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Abstract— We study the problem of stabilizing a switched
linear system with disturbance using sampled and quantized
measurements of its state. The switching is assumed to be
slow in the sense of combined dwell-time and average dwell-
time, while the active mode is unknown except at sampling
times. Each mode of the switched linear system is assumed
to be stabilizable, and the magnitude of the disturbance is
constrained by a known bound. A communication and control
strategy is designed to guarantee bounded-input-bounded-state
(BIBS) stability of the switched linear system and an exponen-
tial convergence rate with respect to the initial state, providing
the data rate satisfies certain lower bounds. Such lower bounds
are established by expanding the over-approximation bounds
of reachable sets over sampling intervals derived in a previous
paper to accommodate effects of the disturbance.

I. INTRODUCTION

Feedback control problems with limited information have
been an active research area for years, as surveyed by Nair
et al. [1]. Information flow in a feedback loop has been an
important factor in many application-related scenarios, not
only because of bandwidth constraints, but for cost concerns,
physical restrictions, and security considerations as well. Be-
sides the aforementioned practical motivations, the question
of how much information is required to achieve a certain
control objective is quite fundamental and intriguing from
the theoretical point of view. In the study of feedback control
problems, it is common to characterize the limitation on
information flow as a finite data transmission rate achieved
by using sampled and quantized measurements to generate
the control input (see, e.g., [2], [3] and [4, Ch. 5]), which is
the modeling framework adopted in this paper.

We are interested in feedback control problems using sam-
pled and quantized measurements in the presence of external
disturbances. In this context, the work by Hespanha et al.
[2] and Tatikonda and Mitter [3] assumed known bounds
on the magnitudes of external disturbances and addressed
bounded-input-bounded-state (BIBS) stability [5], while the
work by Liberzon and Nešić [6] and Sharon and Liberzon [7]
avoided such assumptions by switching repeatedly between
“zooming-out” and “zooming-in” processes and achieved
input-to-state stability (ISS) [8]. See also [9], [10] for related
results in a stochastic setting.

The study of switched and hybrid systems has attracted
lots of attention in recent years (particularly relevant works
include [4], [11], [12] and many references therein). In the
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research on stability and stabilization of switched systems,
it is common to impose certain slow-switching conditions,
especially in the sense of dwell-time [13] and average dwell-
time [14], which play a crucial role in our analysis.

Towards stabilization of switched systems with distur-
bances, Hespanha and Morse [14] showed that ISS is pre-
served under the same average dwell-time condition as for
the case without disturbance. This result was made explicit
in [14] only for the case of switched linear systems, and
several papers have established similar results in the context
of switched nonlinear systems since then (e.g., [15] for ISS
with dwell-time, [16] for ISS with average dwell-time, [17]
for input/output-to-state stability with average dwell-time).

Early work on control problems with limited information
in the context of switched systems has been devoted to
quantized control of Markov jump linear systems [18], [19],
[20]. However, the discrete modes in these references were
always known to the controller, which would remove most
of the difficulties present in our problem formulation. The
problem of asymptotically stabilizing a switched linear sys-
tem using sampled and quantized state feedback was studied
in [21], which serves as the basis of the present work. In
[21], the controller was assumed to have a partial knowledge
of the switching; namely, the switching signal was subject
to a fairly mild “slow-switching” condition described by
the combination of a dwell-time and an average dwell-time,
while the active mode of the switched system was unknown
except at sampling times. Providing the data rate was large
enough (but finite), a communication and control strategy
was developed based on the technique of propagating over-
approximations of reachable sets. A related result for output
feedback stabilization was presented in [22].

We extend the result in [21] to the scenario where an ex-
ternal disturbance is present. The disturbance is unknown but
an upper bound on its magnitude is known to the controller.
We design and verify a communication and control strategy
which guarantees BIBS stability of the switched linear sys-
tem and an exponential convergence rate with respect to the
initial state, assuming the data rate satisfies certain lower
bounds. While such lower bounds are established based on
the propagation of over-approximations of reachable sets
during sampling intervals along the lines of [21], the bounds
on reachable sets are enlarged accordingly to accommodate
effects of the disturbance. Moreover, the lower bound on the
data rate guaranteeing BIBS stability is formulated explicitly,
together with a remark discussing its relation to the lower
bound guaranteeing exponential convergence.

This paper is structured as follows. In Section II, we intro-
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duce the definitions and basic assumptions of the switched
linear system with disturbance and the information structure.
Our main result is presented in Section III. The communica-
tion and control strategy is described in Section IV under
the assumption that appropriate bounds on reachable sets
are available. Such bounds are constructed in Section V.
In Section VI, we sketch the stability analysis, with several
major steps summarized as technical lemmas. Section VII
summarizes the paper and introduces a future research topic.

II. PROBLEM FORMULATION

A. System description

In this paper, we are interested in stabilizing a switched
linear control system with disturbance

ẋ = Aσx+Bσu+Dσd, x(0) = x0, (1)

where x ∈ Rnx is the state, u ∈ Rnu is the (control) input,
d ∈ Rnd is the external disturbance, {(Ap, Bp, Dp) : p ∈ P}
is a collection of matrix triples with suitable dimensions
defining the subsystems (modes), P is a finite index set,
and σ : R≥0 → P is a right-continuous, piecewise constant
switching signal which specifies the index σ(t) of the active
mode at time t. The solution x(·) is absolutely continuous
and satisfies the differential equation (1) away from the
discontinuities of σ (in particular, there are no state jumps).
The switching signal σ is fixed but unknown to the controller
a priori. Discontinuities of σ are called switching times, or
simply switches. The number of switches on a time interval
(s, t] is denoted by Nσ(t, s).

Our first basic assumption is that σ satisfies a “slow-
switching” condition, which is characterized by the following
combined dwell-time and average dwell-time conditions.

Assumption 1 (Slow switching). The switching signal σ
satisfies that
1) there exists a dwell-time τd such that Nσ(t, s) ≤ 1 for all

s ∈ R≥0 and all t ∈ (s, s+ τd];
2) there exists an average dwell-time τa > τd and an integer

N0 ≥ 1 such that

Nσ(t, s) ≤ N0 +
t− s
τa

∀ t > s ≥ 0. (2)

The notions of dwell-time and average dwell-time were
introduced by Morse [13] and Hespanha and Morse [14],
respectively, and are quite standard in the context of switched
systems. In Assumption 1, item 1) may be represented in the
form of (2) with τa = τd and N0 = 1; on the other hand,
item 2) would be implied by item 1) in the absence of the
constraint τa > τd. Switching signals satifying Assumption 1
were called “hybrid dwell-time” signals in [23].

Our second basic assumption is that all individual modes
are stabilizable.

Assumption 2 (Stabilizability). For each p ∈ P , there exists
a state feedback gain matrix Kp such that Fp := Ap+BpKp

is Hurwitz.

In the subsequent analysis, it is assumed that such a
collection of matrices {Kp : p ∈ P} has been selected

and fixed. In general, even if there is no disturbance, and
all individual modes are stabilized via feedback (or stable
without feedback), stability of the switched system is not
guaranteed (see, e.g., [4, Part II]).

Throughout this work, ‖ ·‖ is used to denote the ∞-norm.
For a function f : R≥0 → Rn, let f(t−) := lims↗t f(s) and
‖f‖I be its supremum ∞-norm on an interval I , that is,

‖f‖I := sups∈I ‖f(s)‖.

Our third basic assumption is that the magnitude of the
external disturbance d is bounded by a known value.

Assumption 3 (Disturbance). The disturbance d satisfies that

‖d(t)‖[0,∞) ≤ δ (3)

for a disturbance bound δ ∈ R≥0 known to both the encoder
and decoder.

B. Information structure

The feedback control consists of a sensor and a controller.
The sensor records and transmits two sequences of data:
the indices of the active modes σ(tk) and the quantized
measurements (samples) of the state x(tk) at sampling times
tk = kτs, k ∈ Z≥0, where τs is the sampling period.
Each sample is encoded by an integer ik from 0 to Nnx ,
where N is an odd integer (so that the equilibrium at the
origin is preserved). The controller generates the input u
to the switched linear system (1) based on the decoded
data. The information structure of the feedback control is
demonstrated in Fig. 1. The communication and control
strategy is described in detail in Section IV.

Fig. 1. Information structure

It is assumed that the sampling period is smaller or equal
to the dwell-time τd in Assumption 1, that is,

τs ≤ τd, (4)

so that at most one switch occurs in each sampling interval
(tk, tk+1]. (Since the average dwell-time τa is larger than τd
in Assumption 1, switches actually occur less than once per
sampling period.) As σ(tk) ∈ P and ik ∈ {0, 1, . . . , Nnx},
the data rate of the transmission between the encoder and
decoder is (log2 |Nnx + 1| + log2 |P|)/τs bits per time
unit, where |P| denotes the cardinality of P . Our last basic
assumption sets a lower bound on the data rate.

Assumption 4 (Data rate). The sampling period τs satisfies

‖eApτs‖ =: Λp < N ∀ p ∈ P. (5)
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Equation (5) is interpreted as a lower bound on the data
rate as it requires τs to be sufficiently small with respect
to N . This bound is the same as the one in the earlier
result for the case without disturbance [21, Assumption 3],
while similar data rate bounds appeared in [24], [2], [3] for
stabilizing non-switched linear systems. (For more discussion
on their relation, see [21, Section 2.2] and [7, Section V].)

III. MAIN RESULT

Our main objective is to establish the following theorem:

Theorem 1. Let Assumptions 1–4 and the inequality (4) hold
for the switched linear system (1). If the average dwell-time
τa is large enough, then there exists a communication and
control strategy that yields the following two properties.
EXPONENTIAL CONVERGENCE: There exist a constant λ ∈
R>0 and functions g : R≥0 → R>0 and h : R≥0 → R≥0

such that
‖x(t)‖ ≤ e−λtg(‖x0‖) + h(δ) (6)

for all initial states x0 ∈ Rnx , all disturbance bounds δ ∈
R≥0 and all t ∈ R≥0.
BIBS STABILITY: For each ε ∈ R>0, there exists a dis-
turbance bound δ ∈ R>0 such that if, in addition to the
inequality (3), the initial state satisfies ‖x0‖ ≤ δ, then
‖x(t)‖ ≤ ε for all t ∈ R≥0.

The lower bounds on the average dwell-time τa are given
by (33) for exponential convergence, and (42) for BIBS
stability. (Their relation is discussed in Remark 2). The
exponential decay rate λ and the gains g and h are given by
(39), (40) and (41), respectively. From the proof, it will be
clear that g(r) does not go to 0 as r → 0 and is super-linear
as r → ∞. Hence BIBS stability needs to be established
separately. Meanwhile, h is super-linear and positive definite.

IV. COMMUNICATION AND CONTROL STRATEGY

In this section we present the communication and con-
trol strategy under the assumption that appropriate state
bounds are available at sampling times. We first explain the
“zooming-out” algorithm to capture an arbitrary initial state
in Subsection IV-A, and then the “zooming-in” algorithm to
measure the state and generate the (control) input in Sub-
section IV-B. The construction of appropriate state bounds
is described in Section V.

A. Capturing the state by “zooming-out”

In the beginning, the sensor possesses no information of
the initial state x0 and is given an arbitrary initial value E0.
Starting from k = 0, at each sampling time tk, it checks if

‖x(tk)‖ ≤ Ek (7)

holds, that is, the state x(tk) is inside the hypercube {v ∈
Rnx : ‖v‖ ≤ Ek}. If the result is positive, it proceeds to
the “zooming-in” stage; otherwise it lets the encoder send
ik = 0, the “overflow symbol”, to the decoder, calculates
a larger value Ek+1, and repeats at the next sampling time
tk+1. The controller sets the input u(t) = 0 on [tk, tk+1)

upon receiving ik = 0. The formula to calculate Ek+1 from
Ek and the proof that a finite “capture time” tk0 such that
(7) holds with k = k0 exists are presented in Subsection V-
C. The decoder knows the initial value E0 and the recursive
formula, and thus calculates every Ek+1 by itself.

B. Measuring the state by “zooming-in” and generating the
control

The state is captured at tk0 for the first time. Hence the
inequality (7) holds, that is,

‖x(tk)− x∗k‖ ≤ Ek (8)

with k = k0 and x∗k0 = 0. Starting from k = k0, at each
sampling time tk, both the sensor and the controller know
that (8) holds, that is, the state x(tk) is inside the hypercube
{v ∈ Rnx : ‖v − x∗k‖ ≤ Ek}, and the values of x∗k and
E∗k . The encoder partitions the hypercube into Nnx equal
hypercubic boxes, N per dimension, encodes each box by a
unique index from 1 to Nnx , and transmits the index ik of
the hypercubic box containing x(tk) to the decoder, along
with the index σ(tk) of the active subsystem. The decoder
shares the same indexing protocol with the encoder, so it is
able to reconstruct the center ck of the hypercubic box that
contains x(tk) from ik. Simple calculation shows that

‖x(tk)− ck‖ ≤
1

N
Ek, ‖ck − x∗k‖ ≤

N − 1

N
Ek. (9)

The controller sets the control input u(t) = Kσ(tk)x̂(t) for
t ∈ [tk, tk+1), where Kσ(tk) is the state feedback gain matrix
in Assumption 2, and x̂ is the solution to the auxiliary system

˙̂x = Aσ(tk)x̂+Bσ(tk)u = Fσ(tk)x̂, x̂(tk) = ck. (10)

(Notice that x̂ is reset to ck at each tk.) Both the sensor
and the controller maintain identical copies of the auxiliary
system (10) to calculate the values x∗k+1 and Ek+1 such that
(8) holds at tk+1 on their own. The procedure of measuring
the state and generating the control input is repeated for each
k ≥ k0. The derivation of x∗k+1 and Ek+1 from x∗k and Ek
is demonstrated in Subsections V-A and V-B.

V. GENERATING STATE BOUNDS

In this section, we derive the values Ek. In Subsections V-
A and V-B, we consider an arbitrary k ≥ k0 and establish
x∗k+1 and Ek+1 from x∗k and Ek such that they satisfy

‖x(tk+1)− x∗k+1‖ ≤ Ek+1. (11)

The construction of Ek for k ≤ k0 and the existence of a k0

such that (7) holds with k = k0 are shown in Subsection V-C.

A. Sampling interval with no switch
In this subsection, we consider a k ≥ k0 such that

σ(tk) = p = σ(tk+1) (12)

for some p ∈ P . Then no switch has occurred on (tk, tk+1]
according to (4). Combining the switched linear system (1)
and the auxiliary system (10) gives that

ẋ = Apx+Bpu+Dpd,

˙̂x = Apx̂+Bpu.

2195



Simple calculation shows that the error e := x− x̂ satisfies

‖e(t−k+1)‖ ≤ Λp
N
Ek + Φp(τs)δ =: Ek+1 (13)

with Λp defined in (5) and Φp : [0, τs]→ R defined as

Φp(t) :=

∫ τs

0

‖eApsDp‖ds. (14)

By continuity, equation (11) holds with x∗k+1 defined as

x∗k+1 := x̂(t−k+1) = eFpτsck, (15)

where Fp = Ap +BpKp is defined in Assumption 2.

B. Sampling interval with a switch

In this subsection, we consider a k ≥ k0 such that

σ(tk) = p 6= q = σ(tk+1) (16)

for some p, q ∈ P . Then exactly one switch has occurred
on (tk, tk+1] according to (4). Denote the switching time by
tk + t̄, where t̄ ∈ (0, τs] is unknown.

1) Before the switch: We proceed as in Subsection V-A
and derive that the error e = x− x̂ satisfies

‖e(tk + t̄)‖ ≤ ‖e
Ap t̄‖
N

Ek + Φp(t̄)δ,

where Φp was defined in (14). As tk + t̄ is unknown, we
estimate x(tk+ t̄) by comparing it to x̂(t+t′) for an arbitrary
t′ ∈ [0, τs) using the triangular inequality and derive

‖x(tk + t̄)− x̂(tk + t′)‖ ≤ Φp(t̄)δ + ‖eFp t̄ − eFpt
′
‖

×
(
‖x∗k‖+

N − 1

N
Ek

)
+
‖eAp t̄‖
N

Ek =: Dk+1(t′, t̄).

2) After the switch: Combining the switched linear system
(1) and the auxiliary system (10) with u = Kpx̂ gives that

ż = Āpqz + D̄qd,

where z := (x>, x̂>)> ∈ R2nx and

Āpq :=

(
Aq BqKp

0nx×nx
Ap +BpKp

)
, D̄q =

(
Dq

0nx×nd

)
.

Combining it with a second auxiliary system

˙̄z = Āpq z̄, z̄(tk + t′) = (x̂(tk + t′)>, x̂(tk + t′)>)> (17)

gives
ż = Āpqz + D̄qd,

˙̄z = Āpq z̄

with the boundary condition

‖z(tk + t̄)− z̄(tk + t′)‖ ≤ Dk+1(t′, t̄)

by the definition of ∞-norm. It is simple to derive that

‖z(t−k+1)− z̄(tk+1 − t̄+ t′)‖
≤ ‖eĀpq(τs−t̄)‖Dk+1(t′, t̄) + Φ̄pq(τs − t̄)δ,

where Φ̄pq : [0, τs]→ R is an increasing function defined as

Φ̄pq(t) :=

∫ t

0

‖eĀpqsD̄q‖ds.

Similar to Subsubsection V-B.1, we estimate z(t−k+1) by
comparing it to z̄(tk + t′′) for an arbitrary t′′ ∈ [0, τs) using
the triangle inequality and derive

‖z(t−k+1)− z̄(tk + t′′)‖

≤ ‖eĀpq(τs−t̄) − eĀpq(t′′−t′)‖‖eFpt
′
‖
(
‖x∗k‖+

N − 1

N
Ek

)
+ ‖eĀpq(τs−t̄)‖Dk+1(t′, t̄) + Φ̄pq(τs − t̄)δ

=: Ēk+1(t′, t′′, t̄)

To eliminate the dependence on the unknown switching time
t̄, we take the maximum over t̄ (with fixed t′, t′′) and define

Ek+1 := maxt̄∈(0,τs] Ēk+1(t′, t′′, t̄). (18)

A relatively simple bound on Ek+1 can be derived as

Ek+1 ≤ α2,pq‖x∗k‖+ β2,pqEk + γ2,pqδ, (19)

where

α2,pq := e‖Āpq‖max{τs,2(t′′−t′),τs+2(t′−t′′)}‖Āpq‖
×max{t′′ − t′, τs + t′ − t′′}+ max{τs − t′, t′}
× e‖Āpq‖τse‖Ap+BpKp‖max{τs,2t′}‖Ap +BpKp‖,

β2,pq :=
N − 1

N
α2,pq +

1

N
e(‖Āpq‖+‖Ap‖)τs ,

γ2,pq := e‖Āpq‖τsΦp(τs) + Φ̄pq(τs).

(20)

By continuity, equation (11) holds with x∗k+1 defined as

x∗k+1 := (Inx 0nx)z̄(tk + t′′) = Hpqck, (21)

where
Hpq := (Inx

0nx
)eĀpqt

′′
(
Inx

Inx

)
eFpt

′
.

C. Generating Ek0
In the beginning, an arbitrary initial value E0 is given.

Before the state is captured, we calculate an increasing
sequence (Ek)k≥1 so that their growth rate dominates that
of the state x under open-loop dynamics, and establish a
k0 ∈ Z≥0 such that (7) is satisfied. The sequence (Ek)k≥1

is defined by the recursive formula

Ek+1 = (1 + εE)Λ̂2Ek + (Λ̂ + 1)Φδ, (22)

where εE ∈ R>0 can be arbitrarily small, and

Λ̂ := max
p∈P

max
t∈[0,τs]

‖eApt‖ ≥ 1, Φ := max
p∈P

Φp(τs), (23)

and Φp is defined according to (14) for each p. We proceed
to show that, for each E0 ∈ R>0, there exists a k0 ∈ Z≥0

such that (7) holds with k = k0. Indeed, consider a k ∈ Z≥0

such that ‖x(tk)‖ > Ek. Then u(t) = 0 for all t ∈ [tk, tk+1)
by Subsection IV-A, and simply calculation shows that

‖x(t)‖ ≤ Λ̂2‖x(tk)‖+(Λ̂+1)Φδ ∀ t ∈ (tk, tk+1]. (24)

If ‖x0‖ ≤ E0, let k0 = 0. Otherwise, let k ∈ Z>0 be such
that ‖x(tl)‖ > El for all l < k. Consider the ceiling function
d·e : R→ Z defined as dre := min{j ∈ Z : j ≥ r}, and let

k̄ :=

⌈
log ‖x0‖ − logE0

log(1 + εE)

⌉
∈ Z≥0.
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Then k̄ ≥ 1 as ‖x0‖ > E0, and (22) and (24) imply that

Ek̄ ≥ Λ̂2k̄‖x0‖+
∑2k̄−1

l=0
Λ̂lΦδ ≥ ‖x(tk̄)‖.

Thus there exists at least one k ∈ Z≥0 such that ‖x(tk)‖ ≤
Ek. Then k0 := min{k ∈ Z≥0 : ‖x(tk)‖ ≤ Ek} satisfies

k0 ≤ η(‖x0‖), (25)

where η : R≥0 → R≥0 is defined as

η(r) := max

{
0,

⌈
log r − logE0

log(1 + εE)

⌉}
. (26)

Moreover, (22), (24) and Young’s inequality imply that

‖x(t)‖ ≤ γ(‖x0‖) +
1

κ
Φκδκ ∀ t ∈ [0, tk0 ],

Ek0 ≤ γ(‖x0‖) +
1

κ
Φκδκ,

(27)

where γ : R≥0 → R>0 is an increasing function defined as

γ(r) := (1 + εE)η(r)Λ̂2η(r)E0

+
1

ς

(
(1 + εE)η(r)Λ̂2η(r) − 1

(1 + εE)Λ̂2 − 1
(Λ̂ + 1)

)ς
, (28)

with arbitrary κ, ς ∈ (1,∞) such that 1/κ+ 1/ς = 1.

VI. STABILITY ANALYSIS

In this section we show that the communication and
control strategy described in Section IV fulfills Theorem 1.
The proof details are omitted due to space constraints.

A. Sampling interval with no switch
In this subsection, we consider a k ≥ k0 satisfying (12)

with some p ∈ P . Consider Sp := e(Ap+BpKp)τs . As Ap +
BpKp is Hurwitz, there exist Pp, Qp > 0 such that

S>p PpSp − Pp = −Qp < 0.

Define

χp :=
2n2‖S>p PpSp‖2

λ(Qp)
+ n‖S>p PpSp‖. (29)

By Assumption 4, there exist a constant ρp ∈ R>0 for each
p and a constant ψ1 ∈ R>0 such that

(N − 1)2

N2

χp
ρp

+ (1 + ψ1)
Λ2
p

N2
< 1.

Define a function Vr : Rn ×R≥0 → R≥0 for each r ∈ P as

Vr(x,E) := x>Prx+ ρrE
2. (30)

Lemma 1. For all k ≥ k0 such that (12) holds, the function
Vp defined according to (30) satisfies

Vp(x
∗
k+1, Ek+1) ≤ νVp(x∗k, Ek) + νdδ

2, (31)

where
ν := maxp∈P νp,

νp := max

{
(N − 1)2

N2

χp
ρp

+ (1 + ψ1)
Λ2
p

N2
, 1− λ(Qp)

2λ(Pp)

}
,

νd := maxp∈P

(
1 +

1

ψ1

)
ρpΦp(τs)

2,

and Λp, Φp, χp are defined in (5), (14), (29), respectively.

B. Sampling interval with a switch

In this subsection, we consider a k ≥ k0 satisfying (16)
with some p, q ∈ P . Let hpq :=

√
λ(H>pqHpq).

Lemma 2. For all k ≥ k0 such that (16) holds, the functions
Vp, Vq defined according to (30) satisfy

Vq(x
∗
k+1, Ek+1) ≤ µVp(x∗k, Ek) + µdδ

2, (32)

where

µ := maxp,q∈P µpq,

µpq := max

{
2λ(Pq)h

2
pq

λ(Pp)
+ (2 + ψ2)

α2
2,pqρq

λ(Pp)
,

2nλ(Pq)h
2
pq

ρp

(N − 1)2

N2
+ (2 + ψ2)

β2
2,pqρq

ρp

}
,

µd := maxp,q∈P

(
1 +

2

ψ2

)
ρqγ

2
2,pq,

α2,pq , β2,pq , γ2,pq are defined in (20), ψ2 ∈ R>0 is arbitrary.

Remark 1. The definition of ν in Lemma 1 implies ν < 1.
Moreover, the definition of µ in Lemma 2 implies µ ≥ 1
when t′ = t′′ = 0. For general t′ and t′′, we can guarantee
this by letting µ = max{µ, 1} if necessary. On the other
hand, as (32) holds for all ψ2 ∈ R>0, a sufficiently small ψ2

(for a fixed ψ1) can be selected so that µd ≥ νd. We assume
that µ ≥ 1 > ν and µd ≥ νd in the following proof.

C. Combined bound for sampling times

In this subsection, we give a lower bound on the average
dwell-time τa in Assumption 1 that guarantees convergence.

Lemma 3. Consider ν, νd, µ and µd defined in Lemmas 1
and 2. If the average dwell-time τa satisfies

τa >

(
1 +

logµ

log(1/ν)

)
τs, (33)

then there exists a constant φ ∈ (0, 1) such that

Vσ(tk)(x
∗
k, Ek) < θk−k0ΘN0Vσ(tk0

)(0, Ek0)

+ ΘN0+1

(
1 +

ν

φ(1− ν)

)
νdδ

2 (34)

for all k ≥ k0, where N0 is defined in (2), and

Θ :=
µ+ φ(1− ν)µd/νd
ν + φ(1− ν)

> 1,

θ := Θτs/τa(ν + φ(1− ν)) < 1.

(35)

D. Inter-sample bound and exponential convergence

In this subsection, we describe an over-approximation of
the state between sampling times and establish the first claim
of Theorem 1. Similar analysis to Subsection V-B shows that

‖x(t)‖ ≤ (α2,pq + 1)‖x∗k‖+

(
β2,pq +

N − 1

N

)
Ek + γ2,pqδ,

for all k ≥ k0 and all t ∈ (tk, tk+1]. Combining this
inequality with (34) gives that

‖x(t)‖ ≤ θ(k−k0)/2c̄Ek0 + d̄δ ∀ t ∈ (tk0 ,∞), (36)
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where

c̄ := ΘN0/2

((
max
p,q∈P

α2,pq + 1

)√
maxp∈P ρp

minp∈P λ(Pp)

+

(
max
p,q∈P

β2,pq +
N − 1

N

)√
maxp∈P ρp
minp∈P ρp

)
, (37)

d̄ :=

((
max
p,q∈P

α2,pq + 1

)
1√

minp∈P λ(Pp)

+

(
max
p,q∈P

β2,pq +
N − 1

N

)
1√

minp∈P ρp

)

×Θ(N0+1)/2

√(
1 +

ν

φ(1− ν)

)
νd + γ2. (38)

Combining (25), (27) and (36) gives (6) with

λ := − log θ

2τs
> 0, (39)

g(r) := θ−(η(r)+1)/2c̄γ(r), (40)

h(r) :=
1

κ
θ−1/2c̄Φκrκ + d̄r, (41)

where Φ, η, γ, θ, c̄ and d̄ are defined in (23), (26), (28),
(35), (37) and (38), respectively, and κ ∈ (1,∞) is arbitrary.

E. BIBS stability
In this subsection, we provide a sufficient condition for

the second claim of Theorem 1, which essentially follows
from similar analysis to previous subsections and [21, Sub-
section 5.5]. Compared with [21, Subsection 5.5], an explicit
bound on the average dwell-time guaranteeing BIBS stability
(42) is provided, and its relation with the bound guaranteeing
exponential convergence (33) is discussed in Remark 2.

Lemma 4. If the average dwell-time τa satisfies

τa >

(
1 +

log β2

log(N/Λ)

)
τs, (42)

where

Λ := maxp∈P Λp, β2 := maxp,q∈P β2,pq,

then for each ε ∈ R>0, there exists a disturbance bound
δ ∈ R>0 such that if, in addition to (3), the initial state
satisfies ‖x0‖ ≤ δ, then ‖x(t)‖ ≤ ε for all t ∈ R≥0.

Remark 2. We may replace ρp with ρ = maxp∈P ρp in
the definition (30) and let the rest of the analysis remain
unchanged. We will show that (33) implies (42) under such
modification. Indeed, the definitions of ν and µ guarantee
that 1 > ν > Λ2/N2 and µ > β2

2 , which further imply that
(logµ)/(log(1/ν)) > (log β2)(log(N/Λ)).

VII. CONCLUSION

We presented a result on the stabilization of a switched
linear system with disturbance using sampled-data quantized
feedback. BIBS stability and exponential convergence with
respect to the initial state were established via propagating
over-approximations of reachable sets. Compared with ear-
lier results, the approximation bounds were enlarged to han-
dle the disturbance. Future work will be focusing on relaxing
the assumption on the known bound on the disturbance.
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