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ABSTRACT
This paper studies exponential stability of linear systems

with slow and fast time variation and switching. We use

averaging to eliminate the fast dynamics and only retain

the slow dynamics. We then use a recent stability criterion

for slowly time-varying and switched systems, combined

with perturbation analysis, to prove stability of the original

system. The analysis involves working with an impulsive

system in new coordinates, which enables us to treat a more

general class of systems compared to previous work.

CCS CONCEPTS
•Mathematics of computing→ Ordinary differential
equations; • Computing methodologies → Computa-
tional control theory.
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1 INTRODUCTION
In this paper, we study stability of a class of linear time-

varying systems of the form

¤𝑥 = 𝐹 (𝑡, 𝑡/𝜀)𝑥 (1)
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where 𝑥 ∈ R𝑛 is the state, and 𝐹 : [0,∞) × [0,∞) → R𝑛×𝑛 is

periodic in its second argument, i.e., 𝐹 (𝑡, ·) is periodic with a

period𝑇 , for each 𝑡 ≥ 0. We allow 𝐹 to be discontinuous, and

will soon impose some further assumptions on the structure

of the function 𝐹 . Here, 𝜀 is a small positive number, which

is introduced in order to represent fast variation of 𝐹 in its

second argument. Periodicity of 𝐹 allows us to define an

averaged version of (1): an average system given by

¤𝑥 = 𝐴(𝑡)𝑥 (2)

where

𝐴(𝑡) :=
1

𝑇

∫ 𝑇

0

𝐹 (𝑡, 𝑠)𝑑𝑠. (3)

Regarding stability of the time-varying linear system (2), it

is well-known (see, e.g., [8, Example 4.22]) that the following

assumption is not a sufficient condition.

Assumption 1. The matrices 𝐴(𝑡) are uniformly Hurwitz,
i.e., ∃𝜅 > 0 such that the real parts of their eigenvalues satisfy

Re 𝜆𝑖 (𝐴(𝑡)) ≤ −𝜅 ∀ 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

As amatter of fact, it is also well-known that Assumption 1

can be made sufficient by imposing additional assumptions

on the system (2). One of them is slow variation of 𝐴(𝑡)
with respect to time, as appearing in the classical textbooks

such as [7, Section 3.4] and [8, Section 9.6]. In these classical

results, the way to quantify slowness is to place some type

of upper bound on the time derivative of 𝐴(·), and hence,

𝐴(·) should be continuously differentiable. This restriction

is relaxed in the recent work [5], in which total variation is

introduced as a new quantification of slow variation of 𝐴(·).
The total variation is the quantity obtained, loosely speaking,

by integrating the norm of the derivative of 𝐴(·) and adding,
at each discontinuous instant, the norm of the jump. It is

then shown in [5] that exponential stability of (2) is ensured

if the total variation is suitably small. The contribution of [5]

can also be regarded as an extension of well-known stability

criteria of switched systems, which are formulated in terms

of stability of (2) for individual modes and a slow-switching

condition, typically in terms of sufficiently large (average)

dwell time; see, e.g., [9] for an introduction to this class of

systems, while the result of [5] goes beyond the basic ones

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-5972-8114
https://orcid.org/0000-0003-2383-0114
https://doi.org/10.1145/3641513.3650130
https://doi.org/10.1145/3641513.3650130
https://doi.org/10.1145/3641513.3650130
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641513.3650130&domain=pdf&date_stamp=2024-05-14


HSCC ’24, May 14–16, 2024, Hong Kong SAR, China Hyungbo Shim and Daniel Liberzon

appearing in [9, Section 3.2]. An extension of the approach

of [5] to nonlinear systems was presented in [4].

Regarding stability of (1), there are several results assert-

ing that it is inherited from the stability of its average system

(2) if the variation is sufficiently fast, i.e., if 𝜀 is sufficiently

small. In particular, the classical formulation (e.g., [8, Sec-

tion 10.4],[12]) assumes that the average system is time-

invariant, which is still the case (when the external input is

zero) in the more recent work [15] that considers switched

systems. This restriction is relaxed in the works [1, 11]. In

[11], a time-varying average system is considered under the

assumption that the equilibrium of interest is not affected

by the time-varying parameter, which is then relaxed in [1].

In contrast with these existing results, we want to explic-

itly handle a time-varying average system (2) with discontin-

uous 𝐴(·). This topic was pursued in our recent paper [10]

where, through a novel combination of the total variation

and averaging techniques reviewed above, exponential sta-

bility of (1) was established for small total variation of 𝐴(·)
and small 𝜀. However, in [10] there is a restriction that

𝐵(𝑡, 𝑠) := 𝐹 (𝑡, 𝑠) −𝐴(𝑡) (4)

is a function of 𝑠 only; in other words, the system considered

in [10] takes the form

¤𝑥 =
(
𝐴(𝑡) + 𝐵(𝑡/𝜀)

)
𝑥 . (5)

This restriction potentially limits applicability of the ap-

proach, as seen in a practical example that appears shortly.

The goal of this paper is to extend the method of [10] in or-

der to assert the same conclusion for themore general class of

systems in (1). The key to the result in [10] is to apply to the

system (1) a change of coordinates which brings it to the form

of (2) with a perturbation of size 𝑂 (𝜀). For the case of (5),
this coordinate transformation was 𝑥 = 𝑦 + 𝜀

∫ 𝑡/𝜀
0

𝐵(𝑠)𝑑𝑠 · 𝑦
and had the feature that 𝑦 is continuous in spite of the dis-

continuities of𝐴(·) and 𝐵(·). For the more general case of (1)

treated in this paper, we will consider a similar coordinate

transformation, but the new state variable 𝑦 will experience

jumps at the discontinuities of 𝐵 with respect to 𝑡 . Conse-

quently, in the 𝑦-coordinates the system will be an impulsive

one. We overcome this challenge by conducting a Lyapunov

analysis of this impulsive system. This generalization is the

main new contribution compared to [10].

Among other works that address slow and fast—and pos-

sibly discontinuous—time variation, it is relevant to men-

tion [13], [14], and [6, Section 7.4]. The tools employed in

these references and the spirit of the results are quite differ-

ent from ours. In particular, [13] proves robustness results,

proceeding from the assumption that the slow and the fast

dynamics are separately stable (before they are coupled),

while we develop explicit stability conditions by starting

with appropriate restrictions on the system data and the

slow variation. The paper [14] considered averaging for hy-

brid systems, but the averaging was of restricted kind in that

it was only applied to continuous dynamics. Corollary 7.28

in [6] addresses hybrid systems with slow average dwell time,

which are also covered as a special case by the approach

based on the total variation, as discussed in [5]. On the other

hand, the classes of systems considered in [6, 13] are much

larger, which suggests some potential generalizations of our

results.

1.1 Motivating example
Let us consider an inverted pendulum on a cart depicted in

Fig. 1. The system has a rigid tube on top of the cart (instead

of a rigid rod that is typically used), and the tube holds a

moving ball of mass𝑚 as seen in Fig. 1. The location of the

ball inside the tube is controlled by air (green arrow in the

figure) blown from the bottom of the tube, and we suppose

that the air lifts the ball linearly from the height 0.1 to 0.6 (as

seen in the first plot of Fig. 2), and when the ball reaches the

height 0.6, the air blowing stops so that the ball falls down

to the ground quickly. The falling down is so quick that we

model it as a discrete jump as in the first plot of Fig. 2. By

assuming that the weight of the tube is negligible, the system

can be modeled as a time-varying linear system:


¤𝑥
¥𝑥
¤𝜙
¥𝜙

 =

0 1 0 0

0 − (𝐼 (𝑡 )+𝑚𝐿2 (𝑡 ) )𝑏
𝑝 (𝑡 )

𝑚2𝑔𝐿2 (𝑡 )
𝑝 (𝑡 ) 0

0 0 0 1

0
−𝑚𝐿 (𝑡 )𝑏
𝑝 (𝑡 )

𝑚𝑔 (𝑀+𝑚)𝐿 (𝑡 )
𝑝 (𝑡 ) 0



𝑥

¤𝑥
𝜙
¤𝜙


+


0

(𝐼 (𝑡 )+𝑚𝐿2 (𝑡 ) )
𝑝

0

𝑚𝐿 (𝑡 )
𝑝


𝑢 =: 𝐴p (𝑡)𝑋 (𝑡) + 𝐵p (𝑡)𝑢 (𝑡)

where 𝑥 is the horizontal position of the cart, 𝜙 is the angle

of the pendulum as seen in Fig. 1,𝑢 is the force exerted on the

cart, 𝑝 (𝑡) := (𝑀 +𝑚)𝐼 (𝑡) +𝑀𝑚𝐿2 (𝑡), and the parameters are

mass of the cart 𝑀 = 0.5, mass of the ball𝑚 = 0.2, friction

coefficient of the cart 𝑏 = 0.1, and acceleration of gravity

𝑔 = 9.8. The inertia is given by 𝐼 (𝑡) = 𝑚𝐿2 (𝑡) where the

time-varying distance of the ball from the pivot is 𝐿(𝑡) =

0.1 + mod(𝑡, 0.5).1 The system (which is slightly modified

from [2]) is clearly a time-varying one, and the first plot of

Fig. 2 depicts 𝐼 (𝑡), which is not only time-varying but also

exhibits periodic jumps.

To stabilize the system, we design a feedback control

𝑢 (𝑡) = 𝐾 (𝑡)𝑋 (𝑡), where 𝑋 ∈ R4
denotes the state vector,

1mod(𝑡, 𝑎) denotes the remainder in the division of 𝑡 by 𝑎.
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Figure 1: An inverted pendulum on a cart that has a
tube instead of a rigid rod.

such that, for every 𝑡 ,

spectrum of 𝐴p (𝑡) + 𝐵p (𝑡)𝐾 (𝑡)
= {−8.5 ± 7.9𝑖,−4.8 ± 0.8𝑖}, (6)

in which the eigenvalues are taken from [2]. The strategy (6)

is to enforce the matrix𝐴p (𝑡) +𝐵p (𝑡)𝐾 (𝑡) to remain Hurwitz

for every 𝑡 , and this is possible because the pair (𝐴p (𝑡), 𝐵p (𝑡))
is controllable for all 𝑡 . While this is not enough for stability,

the closed-loop system becomes exponentially stable as long

as the total variation of 𝐴p (𝑡) + 𝐵p (𝑡)𝐾 (𝑡), determined by

the distance 𝐿(𝑡) of the ball from the pivot, is small [5]. This

is indeed the case for 𝐿(𝑡) given above, as can be seen from

the second plot of Fig. 2.

We now consider an unhappy situation where the power

amplifier is interfered by a power line disturbance which is

sinusoidal at 20Hz frequency, so that the actual gains applied

are not 𝐾𝑖 (𝑡) but 𝐾𝑖 (𝑡) + 20 sin(2𝜋 · 20𝑡), 𝑖 = 1, 2, 3, 4. (As an

example, 𝐾1 (𝑡) is plotted in the third plot of Fig. 2.) Then the

closed-loop system is written as

¤𝑋 =

(
𝐴p (𝑡) + 𝐵p (𝑡)𝐾 (𝑡) + 𝐵p (𝑡) [1 1 1 1]20 sin(2𝜋 · 20𝑡)

)
𝑋 .

(7)

While simulations show the closed-loop system is still

stable (see the fourth plot of Fig. 2), we are not aware of

an off-the-shelf theorem that ensures the stability for the

above system. The work of [10] does not apply because (4)

becomes 𝐵(𝑡, 𝑠) = 𝐵p (𝑡)20 sin(𝑠) for the case of (7), and 𝐵
depends on 𝑡 . We also note that 𝐵 has discontinuity in its first

argument as 𝐵p does. On the other hand, the tools developed

in this paper will assert that, if 20Hz is fast enough compared

to the system dynamics, then the closed-loop system (7) is

exponentially stable.

Figure 2: Simulation results: the second plot is for the
system ¤𝑋 = (𝐴p (𝑡) + 𝐵p (𝑡)𝐾 (𝑡))𝑋 without the distur-
bance, and the fourth plot is for the actual system (7)

with the disturbance.

2 SET-UP AND STATEMENT OF THE MAIN
RESULT

For convenience, we rewrite the system (1) as

¤𝑥 = (𝐴(𝑡) + 𝐵(𝑡, 𝑡/𝜀))𝑥 (8)

where 𝐴 and 𝐵 are defined in (3) and (4), respectively, and it

follows that 𝐵(𝑡, ·) is periodic with period 𝑇 and

1

𝑇

∫ 𝑇

0

𝐵(𝑡, 𝑠)𝑑𝑠 = 0, ∀𝑡 ≥ 0.

We impose the following assumptions.

Assumption 2. The function 𝐵 takes the separable form

𝐵(𝑡, 𝑠) = 𝐵s (𝑡)𝐵f (𝑠) (9)

with matrix-valued functions 𝐵s and 𝐵f of compatible dimen-
sions.

The above properties of 𝐵(𝑡, ·) imply that 𝐵f is periodic

with period 𝑇 and has zero average, i.e.,

1

𝑇

∫ 𝑇

0

𝐵f (𝑠)𝑑𝑠 = 0. (10)

Here the subscripts ‘s’ and ‘f’ stand for “slow" and “fast",

respectively. Assumption 2 is satisfied by the system (7) in
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the above example, where we have

𝐵(𝑡, 𝑠) = 𝐵p (𝑡) [1 1 1 1]20 sin(𝑠).
Assumption 2 is made for convenience and to make the devel-

opments more accessible. It can be lifted without too much

difficulty; the more general case will be reported elsewhere.

Assumption 3. 𝐴(·), 𝐵s (·), and 𝐵f (·) are piecewise continu-
ous, càdlàg2, and uniformly bounded.

For 0 ≤ 𝑡1 < 𝑡2, define the set of jump times of 𝐴(·) as3

𝐽𝐴 (𝑡1, 𝑡2) =
{
𝜏 ∈ (𝑡1, 𝑡2] : 𝐴(𝜏+) ≠ 𝐴(𝜏−)

}
.

Similarly, define the set of jump times of 𝐵s as

𝐽𝐵 (𝑡1, 𝑡2) = {𝜏 ∈ (𝑡1, 𝑡2] : 𝐵s (𝜏+) ≠ 𝐵s (𝜏−)
}
.

Piecewise continuity of 𝐴 and 𝐵𝑠 means, by definition, that

for each finite pair of times 𝑡1 < 𝑡2, both 𝐽𝐴 (𝑡1, 𝑡2) and

𝐽𝐵 (𝑡1, 𝑡2) are finite.

Assumption 4. Between two consecutive jump times in the
set 𝐽𝐴 (0,∞), 𝐴(·) is 𝐶1, and ¤𝐴(·) and ∥ ¤𝐴(·)∥ are Riemann
integrable. Similarly, between two consecutive jump times
of 𝐽𝐵 (0,∞), 𝐵s (·) is 𝐶1, and ¤𝐵s (·) is uniformly bounded on
[0,∞) \ 𝐽𝐵 (0,∞).

Regularity assumptions imposed on 𝐴(·) are the same as

in [5, Assumption 2], which is for ensuring that the results

from [5] can be applied. In particular, Assumptions 1 and 3

together imply that for each 𝜆 ∈ (0, 𝜅) there exists 𝑐 > 0

such that

∥𝑒𝐴(𝑡 )𝑠 ∥ ≤ 𝑐𝑒−𝜆𝑠 ∀ 𝑡 ≥ 0, 𝑠 ≥ 0 (11)

(see [8, Section 9.6, proof of Lemma 9.9]).

Next, we consider the total variation of 𝐴(·) as defined
in [5]. For an arbitrary time interval [𝑡1, 𝑡2], this is given by∫ 𝑡2

𝑡1

∥𝑑𝐴∥ :=

𝑚∑︁
𝑖=0

∫ 𝜏𝑖+1

𝜏𝑖

∥ ¤𝐴(𝑡)∥𝑑𝑡 +
𝑚∑︁
𝑖=1

∥𝐴(𝜏+𝑖 ) −𝐴(𝜏−𝑖 )∥

(12)

where 𝜏𝑖 , 𝑖 = 1, · · · ,𝑚 are the jump times in 𝐽𝐴 (𝑡1, 𝑡2), with
𝑡1 =: 𝜏0 < 𝜏1 < · · · < 𝜏𝑚 ≤ 𝜏𝑚+1 := 𝑡2, and 𝑚 being the

cardinality of 𝐽𝐴 (𝑡1, 𝑡2). We refer the reader to [5] for a more

intrinsic but equivalent definition of the total variation and

for further discussion. The next assumption places an upper

bound on the total variation.

Assumption 5. The total variation of𝐴(·) satisfies the bound∫ 𝑡2

𝑡1

∥𝑑𝐴∥ ≤ 𝜇𝐴 (𝑡2 − 𝑡1) + 𝛼𝐴 ∀ 𝑡2 > 𝑡1 ≥ 0 (13)

2
Continuous from the right, has limits from the left; this assumption is

made for notational convenience.

3𝐴(𝜏− ) denotes the left limit of 𝐴( ·) at 𝜏 , and the right limit 𝐴(𝜏+ ) equals
𝐴(𝜏 ) . We often use 𝜏+ instead of 𝜏 for convenience.

with some 𝛼𝐴 > 0 and

0 < 𝜇𝐴 <
𝛽1

2𝛽3

2

, (14)

where

𝛽1 :=
1

2𝐿
, 𝛽2 :=

𝑐2

2𝜆
, (15)

𝑐 and 𝜆 come from (11), and 𝐿 is such that

∥𝐴(𝑡)∥ ≤ 𝐿 ∀ 𝑡 ≥ 0 (16)

which exists by Assumption 3.

Our last assumption asks a linear growth in the accumu-

lation of jumps in 𝐵(·, 𝑠).

Assumption 6. There are 𝜇𝐵 > 0 and 𝛼𝐵 > 0 such that∑︁
𝜏∈ 𝐽𝐵 (𝑡1,𝑡2 )



𝐵𝑠 (𝜏+) − 𝐵𝑠 (𝜏−)

 ≤ 𝜇𝐵 (𝑡2 − 𝑡1) + 𝛼𝐵

for all 𝑡2 > 𝑡1 ≥ 0.

Our main result states that, under the above assumptions,

the system (1) is globally exponentially stable (in the classi-

cal sense, with respect to the equilibrium at the origin) for

sufficiently small 𝜀.

Theorem 1. Let Assumptions 1–6 hold. Then there exists
an 𝜀∗ > 0 such that the system (1) is globally exponentially
stable for all 𝜀 ∈ (0, 𝜀∗).

As will be clear from the proof given next, the exponential

stability is uniform over 𝜀 in the indicated range, in the sense

that there exist constants 𝛾 and
¯𝜃 (independent of 𝜀) such

that the solutions satisfy |𝑥 (𝑡) | ≤ 𝛾𝑒− ¯𝜃𝑡 |𝑥 (0) |.

3 PROOF OF THEOREM 1
The proof proceeds by, first, deriving an impulsive system

that equivalently describes the behavior of (1) in new coordi-

nates. Then, by observing that this system is a perturbation

of the average system (2), and after showing that the aver-

age system is exponentially stable, a perturbation analysis

verifies exponential stability of the original system.

3.1 Derivation of an impulsive system in
new coordinates

To approximate the original system (1) by the average sys-

tem (2), we consider the change of variables

𝑦 =

(
𝐼 − 𝜀𝐵s (𝑡)

∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠
)
𝑥 . (17)

The matrix in the parenthesis is invertible for all 𝑡 ≥ 0 as

long as 𝜀 ∈ (0, 𝜀∗
1
] where 𝜀∗

1
is chosen such that

𝜀∗
1
<

(
𝑇 sup

𝑡≥0

∥𝐵s (𝑡)∥ sup

0≤𝑠≤𝑇
∥𝐵f (𝑠)∥

)−1

(18)
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which is well-defined by Assumption 3. Invertibility of the

matrix in (17) then follows by virtue of𝑇 -periodicity of 𝐵f (·)
and (10). This change of variables is a variation on the one

considered for the more general nonlinear case in [1] and,

modulo time rescaling, in [8, Section 10.4], when specialized

to the linear system (1). A similar coordinate transformation

was also considered in [15]. The paper [3] considers a dif-

ferent coordinate change which transforms the system to a

time-delay one.

Differentiating the right-hand side of (17) with respect to

time around 𝑡 ∉ 𝐽𝐵 (0,∞), we easily obtain

𝐴(𝑡)𝑥 − 𝜀 ¤𝐵s (𝑡)
∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠 · 𝑥 − 𝜀𝐵s (𝑡)
∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠 · ¤𝑥 .

Replacing𝑥 and ¤𝑥 using (17), the system (1) in the𝑦-coordinates

has the form

¤𝑦 = 𝐴(𝑡)𝑦 + 𝜀𝐶 (𝑡, 𝜀)𝑦, 𝑡 ∉ 𝐽𝐵 (0,∞) (19)

where

𝐶 (𝑡, 𝜀) :=

(
𝐴(𝑡)𝐵s (𝑡)

∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠

− 𝐵s (𝑡)
∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠 · 𝐴(𝑡) − ¤𝐵s (𝑡)
∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠

− 𝐵s (𝑡)
∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠 · 𝐵s (𝑡)𝐵f (𝑡/𝜀)
)

×
(
𝐼 − 𝜀𝐵s (𝑡)

∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠
)−1

.

It is seen that 𝐶 (𝑡, 𝜀) is uniformly bounded for all 𝜀 ∈ (0, 𝜀∗
1
]

and for all 𝑡 ∉ 𝐽𝐵 (0,∞) because of Assumptions 3 and 4,

periodicity of 𝐵f (·), (10), and (18).

On the other hand, at the times 𝑡 ∈ 𝐽𝐵 (0,∞), the variable𝑦
has discontinuity

4
because of (17), in which 𝑥 is continuous

for all 𝑡 by (1). The size of the jump in 𝑦 can be computed

again by (17). That is, with 𝑥 (𝑡+) = 𝑥 (𝑡−) at 𝑡 ∈ 𝐽𝐵 (0,∞),
equation (17) implies that

𝑦 (𝑡+) =
(
𝐼 − 𝜀𝐵s (𝑡+)

∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠
)

×
(
𝐼 − 𝜀𝐵s (𝑡−)

∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠
)−1

𝑦 (𝑡−)

=: 𝐷 (𝑡, 𝜀)𝑦 (𝑡−).

(20)

Lemma 2. There are 𝛽∗ > 0 and 𝛽𝑜 > 0 such that

∥𝐷 (𝑡, 𝜀)∥ ≤ 𝛽∗ (21)

∥𝐷 (𝑡, 𝜀) − 𝐼 ∥ ≤ 𝜀𝛽𝑜Δ𝐵 (𝑡) (22)

for all 𝑡 ≥ 0 and all 𝜀 ∈ (0, 𝜀∗
1
], where

Δ𝐵 (𝑡) :=


𝐵s (𝑡−) − 𝐵s (𝑡+)

 · sup

0≤𝜏≤𝑇





∫ 𝜏

0

𝐵f (𝑠)𝑑𝑠




 .

4
This is where the analysis of this paper differs from that of [10].

Proof: Let

𝛽𝑜 := sup

𝑡≥0




(𝐼 − 𝜀𝐵s (𝑡−) ∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠
)−1




,
𝛽∗ := 𝛽𝑜 · sup

𝑡≥0




𝐼 − 𝜀𝐵s (𝑡+) ∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠



,

both of which are well-defined by (18) and periodicity of

𝐵f (·) with (10) under Assumption 3. Then, the claim follows

by noting that

∥𝐷 (𝑡, 𝜀) − 𝐼 ∥ =



𝜀 (𝐵s (𝑡−) − 𝐵s (𝑡+)) ∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠

×
(
𝐼 − 𝜀𝐵s (𝑡−)

∫ 𝑡/𝜀

0

𝐵f (𝑠)𝑑𝑠
)−1




. □

In summary, we have an impulsive system that is an equiv-

alent representation of (1) in the coordinates (17), given by

¤𝑦 = 𝐴(𝑡)𝑦 + 𝜀𝐶 (𝑡, 𝜀)𝑦 𝑡 ∉ 𝐽𝐵 (0,∞) (23)

𝑦+ = 𝐷 (𝑡, 𝜀)𝑦 𝑡 ∈ 𝐽𝐵 (0,∞). (24)

3.2 Stability of the average system
The system (23) can be regarded as a perturbation of the

average system (2). And, Theorem 3 from [5] establishes

that, under Assumptions 1, 3, 4, and 5, the system (2) is ex-

ponentially stable. Here, instead of reproducing the analysis

in [5], we borrow the main ingredients as follows. For each

𝑡 ≥ 0 we let 𝑃 (𝑡) be the unique symmetric positive definite

solution to the Lyapunov equation

𝑃 (𝑡)𝐴(𝑡) +𝐴𝑇 (𝑡)𝑃 (𝑡) = −𝐼 . (25)

Then, with 𝛽1 and 𝛽2 from (15), it can be shown that

𝛽1 ≤ ∥𝑃 (𝑡)∥ ≤ 𝛽2, ∀𝑡 ≥ 0, (26)

∥ ¤𝑃 (𝑡)∥ ≤ 2𝛽2

2
∥ ¤𝐴(𝑡)∥, ∀𝑡 ∉ 𝐽𝐴 (0,∞), (27)

∥𝑃 (𝑡+) − 𝑃 (𝑡−)∥ ≤ 2𝛽2

2
∥𝐴(𝑡+) −𝐴(𝑡−)∥,
∀𝑡 ∈ 𝐽𝐴 (0,∞) . (28)

Indeed, (26) follows from [8, Lemma 9.9], (27) from [8, proof

of Lemma 9.9] or [7, Theorem 3.4.11], and (28) from [5, Propo-

sition 1 and Lemma 3].

3.3 Stability of original system by
perturbation analysis

Consider the candidate Lyapunov function

𝑉 (𝑡, 𝑦) := 𝑦𝑇𝑃 (𝑡)𝑦 (29)
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whose time derivative along (23) around 𝑡 ∉ 𝐽 := 𝐽𝐴 (0,∞) ∪
𝐽𝐵 (0,∞) is given by

¤𝑉 = 𝑦𝑇 (𝑃𝐴 +𝐴𝑇𝑃)𝑦 + 2𝜀𝑦𝑇𝑃𝐶 (𝑡, 𝜀)𝑦 + 𝑦𝑇 ¤𝑃𝑦
≤ −|𝑦 |2 + 2𝜀𝑐 ∥𝑃 ∥|𝑦 |2 + ∥ ¤𝑃 ∥|𝑦 |2

≤ −
(
𝛽−1

2
− 2𝛽2𝛽

−1

1
𝜀𝑐 − 2𝛽2

2
𝛽−1

1
∥ ¤𝐴∥

)
𝑉

where

𝑐 := sup

𝑡∉𝐽 , 𝜀∈ (0,𝜀∗
1
]
∥𝐶 (𝑡, 𝜀)∥,

in which (26) and (27) are used. Let 𝜏1 and 𝜏2 be any consec-

utive elements in 𝐽 such that 𝜏2 > 𝜏1 and (𝜏1, 𝜏2) ∩ 𝐽 = ∅. By
the comparison lemma (e.g., [8, Lemma 3.4]) we obtain, with

𝑉 (𝑡, 𝑦 (𝑡)) =: 𝑉 (𝑡),

𝑉 (𝜏−
2
) ≤ exp

(
−
(
𝛽−1

2
− 2𝛽2𝛽

−1

1
𝜀𝑐
)
(𝜏2 − 𝜏1)

+ 2𝛽2

2
𝛽−1

1

∫ 𝜏−
2

𝜏+
1

∥ ¤𝐴(𝑠)∥𝑑𝑠
)
𝑉 (𝜏+

1
). (30)

Now, at a jump time 𝜏 ∈ 𝐽 , 𝑃 (𝑡) jumps if 𝐴(𝑡) jumps and

𝑦 (𝑡) jumps if 𝐵s (𝑡) jumps at 𝑡 = 𝜏 . To inspect the variation

of 𝑉 (𝑡) passing through the jumps, let us denote 𝑦+ = 𝑦 (𝜏+),
𝑦− = 𝑦 (𝜏−), 𝑃+ = 𝑃 (𝜏+), and 𝑃− = 𝑃 (𝜏−). Then,

𝑉 (𝜏+) −𝑉 (𝜏−) =
(
𝑦𝑇+𝑃

+𝑦+ − 𝑦𝑇−𝑃+𝑦−
)

+
(
𝑦𝑇−𝑃

+𝑦− − 𝑦𝑇−𝑃−𝑦−
)
. (31)

With 𝐷 := 𝐷 (𝜏, 𝜀), the first parenthesis can be spelled out,

using (20), Lemma 2 and (26), as

𝑦𝑇+𝑃
+𝑦+ − 𝑦𝑇−𝑃+𝑦−

=
(
𝑦𝑇+𝑃

+𝑦+ − 𝑦𝑇+𝑃+𝑦−
)
+
(
𝑦𝑇+𝑃

+𝑦− − 𝑦𝑇−𝑃+𝑦−
)

≤ |𝑃+𝑦+ | |𝑦+ − 𝑦− | + |𝑃+𝑦− | |𝑦+ − 𝑦− |
≤ ∥𝑃+∥∥𝐷 ∥|𝑦− | |𝑦+ − 𝑦− | + ∥𝑃+∥|𝑦− | |𝑦+ − 𝑦− |
≤ ∥𝑃+∥∥𝐷 ∥∥𝐷 − 𝐼 ∥|𝑦− |2 + ∥𝑃+∥∥𝐷 − 𝐼 ∥|𝑦− |2

≤ 𝛽2 (𝛽∗ + 1)𝜀𝛽𝑜Δ𝐵 (𝜏)𝛽−1

1
𝑉 (𝜏−).

The second parenthesis in (31) becomes, using (26) and (28),

𝑦𝑇− (𝑃+ − 𝑃−)𝑦− ≤ ∥𝑃+ − 𝑃− ∥|𝑦− |2

≤ 2𝛽2

2
∥𝐴(𝜏+) −𝐴(𝜏−)∥𝛽−1

1
𝑉 (𝜏−).

Hence, we have

𝑉 (𝜏+) −𝑉 (𝜏−) ≤
(
2𝛽2

2
𝛽−1

1
∥𝐴(𝜏+) −𝐴(𝜏−)∥

+ 𝜀 (𝛽∗ + 1)𝛽2𝛽𝑜𝛽
−1

1
Δ𝐵 (𝜏)

)
𝑉 (𝜏−)

and, using 1 + 𝑧 ≤ 𝑒𝑧 ,

𝑉 (𝜏+) ≤ exp

(
2𝛽2

2
𝛽−1

1
∥𝐴(𝜏+) −𝐴(𝜏−)∥

+ 𝜀 (𝛽∗ + 1)𝛽2𝛽𝑜𝛽
−1

1
Δ𝐵 (𝜏)

)
𝑉 (𝜏−) (32)

at the jump time 𝜏 ∈ 𝐽 .

Combining (30) and (32), it can be shown that, for any

𝑡2 > 𝑡1,

𝑉 (𝑡2) ≤ exp

(
− (𝛽−1

2
− 2𝛽2𝛽

−1

1
𝜀𝑐) (𝑡2 − 𝑡1)+

2𝛽2

2
𝛽−1

1

∫ 𝑡2

𝑡1

∥𝑑𝐴∥ + 𝜀 (𝛽∗ + 1)𝛽2𝛽𝑜𝛽
−1

1

∑︁
𝜏∈ 𝐽𝐵 (𝑡1,𝑡2 )

Δ𝐵 (𝜏)
)
𝑉 (𝑡1).

From this, Assumptions 5 and 6 along with the definition of

Δ𝐵 in Lemma 2 bring us to

𝑉 (𝑡2) ≤ 𝛾𝑒−𝜃 (𝑡2−𝑡1 )𝑉 (𝑡1)

where

𝛾 := 𝑒2𝛽2

2
𝛽−1

1
𝛼𝐴+𝜀 (𝛽∗+1)𝛽2𝛽𝑜𝛽

−1

1
𝛼𝐵𝜈 ,

𝜃 := 𝛽−1

2
− 2𝜀𝛽2𝛽

−1

1
𝑐

− 2𝛽2

2
𝛽−1

1
𝜇𝐴 − 𝜀 (𝛽∗ + 1)𝛽2𝛽𝑜𝛽

−1

1
𝜇𝐵𝜈

with 𝜈 := sup
0≤𝜏≤𝑇 ∥

∫ 𝜏

0
𝐵f (𝑠)𝑑𝑠 ∥. Since 𝛽−1

2
− 2𝛽2

2
𝛽−1

1
𝜇𝐴 > 0

by (14), take

𝜀∗ := min

{
𝜀∗

1
,

𝛽−1

2
− 2𝛽2

2
𝛽−1

1
𝜇𝐴

2𝛽2𝛽
−1

1
𝑐 + (𝛽∗ + 1)𝛽2𝛽𝑜𝛽

−1

1
𝜇𝐵

}
.

Then the system (23)–(24) is exponentially stable. In the 𝑥-

coordinates, the same conclusion then holds for the original

system (1) by (17) because the norm of the transformation

𝑥 ↔ 𝑦 is uniformly bounded.

4 CONCLUSIONS
We studied stability of a class of linear systems with slow and

fast time variation and switching. This was accomplished

by combining the averaging method as used in [1] with

the result from [5] on stability of linear systems with slow

time variation and switching. Compared with the recent

paper [10], we were able to handle a more general class of

linear systems, at the expense of more involved analysis of

an impulsive system arising from a coordinate transforma-

tion. Ongoing work is focused on extending this approach

to nonlinear systems. We also envision applications in do-

mains such as PWM (pulse-width-modulation) as well as

dose control in medical drug delivery (see [1]).

ACKNOWLEDGMENTS
Hyungbo Shim’s work was supported by the National Re-

search Foundation of Korea grant funded by the Korea gov-

ernment (MSIT) under Grant no. RS-2022-00165417. Daniel

Liberzon’s workwas supported by the National Science Foun-

dation grant CMMI-2106043 and by the Air Force Office of

Scientific Research MURI grant FA9550-23-1-0337.



Further Results on Stability of Linear Systems with Slow and Fast Time Variation and Switching HSCC ’24, May 14–16, 2024, Hong Kong SAR, China

REFERENCES
[1] Yong-Un Choi, Hyungbo Shim, and Jin H. Seo. 2005. A stability prop-

erty of nonlinear systems with inputs having slowly varying average

and its application to HIV problem. In Proceedings of the American
Control Conference. IEEE, New York, USA, 3025–3029.

[2] University of Michigan [n. d.]. Control Tutorials for MATLAB &
Simulink. University of Michigan. Retrieved March 2022 from

https://ctms.engin.umich.edu/CTMS

[3] Emilia Fridman and Jin Zhang. 2020. Averaging of linear systems with

almost periodic coefficients: a time-delay approach. Automatica 22

(2020), 109287.

[4] Xiaobin Gao, Daniel Liberzon, and Tamer Başar. 2018. On stability

of nonlinear slowly time-varying and switched systems. In 57th IEEE
Conference on Decision and Control (CDC). IEEE, New York, USA, 6458–

6463.

[5] Xiaobin Gao, Daniel Liberzon, Ji Liu, and Tamer Başar. 2018. Unified

stability criteria for slowly time-varying and switched linear systems.

Automatica 96 (2018), 110–120.
[6] Rafal Goebel, Ricardo Sanfelice, and Andrew R. Teel. 2012. Hybrid

Dynamical Systems. Princeton University Press, New Jersey, USA.

[7] Petros A Ioannou and Jing Sun. 1996. Robust Adaptive Control. Prentice
Hall, Upper Saddle River, NJ.

[8] Hassan K Khalil. 2002. Nonlinear Systems (3rd ed.). Prentice Hall,

Upper Saddle River, USA.

[9] Daniel Liberzon. 2003. Switching in Systems and Control. Birkhäuser,
Boston.

[10] Daniel Liberzon and Hyungbo Shim. 2022. Stability of linear systems

with slow and fast time variation and switching. In 2022 IEEE 61st
Conference on Decision and Control (CDC). IEEE, New York, USA, 674–

678.

[11] Joan Peuteman and Dirk Aeyels. 2002. Exponential stability of nonlin-

ear time-varying differential equations and partial averaging. Mathe-
matics of Control, Signals and Systems 15, 1 (2002), 42–70.

[12] Jan A Sanders, Ferdinand Verhulst, and James Murdock. 2007. Aver-
aging Methods in Nonlinear Dynamical Systems. Springer, New York,

USA.

[13] Andrew R. Teel, Luc Moreau, and Dragan Nešić. 2003. A unified

framework for input-to-state stability in systems with two time scales.

IEEE Trans. Automat. Control 48 (2003), 1526–1544.
[14] Andrew R. Teel and Dragan Nešić. 2010. Averaging theory for a class

of hybrid systems. Dynamics of Continuous, Discrete and Impulsive
Systems A: Mathematical Analysis 17 (2010), 829–851.

[15] Wei Wang and Dragan Nešić. 2010. Input-to-state stability and aver-

aging of linear fast switching systems. IEEE Trans. Automat. Control
55, 5 (2010), 1274–1279.

https://ctms.engin.umich.edu/CTMS

	Abstract
	1 Introduction
	1.1 Motivating example

	2 Set-up and statement of the main result
	3 Proof of Theorem 1
	3.1 Derivation of an impulsive system in new coordinates
	3.2 Stability of the average system
	3.3 Stability of original system by perturbation analysis

	4 Conclusions
	Acknowledgments
	References

