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a b s t r a c t

This paper presents new sufficient conditions for exponential stability of switched linear systems under
arbitrary switching, which involve the commutators (Lie brackets) among the given matrices generating
the switched system. The main novel feature of these stability criteria is that, unlike their earlier
counterparts, they are robust with respect to small perturbations of the system parameters. Two distinct
approaches are investigated. For discrete-time switched linear systems,we formulate a stability condition
in terms of an explicit upper bound on the norms of the Lie brackets. For continuous-time switched linear
systems, we develop two stability criteria which capture proximity of the associated matrix Lie algebra
to a solvable or a ‘‘solvable plus compact’’ Lie algebra, respectively.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

A switched system is described by a family of systems and a
rule that orchestrates the switching between them (see [1] for
an overview). In the large body of literature devoted to stability
analysis of switched systems, a specific research direction that has
received a lot of attention is to develop stability criteria that take
into account commutation relations among the constituent systems.
In the simplest case when these systems pairwise commute,
stability is preserved under arbitrary switching; this can be shown
either by directly studying the solutions (which is straightforward
for linear systems but takes more effort for nonlinear systems [2])
or by constructing a common Lyapunov function (which was done
for linear systems in [3], for nonlinear exponentially stable systems
in [4], and for general nonlinear asymptotically stable systems
in [5]). To build on this observation, one can consider the Lie algebra
generated by the constituent systems (a matrix Lie algebra in the
linear case or a Lie algebra of vector fields in general) and ask
whether the structure of this Lie algebra can be used to verify
stability of the switched system. Provided that the constituent
systems are linear and stable, it was shown that the switched
system remains stable under arbitrary switching if the Lie algebra
is nilpotent [6], solvable [7,8], or has a compact semisimple part
[9,10]; each of these classes of Lie algebras strictly contains the
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previous one, and the existence of a quadratic common Lyapunov
function is guaranteed for all of them. Moreover, it was shown
in [10] that no further generalization is possible based solely on
the properties of the Lie algebra. For nonlinear systems the story
is much less complete, but recently some results connecting Lie
brackets and stability of switched nonlinear systems (beyond the
already mentioned commuting case) were established in [11,12].
For other methods dealing with stability of switched systems, see,
e.g., the references in [1,13].

While mathematically quite elegant, the available stability
conditions based on commutation relations suffer fromone serious
drawback: they are not robust with respect to small perturbations
of the system data. For example, if we take two matrices that
commute with each other and perturb one of them slightly, they
will cease to commute. If we take a family of matrices generating a
nilpotent or solvable matrix Lie algebra and introduce arbitrarily
small errors in their entries, the new Lie algebra will no longer
possess any helpful structure (see [10, Section A.6] for a precise
result along these lines). For this reason, the results mentioned in
the previous paragraph have very limited applicability and serve
primarily academic interests. It is important to note that stability
itself, as well as the existence of a (quadratic) common Lyapunov
function, are properties that do have inherent robustness to small
perturbations; see [1, Section 2.2.4] for a detailed discussion of this
issue. Thus the indicated lack of robustness is a shortcoming of the
existing stability tests and is not an attribute of the problem itself.

To get a handle on robustness and obtain more satisfactory re-
sults, we must characterize ‘‘closeness’’ of a given collection of
systems to one with ‘‘nice’’ commutation relations. Rather than
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searching for nearby systems to which known results can be ap-
plied (which is in general not feasible), wewant to be able to verify
such closeness directly from the given data. This is the basic task
pursued here. A preliminary attempt to tackle this problem was
reported by one of the authors in the recent paper [14], but the
results were restricted to periodic switching. Approximate simul-
taneous triangularization, which is a robust version of the condi-
tion that the Lie algebra is solvable, is examined in another recent
work [15] (see also [16]). In the present paper we propose, for the
first time, conditions formulated directly in terms of Lie brackets
which guarantee stability under arbitrary switching and are robust
to small perturbations of system parameters. The robustness of the
new conditions basically comes from the fact that, unlike their ear-
lier counterparts, they are expressed by inequalities.

We develop two distinct approaches. In Section 2 we consider
discrete-time switched linear systems and present a stability
criterion which involves an upper bound on the norms of the
Lie brackets; the proof technique, which is quite direct, relies on
splittingmatrix products into sums and using a counting argument
(this is a different twist on the approach of [14]which used discrete
commutators to rearrange terms within a product). In Section 3
we study continuous-time switched linear systems and formulate
two stability criteria which utilize the structure of the associated
Lie algebra (provided by its Levi and Cartan decompositions); these
results directly extend the previouswork in [9,10] but have built-in
robustness.

2. Discrete time: bounds on commutators

Consider a finite collection of matrices A1, . . . , AN ∈ Rn×n. For
each matrix Ai, consider the corresponding discrete-time linear
system x(k+1) = Aix(k) in Rn. The discrete-time switched system
generated by these systems is the system

x(k + 1) = Aσ(k)x(k) (1)

where σ : {0, 1, . . .} → {1, . . . ,N} is an arbitrary switching
function.

We say that the switched system (1) is globally uniformly
exponentially stable (GUES) if there exist positive numbers c and
λ such that the solutions of (1) satisfy

|x(k)| ≤ ce−λk
|x(0)| ∀ k ≥ 0 (2)

for arbitrary choices of the initial condition x(0) and the switching
function σ(·), where | · | denotes the Euclidean norm (or any other
norm on Rn). This is the property of interest to us in this section.
The term ‘‘uniform’’ refers to the fact that the single bound (2)
covers all possible switching functions.

For a matrix W given by a product of Ai’s (a ‘‘word’’ in Ai’s), let
us denote by |W | the number of terms in this product (the length
of the word) and by ∥W∥ the induced norm of W with respect to
the chosen norm on Rn. This notation is convenient, as it lets us
restate the GUES property (2) equivalently as the requirement that
the inequality

∥W∥ ≤ ce−λ|W | (3)

should hold for allW .
Since constant switching functions are allowed, for the

switched system to be GUES it is necessary that each matrix
Ai be Schur stable. We henceforth assume that this is the case.
Consequently, there exists a positive integerm such that1

∥Am
i ∥ ≤ ρ < 1, i = 1, . . . ,N. (4)

1 This m is not uniquely defined; for example, we can replace m by 2m and
correspondingly replace ρ by ρ2 in (4). But the best result is obtained with the
smallestm, as can be seen from (9).
We also let

M := max{∥Ai∥ : 1 ≤ i ≤ N}. (5)

We define Eij to be the commutator – or Lie bracket – of Ai
and Aj:

Eij := AiAj − AjAi, 1 ≤ i, j ≤ N. (6)

The following result gives an upper bound on the induced norms
of Eij’s which guarantees the GUES property. This bound depends
on ρ, m, M , and N .

Proposition 1. Let the matrices Ai, i = 1, . . . ,N satisfy (4) for some
m ≥ 1. Let M be defined by (5). Let λ be an arbitrary positive number
satisfying

ρeλm < 1. (7)

Assume that the matrices Eij defined by (6) satisfy

∥Eij∥ ≤ ε ∀ i, j (8)

with ε small enough so that

ρeλm
+ m(N − 1)(m − 1)εMN(m−1)−1eλ(N(m−1)+1)

≤ 1. (9)

Then there exists a number c > 0 such that all products W of Ai’s
satisfy (3), and consequently the discrete-time switched system (1) is
GUES.

Proof. We will prove (3) by induction on the product length |W |.
For the induction basis, select a value for c such that (3) holds for
all productsW with |W | ≤ N(m− 1) + 1. This is possible because
the total number of products of length at most N(m − 1) + 1 is
finite, hence we just need to pick c large enough.

Now, suppose that |W | ≥ N(m−1)+2 and (3) has been proved
for all products of length less than |W |. Write W = LR, where the
length of the prefix L is |L| = N(m−1)+1 = (N −1)(m−1)+m.
Then there exists an index i such that L contains at least mAi’s.
Assume for concreteness that i = 1. We can then represent L as
L = Am

1 L1 + L2, where |L1| = (N −1)(m−1) and L2 is the sum of at
mostm(N − 1)(m− 1) terms of length N(m− 1), each containing
one E1i for some i andN(m−1)−1Ai’s. For example, forN = 2 and
m = 3, letting A := A1, B := A2, and E := E12 for better readability,
we have

ABABA = AABBA − AEBA = AABAB − AABE − AEBA
= AAABB − AAEB − AABE − AEBA

where, at each step, the underlined term is transformed using (6).
The bound m(N − 1)(m − 1) on the number of terms in L2 comes
from the fact that, e.g.,

L = Am−1
2 · · · Am−1

N Am
1

gives a worst-case scenario (the largest number of terms in L2).
We can now calculate, using (4), (5) and the triangle inequality,

that

∥W∥ = ∥Am
1 L1R + L2R∥ ≤ ρce−λ(|W |−m)

+m(N − 1)(m − 1)εMN(m−1)−1ce−λ(|W |−N(m−1)−1)

= ce−λ|W |


ρeλm

+ m(N − 1)(m − 1)

× εMN(m−1)−1eλ(N(m−1)+1)


(10)

where, to obtain the inequality on the first line, in the first
summand we used the induction hypothesis for ∥L1R∥ and in the
second just for ∥R∥ (plus the submultiplicativity of the norm).
Applying (9) immediately leads to (3), which in turn implies that
solutions of the switched system satisfy the GUES bound (1). �
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Note that Proposition 1 guarantees GUES (with some conver-
gence rate λ) if ρ +m(N −1)(m−1)εMN(m−1)−1 < 1. The novelty
of Proposition 1 is that stability of the switched system is deduced
fromproperties of the commutators, yet these commutators do not
need to vanish exactly. Checking the hypotheses requires only ele-
mentary matrix computations. On the other hand, generalization
to higher-order commutators does not appear to be straightfor-
ward.

Remark 1. The bound (8) is guaranteed to hold, for a given ε, if the
collection ofmatrices A1, . . . , AN is sufficiently close to a collection
of commuting matrices. A question that arises is whether the
converse is true, i.e., whether a collection ofmatrices satisfying (8),
for ε small, must be close to a collection of commuting matrices.
The answer is yes, provided that we work over a compact set of
matrices. More precisely, if we have a sequence of collections of
matrices {A1k, . . . , ANk, k = 1, 2, . . .} such that for each k the
commutators Eijk := AikAjk − AjkAik satisfy ∥Eijk∥ ≤ εk with εk → 0
as k → ∞, and if there exists anM such that ∥Aik∥ ≤ M for all i, k,
thenwe can extract a subsequencewhich converges to a collection
of commutingmatrices (in view of continuity of the Lie bracket and
the norm). �

Example 1. Consider the following matrices:

A1 =


0.1 −2
δ 0.1


, A2 =


0.2 −1.5
δ 0.2


where δ > 0 is a parameter. These matrices can be viewed as
perturbations of the commuting matrices


0.1 −2
0 0.1


and


0.2 −1.5
0 0.2


with the perturbation being given by δ. The same example was
studied in [14], and the approach developed in that paper showed
exponential stability under 1-periodic switching (A1A2A1A2 · · ·) for
δ up to about 0.352. (That bound is known to be conservative: it can
be checked that A1A2 remains Schur until δ ≈ 0.6, guaranteeing
stability under 1-periodic switching.) The current approach shows
GUES –which is a stronger property since the switching is arbitrary
– for δ up to about 0.16. For δ = 0.16, we havem = 2, ρ = 0.6556,
M = 2.0046, ε = 0.08, and (9) holds for λ close enough to 0 (the
left-hand side equals 0.9763 for λ = 0). As already mentioned in
the Introduction, for systemswith commutingmatrices a quadratic
common Lyapunov function can be used to show stability and also
characterize robustness to small perturbations. In this example, the
function xTPx with P :=


1 0
0 4.5


serves as a quadratic common

Lyapunov function for the two systems for δ up to about 0.46,
guaranteeing GUES. On the other hand, the argumentwe used here
to verify stability is direct from the given data.

The upper bound on ε given by (9) decreases as the total
number N of matrices in the collection grows, and does not take
into account the possibility that some of these matrices can be
linearly related or even be the same.We can obtain a refined result
if we suppose that for some L ≤ N the matrices AL+1, . . . , AN
can be represented as linear combinations of A1, . . . , AL. Our next
result generalizes Proposition 1 in this direction (it reduces to
Proposition 1 when L = N).

Proposition 2. Let A1, . . . , AL, L ≤ N be a subset of the given set of
matrices A1, . . . , AN such that

∥Am
i ∥ ≤ ρ < 1, i = 1, . . . , L

for some m ≥ 1, and such that each of the remaining matrices
AL+1, . . . , AN can be written as

Ai = αi1A1 + · · · + αiLAL (11)
with real coefficients αij, L + 1 ≤ i ≤ N, 1 ≤ j ≤ L satisfying

L
j=1

|αij| ≤ 1, i = L + 1, . . . ,N. (12)

Define M by

M := max{∥Ai∥ : 1 ≤ i ≤ L}.

Let λ be an arbitrary positive number fulfilling (7). Assume that the
commutators

Eij := AiAj − AjAi, 1 ≤ i, j ≤ L

satisfy (8) with ε small enough so that

ρeλm
+ m(L − 1)(m − 1)εML(m−1)−1eλ(L(m−1)+1)

≤ 1. (13)

Then there exists a number c > 0 such that all products W of
A1, . . . , AN satisfy (3), and consequently the discrete-time switched
system (1) is GUES.

Proof. By (11), each word W in Ai’s can be written as

W = D0(αi11A1 + · · · + αi1LAL)D1(αi21A1 + · · · + αi2LAL)

× · · · × (αiK 1A1 + · · · + αiK LAL)DK (14)

where K ≤ |W | and D0, . . . ,DK are (possibly empty) products of
A1, . . . , AL. This product can be expanded into a sum of at most LK
products of length |W | involving only A1, . . . , AL, each multiplied
by a product of appropriate coefficients αij:

W =


1≤j1,...,jK≤L

αi1j1αi2j2 · · · αiK jKD0Aj1 · · · AjKDK .

Thus the norm ofW satisfies, by the triangle inequality,

∥W∥ ≤


1≤j1,...,jK≤L

|αi1j1 ∥ αi2j2 | · · · |αiK jK |∥D0Aj1 · · · AjKDK∥. (15)

In view of (13), we can apply Proposition 1 with L instead of N to
each induced norm ∥D0Aj1 · · · AjKDK∥ appearing in (15), concluding
that this norm does not exceed ce−λ|W |. Pulling out this common
bound and then returning the sum of products of |αij|’s into the
original factored form similar to (14), we arrive at

∥W∥ ≤ (|αi11| + · · · + |αi1L|)(|αi21| + · · · + |αi2L|) × · · ·

× (|αiK 1| + · · · + |αiK L|)ce
−λ|W | (16)

and the result now follows from (12). �

The condition (13) is of the same form as (9) but has L in place
of N . It gives a sharper bound on ε which in principle allows us to
replace the set of all matrices by, for example, a subset of linearly
independent ones. On the other hand, we must also check the
condition (12) because otherwise the bound (16) in general grows
with |W |. So, to apply Proposition 2 we can look for the smallest
number L ofmatrices – not necessarily linearly independent – such
that all the other matrices can be expressed as linear combinations
of these Lmatrices with coefficients satisfying (12), i.e., lie in their
‘‘symmetric convex hull’’.

3. Continuous time: structure of the Lie algebra

In this section we consider a compact (with respect to the usual
topology in Rn×n) set of real n × n matrices {Ap : p ∈ P }, where
P is an index set, and the corresponding continuous-time linear
systems ẋ = Apx in Rn. These systems generate the continuous-
time switched system

ẋ(t) = Aσ(t)x(t) (17)

where σ : [0, ∞) → P is a piecewise constant switching signal.
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The GUES property for this switched system is the obvious
continuous-time counterpart of the GUES property studied in the
previous section. Namely, we say that the switched system (17) is
GUES if there exist positive numbers c andλ such that the solutions
of (17) satisfy

|x(t)| ≤ ce−λt
|x(0)| ∀ t ≥ 0 (18)

for arbitrary choices of the initial condition x(0) and the switching
signal σ(·). Since this is the property we are seeking, we assume
throughout that the matrices Ap, p ∈ P are all Hurwitz stable. (In
fact, each of the stability conditions developed below will imply
this.)

We will be working with the Lie algebra (over R) generated by
the matrices Ap, p ∈ P , which we denote as g:

g := {Ap : p ∈ P }LA. (19)

This is a linear vector space (of dimension at most n2) spanned
by the given matrices and all their iterated Lie brackets. We refer
the reader to the appendices in [10,1] for a summary of necessary
background on Lie algebras.

We know from [10] that the stability conditions derived in
that paper cannot be generalized based solely on the properties of
the Lie algebra. What this means is that any further results must
depend on the specific matrix representation of the Lie algebra.
And indeed, the conditions presented in this section are of this
kind, as they involve quantitative information about the matrices
Ap, p ∈ P (such as bounds on eigenvalues) beyond just requiring
that thematrices be Hurwitz. These conditionsmight not be robust
to arbitrary small perturbations of thematrices, but they are robust
to those perturbations that preserve (or at least do not drastically
change) the structure of the Lie algebra.

3.1. Levi decomposition

Let g = r ⊕ s be the Levi decomposition of g, where r is
the radical (the maximal solvable ideal) and s is a semisimple
subalgebra. For each p ∈ P , we can then write

Ap = Rp + Sp, Rp ∈ r, Sp ∈ s. (20)

The sets {Rp: p ∈ P } and {Sp: p ∈ P } are both compact as the
images of the compact set {Ap: p ∈ P } under the continuous
projections onto the subspaces forming the Levi decomposition.

Denote by Φ(t, 0), or simply Φ(t), the transition matrix for
the switched system, with initial time 0. It satisfies the matrix
differential equation

Φ̇(t) = Aσ(t)Φ(t) = (Rσ(t) + Sσ(t))Φ(t), Φ(0) = I. (21)

Lemma 1. The matrix Φ(t) from (21) can be represented as

Φ(t) = ΦS(t)ΦR(t) (22)

where

Φ̇S(t) = Sσ(t)ΦS(t), ΦS(0) = I (23)

and

Φ̇R(t) =

Φ−1

S (t)Rσ(t)ΦS(t)

ΦR(t) =: C(t)ΦR(t), ΦR(0) = I.

Proof. This decomposition is well-known [17] and easily verified:

d
dt


ΦS(t)ΦR(t)


= Sσ(t)ΦS(t)ΦR(t) + Rσ(t)ΦS(t)ΦR(t)

= (Sσ(t) + Rσ(t))ΦS(t)ΦR(t)
= Aσ(t)ΦS(t)ΦR(t). �
Let

λ̄R := max{Re λ : λ ∈ spec(Rp), p ∈ P } (24)

where spec(·) is the set of eigenvalues of a matrix. Also, let

λ∗

S := lim sup
t→∞

1
t
log ∥ΦS(t)∥ (25)

which is the characteristic exponent of the system (23). We then
have the following result.

Proposition 3. Let eachmatrix Ap bewritten as in (20) in accordance
with a Levi decomposition of the Lie algebra (19). Assume that

λ̄R + λ∗

S < 0 (26)

where λ̄R and λ∗

S are defined by (24) and (25), respectively. Then the
continuous-time switched system (17) is GUES.

Beforeweprove Proposition 3,wenote that the condition (26) is
difficult to verify because it involves estimating the characteristic
exponent λ∗

S of the switched system (23). We can obtain a more
useful stability condition by giving an upper bound on λ∗

S . As we
show next, one such upper bound is

λ̂S := max{∥Sp∥ : p ∈ P }. (27)

Corollary 1. Assume that

λ̄R + λ̂S < 0 (28)

where λ̄R and λ̂S are defined by (24) and (27), respectively. Then the
continuous-time switched system (17) is GUES.

Proof of Corollary 1. From (23) we have

ΦS(t) = eSσ(tk)(t−tk) · · · eSσ(t1)(t2−t1)eSσ(0)t1 (29)

where t1, . . . , tk are the discontinuities (switching times) of σ on
the interval (0, t). This yields the following (conservative) bound:

∥ΦS(t)∥ ≤ e∥Sσ(tk)∥(t−tk) · · · e∥Sσ(t1)∥(t2−t1)e∥Sσ(0)∥t1 .

In view of (27) we obtain ∥ΦS(t)∥ ≤ eλ̂S t . Comparing this with the
definition (25) of λ∗

S , we conclude that

λ∗

S ≤ λ̂S . (30)

Thus (28) implies (26) and the result follows from Proposition 3.
�

Proof of Proposition 3. We take advantage of Lemma 9.13 from
[18] which provides additional structure for the matrices Rp and
Sp (this structure has not been used in the previous works [9,10]).
That result says that in a suitable basis (over C), all matrices Rp ∈ r

take the form

Rp =



λp,1 · · · 0 ∗ · · · ∗ ∗ · · · ∗ · · ·

...
. . .

...
...

. . .
...

...
. . .

... · · ·

0 · · · λp,1 ∗ · · · ∗ ∗ · · · ∗ · · ·

0 · · · 0 λp,2 · · · 0 ∗ · · · ∗ · · ·

...
. . .

...
...

. . .
...

...
. . .

... · · ·

0 · · · 0 0 · · · λp,2 ∗ · · · ∗ · · ·

...
...

...
...

...
...

...
...

...
. . .


.

(31)

This structure is block-triangular, with each diagonal block being
a multiple of the identity matrix. Moreover, in the same basis, all
matrices Sp ∈ s take the form
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Sp =



∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗ · · ·

...
. . .

...
...

. . .
...

...
. . .

... · · ·

∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗ · · ·

0 · · · 0 ∗ · · · ∗ ∗ · · · ∗ · · ·

...
. . .

...
...

. . .
...

...
. . .

... · · ·

0 · · · 0 ∗ · · · ∗ ∗ · · · ∗ · · ·

...
...

...
...

...
...

...
...

...
. . .


. (32)

This means that if we denote by W the subspace spanned by
eigenvectors of Rp with eigenvalue λp,1, then s leaves this subspace
invariant (this is the main content of Lemma 9.13 in [18]). Passing
to the quotient space over W , the construction is repeated,
resulting in the indicated block-triangular structure (see [18] for
details).

Let Sp,1, Sp,2, . . . , Sp,k be the diagonal blocks in the decomposi-
tion (32) of Sp, and define Rp,i similarly using (31). Let the dimen-
sions of these blocks be n1, n2, . . . , nk, with n1 + · · · + nk = n.
For each i ∈ {1, . . . , k}, let λ∗

S,i be the characteristic exponent of
the corresponding ni-dimensional switched system ẋi = Sσ(t),ixi.
Also, let λ̄R,i := max{Re λp,i : p ∈ P }. Then we have the following
claims.

Claim 1. λ∗

S = maxi{λ∗

S,i}.
This follows from the block-triangular structure of Sp, by the same

reasoning as in [7,8] (the facts that here we have blocks instead
of scalars and that the corresponding switched systems are not
necessarily stable do not affect the argument).

Claim 2. For each i, the ni-dimensional switched system generated by
the matrices Ap,i := Rp,i + Sp,i has characteristic exponent no larger
than λ̄R,i + λ∗

S,i. In particular, it is GUES if λ̄R,i + λ∗

S,i < 0.
This follows from the fact that the matrices Rp,i are multiples of

the identity and hence commute with the Sp,i’s, which means that
we simply need to add the two individual characteristic exponents.
This fact can also be seen from Lemma 1 applied to each diagonal
block, noting that we have Rσ(t),i in place of C(t) because of the
commutativity.

Claim 3. The characteristic exponent of the overall switched system
is no larger than

max
i

{λ̄R,i + λ∗

S,i}. (33)

This again follows from the block-triangular structure and Claim 2
by the same arguments as in [7,8]. (Another way of proving this –
cf. [19] – is to rescale the spaces of the filtration, i.e., conjugate the
matrices Ap by thematriceswith εiIi×i as the diagonal blocks and zeros
elsewhere. Then for small ε the off-diagonal parts become small since
the set {Ap : p ∈ P } is compact.)

We can upper-bound (33) by

max
i

λ̄R,i + max
i

λ∗

S,i = λ̄R + λ∗

S

whereweused the definition (24) of λ̄R and Claim1. The result now
follows from Claim 3. �

Remark 2. Examining the proof of Proposition 3, we can also
obtain an ‘‘intermediate’’ sufficient condition for stability, sharper
than (28) but still more useful compared to (26). In the notation
of the above proof, let λ̂S,i := max{∥Sp,i∥ : p ∈ P }. We have
λ∗

S,i ≤ λ̂S,i, as is readily shown by the same reasoning that led
us to (30). This fact and Claim 3 in the above proof imply that the
following condition guarantees GUES of (17):

λ̄R,i + λ̂S,i < 0 ∀ i.
Note that in the definition of λ̂S,i we can actually use a different
induced norm for different i, which gives extra flexibility. �

Corollary 1 provides a robust version of the result from [7,8],
in the sense that g is allowed to have a semisimple part s if
the matrices in s have sufficiently small norm (compared to the
stabilitymargin of thematrices in the solvable part r). On the other
hand, it is also known from [9,10] that the switched system is
GUES if s is a compact Lie algebra. Note that neither of these two
conditions – the bound on the norm of thematrices Sp ∈ s given by
(27)–(28) and compactness of the Lie algebra s – implies the other.
Thus, we also want to develop another robust stability condition in
which closeness of s to a compact Lie algebra would play a role.

Let us first look at the special case in which s is compact. Then
ΦS(t) from (23) lives in the compact Lie group S = {eS : S ∈ s},
which implies that λ∗

S = 0 (see, e.g., [20, Theorem 6.4.6]). Note that
for each Ap = Rp + Sp, the eigenvalues of Ap are pairwise sums of
suitably ordered eigenvalues of Rp and Sp:

spec(Ap)

= {λi = µi + νi : µi ∈ spec(Rp), νi ∈ spec(Sp), i = 1, . . . , n}.

This is shown in the proof of Lemma 3 in [9], and also follows
from the earlier block-triangular decomposition (31), (32). The
eigenvalues of Sp have zero real parts, hence λ̄R is simply the largest
real part of the eigenvalues of Ap, p ∈ P . When the matrices Ap are
Hurwitz, the condition (26) is satisfied – even though (28) may be
false – and we recover the result of [9,10].

3.2. Cartan decomposition

In the general case, to better understand λ∗

S , we can go one step
further and consider a Cartan decomposition s = k ⊕ p. Here k is a
maximal compact subalgebra of s, p is its orthogonal complement
with respect to theKilling form, andwehave the relations [k, k] ∈ k,
[k, p] ∈ p, [p, p] ∈ k. For each p ∈ P , we can write

Sp = Kp + Pp, Kp ∈ k, Pp ∈ p. (34)

Consider the matrix ΦS in (23). The following result is analogous
to Lemma 1.

Lemma 2. The matrix ΦS(t) from (23) can be represented as

ΦS(t) = ΦK (t)ΦP(t) (35)

where

Φ̇K (t) = Kσ(t)ΦK (t), ΦK (0) = I (36)

and

Φ̇P(t) =

Φ−1

K (t)Pσ(t)ΦK (t)

ΦP(t) =: D(t)ΦP(t),

ΦP(0) = I. (37)

Let

λ̂P := max
e−KPpeK

 : K ∈ k, p ∈ P


(38)

which is well defined because k is compact and the set {Pp : p ∈ P }

is compact by the compactness of {Ap : p ∈ P }. We can now state
our next result.

Proposition 4. Let eachmatrix Ap bewritten as in (20) in accordance
with a Levi decomposition of the Lie algebra (19), and let each matrix
Sp be written as in (34) in accordance with a Cartan decomposition of
s. Assume that

λ̄R + λ̂P < 0 (39)

where λ̄R and λ̂P are defined by (24) and (38), respectively. Then the
continuous-time switched system (17) is GUES.
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Proof. Since ΦK (t) lives in the compact Lie group K = {eK : K ∈

k}, its norm is uniformly bounded. Thus the characteristic exponent
of the system (36) equals 0.

As for ΦP , we have

∥ΦP(t)∥ ≤ I +

 t

0
∥D(s)∥∥ΦP(s)∥ds

and hence (by the Bellman–Gronwall inequality), ∥ΦP(t)∥
≤ et max0≤s≤t ∥D(s)∥. The definition of D(t) in (37) yields the bound
∥ΦP(t)∥ ≤ eλ̂P t . We see that the characteristic exponent of the
system (37) is no larger than λ̂P . (We could have used a similar ar-
gument to establish Corollary 1.)

Combining the previous two conclusions and using (35), we
have λ∗

S ≤ λ̂P . The result now follows from Proposition 3. �

Proposition 4 can be considered as a refinement of Corollary 1
because it singles out thenoncompact part. Returning to the special
casewhen s is compact,wehave p = 0 and the condition (39) holds
if and only if the matrices Ap are Hurwitz. In general, Proposition 4
says that stability is preserved when noncompact perturbations
are introduced, as long as they are small compared to the real parts
of the eigenvalues of the matrices in the solvable part r. In contrast
with Corollary 1, the norms of the matrices in the compact part k

are not restricted in any way.

Remark 3. Well-known facts from the theory of Lie algebras can
be employed to compute the components r, s, k, and p which are
needed to apply the above results. The main tool is the Killing form
on g, which is the symmetric bilinear form K given by K(a, b) :=

tr(ada ◦ adb) for a, b ∈ g (in a given basis, this form is computed
directly from the commutation relations). Cartan’s 1st criterion says
that g is solvable if and only if its Killing form vanishes identically
on [g, g]. Cartan’s 2nd criterion says that g is semisimple if and
only if its Killing form is nondegenerate (meaning that if for some
g ∈ g we have K(g, a) = 0 ∀a ∈ g, then g must be 0). A
semisimple Lie algebra is compact if and only if its Killing form is
negative definite. To compute r and s in the Levi decomposition,
switch to a basis in which the Killing form K is diagonalized.
The subspace on which K is not identically zero corresponds to
s ⊕ (r mod n), where n is the maximal nilpotent subalgebra of
r. Next, construct the Killing form K̄ for the factor algebra s ⊕

(r mod n). This form will vanish identically on (r mod n) and
will be nondegenerate on s. The subalgebra s identified in this way
is compact if and only if K̄ is negative definite on it. (For more
details on this construction and examples, see [21, pp. 256–258].)
With regard to the Cartan decomposition, the Killing form K is
negative definite on k and positive definite on p. Implementing all
the described steps involves only standard operations from linear
algebra. �

We now examine some implications of Proposition 4, starting
with a simple example.

Example 2. Suppose that the matrices Ap, p ∈ P take the form

Ap =


λp αp + δp

−αp + δp λp


for some numbers λp < 0, αp, δp ∈ R, p ∈ P . For generic
values of these numbers, g = gl(2, R) (the Lie algebra of all 2 × 2
matrices), r consists of multiples of the identity matrix, s consists
of all traceless matrices, k consists of skew-symmetric matrices,
and p consists of traceless symmetric matrices (see [22, p. 144] and
[10, Section A.6]). We then have

Rp =


λp 0
0 λp


, Kp =


0 αp

−αp 0


, Pp =


0 δp
δp 0


.

Clearly, λ̄R = maxp∈P λp. Since the matrices eK , K ∈ k are orthog-
onal, λ̂P = maxp∈P |δp|. By Proposition 4, the switched system is
GUES if maxp∈P λp + maxp∈P |δp| < 0. �

Actually, the more general case when the matrices Ap, p ∈ P
span the Lie algebra gl(n, R) for an arbitrary n is not too different
fromExample 2. The components r, s, k, and p in the Levi and Cartan
decompositions are described in the sameway as in Example 2. For
each pwehave Rp = λpI whereλp :=

1
n tr(Ap), and it still holds that

λ̄R = maxp∈P λp. Next, Pp is given by the formula

Pp =
1
2
(Ap + AT

p) −
1
n
tr(Ap)I.

Using the orthogonality of eK , K ∈ k and the fact that Pp is
symmetric, we have

λ̂P = max
p∈P

σ
max

(Pp)

= max
p∈P

 λ
max


1
2
(Ap + AT

p) −
1
n
tr(Ap)I

2


where σmax(·) stands for the largest singular value and λmax(·)
stands for the largest eigenvalue of a symmetric matrix. Therefore,
by Proposition 4 a sufficient condition for GUES is

max
p∈P

1
n
tr(Ap)

+ max
p∈P

 λ
max


1
2
(Ap + AT

p) −
1
n
tr(Ap)I

2


< 0. (40)

For comparison, let us now look at a case where the given
matrices possess some additional structure. Namely, consider the
matrices Ap ∈ R2n×2n in the form Ap = λpI + Sp, where λp =
1
2n tr(Ap) and Sp is a symplectic matrix, i.e.,

Sp =


Vp Wp

Up −V T
p


where Up and Wp are symmetric. Such matrices appear in models
of Hamiltonian mechanical systems (for quadratic Hamiltonians),
with λp reflecting dissipation effects (for example, due to friction).
The Cartan decomposition of the symplectic Lie algebra sp(2n, R)
is described as follows (see [23, Chapter X]). The compact part k

consists of matrices of the form


A B
−B A


with A skew-symmetric

and B symmetric; so, matrices in k are skew-symmetric with
additional structure inherited from the symplectic Lie algebra
(namely, off-diagonal blocks are symmetric and diagonal blocks
are identical). The noncompact part p consists of matrices of the
form


C D
D −C


with C and D both symmetric; so, matrices in p are

symmetric but againwith additional structure (off-diagonal blocks
are symmetric and diagonal blocks are negatives of each other). Let
us decompose each Vp into symmetric and anti-symmetric parts:
Vp = Vp,s + Vp,a, so that V T

p = Vp,s − Vp,a. Then the Cartan
decomposition gives Sp = Kp + Pp where

Kp =

 Vp,a −
1
2
(Up − Wp)

1
2
(Up − Wp) Vp,a


and

Pp =

 Vp,s
1
2
(Up + Wp)

1
2
(Up + Wp) −Vp,s

 .
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We can calculate Pp from the formula

Pp =
1
2
(Ap + AT

p) −
1
2n

tr(Ap)I

and a sufficient condition for GUES, from Proposition 4, is

max
p∈P

1
2n

tr(Ap)

+ max
p∈P

 λ
max


1
2
(Ap + AT

p) −
1
2n

tr(Ap)I
2


< 0.

This is the same condition as (40) for the case of gl(2n, R). We
see that the above formula for Pp automatically accounts for the
inherent symmetries in the system.

We remark that in Example 2 and the two subsequent cases
just considered, it can be shown that the sum of squares V (x) =

xT x serves as a common Lyapunov function for the constituent
systems.2 In general, we do not know whether our conditions
imply the existence of a quadratic common Lyapunov function.

4. Conclusions

In this paper we proposed Lie-algebraic stability criteria for
switched linear systems, which take the form of inequality
constraints and thus have inherent robustness with respect to
sufficiently small perturbations of the system data. The classes
of switched linear systems captured by our results are those
with approximately commuting constituent systems and those
whose Lie algebra is ‘‘approximately solvable’’ or ‘‘solvable plus
approximately compact’’. Unlike previously known results, and
as expected from [10], the newly derived conditions depend not
only on the commutation relations but also on the specific matrix
representation of the Lie algebra. Major directions for future work
include constructing (possibly non-quadratic) common Lyapunov
functions for these system classes as well as developing robust
stability criteria for switched nonlinear systems.
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