )
	(Pp −Qp)x∗k

+ 2nx‖x∗k‖‖S	
p PpSp‖‖Δk‖ + nx‖S	

p PpSp‖‖Δk‖2

where the last inequality follows from (39) and (67). Moreover,
(67) and (68) imply that

(x∗k )
	Qpx

∗
k ≥ λ(Qp)(x∗k )

	x∗k ≥ λ(Qp)
λ(Pp)

(x∗k )
	Ppx∗k

(x∗k )
	Qpx

∗
k ≥ λ(Qp)(x∗k )

	x∗k ≥ λ(Qp)‖x∗k‖2 .

Combining the inequalities above and completing the square,
we obtain that

(x∗k+1)
	Ppx∗k+1

≤
(

1 − λ(Qp)
2λ(Pp)

)

(x∗k )
	Ppx∗k −

1
2
λ(Qp)‖x∗k‖2

+ 2nx‖x∗k‖‖S	
p PpSp‖‖Δk‖ + nx‖S	

p PpSp‖‖Δk‖2

≤
(

1 − λ(Qp)
2λ(Pp)

)

(x∗k )
	Ppx∗k + χp‖Δk‖2

−
(√

1
2
λ(Qp)‖x∗k‖ −

√
2nx‖S	

p PpSp‖√
λ(Qp)

‖Δk‖
)2

≤
(

1 − λ(Qp)
2λ(Pp)

)

(x∗k )
	Ppx∗k +

(N − 1)2

N 2 χpE
2
k

where the last inequality follows partially from (11). Second,
from (21) and Young’s inequality with φ1 , it follows that

E2
k+1 =

(
Λp

N
Ek + Φp(τs)δk

)2

≤ (1 + φ1)Λ2
p

N 2 E2
k +

(

1 +
1
φ1

)

Φp(τs)2δ2
k .

Therefore

Vp(x∗k+1 , Ek+1)

≤
(

1 − λ(Qp)
2λ(Pp)

)

(x∗k )
	Ppx∗k +

(
(N − 1)2

N 2

χp
ρp

+
(1 + φ1)Λ2

p

N 2

)

ρpE
2
k +

(

1 +
1
φ1

)

ρpΦp(τs)2δ2
k

which in turn implies (43).

APPENDIX C
PROOF OF LEMMA 3

At tk+1 , from (23), it follows that

Vq (x∗k+1 , Ek+1) = (x∗k+1)
	Pqx∗k+1 + ρqE

2
k+1

with x∗k+1 given by (29) andEk+1 given by (28). First, (29) can
be rewritten as x∗k+1 = Hpqck = Hpq (x∗k + Δk ) with Δk =
ck − x∗k . Then

(x∗k+1)
	Pqx∗k+1

≤ λ(Pq )h2
pq (x

∗
k + Δk )	(x∗k + Δk )

≤ 2λ(Pq )h2
pq (x

∗
k )

	x∗k + 2nxλ(Pq )h2
pq‖Δk‖2

≤ 2λ(Pq )h2
pq

λ(Pp)
(x∗k )

	Ppx∗k +
(N − 1)2

N 2 2nxλ(Pq )h2
pqE

2
k

where the inequalities follows from (11), (67), (68), and Young’s
inequality. Second, from (30) and Young’s inequality with φ2 ,
it follows that

E2
k+1 ≤ (αpq‖x∗k‖ + βpqEk + γpq δk )2

≤ (2 + φ2)(α2
pq‖x∗k‖2 + β2

pqE
2
k ) +

(

1 +
2
φ2

)

γ2
pq δ

2
k

for every φ2 > 0, in which ‖x∗k‖2 ≤ (x∗k )
	x∗k ≤

(x∗k )
	Ppx∗k/λ(Pp) due to (67) and (68). Therefore

Vq (x∗k+1 , Ek+1)

≤
(

2λ(Pq )h2
pq

λ(Pp)
+

(2 + φ2)α2
pq ρq

λ(Pp)

)

(x∗k )
	Ppx∗k

+
(

(N − 1)2

N 2

2nxλ(Pq )h2
pq

ρp
+

(2 + φ2)β2
pq ρq

ρp

)

ρpE
2
k

+
(

1 +
2
φ2

)

ρqγ
2
pq δ

2
k

which in turn implies (45).

APPENDIX D
PROOF OF LEMMA 4

First, consider the function ζ : [0, 1) → R defined by

ζ(s) = 1 +
ln(μ+ s(1 − ν)μd/νd)
ln(1/(ν + s(1 − ν)))

.

From (47) and (48), it follows that Θ > 1 in (51), and that
ζ is continuous and increasing. Moreover, as ζ(0) = 1 +
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ln(μ)/ ln(1/ν) < τa/τs due to (49), there exists a sufficiently
small constant φ3 ∈ (0, 1) such that ζ(φ3) < τa/τs ; thus, θ < 1
in (51).

The remaining proof follows in principle from the arguments
in [17] and [32]. If there is an integer l ∈ {i, . . . , k − 1} such
that

Vσ (tl )(x
∗
l , El) >

1
φ3(1 − ν)

νdδ
2
l (69)

then (43) implies that

Vσ (tl+ 1 )(x∗l+1 , El+1) < (ν + φ3(1 − ν))Vσ (tl )(x
∗
l , El)

if σ(tl+1) = σ(tl), whereas (45) implies that

Vσ (tl+ 1 )(x∗l+1 , El+1) < (μ+ φ3(1 − ν)μd/νd)Vσ (tl )(x
∗
l , El)

if σ(tl+1) �= σ(tl). Hence, for two integers l′, l′′ such that i ≤
l′ < l′′ ≤ k and that (69) holds for all l ∈ {l′, . . . , l′′ − 1}, we
have

Vσ (tl ′′ )(x
∗
l ′′ , El ′′)

< (μ+ φ3(1 − ν)μd/νd)Nσ (tl ′′ ,tl ′ )

× (ν + φ3(1 − ν))l
′′−l ′−Nσ (tl ′′ ,tl ′ )Vσ (tl ′ )(x

∗
l ′ , El ′)

= (ν + φ3(1 − ν))l
′′−l ′ΘNσ (tl ′′ ,tl ′ )Vσ (tl ′ )(x

∗
l ′ , El ′),

< (ν + φ3(1 − ν))l
′′−l ′ΘN0 +(l ′′−l ′)τs /τa Vσ (tl ′ )(x

∗
l ′ , El ′)

= θl
′′−l ′ΘN0 Vσ (tl ′ )(x

∗
l ′ , El ′)

where Nσ (tl ′′ , tl ′) denotes the number of switches on (tl ′ , tl ′′ ],
and the last inequality follows from Θ > 1 and the ADT con-
dition (2). Therefore, if (69) holds for all l ∈ {i, . . . , k − 1},
then

Vσ (tk )(x∗k , Ek ) < θk−iΘN0 Vσ (ti )(x
∗
i , Ei).

Otherwise, for k′ := max
{
l ≤ k − 1 : Vσ (tl )(x

∗
l , El) ≤

νdδ
2
l /(φ3(1 − ν))

}
it holds that

Vσ (tk ′+ 1 )(x∗k ′+1 , Ek ′+1) ≤ μVσ (tk ′ )(x
∗
k ′ , Ek ′) + μdδ

2
k ′

≤ μ

φ3(1 − ν)
νdδ

2
k ′ + μdδ

2
k ′ = Θdδ

2
k ′

(see also Remark 3); thus

Vσ (tk )(x∗k , Ek ) < θk−k
′−1ΘN0 Vσ (tk ′+ 1 )(x∗k ′+1 , Ek ′+1)

≤ ΘN0 Θdδ
2
k ′

as (69) holds for all l ∈ {k′ + 1, . . . , k − 1}. The proof of
Lemma 4 is completed by combining the bounds for the two
cases and noticing that δl = δi for all l ∈ {i, . . . , k − 1}.

APPENDIX E
PROOF OF LEMMA 5

Let p, q ∈ P denote the active modes at sampling times tj , ti ,
respectively. At the sampling time ti of recovery, we have

Vq (x∗i , Ei) = (x∗i )
	Pqx∗i + ρqE

2
i

withx∗i = x∗j andEi bounded by (54). First, from (68), it follows
that

(x∗i )
	Pqx∗i ≤

λ(Pq )
λ(Pp)

(x∗j )
	Ppx∗j .

Second, following (54) and Young’s inequality with φ4 , we
obtain

E2
i ≤ β̂2η (δd /δj )

(
ᾱ

β̂ − 1
‖x∗j‖ + Ej +

γ̄

β̂ − 1
δj

)2

≤ β̂2η (δd /δj )
(

(2 + φ4)
(

ᾱ2

(β̂ − 1)2
‖x∗j‖2 + E2

j

)

+
(

1 +
2
φ4

)
γ̄2

(β̂ − 1)2
δ2
j

)

for every φ4 > 0, in which ‖x∗j‖2 ≤ (x∗j )
	x∗j ≤

(x∗j )
	Ppx∗j /λ(Pp) due to (67) and (68). Therefore

Vq (x∗i , Ei)

≤ β̂2η (δd /δj )
((

λ(Pq )
λ(Pp)

+
(2 + φ4)ᾱ2ρq

(β̂ − 1)2λ(Pp)

)

(x∗j )
	Ppx∗j

+
(2 + φ4)ρq

ρp
ρpE

2
k +

(

1 +
2
φ4

)
γ̄2ρq

(β̂ − 1)2
δ2
j

)

which, in turn, implies (55).

APPENDIX F
PROOF OF LEMMA 7

Let [tim , tjm + 1 ) denote the stabilizing stage containing tk ,
that is, im ≤ k ≤ jm+1 − 1. Substituting (50) with i = im and
k = jm+1 into (55) with j = jm+1 and i = im+1 , we obtain

Vσ (tim + 1 )(x∗im + 1
, Eim + 1 )

≤ β̂2η (δd /δjm + 1 )(ωVσ (tjm + 1 )(x∗jm + 1
, Ejm + 1 ) + ωdδ

2
jm + 1

)

< β̂2η (δd /δim + 1 )(ωΘN0
(
θjm + 1 −im Vσ (tim )(x∗im , Eim )

+ Θd(1 + εδ )2mδ2
0
)

+ ωd(1 + εδ )2(m+1)δ2
0
)

= Ψβ̂2η (δd /δim + 1 )(θjm + 1 −im Vσ (tim )(x∗im , Eim )

+ (Θd + ψdωd)(1 + εδ )2mδ2
0
)

in which θjm + 1 −im ≤ θim + 1 −im θ−η (δd /δjm + 1 ) due to (53) and
θ < 1. Hence

Vσ (tim + 1 )(x∗im + 1
, Eim + 1 )

< Ψβ̂2η (δd /δim + 1 )(θim + 1 −im θ−η (δd /δjm )Vσ (tim )(x∗im , Eim

)

+ (Θd + ψdωd)(1 + εδ )2mδ2
0
)

≤ Ψψ2η (δd /δim + 1 )(θim + 1 −im Vσ (tim )(x∗im , Eim )

+ (Θd + ψdωd)(1 + εδ )2mδ2
0
)
.
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Based on this recursive bound, it is straightforward to derive

Vσ (tim )(x∗im , Eim )

< Ψψ2η (δd /δim )(θim −im −1 Ψψ2η (δd /δim −1 )(θim −1 −im −2

× Vσ (tim −2 )(x∗im −2
, Eim −2 ) + (Θd + ψdωd)

× (1 + εδ )2(m−2)δ2
0
)

+ (Θd + ψdωd)(1 + εδ )2(m−1)δ2
0
)

≤ Ψ2ψ2(η (δd /δim )+η (δd /δim −1 ))

× (θim −im −2 Vσ (tim −2 )(x∗im −2
, Eim −2 )

+ (Θd + ψdωd)(1 + ψd)(1 + εδ )2(m−2)δ2
0
)

< · · ·
< Ψmψ2

∑m
l= 1 η (δd /δi l )

(
θim −i0 Vσ (ti 0 )(0, Ei0 )

+ (Θd + ψdωd)(1 + ψd + · · · + ψm−1
d )δ2

0
)
,

< Ψmψ2
∑m

l= 1 η (δd /δi l )

(

θim −i0 Vσ (ti 0 )(0, Ei0 )

+ (Θd + ψdωd)δ2
0

m−1∑

l=0

ψld

)

which, combined with (57) and (58), implies that

Vσ (tim )(x∗im , Eim )

≤ Ψmψ2
∑m

l= 1 η (δd /δi l )

(

θim −i0 β̂2(ηE (‖x0 ‖/E0 )+ηδ (δd /δ0 ))

× (ω0Vσ (0)(0, E0) + ωdδ
2
0
)

+ (Θd + ψdωd)δ2
0

m−1∑

l=0

ψld

)

≤ Ψmψ2(ηδ (δd /δ0 )+
∑m

l= 1 η (δd /δi l ))

(

θim ψ2ηE (‖x0 ‖/E0 )

× (ω0ρσ (0)E
2
0 + ωdδ

2
0 ) + (Θd + ψdωd)δ2

0

m−1∑

l=0

ψld

)

.

Finally, substituting the previous bound into (50) with i = im ,
we obtain

Vσ (tk )(x∗k , Ek )

< ΘN0
(
θk−im Vσ (tim )(x∗im , Eim ) + Θdδ

2
im

)

< ΘN0

(
θk−im Ψmψ2(ηδ (δd /δ0 )+

∑m
l= 1 η (δd /δi l ))

(

θim

× ψ2ηE (‖x0 ‖/E0 )(ω0ρσ (0)E
2
0 + ωdδ

2
0 )

+ (Θd + ψdωd)δ2
0

m−1∑

l=0

ψld

)

+ Θd(1 + εδ )2mδ2
0

)

≤ ΘN0 Ψmψ2(ηδ (δd /δ0 )+
∑m

l= 1 η (δd /δi l ))

×
(

θkψ2ηE (‖x0 ‖/E0 )(ω0ρσ (0)E
2
0 + ωdδ

2
0 )

+

(

Θd

m∑

l=0

ψld + ωd

m∑

l=1

ψld

)

δ2
0

)

.

The proof of Lemma 7 is completed by replacing m with its
upper bound Nd(δd).

APPENDIX G
PROOF OF PROPOSITION 3

First, suppose ‖x0‖ ≤ δ ≤ E0 and δd ≤ δ ≤ δ0 . Then, the
system is always in the stabilizing stage, and the estimate of the
disturbance bound is always δ0 . Suppose also that there is an
integer k1 ≥ 1 such that ck = 0 (i.e., the state x(tk ) is inside
the central hypercubic box) for all k ≤ k1 − 1. Then, similar
arguments as in Sections V-A1 and V-A2 show that u ≡ 0 on
[0, tk0 ) and x∗k = 0 for all k ∈ {0, . . . , k1}; thus

Ek+1 ≥ Λmin

N
Ek ∀ k ∈ {0, . . . , k1 − 1} (70)

with Λmin := minp∈P Λp due to (21) and (28).
Second, following similar analysis on state bounds when u ≡

0 as in Section V-B, for each k ≤ k1 , we have

‖x(t)‖ ≤ β̄k‖x0‖ +
β̄k − 1
β̄ − 1

γ̄δd ∀ t ≤ tk . (71)

Third, following similar arguments as in Section VI-C3, for
each k ≥ k1 , we have

‖x(t)‖ ≤ Ξ
√
Vσ (tk )(x∗k , Ek ) + γδd ∀ t ∈ [tk , tk+1]

which, combined with (50) for i = 0 and (62), implies that

‖x(t)‖ ≤ ΞΘN0 /2(θk1
√
ρE0 +

√
Θdδ0) + γδd ∀ t ≥ tk1

(72)
with ρ in (61).

Finally, the proof of Lemma 3 is completed via the following
three steps. First, given an arbitrary ε > 0, from (66) and (72),
it follows that if ΞΘN0 /2θk1

√
ρE0 + γδd ≤ ε then ‖x(t)‖ ≤

ε+ C for all t ≥ tk1 . Second, taking E0 as fixed, calculate a
sufficiently large k1 such that ΞΘN0 /2θk1

√
ρE0 ≤ ε/2. Third,

calculate a sufficiently small δ such that γδ ≤ ε/2 and
(

β̄k1 +
β̄k1 − 1
β̄ − 1

γ̄

)

δ ≤ ε

which, combined with (71), implies that ‖x(t)‖ ≤ ε for all t ≤
tk1 ; and that δ ≤ δ0 and

(

β̄k1 −1 +
β̄k1 −1 − 1
β̄ − 1

γ̄

)

δ ≤
(

Λmin

N

)k1 −1
E0

N

which, combined with (70) and (71), implies that ck = 0 for all
k ≤ k1 − 1 (and that the systems is always in the stabilizing
stage), making the analysis above valid.
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